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Abstract

A relational structure X is called reversible iff each bijective homomorphism
from X onto X is an isomorphism, and linear orders are prototypical exam-
ples of such structures. One way to detect new reversible structures of a
given relational language L is to notice that the maximal or minimal ele-
ments of isomorphism-invariant sets of interpretations of the language L on
a fixed domain X determine reversible structures. We isolate certain syn-
tactical conditions providing that a consistent L, -theory defines a class of
interpretations having extreme elements on a fixed domain and detect several
classes of reversible structures. In particular, we characterize the reversible
countable ultrahomogeneous graphs.
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1 Introduction

Generally speaking, a structure is reversible iff each bijective endomorphism of that
structure is an automorphism. Several prominent structures have this property; for
example, each compact Hausdorff space X is reversible (because each continuous
bijection f : X — X is a closed mapping and, hence, a homeomorphism) and,
similarly, each linear order X is a reversible relational structure (since an increasing
bijection f : X — X must be an isomorphism).

The reversible structures mentioned above are extreme: compact Hausdorff
topologies are, on one hand, maximal compact and, on the other hand, minimal
Hausdorff topologies, and linear orders are maximal partial orders. In this paper,
searching for reversible structures, we investigate this phenomenon in the class of
relational structures. So throughout the paper we assume that L = (R; : i € I) is
a relational language, where ar(R;) = n; € N, for ¢ € I, that X is a non-empty
set and Int,(X) = J[,c; P(X™) the set of all interpretations of the language L,
over the domain X. An interpretation p = (p; : i € I) € Inty(X) will be called
reversible iff (X, p) is a reversible structure.
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First in Section [3 we easily establish the reversibility of minimal and maximal
elements of the poset (C, C), where C C Intr,(X) is an isomorphism-invariant set,
and, in particular, if C is of the form Int7 (X) = {p € Intz,(X) : (X, p) |= T}, for
some set 7 of sentences of the infinitary language L.... Of course, there are sets
of the form Intz(X ) having neither minimal nor maximal elements, and, hence, in
Section 4] we isolate a class of formulas F such that the set of maximal elements
of the poset Int] (X) is co-dense, whenever 7 C F, and prove a dual statement
concerning minimal elements. We note that it is not our goal to find a syntac-
tical characterization of the largest class F with the property mentioned above,
because, for example, for a countable language L, each isomorphism-invariant set
C C Intr(w) is of the form Intgp} (w), where ¢ is the disjunction of the Scott sen-
tences of the structures belonging to C and, trivially, the set Intgpvsp’”}(w), where
©m = N\;c; V0 R;(v) has a largest element, (X™ : i € I). Our goal is to find a
reasonable class of sentences providing relevant examples of reversible structures.

Sections |5 and |6/ contain some applications of the results mentioned above. In
particular it is shown that the concept of “forbidden finite substructures” provides
a large class of extreme (and, hence, reversible) structures. Clearly, one thing is
to prove that extreme interpretations exist and the other is to find (or characterize)
them. Some results on this topic are given in examples.

2 Preliminaries

The algebra of interpretations Abusing notation, for p,o € Inty(X) we will
write p C o iff p; C oy, forall i € I. Clearly (Intz(X), C) is a Boolean lattice
and, abusing notation again, the operations in the corresponding Boolean algebra
will be denoted in the following way: if p? € Inty(X), for j € .J, then Njes po=
(MNjespl i€ D), Ujes = Ujegpl i€ 1), p¢ = (X" \ p; =0 € I),
0O:=(@:iel)and1:= (X" :i€1).

Direct and inverse images of interpretations If X and Y are non-empty sets
and n > 2, the n-th power of amapping f : X — Y is the mapping f" : X" — Y"
defined by f™((z1,...,2n)) = (f(x1),..., f(zy)), for each (z1,...,2,) € X™.
Clearly, f is an injection (surjection) iff f” is an injection (surjection).

For L-interpretations p = (p; : i € I) € Intz,(X)and 0 = (0; : i € I) €
Int 7, (V') the interpretations f[p] € Intz(Y) and f~![o] € Intz (X) are defined by

flo) = (f"[pi) si € I) and f~'o) := ((f™) o] ;i € 1), (1)
and these operators have all properties of direct and inverse images: p C f~1[f[p]],

fFoll= o0 f0L fNes 2] € Nyeg Flo) 10T = (FHp))S, ete.
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Morphisms Bijective homomorphisms will be called condensations. Working
with elements of Int, (X), instead of Hom((X, p), (X, o)) we will write Hom(p, o).
Also, instead of (X, p) = (X, o) we will shortly write p = o and regard = as an
equivalence relation on the set Inty,(X). Let [p]~ := {0 € Int1(X) : 0 = p}.

Fact 2.1 Foreachp = (p; :i € I),0 = (0, : i € I) € Int(X) we have:
(a) Hom(p,o) = {f € *X : flp] C o}
(b) [pl= = {flp] : [ € Sym(X)}.

The condensation order and reversibility If P = (P, <) is a partial order, a
subset C' of P is called convex iff p < ¢ < r and p,r € C implies ¢ € C. A set
A C P is called an antichain iff different elements of A are incomparable. Clearly,
each antichain is convex and Convp(A) ={p€ P:3d",a" € A o/ <p<ad'}is
the minimal convex set containing the set A C P (the convex closure of A).

Here we recall some facts from [8} 9} [10]. Let <. be the pre-order on the set
Inty (X)) defined by: p <. o iff there is a condensation f : (X, p) — (X,0).
The corresponding antisymmetric quotient, the poset (Inty (X)/~., <.), where
preco s p=eoNo = pand [plo, <; [0]~. & p e 0, for p,o € Intr(X),
is called the condensation order. Defining [p]~.. := {0 € Int;(X) : 0 ~. p}, for
each p € Intz,(X) we have

[Pl C [pl~. = Convimye, (x),0) ([0]=)- (2)

Fact 2.2 For each interpretation p € Inty(X) the following is equivalent:
(a) p is reversible, that is Cond(p) = Aut(p),
(b) [p]= is an antichain in the Boolean lattice (Intr,(X), C),
(c) there is no o € [p|~ such that p ¢ o,
(d) there is no o € [p|~ such that o & p,
(e) p° is reversible.

An interpretation p € Intz,(X) will be called strongly reversible iff [p|l~ = {p};
weakly reversible iff [p]~ is a convex set in the Boolean lattice (Intz(X),C).
Clearly we have sRevy(X) C Revy(X) C wRevy(X), where Rev (X) (resp.
sRev(X), wRevr (X)) denotes the set of all reversible (resp. strongly reversible,
weakly reversible) interpretations p € Inty (X).

It is easy to see that both reversibility and its two variations are ~-invariants
and, hence, =-invariants. (A property P is called ~-invariant iff for each p,o €
Intz,(X) we have: if p has P and o ~ p, then o has P). In addition, weakly
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reversible interpretations have the Cantor-Schroder-Bernstein property for conden-
sations (if p is weakly reversible and there are condensations f : (X, o) — (X, p)
and g : (X, p) — (X,0), then o = p).

Concerning strong reversibility we have: an interpretation p € Intz(X) is
strongly reversible iff for each ¢ € I, the relation p; is a subset of X" which is
definable by a first-order formula of the empty language without parameters.

Example 2.3 If L, = (R) is the binary language (i.e. ar(R) = 2) and X # 0,
then the only strongly reversible elements of Intz, (X) are: () (the empty relation),
A x (the diagonal), X 2 \ Ax (the complete graph) and X 2 (the full relation).

