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A SMALL ULTRAFILTER NUMBER AT SMALLER CARDINALS

DILIP RAGHAVAN AND SAHARON SHELAH

Abstract. It is proved to be consistent relative to a measurable cardinal that
there is a uniform ultrafilter on the real numbers which is generated by fewer
than the maximum possible number of sets. It is also shown to be consistent
relative to a supercompact cardinal that there is a uniform ultrafilter on ℵω+1

which is generated by fewer than 2ℵω+1 sets.

1. Introduction

The purpose of this short note is to show that it is possible to make the ultrafilter
number small at relatively small accessible regular cardinals assuming the existence
of large cardinals. Recall the following definitions.

Definition 1. Let κ ≥ ω be a regular cardinal. An ultrafilter U on κ is said to be
uniform if |A| = κ for every A ∈ U . A set X ⊆ U generates U if

U = {A ⊆ κ : ∃B ∈ X [B ⊆ A]} .

The cardinal u(κ) is defined to be smallest size of a family that generates a uniform
ultrafilter on κ. More formally,

u(κ) = min {|X | : X generates some uniform ultrafilter on κ} .

Much is known about u(ω). The consistency of u(ω) = ℵ1 < 2ℵ0 seems to
have been first noted by Kunen in the early 1970s (see Exercise (A10) of Chapter
VIII in [5]). To obtain Kunen’s model, one starts with ℵ1 < 2ℵ0 and then adjoins
an ultrafilter witnessing u(ω) = ℵ1 by a finite support iteration of c.c.c. forcings
of length ω1. Baumgartner and Laver (see [2]) noticed later that both countable
support iterations and countable support products of Sacks forcing preserve P-
points, and hence they showed that u(ω) = ℵ1 < ℵ2 = 2ℵ0 holds in both the
iterated and side-by-side Sacks models. The Miller model (see [6] and [1]) provides
an example of a model where u(ω) = ℵ1 < ℵ2 = d(ω) holds. Much later, Shelah
proved the consistency of u(ω) < a(ω) assuming the consistency of a measurable
cardinal in [9].

The situation above ω is much less clear. Kunen asked in the seventies whether
u(ℵ1) < 2ℵ1 or even whether r(ℵ1) < 2ℵ1 is consistent. Kunen’s questions remain
completely open. If κ ≥ iω is regular, then d(κ) ≤ r(κ) (see [8]), and therefore
d(κ) ≤ r(κ) ≤ u(κ). Hence there can be no perfect analogue of the Miller model
at sufficiently large regular cardinals. It remains an open problem whether d(κ) ≤
r(κ) is provable for uncountable regular cardinals κ less than iω. For regular
κ > ω, the consistency of u(κ) < 2κ was only known for supercompact κ until
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now. An unpublished result of Carlson from the eighties showed that if κ is a Laver
indestructible supercompact cardinal, then there is a forcing extension in which
κ remains supercompact and u(κ) = κ+ < 2κ. Carlson’s model is obtained in a
manner analogous to how Kunen’s model for u(ω) = ℵ1 < 2ℵ0 is obtained.

In this note, we produce models where u(κ) < 2κ for accessible values of κ. More
precisely, assuming a measurable cardinal in the ground model, we produce a model

where 2ℵ0 is regular and u(2ℵ0) < 22
ℵ0
, and assuming a supercompact cardinal in

the ground model we produce a model where u(ℵω+1) < 2ℵω+1 . We do not know if
any large cardinals are necessary to produced models satisfying these statements.
Our models are unlikely to be optimal in several other ways. For instance in all of
our models, 2κ is much larger than κ+. At present, we do not know how to produce
models of u(κ) < 2κ for accessible values of κ where the gap between κ+ and 2κ is
small. See Section 5 for further discussion of open problems.