Partial orders If P = (P, <) is a partial order, by Min P (resp. MaxP) we
denote the set of minimal (resp. maximal) elements of P. A set D C P is called
dense (resp. co-dense) in P iff for each p € P there is ¢ € D such that g < p (resp.
p < q). A set of L-interpretations C C Intz(X) will be called union-complete
(resp. intersection-complete) iff | JL € C (resp. () £ € C) for each chain £ C C.
The partial order (C, C) will be shortly denoted by C, when it is convenient.

Fact 2.4 If C C Intz(X) is a union-complete (resp. intersection-complete) set,
then Max C (resp. Min C) is a co-dense (resp. dense) subset of C.

Proof. If C is union-complete and p € C, then, by the Hausdorff maximal principle,
there is a maximal chain £ in C such that p € L. By the union-completeness of C,
we have | J £ € C, by the maximality of £ we have | J £ € Max(C, C) and, since
p € L, we have p C |J L. The proof for intersection-complete sets is dual. a

Infinitary languages Let L = (R; : i € I) be arelational language, & an infinite
cardinal and Var = {v, : a € k} a set of variables. By At; we denote the
corresponding set of atomic formulas, that is,

Aty = {va = v, B € K}U{Ri(Vay, -+ Van,) 1 € IN(Q1, ... a;) € K™}
The class of Lo, -formulas is the class Formy,_ = U£€Ord Formg, where

Formg = Atg,
Form¢y = Formg U {—¢: ¢ € Form¢}
{Mva p:ae s Np eForme} U {Jug ¢ € kA € Forme}
{A®:® C Forme} U {\/®: P C Formg},

Form., = Formg, for a limit ordinal ~y.
Y E<y 3 Y
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Let X = (X,(RX : 4 € I) be an L-structure and ¥ = (1, : @ € k) € "X a
valuation. If § € k and 2’ € X, by T (5,,1y We denote the valuation y € "X defined
by: Yo = xq, forall @ # f; and yg = 2. The satisfiability relation for L,-
formulas is defined in a standard way, for example, X = (R;(vay, - - - , Vay, ) [Z] iff
(Tays- s Ta,,) € R, X E (=) @] iff X = ¢[7] is not true; X = (Yo, ¢)[7]
iff X = o[Zq,0)), foreach z € X; X |= (\ @)[7] iff X |= ¢[], for some ¢ € ®.
Loo,-formulas ¢ and ¢ are called logically equivalent, in notation ¢ < 1 iff
they are equivalent in all L-structures, that is, iff for each L-structure X we have:

Vi€ rX (x = glf] & X = ¢m). 3)

If X and Y are L-structures, a mapping f : X — Y preserves an Lo, -formula ¢
iff
v e X (X old] = Yk olfd), @

where f¥ = (f(z,) : @ € k). We say that the formula ¢ is absolute under f iff in
@) we have “<” instead of “=".

3 Reversibility of maximal and minimal structures

~

AsetC C Intp(X) is said to be isomorphism-invariant or, shortly, ~-invariant iff
VpeC [p]=CC. (5)
By C¢ we will denote the set {p° : p € C}. (Clearly, C¢ # Intz(X) \ C.)

Theorem 3.1 IfC C Inty(X) is an =-invariant set and 7 € Max C (respectively,
7 € MinC), then
(a) T is a reversible interpretation,
(b) [T]=~ = [T]~, is an antichain in C and [T]~ C MaxC (resp. [T]~ C MinC);
(c) The set C¢ is =-invariant and T € Max C iff 7¢ € Min(C®), for any .

Proof. (a) Suppose that 7 is not reversible. Then, by Fact 2.2 there is 0 € [7]~
such that 7 & o and, by (3), o € C, which is impossible, by the maximality of 7.
(b) By (a) and Fact[2.2] [7]~ is an antichain and, by @)), [7]~ = [7]~,. Suppose
that there are 71 € [7]~ and p € C such that 71 & p. Then, by Fact2.1[b) there is
f € Sym(X) such that f[r;] = 7, which, together with (8) implies 7 & f[p] € C.
But, by the maximality of 7, this is impossible. For 7 € Min C the proof is dual.
(c) For p € C we show that [p°]l~ C C° So, if 0 € [p]~, then, by Fact
2.1b), there is a bijection f : X — X such that o = f[p] = f[p]|° and, since
flp] € [pl= C C, we have 0 € C°. Let 7 € Inty(X). Then 7¢ € Min(C°) iff
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7¢ = p¢, for some p € C, and for each p € C we have p¢ C 7¢ = p® = 7°. In other
words, 7 = p, for some p € C and for each p € C we have 7 C p = p = 7, which
means that 7 € MaxC. a

We note that, in fact, an interpretation 7 € Inty,(X) is reversible iff 7 € Max C
for some “-invariant set C C Inty(X). Namely, the remaining implication is
trivial: if 7 is reversible, then by Fact2.2]we have 7 € [7]~ = Max|[7]~.

Now we consider the sets of interpretations satisfying L,-sentences. In order
to make a correspondence between interpretations and their complements to each
Loow-formula ¢ we adjoin the formula (¢ defined in the following way:

(Va =v8)° 1= v = vg and (R;(Vay ;- - - Va,, ) = " Ri(Vays - - - Vay, );

If £ € Ord and ¢© is defined for a formula ¢ € Formg, then

(7)€ = ¢C, (Vg )¢ 1= Y, ¢¢ and (v, )¢ := Ju, ¢°;
If ¢ C Form¢ and ¢° is defined for each formula ¢ € ®, then

(AP)¢:= A\ P€and (\/ D) :=\ D€,

where, for a set ® of Lq,-formulas ®¢ denotes the set {¢° : p € P}.

Theorem 3.2 [f X is a non-empty set and T a set of Loo,,-sentences, then
(a) The set Int] (X) is =-invariant;
(b) (Int] (X))¢ = Int] “(X) and this set is =-invariant;
(c) Maximal and minimal elements of Intz(X ) are reversible interpretations;
(d) T € MaxInt] (X) iff 7° € MinInt] (X)), for 7 € Intz(X).

Proof. (a) If p € Int] (X) and 0 € [p]~, then there exists an isomorphism f :
(X,p) — (X,0). Since for each sentence ¢ € T we have (X,p) = ¢, by a
standard fact that each L..,-formula is absolute under each isomorphism we have
(X,0) = ¢ as well. Thus o € Int] (X) and (@) is true.

(b) First, using induction we prove the following auxiliary statement.

Claim 3.3 For each L-structure (X, p) and each formula ¢ € Formyp,__  we have

Vi e "X ((X. ) = ¢°la] & (X, p) | l]). ©)

Proof. Let 7 € " X. Then (X, p°) |= ( vg)°[Z] iff (X, p°) = (va = vp)[] iff
zo = zg iff (X, p) |= (va = vp)[Z]. A ( %) = (Rilvay,s - vay, ) [f] iff
(X,0°) B ~Ri(vay, - - - Va,,, ) [7] iff (wal, s Tay ) & PO (Tays .o Ty, ) €
iff (X, p) = Ri(vay,--- ,vani)[:f].

Suppose that (6) holds for a formula ¢ and let £ € *X. Then (X, p°) &
(—p)[@] iff not (X, p) = ¢°[&], iff not (X, p) = o[d], iff (X,p) = (mp)[Z].
(X, 0% E (Vv @)°[Z] iff (X,p°) | Yv, ¢°[7] iff for each z € X we have

(X, 0°) | ¢°[Z (a2 thatis, by (). (X, p) |= @[T (am]. i (X, p) E (Voo @)[2].
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(X, p%) E (Fua @)°[Z] iff (X,p°) = Jvg ¢°[2] iff there is € X such that
(X, ) b= °[ o), that is, by @), (X, p) b= [y )s FF (X, ) = (Fia 0)[7].