Most of the ideas needed to prove our theorems come from a paper of Shelah
and Thomas [10] in which several statements about subgroups of the symmetric
group on κ were shown to be consistent relative to large cardinals. In fact we
show that u(ℵω+1) < 2ℵω+1 holds in the model constructed in Section 4 of [10]. A
crucial ingredient used in the proofs in our paper and in the paper of Shelah and
Thomas [10] is the notion of an indecomposable filter. In particular we will use
a theorem of Ben-David and Magidor [3] saying that indecomposable filters may
exist on ℵω+1.

While we will only consider u(κ) for regular κ in this note, several other works
such as Garti and Shelah [4] have dealt with the ultrafilter number at singular
cardinals.

2. A general result

In this section we will present a general theorem saying that if µ is a singular
strong limit cardinal, if λ and κ are specifically chosen cardinals below µ, and if P
is any forcing notion that satisfies a combinatorial condition relative to λ, κ, and
µ, then P forces that u(κ) ≤ µ. We will apply this general result in Sections 3 and
4 to obtain consistency results.

Definition 2. Let 〈P,≤P,1P〉 and 〈Q,≤Q,1Q〉 be notions of forcing. We will write
〈P,≤P,1P〉 ⊆c 〈Q,≤Q,1Q〉 if the following conditions are satisfied:

(1) 1P = 1Q;
(2) P ⊆ Q;
(3) ≤P = ≤Q ∩ (P× P);
(4) for any p, p′ ∈ P, p⊥P p

′ ⇐⇒ p⊥Q p′;
(5) if A ⊆ P is any maximal antichain in 〈P,≤P,1P〉, then A remains a maximal

antichain in 〈Q,≤Q,1Q〉.

The relation 〈P,≤P,1P〉⊆c〈Q,≤Q,1Q〉 is usually expressed by saying that 〈P,≤P,1P〉
is a complete suborder of 〈Q,≤Q,1Q〉. We also usually abuse notation and simply
write P⊆c Q or say that P is a complete suborder of Q.

It is clear that ⊆c is a transitive relation. The following simple fact will be useful.

Lemma 3. Let 〈P,≤P,1P〉, 〈Q,≤Q,1Q〉, and 〈R,≤R,1R〉 be any forcing notions.
If P⊆c Q, then P× R⊆c Q× R.

Proof. Points (1)–(4) of Definition 2 are clear. For (5), consider any 〈q, r〉 ∈ Q×R.
Since P ⊆c Q, there exists p ∈ P with the property that ∀p′ ≤P p

[

p′ 6⊥Q q
]

. Now
〈p, r〉 ∈ P × R. Moreover if 〈p′, r′〉 is any condition such that 〈p′, r′〉 ≤P×R 〈p, r〉,
then 〈p′, r′〉 6⊥Q×R 〈q, r〉. This implies (5). ⊣
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The notion of an indecomposable filter was first considered by Prikry [7] and
investigated by many other afterwards. Ben-David and Magidor [3] showed that it
is consistent relative to a supercompact cardinal that uniform ℵn-indecomposable
ultrafilters can exist on ℵω+1 for 0 < n < ω. This is the key combinatorial notion
needed for our proofs.

Definition 4. Let κ and λ be infinite cardinals. A filter F on λ is said to be
κ-indecomposable if whenever 〈Yξ : ξ < κ〉 is a partition of λ (i.e. λ =

⋃

ξ<κYξ

and ∀ζ < ξ < κ [Yζ ∩ Yξ = 0]), then there exists T ⊆ κ such that |T | < κ and
⋃

ξ∈TYξ ∈ F .

We next introduce a technical combinatorial condition on a forcing notion P

involving several other parameters. In Section 3 it will be proved that forcing
notions of the form Fn(I, J, λ) and products of forcing notions of this form satisfy
this combinatorial condition for a suitable choice of the other parameters. In this
section, we will prove that if P satisfies the combinatorial condition for some choice
of the other parameters, then P forces that the ultrafilter number at one of these
parameters is bounded by another parameter.

Definition 5. Let 〈P,≤P,1P〉 be a forcing notion. We say that 〈P,≤P,1P〉 has a
(λ, κ, µ,D)-filtration if there exists a sequence 〈Pα : α < µ〉 satisfying the following:

(1) λ, κ, and µ are infinite cardinals satisfying λ < cf(µ) < κ < µ;
(2) µ is a strong limit cardinal and λ<λ = λ;
(3) D is a uniform cf(µ)-indecomposable filter on κ;
(4) P is λ+-c.c. and ∀p ∈ P∃α < µ [p ∈ Pα];
(5) for each α < µ, Pα ⊆c P, and ∀ξ < α [Pξ ⊆ Pα];
(6) for each α < µ, |Pα| < µ.

Observe that there is no connection between P and the filter D. In other words,
we only need the existence of some uniform cf(µ)-indecomposable filter on κ. Con-
ditions (4)–(6) simply say that P is a λ+-c.c. poset which can be written as an
increasing union of small complete subposets. Actually the condition that Pα is a
complete sub order of P for each α < µ is not necessary for the proof of our main
results. It is sufficient if each Pα is any sub order of P. However Condition (5)
is automatically satisfied in all of our applications. Hence we have not sought to
weaken it.

Lemma 6. Let 〈P,≤P,1P〉 and 〈R,≤R,1R〉 be forcing notions. Assume that λ, κ, µ,
and D are so that 〈P,≤P,1P〉 has a (λ, κ, µ,D)-filtration. If |R| < µ and

P“ Ř is λ̌+-c.c.”,

then P× R also has a (λ, κ, µ,D)-filtration.

Proof. Fix 〈Pα : α < µ〉 witnessing that 〈P,≤P,1P〉 has a (λ, κ, µ,D)-filtration. For
each α < µ, let Qα = Pα × R. We check that 〈Qα : α < µ〉 is a witness that P× R

has a (λ, κ, µ,D)-filtration. Indeed clauses (1)–(3) of Definition 5 only depend on
λ, κ, µ, and D, which satisfy these clauses by hypothesis. Also, by hypothesis P is
λ+-c.c. and P“ Ř is λ̌+-c.c.”. It is a standard fact (e.g. Lemma 5.7 of [5]) that
this implies that P × R is λ+-c.c. Also if 〈p, r〉 ∈ P × R, then there is α < µ with
p ∈ Pα, whence 〈p, r〉 ∈ Pα × R = Qα. This verifies (4) of Definition 5. Next
for each α < µ, since Pα ⊆c P, Qα = Pα × R ⊆c P × R. Also for each ξ < α, we
have Qξ = Pξ × R ⊆ Pα × R = Qα because Pξ ⊆ Pα. Finally, for each α < µ,
|Qα| = |Pα × R| < µ. This concludes the verification. ⊣

The next theorem shows that P forces u(κ) to be bounded by µ whenever P has
a (λ, κ, µ,D)-filtration. The proof is similar to the proof of Theorem 6 from [10],
though our theorem below is formulated in a slightly more general context.
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Theorem 7. Let 〈P,≤P,1P〉 be a forcing notion. Assume that λ, κ, µ, and D are
so that 〈P,≤P,1P〉 has a (λ, κ, µ,D)-filtration. Assume moreover that cf(κ) = κ.
Then P forces that every uniform ultrafilter on κ that extends D is generated by a
set of size at most µ. In particular, P forces that u(κ) ≤ µ.

Proof. Let 〈Pα : α < µ〉 witness that 〈P,≤P,1P〉 has a (λ, κ, µ,D)-filtration. For
each α < µ, let Aα = Pλ

α and let B = λ2. Define Lα = Aα × B. Then |Lα| < µ
because µ is a strong limit. For any D ∈ D, define Lα,D = {α}×{D}×LD

α . Again
|Lα,D| < µ, and so if L =

⋃

{Lα,D : 〈α,D〉 ∈ µ × D}, then |L| ≤ µ. Fix a strictly
increasing cofinal sequence 〈αi : i < cf(µ)〉 in µ.