Let & C F rmL and suppose that (6) holds for each formula p € .
(X, p%) = (A\®)°[7] iff (X, 0% E N{¢: ¢ € ®}[7], iff for each ¢ € P we
have (X, p°)

= e[, that is, by @, (X.p) £ wlal, iff (X,p) = (A®)[7]
(ID)C[QE’] iff (X, p) E V{¢° : ¢ € ®}[] iff for some ¢ € & we have

(
(], that is, by @), (X, p) |= [Z]. iff (X, p) |= (V ©)[Z]. o

By Claim the sets (In‘cz(X))c ={p° : Vo € T (X,p) E ¢} and
Int]“(X) = {p¢: Yo € T (X, p°) = ¢°} are equal.
Statements (c) and (d) follow from (a), (b) and Theorem [3.1(a) and (c). O

Example 3.4 Reversibility, complete theories and elementary equivalence.
If p € Intz(X) and Th((X, p)) is the corresponding first-order theory, then

[p]= IntTh(<X P >)(X ) is the set of interpretations o € Intz (X) such that the
structures <X p) and (X, o) are elementarily equivalent. We show that, regarding
the relationship between the sets [p]= and Rev (X)), everything is possible.

1. f Q = (Q, p) is the rational line, then Th(Q) is the theory of dense lin-
ear orders without end points which is w-categorical and, hence, [p]= = [p]~ C

Revy(Q). By Fact[2.2][p]~ is an antichain so each element of the set IntTh(Q) (Q)

is both a maximal and a minimal element of the set Int h(@ (Q).

2. If G = (G, p) is the countable universal homogeneous graph (also called the
Rado graph, the Erdds-Rényi graph [3])), then the theory Th(G) is w-categorical
and the structure G is not reversible (since deleting of one of its edges produces
an 1somorphlc copy of G, see [1]]). Thus IntTh(G)(G) N Revy(G) = 0 and the set

Int; I h(& )(G) has neither minimal nor maximal elements.

3. It is well known that the theory T of one equivalence relation having exactly
one equivalence class of size n, for each n € N, is complete. For a cardinal
k <wletE,; = (w, px) be a countable model of 7 having exactly x-many infinite
equivalence classes. It is known that Int7 (w) = ,.<,[px]=(= [po]=) and, hence,
T is not an w-categorical theory. By [10], an equivalence relation is reversible
iff the number of equivalence classes of the same size is finite or all equivalence
classes are finite and their sizes form a reversible sequence. Thus the structures
E,, n < w, are reversible, while [, is not (even weakly) reversible. So we have
Int7 (w) N Revy (@) = Upeu[pnl= and Int] (w) \ Revy (w) = [pu]=.

We show that Max(Int] (w)) = [po]=~ U [p1]=. Suppose that n € {0,1} and
Pn & 0 € Intz(w). For k € N, let C}, be the unique equivalence class of size
k determined by p,. Since p, & o, the equivalence classes corresponding to o
are unions of those corresponding to p and, in addition, there is the minimal kg
such that, in (w, o), the class C}, is joined with some another p-class. But then
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there is no o-class of size ko, which contradicts our assumption that o € Intz(w).
If Kk > 2, then p, C o, for some 0 = p; (we join x infinite classes into one).
Similarly we show that Min(Int7 (w)) = [po]=~ and that for x > 1 there are no
minimal elements of Intz(w) below p,; (split infinite p,-classes into infinite parts).
Since pp, <c pn, for 1 < n < m < w, the suborder {[p]~, : p € Int] (W)} =
{lpn]= : n € w} U {[pw]~.} of the condensation order (Intr,(w)/~, <) is iso-
morphic to the disjoint union of the one element poset (corresponding to [pg]~)
and the chain of the type 1 4+ w*, with the maximum [p; ]~ and minimum [p,]~..

4 Theories having extreme interpretations

Example [3.4] shows that some sets of the form Int[(X ) have neither minimal nor
maximal elements. In this section we give some syntactical conditions providing
extreme interpretations in that sense. First, in order to provide maximal interpreta-
tions we define the class of R-positive Loy, -formulas by P := UfeOrd Pe¢, where

Po = AtpU{—wy=uvs:0a,pB €k},
Perr = Pe U{Vuqap:acerkNpePe} U {Fugap:aernApe Pl
U {ANP:PCPe} U{VP:PC P},
Py = Ug<y Pe, for alimit ordinal v,
and the class of L.y,-formulas F := UgeOrd Fe, where
Fo = PU{=Ri(vay,--- %, ) 1 €I N{aa,...,an,) € K"},
Fer1 = Fe U {Mugp:a€ernNpe Fe}
U {A®:dCFe} U{VP:PCFAN|P| <w},
Fy = Ug<y Fe, for alimit ordinal 5.
Concerning minimal interpretations, let us define the class of R-negative Lo -
formulas by N' = Ugcoq Ve, where
No = {=Ri(vays--%a,, ) i € TN (o, .. ,an,) € K"}
{va =v5 10,8 € K} U{~wq =v5: 0, € K},
Ne U{VogpraerhpeNet U {Fugp:acrNpeNe}
{A®:®C NG} U{VP:PC N},
Ny = Ugey N, for alimit ordinal 7,

(-

Ne+1

(-

and let G be the class of L,.,-formulas Ugeord G¢, where

Go = NU{Ri(vay,--s0a, )5 € TN {a,...,an,) € K"},
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Gey1 = Ge U {(Mugp:aerANpeGe}
{ANP:®CGel U{VP:PCGeN|P| <w},
g, = Ug <~ Y, for alimit ordinal .

C

Theorem 4.1 Let L be a relational language, X a non-empty set and T a set of
Loo,-sentences such that Intz(X ) # (). Then

(a) If T C F, then the set Int] (X) is union-complete and Max(Int] (X)) is
its co-dense subset consisting of reversible interpretations;

(b) If T C G, then Int] (X) is intersection-complete and Min(Int7 (X)) is its
dense subset consisting of reversible interpretations.

A proof is given in the sequel. First by induction we prove the following claim.

Claim 4.2 (a) The formulas from the class P are preserved under condensations.
(b) For each formula ¢ € F, each chain L C Inty(X) and valuation ¥ € * X
we have:

(Vo€ £ (X.0) Fold]) = (X,UL) F ol )

Proof. (a) Let X and Y be L-structures and f : X — Y a condensation. By
induction we show that () holds for each formula ¢ € P. First, clearly, homomor-
phisms preserve all atomic formulas. If ¥ € *X and X |= (—v, = vg)[Z], that is
xo # g, then, since f is an injection, f(zo) # f(xg), thatis Y |= (vq = vg)[fZ].

Suppose that @) holds for a formula ¢ € P;let ¥ € "X. If X = (Vv, ¢)[Z],
then for each z € X we have X |= ¢[#(y 4] and, by @), Y = ¢[(f7)(a, f(2))]-
Since f is a surjection, for each y € Y there is z € X such that y = f(x) and,
hence, Y |= @[(fT)(a,]- Thus Y = (Yva ) [fZ].

If X = (Jva ¢)[7], then for some » € X we have X |= [, )] which by @)
implies Y = [(fZ) (q,f(z))]- Thus, fory = f(z) € Y we have Y = o[(fT)(q,,)]
and, hence, Y = (Fv, ¢)[f].

Let & C P, suppose that (4] holds for each formula ¢ € ® and let ¥ € " X. If
X = (A @)[Z], then for each ¢ € ® we have X = ¢[Z] and, by @), Y = [f7],
which means that Y = (A @)[fZ]. If X = (\/ ®)[Z], then for some ¢ € ¢ we
have X = [Z], thatis Y = o[fZ], which implies that Y = (\/ ®)[fZ].