Suppose Å is any P-name such that PÅ ⊆ κ. We will associate a member
of L to Å as follows. Since P is λ+-c.c., we can find for each δ < κ, sequences
〈

p
Å,δ,ε : ε < λ

〉

and τ
Å,δ such that:

(1)
〈

p
Å,δ,ε

: ε < λ
〉

∈ Pλ and
{

p
Å,δ,ε

: ε < λ
}

is a predense set in P;

(2) τ
Å,δ ∈ λ2 and for each ε < λ,

(

p
Å,δ,ε  δ ∈ Å

)

⇐⇒
(

τ
Å,δ(ε) = 1

)

and
(

p
Å,δ,ε  δ /∈ Å

)

⇐⇒
(

τ
Å,δ(ε) = 0

)

.

For each δ < κ and ε < λ, there is i(Å, δ, ε) < cf(µ) with p
Å,δ,ε

∈ Pα
i(Å,δ,ε)

.

Since λ < cf(µ), for each δ < κ, there exists i(Å, δ) < cf(µ) which satisfies ∀ε <

λ
[

i(Å, δ, ε) < i(Å, δ)
]

. Now for each i < cf(µ), put Yi = {δ < κ : i = i(Å, δ)}.

Then 〈Yi : i < cf(µ)〉 is a partition of κ. Since D is cf(µ)-indecomposable, there is

a set T ⊆ cf(µ) such that |T | < cf(µ) and
⋃

i∈TYi ∈ D. Define D(Å) =
⋃

i∈TYi.

cf(µ) being a regular cardinal, there is i(Å) < cf(µ) with T ⊆ i(Å). Define α(Å) =

αi(Å) ∈ µ. Note that if δ ∈ D(Å), then i(Å, δ) < i(Å), and so for any ε < λ,

i(Å, δ, ε) < i(Å, δ) < i(Å), whence p
Å,δ,ε ∈ Pα

i(Å,δ,ε)
⊆ Pα

i(Å,δ)
⊆ Pα

i(Å)
= Pα(Å).

Thus we conclude that for each δ ∈ D(Å),
〈

〈p
Å,δ,ε : ε < λ〉, τ

Å,δ

〉

∈ Pλ

α(Å)
× λ2 =

A
α(Å)×B = L

α(Å). Therefore l(Å) ∈
{

α(Å)
}

×
{

D(Å)
}

×L
D(Å)

α(Å)
= L

α(Å),D(Å) ⊆ L,

where

l(Å) =
〈

α(Å), D(Å),
〈〈

〈p
Å,δ,ε

: ε < λ〉, τ
Å,δ

〉

: δ ∈ D(Å)
〉〉

.

Claim 8. Suppose Å and B̊ are P-names such that PÅ ⊆ κ and PB̊ ⊆ κ. Suppose
l = 〈α,D, 〈〈〈pδ,ε : ε < λ〉, τδ〉 : δ ∈ D〉〉 is a member of L such that l = l(Å) = l(B̊).

Then PÅ ∩D = B̊ ∩D.

Proof. Suppose not. Then, without loss of generality, there exists p ∈ P and δ ∈ D
such that p P δ ∈ Å \ B̊. Since δ ∈ D = D(Å) = D(B̊), τ

Å,δ
= τδ = τ

B̊,δ
and

〈p
Å,δ,ε : ε < λ〉 = 〈pδ,ε : ε < λ〉 = 〈p

B̊,δ,ε : ε < λ〉. In particular, {pδ,ε : ε < λ} is

a predense set. Choose ε < λ and q ∈ P with q ≤P p, pδ,ε. It follows from (2) that

pδ,εPδ ∈ Å, and hence τ
Å,δ(ε) = 1. Similarly, pδ,εPδ /∈ B̊, and hence τ

B̊,δ(ε) = 0.

However this contradicts τ
Å,δ

(ε) = τδ(ε) = τ
B̊,δ

(ε). ⊣

Suppose G is a (V,P)-generic filter. Since P is λ+-c.c. and cf(κ) = κ ≥ λ+,
κ remains a regular cardinal in V[G]. Suppose U is any uniform ultrafilter on κ
extending D. Define

K =

{

l ∈ L : ∃Å ∈ VP

[

(

PÅ ⊆ κ
)V

and l(Å) = l and Å [G] ∈ U

]}

.
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For each l ∈ K choose Ål ∈ VP such that
(

PÅl ⊆ κ
)V

, l(Ål) = l, and Ål [G] ∈ U .

Define X =
{

D ∩ Ål [G] : 〈D, l〉 ∈ D ×K
}

. Note that if 〈D, l〉 ∈ D×K, thenD ∈ U

because U extends D, and Ål [G] ∈ U by choice of Ål, whence D∩ Ål [G] ∈ U . Thus
X ⊆ U . Furthermore |X | ≤ µ (note that µ remains a cardinal in V[G]).

Claim 9. X generates U .

Proof. Since X ⊆ U , {B ⊆ κ : ∃A ∈ X [A ⊆ B]} ⊆ U . Suppose that C ∈ U . Find

C̊ ∈ VP with C = C̊ [G]. Also find p ∈ G so that
(

p P C̊ ⊆ κ
)V

. In V, applying

the maximal principle, we can find a P-name B̊ so that PB̊ ⊆ κ and p P B̊ = C̊.
Let l = l(B̊) ∈ L. In V[G], B̊ [G] = C̊ [G] = C ∈ U , and B̊ is a witness that l ∈ K.

Hence Ål is defined and l(Ål) = l = l(B̊). It follows from Claim 8 that for some

D ∈ D, Ål [G] ∩D = B̊ [G] ∩D = C ∩ D. Since 〈D, l〉 ∈ D ×K, D ∩ Ål [G] ∈ X .
So C ∩ D ∈ X , and since C ∩ D ⊆ C, C ∈ {B ⊆ κ : ∃A ∈ X [A ⊆ B]}. Thus
U = {B ⊆ κ : ∃A ∈ X [A ⊆ B]}, as needed. ⊣

This proves that U is generated by a set of size at most µ. Since D is a uniform
filter on κ, there is at least one uniform ultrafilter on κ extending D. Therefore
u(κ) ≤ µ in V[G]. ⊣

The proof of Theorem 7 shows that the results in Section 4 of [10] can also be
obtained from the assumption that P has a (λ, κ, µ,D)-filtration. Note also that
the condition that Pα ⊆c P for every α < µ is not used in the proof of Theorem 7.
Hence this theorem can be proved under a weaker formulation of Definition 5. We
leave it to the interested reader to formulate the optimal hypotheses under which
the proof of Theorem 7 can be carried out.

3. Small ultrafilter number at the continuum

Several posets of the form Fn(I, J, χ) as well as products of such posets have
a (λ, κ, µ,D)-filtration for suitable values of the cardinals λ, κ, and µ, and any
uniform cf(µ)-indecomposable filter D on κ.

Lemma 10. Suppose that λ, κ, µ, and D satisfy (1)–(3) of Definition 5. Then
Fn(µ× λ, 2, λ) has a (λ, κ, µ,D)-filtration.

Proof. For each α < µ, define Pα to be Fn(α × λ, 2, λ). We will check that the
sequence 〈Pα : α < µ〉 witnesses that there is a (λ, κ, µ,D)-filtration. Clauses (1)–
(3) of Definition 5 are already satisfied by hypothesis. It is well-known (see Lemma

6.10 of [5]) that Fn(µ × λ, 2, λ) is
(

2<λ
)+

-c.c. This means that Fn(µ × λ, 2, λ)

is (λ)
+
-c.c. because λ<λ = λ. Also for each p ∈ Fn(µ × λ, 2, λ), there exists

α < µ with p ∈ Fn(α × λ, 2, λ) = Pα because λ < cf(µ). Next for any α < µ,
α×λ ⊆ µ×λ, and so Pα = Fn(α×λ, 2, λ)⊆cFn(µ×λ, 2, λ). Similarly if ξ < α, then
Pξ = Fn(ξ×λ, 2, λ)⊆cFn(α×λ, 2, λ) = Pα. Finally for each α < µ, |Pα| < µ because
µ is a strong limit cardinal. Therefore (1)–(6) of Definition 5 are satisfied. ⊣