(b) Let £ be a non-empty chain in Intz(X) and Z € *X. (We note that then
UL=(Uyepi:i€l)=(r:ic€l)=:7€Int,(X)and, forani € I, the set
L; :={pi : p € L} is a chain in the algebra (Int g (X), C).)

Let ¢ € P and suppose that (X, p) = [Z], for each p € L. If p € L, then by
Fact[2.1[(a) the identity mapping idx : (X, p) — (X,|J L) is a condensation and,
by (a), preserves ¢. Thus, since (X, p) = [Z] we obtain (X, |J L) = ¢[Z].
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If ¢ := = R;i(Vays - - Vay, ) then for any p € Intr (X) we have (X, p) = @[]
iff <3:a1,...,3:ani> & p;. Now, if <3:a1,...,3:ani> & p;, for each p € L, then,
(Tays-- > Tay,,) & T thatis (X, L) = ¢[7].

Suppose that the statement is true for a formula ¢ € F¢. Let £ be a chain
in Intz,(X) and & € “X. If for each p € L we have (X, p) | (Vv,p)[Z], that
is (X, p) F [T (ay), forally € X, then for each y € X and each p € £ we
have (X, p) = ¢[Z(a,y] and by the inductive hypothesis and () it follows that
(X;U L) | @[T (a,y] This holds for all y € X so, (X,|J L) = (Vvayp)[Z].

Let ® C F¢ and suppose that the statement is true for each formula ¢ € ®. Let
L be a chain in Intz,(X) and ¥ € " X.

If & = {¢5, : kK < n} and for each p € £ we have (X, p) = (\V}_ ¥x)[@],
then there are ky < n and a cofinal subset £y of £ such that (X, p) = vy, [Z],
for every p € Ly and, by the induction hypothesis, (X, J Lo) = ¥, [Z]. By the
cofinality of £y we have | J Lo = |J £ and, hence, (X, L) = (V—; ¥i)[Z].

If for each p € £ we have (X,p) = (A ®)[Z], that is (X, p) = ¢[Z], for
all ¢ € @, then, for each ¢ € ® and p € L we have (X, p) = ¢[Z], so, by the
induction hypothesis, (X,|J £) &= ¢[Z]. Thus (X,J L) = (A ®)[Z]. O

Proof of Theorem @.1(a) Let £ C Int7 (X) be a chain. If ¢ € T, then for each
p € L wehave p € Int] (X) and, hence, (X, p) = ¢, which, by (), implies that
(X,UL) = ¢. SoJL € Int] (X) and, thus, the set Int} (X) is union-complete.
The second statement follows from Fact[2.4] and Theorem [3.2(c). O

Claim 4.3 (a) N = {p°: p € P};
(b) G ={p°: @ € F}, up to logical equivalence.

Proof. (a) (D) We show that for each £ € Ord and each ¢ € P¢ we have ¢° € N.
For £ = 0 we have: (vy = v8)¢ = vy = vg € N, (-0q = v8)¢ := (Vo =
v5)° 1= o = vg € No, and (Ri(Vay; - - - Van, ) = Ri(Vay;s -+ s Va,, ) € No.

Suppose that the statement is true for all £ < (. If ¢ is a limit ordinal, then,
clearly, the statement is true for (. Let ( = £ + 1. If ¢ € P, then ¢© € N and,
hence, (Vv ¢)¢ := Vv, ¢° € Neyq and (Fug ¢)¢ := Fug ¢© € Ney.

If & C P, then ¢ € N, for all ¢ € ®, and, hence, we have (A ®)¢ :=
NMeC o e @} € Neyq,and (V@) := V{p®: p € P} € Ny,

(C) We show that for each { € Ord and each i) € A there is ¢ € P¢ such
that ¢» = ¢°. So v, = vg is the formula (v, = vg)¢, ~vo = vg is the formula
(—va = vp)¢, and ~R;(vay; - - - , Va,,, ) is the formula (R;(vas, - - -, Va,,. ).

Suppose that the statement is true for all £ < (. If ¢ is a limit ordinal, then,
clearly, the statement is true for ¢. Let ( = & + 1. If 1) € N, then there is ¢ € P¢
such that 1) = ¢°. Now Vv, ¢ = VYo, ¢ = (Yua )¢, and Vv, ¢ € Peyq. Also
Fvg Y = Fug ¢ = (Fua )¢, and v, @ € Peyy.
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If & C N, then for each ¢ € ® there is ¢, € P such that i) = cpfp. So
Mo s € B} € Peyy and (A : 1 € D} = {5, & € B} = A D Also
Vg 110 € O} € Peyy and (V{py : 10 € @} = V{1 € 0} = V@,

(b) (D) We show that for each { € Ord and each ¢ € F; we have ¢¢ € G.
For = 0, if p € P, then, by (a), o € N C Gy and (= R;(va, ;- - -, Va,, )¢ is the
formula == R;(vay, - - - ; Vay,, ), Which is equivalent to R;(va, ;- - -, Va,, ) € Go-

Suppose that the statement is true for all £ < (. If ¢ is a limit ordinal, then,
clearly, the statement is true for (. Let ¢ = { + 1. If ¢ € F¢, then ¢ € G¢ and,
hence, (Yv, ¢)¢ := Vv, ¢© € Gei.

If & C F¢, then ¢ € G, for all ¢ € @, and, hence, we have (/\ )¢ :=
Mt 9 € @} € Geyr, and (V ©)° == V{¢° : ¢ € D} € Gy, if 9] < w.

(C) We show that for each £ € Ord and each ¢ € G¢ there is ¢ € F¢ such
that ¢» = ¢°. For { = 0, if ¢» € N, then we apply (a). Also, R;(Vay,-- -, Va,,. ) I8
equivalent to the formula (—=R;(vay, - - -, Va,, )" L

Suppose that the statement is true for all £ < (. If ¢ is a limit ordinal, then,
clearly, the statement is true for (. Let { = £ 4 1. If ¢ € G, then there is ¢ € F¢
such that ¢ = ¢°. Now Vv, 9 = Vv, ¢¢ = (Ve )¢, and Vv, ¢ € Feyq.

If ® C G, then for each ¢ € ® there is ¢, € F¢ such that i) = cpfp. So
Mo+ 1 € @} € Fepr and (Mpy 5 ¥ € DY) = [, 10 € O} = A . If
|®| < w, then \/{py : ¢ € @} € Fepq and (\{py 1 € 2})° =\ . ]

Proof of Theorem d.1(b) If £ is a chain in the poset (Int7 (X), C), then, by
Theorem B.2(b) we have £¢ = {p¢ : p € L} C {p° : p € Int] (X)} =:
(Int] (X)) = Int] (X). Since 7 C G, by Claim @3{(b) w.l.o.g. we assume
that 7 C {¢° : ¢ € F} and, hence, T¢ C {(¢°)¢ : ¢ € F}. By Claim[3.3] for
each interpretation p € Intz,(X) and each Lo,-sentence ¢ we have: (X, p) = ¢
iff (X, p) = (¢°)€ so, w.lo.g. again, we suppose that 7¢ C F. Now, clearly, £¢
is a chain in the poset (Int] (X), C) and, by Theorem @.1(a), | J £L¢ = Upec r° =
(Npecp)® € Int7“(X) and, by Theorem 3.2 Npecr =NL € Int7 (X). The
second statement follows from Fact2.4land Theorem [3.2(c). O

Example 4.4 Extreme partial orders. Clearly, for the set of axioms of the theory of
strict partial orders Tposet = {@irr, pr } C Senty,, where @ := Yoo 7 R(vo, vo)
and ¢y = Yo, v1,v2(—R(vg,v1) V 2 R(v1,v2) V R(vg,v2)) we have Tposer C
F N G and, hence, the poset P := (Intﬁo“t (X),C) of all strict partial orders
on X has all the properties from (a) and (b) of Theorem .1l It is evident that
MinP = {0} and, by Example this antichain order is the unique strongly
reversible strict partial order on X.
The maximal elements of the poset P are exactly the strict linear orders. Namely,

it is clear that if (X, p) is a strict linear order and p & p/, then p’ is not a strict par-
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tial order. On the other hand, by the Order extension principle (i.e. the Szpilrajn
extension theorem [13], following from Zorn’s lemma), if p is a strict partial order
on X, then there is a strict linear order p’ on X such that p’ D p.

We note that, by a well-known theorem of Dushnik and Miller [2], the poset P
has the following property: each interpretation p € Intﬁoset (X)) is the intersection
of a family of maximal elements of [P and the minimal size of such a family is called
the Dushnik-Miller dimension of the poset (X, p). In [2] a poset is called reversible
iff it is of dimension < 2, but it is easy to check that the poset X = (Z, <), where
Z is the set of integers and <:= {(2n — 1,2n) : n € N} is of dimension 2, but
not reversible in our sense. In [[7] Kukiela has shown that Boolean lattices are
reversible posets (in our sense), but, clearly, lot of them have dimension > 2.

Example 4.5 The poset of interpretations of countable connected graphs is union-
complete but not intersection-complete, although the minimal elements are dense
in it. For the set of axioms of graph theory Tgraph = {Qirr, @sym }> Where @iy, 1=
Voo ~R(vo, vo) and @sym = Yvg, v1 (= R(vy, v1)V R(v1,v0)) we have Tgpapn C F
and the Lo,-sentence @.onn given by

Y, v <u =0V Vs, vn (U =v1 Av =0, A ArZi R(vk,vkﬂ))

and expressing that a graph is connected belongs to P. So Tgrapn U {@conn} C F
and, by Theorem [.I{a), the poset <IntZ””’ hu{%o"”}(u}), C) is union-complete.
Since a graph is a tree iff it is a minimal connected graph, the minimal elements of
our poset are exactly the tree graph relations on X. Since every connected graph
admits a spanning tree (it is an easy application of Zorn’s lemma; see [12]), our
poset has dense set of minimal elements. For k € w, let G, = (wU{w}, px), where
pr ={{n,n+1} :n € wpU{{n,w} : n > k}. Itis evident that the graphs Gy,
are connected and py 2 p1 2 p2 2 ..., but the graph G, = (w U {w}, ey, Pk)
is disconnected and, hence, the poset is not intersection-complete.

S Omitting finite substructures

A class K C Mody, is called a universal class iff it is axiomatizable by a finite
set of universal (H?) sentences iff there exists a finite set of finite L-structures
{Fr : £k < n} C Mody, such that X € K iff F; <& X, for all £ < n (see
[14} 15! 14} 5]). Here, using that concept, we show that forbidding finite structures
provides a large zoo of reversible structures.

Fact 5.1 For each finite L-structure I there is an L,,-sentence iy, such that for
each L-structure Y we have: F — Y iff Y |= ¢pes. If, in addition, the language
L is finite, then the sentence —y, is logically equivalent to a H(l) sentence 1p.zs.
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Proof. Let L = (R, : i € I), where ar(R;) = n;, for i € I, and w.l.o.g. suppose
that F = (m, (RS : i € I)) € Mody, where m = {0,...,m — 1} € N. Let
Xpr @ m™ — 2,4 € I, be the characteristic functions of the sets RZ@F C m™ and let
(,DFE’UQ, ..., Um—1) be the Lo,-formula defined by

_ X g (T)
or (V) == /\0§j<k<m vj # v A Nier Naemmi Rivag, - - a’U:cniq) L (8)
where, by definition, n' := 1 and n° := —). We show first that

For j < m, under the valuation (0, 1,...,m—1) the variable v; obtains the value j
and, hence, F = (Ag<jcpem vj # vk) [0,1,...,m — 1] is true. Leti € [ and T =
(xoy ..y Tp;—1) € m™. Then F = R; (v, - - . ,vxnrl)x’??(m) [0,1,...,m—1]iff
F b= Rifzo, .. am, 1] ) iff (x e (2) = 1AZ € ROV (x e (Z) = 0AZ & RF)
which is true. Thus (9) is proved. ' '

Let gy := 30 @p(?). If Y € Mody, and f : F < Y, then by (9) we have
Y &= ¢r[f(0),..., f(m — 1)] and, since § := (f(0),...,f(m —1)) € Y we
have Y |= 30 (), thatis, Y = ¢p,. Conversely, let § = (yo,...Ym—1) € Y™
and Y |= ¢r(g]. Since under the valuation 7 the variable v; obtains the value y;, by
@) yo, - . . ym_1 are different elements of Y and, hence, the mapping f : m — Y
defined by f(j) = y;, for j < m, is an injection. For a proof that f : F — Y is
a strong homomorphism we take ¢« € I and T := (jo, ..., jn,—1) € m™ and show
that

(jOy s yjm—1> € Rf < <yjo7 s yyjnr1> € RZY

Since Y = ¢r[y], by @) for Z we have Y = R;(vj,, . .. ,anrl)XRIf(i) [7], that is

X gF ({J05e-dn; —1)) .
Y = Rilvjo, - Yjn, 1] s thus (Yo, -3 Yjn, 1) € RY if and only
if Xpr ((Jos - - -5 Jng—1)) = Liff (o, ..., jn,—1) € RY and that’s it.
If |L| < w, then the sentence —)p., is equivalent to the TIY sentence MRty 1=

_ 1=X gr (Z)
Vo (V0§j<k<m vj =vk V Vier Vaemni Ri(Vag, - - 7anr1) ). U

Theorem 5.2 Let L be a finite language, T an Lo, -theory and F;, j € J, finite

TU{np. g€
L-structures such that the poset P := (Int bieyo'd }(X ), C) is non-empty.

(a) If T C F, then the poset P is union-complete and Max P is a co-dense set
in P consisting of reversible interpretations;
(b) If T C G, then the poset P is intersection-complete and Min P is a dense

set in IP consisting of reversible interpretations;
TU{ng, 4 :j€J TeU{npey, €S}
(c) T € Max(Int, U290 0 i 76 € Min(Int L
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Proof. Since I1Y C F N G, (a) and (b) follow from Fact[5.1land Theorem A1l

(c) It is easy to check that for each p € {0, 1} we have (R;(0)!7P)¢ <> R;(v)?
and, also, that x R]F( )=1-—x Rmc( ), which implies that (np., )¢ <> Npees. So the
statement follows from Theorem B2ld). O

Maximal K, -free graphs In the sequel, for convenience, for a graph X = (X, p)
the relation p will be identified with the corresponding set of two-element subsets
of X, {{z,y} € [X)? : (z,y) € p} and X9 will denote the graph-complement,
(X,[X]%\ p), of the graph X. For a set Y C X, the subgraph (Y, p | Y) of X will
be sometimes denoted by Y. For a cardinal v, K, will denote the complete graph
of size v, and [E,, the graph with v vertices and no edges. Clearly, E,, = KJ°.

If F is a finite graph which is not complete, then, trivially, X2 \ Ay is the

graphU{nF% } (X)

unique maximal element of the poset Int; and here we consider

what forbidding K,,’s produce. By Theorem [5.2] the poset IntTg“‘P ’LU{nK"%}( X)
has maximal elements, they are reversible and, clearly, dlfferent from X2\ Ax.
We recall that a graph is called K,,-free iff it has no subgraphs isomorphic to K,,;
trivially, the graphs K,,,, m < n, are maximal K, -free graphs.