Lemma 11. Suppose that λ, κ, µ, and D satisfy (1)–(3) of Definition 5. Suppose
moreover that θ is an infinite cardinal such that θ < λ, θ is regular, 2<θ = θ,
κθ = κ, and cf(κ) = κ. Let P = Fn(µ×λ, 2, λ) and R = Fn(κ×θ, 2, θ). Then P×R

has a (λ, κ, µ,D)-filtration.

Proof. We will check the hypotheses of Lemma 6. Firstly, by Lemma 10 P has a
(λ, κ, µ,D)-filtration. Using the fact that µ is a strong limit cardinal, it is easy to
verify that |R| < µ. Finally suppose that G is (V,P)-generic. Since P is λ-closed in
V, it follows that R is still Fn(κ× θ, 2, θ) as calculated in V[G]. Similarly in V[G],
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2<θ = θ holds, and so R is θ+-c.c. in V[G]. Therefore in V, P“ Ř is λ̌+-c.c.”.
Hence P× R also has a (λ, κ, µ,D)-filtration by Lemma 6. ⊣

We are now able to show that if there is a measurable cardinal κ, then for any

regular cardinal θ < κ satisfying 2<θ = θ, it is possible to force u(2θ) < 22
θ

.

Theorem 12. Suppose that θ, λ, κ, and µ are infinite cardinals satisfying θ < λ <
cf(µ) < κ < µ, that θ is regular, and that 2<θ = θ. Assume also that µ is a strong
limit cardinal and that λ<λ = λ. Suppose moreover that κ is measurable and that D
is a normal measure on κ. Then there is a cofinality preserving extension in which
2θ = κ, u(κ) ≤ µ, and 2κ = µκ > µ.

Proof. Note that since κ is measurable and D is a normal measure on κ, cf(κ) = κ,
κθ = κ, and D is a uniform cf(µ)-indecomposable ultrafilter on κ. Let P = Fn(µ×
λ, 2, λ) and R = Fn(κ× θ, 2, θ). It is well-known that P×R is cofinality preserving.
By Lemma 11, P×R has a (λ, κ, µ,D)-filtration. Suppose H is a (V,P×R)-generic
filter. By Theorem 7, u(κ) ≤ µ holds in V [H ]. By standard arguments (see proof
of Theorem 6.18 in [5]), V [H ] satisfies 2θ = κ and 2λ = µ. Since cofinalities and

cardinals are preserved, we have 2κ =
(

2λ
)κ

= µκ ≥ µcf(µ) > µ. ⊣

Corollary 13. It is consistent relative to a measurable cardinal that there is a

uniform ultrafilter on the reals which is generated by fewer than 22
ℵ0

many sets.

Proof. Apply Theorem 12 with θ = ω. ⊣

Note that the fact that µ is a singular cardinal with cofinality less than κ plays
a crucial role in these proofs. In Corollary 13, if we assume that GCH holds in the
ground model and pick the minimal values of λ and µ required to run the proof,

then in the resulting model, 2ℵ0 = κ and 22
ℵ0

> κ+ℵ2 .

4. Small ultrafilter number at ℵω+1

The continuum is a weakly inaccessible cardinal in the model constructed in the
previous section. In this section we will get a model where u(κ) < 2κ for a κ which
is well below the first weakly inaccessible cardinal, namely ℵω+1. However we must
start with a supercompact cardinal.

Thomas and Shelah [10] considered the following statement for regular cardinals
κ:

If G is any subgroup of Sym(κ) with [Sym(κ) : G] < 2κ, then there exists(∗κ)

∆ ⊆ κ such that |∆| < κ and S(∆) is a subgroup of G.