Claim 5.3 Letn > 3 and let X = (X, p) be a K, -free graph. Then
(a) X is a maximal K,,-free graph iff

v{z,y} € [XI*\ p 3K € [X]" [K]*\p= {{z,y}}. (10)
(b) If X is a maximal K,,-free graph and | X | > n — 1, then

VzeX 3K e [ X\ {z}]"? {2} UK =K,_;. (11)

non-empty sets, Y := J,cx{x} x Y, and

o= {{(x,y>, (' )y e [Y]?: {z,2} € p}, (12)

thenY = (Y, 0) is a maximal K, -free graph.
(d) X is a maximal K,,-free graph iff X¢ is a minimal (n, A,,)-free reflexive
graph iff X9¢ is a minimal E,, -free graph.

Proof. (a) If | X | < n, then (I0) holds iff p = [X]?iff (X, p) = K|y|. Let | X| > n.

If X is maximal and {z,y} € [X]?\ p, then the graph (X, p U {{z,y}}) is
not K,,-free, which means that there is a set K € [X]|" such that z,y € K and
(K, (pU{{z,y}}) | K) = K,, which implies that [K]?\ p = {{z,y}}.
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Conversely, if (I0) holds, then for any {z,y} € [X]? \ p there is K € [X]"
such that (K, (p U {{z,y}}) | K) = K,, thus X is a maximal K,,-free graph.

(b) If | X| = n—1, then X = K,,_y and (II) is evident. Let |X| > n
and x € X. If {z,y} & p, for some y € X \ {z}, then by (I0) there is a
set K' = {x,y,21,...,2n—2} € [X]" such that [K']?> \ p = {{z,y}} and for
K :={x1,...,2n_2} € [X \ {2}]" 2 we have {z} UK 2 K,,_;.

If {z,y} € p, forall y € X \ {z}, then, since |X| > n, there is a pair
{u,v} € [X \ {z}]%\ p and, by (IQ), there is a set K = {u,v,x1,...,Tp_2} €
[X]™ such that [K]? \ p = {{u,v}}. Now, if x & {x1,...,2,_2}, then {z} U
{z1,...,2p—2} = K,—1 and () is true. If z = z;, for some j < n — 2, then
{}U{u,21,..., 21,2541, .., 2n—2} = K,_1 and is true again.

(c) Suppose that {(z;,y;) : 1 < i < n} is a copy of K, in Y; then, by (12),
{z; : 1 < i < n} would be a copy of K,, in X, which contradicts our assumption.
Thus Y is a K, -free graph.

Suppose that (Y, 7) is a K,,-free graph, where o & 7. Let {(z,y), (/,y)} €
7\ o.Ifz = 2/, then by (b) there is aset K = {x1,..., 2, 2} € [X \ {2}]"2
such that {x} U K = K,,_;. For j < n — 2 we choose y; € Y, and, by (12)),
{(z,y), (x,v)} U{(zj,y;) : j <n—2}isacopy of K, in (Y, 7), contrary to our
assumption.

If  # 2, then {z, 2’} € [X]?\pand by (a) there is K = {z,2,71,..., 2,2}
€ [X]™ such that [K]2\ p = {{z,2'}}. Again, for j < n — 2 we choose y; € Y,
and, by (12), {(z,v), (z',v")} U {{zj,y;) : 7 <n —2}isacopy of K, in (Y, 7),
contrary to our assumption. Thus Y is a maximal K,,-free graph.

(d) Clearly, up to logical equivalence we have gcr aph = {@refi, Psym} and
K¢ = (n,A,). Now the first claim follows from Theorem [5.2c) and the second
claim follows from the first one. O

Example 5.4 Claim [5.3]provides a large jungle of extreme and, hence, reversible
structures. Soif n > 3, X 2 K,,_; and {Y, : © € X} is family of non-empty
sets, then the graph Y defined in Claim [5.3[c) is a maximal K,,-free graph. The
reader will notice that Y is in fact the complete (n — 1)-partite graph and that Y9¢
is a disjoint union of n — 1 complete graphs, which is a minimal E, -free graph.
If |Y;| = w, forall z € X, then Y9 is a reversible countable ultrahomogeneous
graph from the list of Lachlan and Woodrow (see Remark [5.6).

For n = 3, the complete bi-partite graphs K, .,, ¥ < w, are maximal count-
able triangle-free graphs. In particular, the star graph S, := K, is a maximal
triangle-free graph. Furthermore, some maximal triangle-free graphs are not bi-
partite, for example the cycle graph Cs. Also, by taking X = Cs in Claim [5.3)(c)
we obtain infinite maximal K3-free graphs which are not bi-partite.
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Of course, there are reversible Ks-free graphs which are not maximal Ks-free.
For example, the linear graph G,, = (w, T), where 7 = {{n,n + 1} : n € w}, is
reversible since deleting an edge produces a disconnected graph.

Maximal K,,-free graphs with all vertices of infinite degree In the context of
graph theory, the sentence

Yoo = YU Ny VL, (A1§i<j§n v; # v A /\195” R(v,vi))

says that each vertex of a graph has infinitely many neighbors. Since ¢o, € P,

by Theorem [5.2] the poset IntZ””’ hu{wm’%”%}(X ) has a co-dense set of maximal
elements and they are reversible. Some such interpretations are given in Example

5.4

Example 5.5 The Henson graph H, is a maximal K,,-free graph with all vertices
of infinite degree. For n > 3, H,, denotes the unique countable homogeneous
universal K,,-free graph (the Henson graph, see [6]). In order to recall a convenient
characterization of H,, we introduce the following notation: if G = (G, p) is a
graph and n > 3 let C,,(G) := {(H,K) : K C H € [G|** A K is K,,_1-free}
and for (H, K) € Cp,(G) let

Gl .={veG\H:Vke K {v,k} e pAVhe H\ K {v,h} ¢ p}.

Now, by [6] we have: a countable graph G = (G, p) is isomorphic to H,, iff G is
K,-free and GE # 0, for each (H, K) € C,,(G).

We show that the Henson graph H,, = (G, p) is a maximal K,,-free graph.
Suppose that (G, p') is a K, -free graph, where p ¢ p’ and {a1,a2} € p' \ p. By
recursion we construct different elements as, . ..,a, € G \ {a1, a2} such that

Vke{3,...,n} Vie{l,2,...,k—1} {a;,ar} € p. (13)

Let k € {3,...,n} and suppose that the sequence ay,as, ..., a,_1 satisfies (I3).
Then, since {aj,as} & p, for H = K := {aj,as,...,a5_1} we have K, 1 4
(K,p | K) and, hence, (H, K) € C,(H,) so, by the characterization mentioned
above, there is ay, € G \ {ay,a2,...,a,_1} such that {a;,ar} € p, forall i < k.
So, the sequence ai,as, ..., a; satisfies and the recursion works. But, since
{a1,a2} € p' the vertices ayq, ..., a, determine a subgraph of the graph (G, p’)
isomorphic to K, which contradicts our assumption.

Since the star graph S, (see Example[5.4)) is K,,-free, by the universality of H,,
there is a copy of S, in Hl,, and, hence, Hl,, contains a vertex of infinite degree. By
the homogeneity of H,, all vertices of H, are of infinite degree.
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Remark 5.6 By a well-known characterization of Lachlan and Woodrow [11],
each countable ultrahomogeneous graph is isomorphic to one of the following:

- Gy, the union of p disjoint copies of K, where uv = w, - reversible iff
pw<worv <wl[l0];

- GRado, the Rado graph - non-reversible (see Example [3.4));

- H,,, the Henson graph, for n > 3 - reversible (see Example [3.3);

- the graph-complements of these graphs - a graph is reversible iff its graph-
complement is reversible (it is an easy consequence of Fact[2.2)).