Here Sym(κ) is the symmetric group on κ and S(∆) denotes the pointwise stabilizer
of the set ∆ ⊆ κ. It turns out that (∗ℵ0) is a theorem of ZFC. In [10], Shelah
and Thomas used a supercompact cardinal to produce a model where

(

∗ℵω+1

)

fails.

We show below that u(ℵω+1) < 2ℵω+1 in this model constructed by Shelah and
Thomas, and moreover our proof is quite similar to their argument that

(

∗ℵω+1

)

fails. However we are not aware of any direct connection between
(

∗ℵω+1

)

and
u(ℵω+1). It would be especially interesting if the failure of (∗κ) implied u(κ) < 2κ

for some uncountable regular κ.
In order to apply Theorem 7 with κ = ℵω+1, it must be possible to find uniform

filters on ℵω+1 that are ℵn-indecomposable for some n < ω. A by now classical
theorem of Ben-David and Magidor [3] says that it is consistent relative to a super-
compact cardinal to have a uniform ultrafilter on ℵω+1 which is ℵn-indecomposable
for all 0 < n < ω.
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Theorem 14 (Ben-David and Magidor [3]). Assume that there is a supercompact
cardinal. There is a forcing extension in which GCH holds and there is a uniform
ultrafilter on ℵω+1 which is ℵn-indecomposable for all 0 < n < ω.

The proof of the next theorem is now just a matter of combining Theorem 14
with Theorem 7 and Lemma 10.

Theorem 15. Assume that there is a supercompact cardinal. Then there is a
forcing extension in which u(ℵω+1) < 2ℵω+1 .

Proof. By Theorem 4, we can pass to a forcing extension V′ in which GCH holds
and there exists a uniform ultrafilter D on ℵω+1 which is ℵn-indecomposable for
all 0 < n < ω. Working in V′, put κ = ℵω+1 and choose λ and µ so that (1)–(3)
of Definition 5 are satisfied. In fact, since GCH holds in V′, we can simply choose
λ = ℵ0 and µ = ℵω1 . By Lemma 10, P = Fn(µ×λ, 2, λ) has a (λ, κ, µ,D)-filtration.
Let G be (V′,P)-generic. By standard arguments, 2λ = µ in V′ [G]. By Theorem
7 and by the fact the all cofinalities and cardinals are preserved between V′ and
V′ [G], ℵω+1 = κ, u(κ) ≤ µ, and 2κ =

(

2λ
)κ

= µκ ≥ µcf(µ) > µ in V′ [G]. ⊣

The reader will again notice the crucial role played by the fact that µ is a singular
cardinal whose cofinality is smaller than κ. Choosing the minimal values for λ and
µ that are allowed by the proof, as we have done above, still results in a model
where 2ℵω+1 > ℵω1 . This is very unlikely to be sharp. It ought to be possible to
produce models where u(ℵω+1) = ℵω+2 < ℵω+3 = 2ℵω+1 .

It is not difficult to combine the proof of Theorem 15 with the proof of Theorem
12 to produce a model where 2ℵ0 = ℵω+1 and u(ℵω+1) < 2ℵω+1 . One would then
need to choose µ to be ℵω2 (or bigger). Details are left to the reader.

5. Remarks and Questions

As mentioned in Section 1, the models constructed in this paper have several
features that are likely to be accidental rather than essential. The first such feature
is the use of large cardinals.

Question 16. What is the consistency strength of the inequality u(2ℵ0) < 22
ℵ0

or
of u(ℵω+1) < 2ℵω+1?

We are not aware that these statements have any large cardinal strength. The
next question is about how large 2κ needs to be for u(κ) < 2κ to be consistent. We
pose this question in a very weak form below.

Question 17. Is the following statement consistent relative to large cardinals:
There exists an uncountable regular cardinal κ such that κ is smaller than the first
weakly inaccessible cardinal and u(κ) = κ+ < κ++ = 2κ?

Finally of course the method in this paper is not applicable to any of the ℵn.

Question 18. Is it consistent to have u(ℵn) < 2ℵn , for some 0 < n < ω?
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