Omitting extreme finite structures Clearly, the minimal elements of the set

Int{LnF%} (X), in the sequel denoted shortly by Int}"”” (X), will be different from
the trivial one, (@ : i € I), iff the forbidden structure I is minimal, that is iso-
morphic to (m, (0 : i € I)), for some m € N. Dually, Max(Int}"” (X)) #
{X,(X™ i eI))}iff F = (m,(m™ : i€ I)). We give some examples of such
restrictions.

Claim 5.7 Let m,n € N, L,, = (R), where ar(R) = n. Then
(a)Ifp € IntyLNm’m% (X), then p € Min(IntZZ”’@m (X)) iff

Vzep IK € [X]™ pn K" = {z}; (14)
(b) I p € Tnt] ™™ (X), then p € Max(Int; ™™ (X)) iff
Vie X"\ p 3K € [X]" K"\ p={z}. (15)

Proof. (a) If there exists Z € p such that p N K™ \ {z} # 0, for each K € [X]|™
satisfying z € K", then p \ {z} € Intzm’m% (X) so, pis not minimal.

Suppose that (I4)) holds and that p 2 o € Intzm'm%’ (X). Then, by (14), for
z € p\ o there is K € [X]™ such that p N K™ = {Z} and, hence, o capK™ = {),
which is impossible because (m, ) 4 (X, o).

(b) follows from (a) and Theorem [5.2(c). O

Now we show that the minimal binary structures omitting the minimal structure
(m, D) can be characterized using maximal K,,-free graphs.

Claim 5.8 If |X| > m > 2, then p € Min(Int;"™"" (X)) iff p is of the form

p=o0x\rUYAR,

where R C X, | X \ R| > m — 1, and ox\R Is an orientation of the graph-
complement of a maximal K, -free graph (X \ R, 7x\R)-
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Proof. (=) Let p € Min(IntZi:”’@)% (X)) and let R := {z € X : (z,x) € p}.
|X \ R| < m — 2 would imply that for each K € [X]™ we have |K N R| > 2 and,
hence, | > 2, which is impossible by (14)); so, | X \ R| > m — 1.

By (4), for (x,y) € pN (R x X) there is K € [X]|™ such that p N K? =
{{z,y)} and, since (x,z) € pN K2, we have z = y. Thus pN (R x X) = Apg
and, similarly, p N (X x R) = Ag, which means that p = Ar U o\, where
ox\r=pN X\ R)2.

By (I4), for (z,y) € ox\p there is K € [X]™ such that p N K? = {(z,y)}
and, since = # y, we have (y,z) € ox\g; thus ox\pg N O')_{{R = (). Moreover,
since x # y, we have K N R = (), that is, K € [X \ R]™; so, by Claim [5.7(a)
ox\R € Min(Intz:"’m%(X \ R)). Thus (X \ R,0x\g) is a minimal digraph
omitting (1, () and, hence, its symmetrization (X \ R, o x\ RUO')_({ ) is @ minimal

E,,,-free graph. By Claim[5.3(d), the graph-complement Tx\r of ox\r U O');i RIS
a maximal K,,-free graph and o x\  is an orientation of its graph-complement.
(<)Let K € [X]™. T KNR # (), then pnN K2 # (), andif KN R =
(), then p N K? # () because otherwise the graph Tx\r would not be K,,-free.
Hence p € Inth D7 (X). Letp) C pand (x,y) € p\ p. Ifz = y, take
Z € [X \ RJ™ !, such that p N Z? = () (such Z exists because | X \ R| > m — 1
and the graph 7x\ g is maximal K,;,-free, and thus not K, _;-free by Claim [5.3[b)).
Then o' N (ZU{z})? = 0, thatis p’ ¢ Intmmm (X). Ifx #y,thenz,y € X \R,
{z,y} ¢ Tx\ R and since the graph 7x\ g 1s maximal K,,-free, thereis Z C X \ R
such that z,y € Z and (Z, (1x\g U {x,y}) N Z?) = Kp,. Now p' N Z? = () that
isp ¢ Inth D7 (X). Therefore p € Mln(In‘c77<m D7 (X)), O

In particular, for m = 2, we have that p € Mln(Intm2 07 (X)) if and only if
there is a set R & X and a tournament relation o x\ g on the set X \ R such that

p=0x\RUAR (16)

((X, p) is a disjoint union of a nonempty tournament and isolated reflexive points).

Dually we have: p € Max(hn‘g7<2 22 7 (X)) iff there is a set R & X and a
tournament relation o x\ g on the set X \ R such that

p=X>\(ox\rUAR). (17)

For example, from (16) and we obtain the reversibility of fournaments and
reflexivized tournaments (for R = ()). In particular, strict linear orders and reflexive
linear orders are reversible. If we take R = X \ {z}, for some x € X, then we
obtain the diagonal without one point and complete graph with one reflexivized
point. We note that complete graphs with n reflexivized points are also reversible,
but for n > 2 they contain a copy of (2,22).
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Maximal graphs without cycle subgraphs For n > 4, and concerning infinite
graphs, the full graph is the only maximal graph which do not contain a copy
of C,,, while for n = 3 we obtain the triangle-free graphs considered above. If
3 € A C w) 3, then we obtain non-trivial maximal interpretations which do
not contain copies of C,,, for n € A, and in the extreme situation, when we take
A = w\ 3, we obtain graphs without cycles. The maximal such graphs are the
trees (connected graphs without cycles). The bipartite graphs are obtained if we
take A = {3,5,7,...} and the maximal ones are the complete bipartite graphs.

Local cardinal bounds Let L = (R; : i € I) be a finite language, where
ar(R;) = n;, fori € I,let M C Nandletk = (ki : m € M Ai € I)and
I = (!, :m € M Ai € I) be sequences in w such that for each m € M and i € I
we have 0 < k:ﬁn < lfﬂ < m™. Then the set of L-sentences

7o' = Unear {Momays + 0 € Wty (m) A3 € T (3] < iy V|l > 1) |

is a 1Y theory and for a non-empty set X and p € Inty(X) we have

k,l

pent)™ (X) e VYmeM VK € [X]™ Viel K <|pnK"| <

(the size of the components of p restricted to m-element subsets of X is bounded).

k,l
By Theorem[53.2] if 7 is an L,-theory and the poset IntZUTM (X) is non-empty,
then it has a dense set of minimal and co-dense set of maximal elements.

Example 5.9 Graph theory does not admit two non-trivial bounds. If (m,o) is
a graph, then, by irreflexivity, 0 < |o| < m? —m. Let L = Ly, M = {3} and

0<k<I<6.ITH = {ngayw o€ BFUBI, then T = TorapnUTS5)

is a TI{ theory and p € Int[b (w) iff the structure X = (w, p) is a graph such
that k < |[pN K?| < I, for each K € [w]?, which means that (by symmetry)
each 3-element substructure of X has one or two edges. But this is impossible,
because, by the Ramsey theorem, X must contain an infinite empty or complete
subgraph. On the other hand, if we take k£ = 0, then for [ € {4,5} the condition
|pNK?2| < | means that the graph is triangle-free and some maximal interpretations
with that property are described in Examples ?? and[5.3] For ! € {2,3} maximal
interpretations satisfying |[p N K?| <l are |, K3 and K; U, Ko.
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6 Uniform upper bounds for definable sets

If (v1,...,0p,w1,...,w,) is an Ly,-formula and n € N, then, denoting p-
tuples by "and g-tuples by, by <, w (v, w) we denote the formula

1 1 n+1 n+1
VWi, ooy Wy ey Wy Wy
k k k_
(\/kgn—‘rl (V1,5 Up, WT S - 7wq) v \/1§k<l§n+1 /\1§qu w; = wj)7
where {wi, ... ,w;, ... ,w{‘“, .. ,wgﬂ} is a set of g(n + 1) different variables
and p(v1,...,vp, w’f, e ,w’qf ) is the formula obtained from ¢ by replacement of

each free occurrence of w; by wf. Or, shortly,

Bn@ 9(0,0) 1= YT T (Vigpyn 00 TV gcinsn 0 = @)

Clearly, ¢ := Vv J<,w (0, w) is an Log,-sentence and, if X is an L-structure,
then X = ) iff for each 7 € X? the set Dx , 7,4 := {y € X7 : X |= [z, y]} is of
size < n. (Dx,y,z,q 1S the g-ary relation on the set X definable in the structure X
by the formula ¢ with the parameters 1, ..., zp.)

Let —F be the class of L..,-formulas UgeOrd —F¢, where

~Fo = NU{Ri(vay;s---,Va,,) 1 €T A (a1, ... ,an,) € K"},
~Fep1 = Fe U{FvgpraerNpeFe}
U {VO:2C-F} U{AP:PCFeA|P| <w},
~Fy = Ugcy = F, foralimit ordinal .

Also we define the class of L,,-formulas -G = UfeOrd —G¢, where

Gy = PU{~Ri(Vays---,Va,,) 11 €I N{a1,...,an,) € K"},
“Gey1 = —Ge U {Jugp:aerApeGel
{VOo:2C G} U {ANDP:DC G N|P| <w},
-G, = U§<,Y —Ge, for a limit ordinal .

C

Theorem 6.1 Let (v, w) be an Looy,-formula and T an Log,-theory such that the
poset P = (Intzu{vv Fen® 20,0} (X), C) is non-empty. Then

(a) If p(v,w) € = F and T C F, then P is a union-complete poset and Max P
is a co-dense set in P consisting of reversible interpretations.

(b) If p(v,w) € =G and T C G, then P is an intersection-complete poset and

Min P is a dense set in P consisting of reversible interpretations.
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A proof of the theorem is given after some preliminary work. First, to each L~
formula ¢ we adjoin a formula ¢ as follows:

(Vo = vg)" 1= "W, = vg and (R;(vq,, - - - ,Uani))_' = Ri(vay, - - - ,Uani);
If £ € Ord and ¢ is defined for a formula ¢ € Formg, then

(=)™ ==, (Yva ¢)” = Fva ¢ and (Jva @)™ 1= Yva @7
If & C Form¢ and ¢ is defined for each formula ¢ € ®, then

(AN®)":=VP and (\/P)":= AP,

where, for a set ® of L,-formulas by &~ we denote the set {¢ " : ¢ € O}.

Fact 6.2 Let ¢ be an Lo, -formula. Then
(a) o = s
(b)If p € N, then o~ € P;
(c)If p € = F, then ¢~ € F.

Proof. (a) Let X € Mody,. By induction we show that for each ¢ € Formy_  we
have

Vi e X (X b ¢Tla] & Xk (-o)la)). (18)

For ¢ € At by definition we have ¢ = =, so (I8) is true.

Let ¢ € Formg and suppose that (I8) is true. For & € "X we have X |=
(Voo )7 [] iff X = (Jua ¢7)[2] iff for some x € X we have X = ¢7[% (4 2],
that is, by (08), X = (=¢)[Z(az)], that is, X | @[F(, 4] is not true, iff it is
not true that for all » € X we have X = ¢[¥(, )] iff X = (Voo ¢)[7] is not
true iff X = (—Voa ¢)[Z]. Also X = (Jua ) [7] iff X = (Vv 7)) iff
for each x € X we have X |= 7 [T, 5], that is, by (I8), X & (=¢)[Z(a,4)]s
that is, X |= [#(4 4] is not true, iff it is not true that for some z € X we have
X | @[T iff X | (Jua )[7] is not true iff X = (=3v, ¢)[7]. Finally,
X k= (o) [ iff X |= o[2] iff X = () [2].

Let @ C Formg and suppose that ¢ satisfies (I8), for all ¢ € ®. For ¥ € "X
we have X = (A @)7[Z] iff X = V{p™ : ¢ € ®}[Z], iff for some ¢ € ® we
have X |= ¢ [Z], that is, by (I8), X = (—)[Z], iff it is not true that for all p € ®
we have X = o[Z], iff it is not true that X = (A ®)[Z] iff X = (= A D)[Z].
Also, X = (V@) [Z] iff X = A{¢" : ¢ € @}, iff for each p € P we have
X |= ¢7[2], that is, by (I8), X |= (—¢)[Z], iff it is not true that for some ¢ € ¢ we
have X = [Z], iff it is not true that X = (\/ @)[z] iff X = (= ©)[].

(b) First we have (vy = vg)™ 1= —wq = vg € Pand (= R;i(vay, - - -, Va,, ) i=
Ri(vay, -+ -3 Va,,) € P and, also, (-vq = vg)” i= vy = vg € P. If ¢ € N¢ and
@ € P, then the formulas (Vv, ¢)” = Ju, ¢~ and (Ju, @) = Yu, @~
belong to P. If & C Ng and ¢~ € P, for all p € &, then &~ C P and, hence,
(AN®)" =P €Pand (V)" =AD" €P.
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(c) By (b) the claim is true for all ¢ € N. Also we have (R;(vqy, - - - s Vag, )" =
“Ri(Vays -+ Va,,) € F. If p € 7 Feand ¢ € F, then (Juy )7 1= Yo, ¢ €
F. Ift® C —~F¢and ¢ € F, for all ¢ € ®, then &7 C F and, hence,
(V@) := AP~ € F.If ®is a finite set, then, again, (A P)":=\/ P € F. O

Proof of Theorem (a) It is a standard fact that, if ¢ is an L, -formula, ¢
its subformula, ¢ <+ ¢’ and 1)’ the formula obtained from ) by replacement of ¢
by ¢/, then ¢ <+ ¢'. So, by Fact[6.2(a), the sentence ¢ := Vo <, w (v, w) is
logically equivalent to the sentence

U=V (Vg 9708V V iz 8 =) (19)

By Fact[6.2(c) we have ¢ € F so the sentence ¢/’ belongs to F and the statement
follows from Theorem [4.1(a).

(b) It is easy to check that for an L..,-formula ¢, up to logical equivalence,
we have: ¢ € P iff ¢¢ € N and, also, p € =G iff p¢ € =F. So, if p(v,w) € =G,
then ¢°(v,w) € —F and, by (a), P’ := <Intzcu{w Fn gOc(v’w)}(X), C) has the
properties from (a). Since Vo <, w ¢°(v, w) is the formula (Vo I<,,w ¢°(0, w))¢,
by Theorem B.2(b) we have P’ = {p°® : p € Intzu{vv Fnt sD(U’w)}(X)}, which

means that IP is the reverse of P’ and, hence, has the mentioned properties. O

Maximal graphs of finite degree If n € w, a graph G = (X, p) is of degree
< niff deg(z) = {y € X : {z,y} € p}| < n, forall z € X. Since the
atomic Lj-formula R(v,w) belongs to the class —F, by Theorem the poset
P= (IntZ”phU{wngS”}(X), C), where Ygeg<n = Vv J<,w R(v,w) is the Ly-
sentence saying that a graph is of degree < n, is union-complete and Max P C
Revr, (X) is a co-dense set in P.

Example 6.3 Maximal graphs of degree < 2. We recall that, for n € w, a graph
G = (X, p) is called n-regular iff deg(z) = n, for all z € X. The linear graphs
(w,{{n,n + 1} : n € w}) and (Z,{{n,n + 1} : n € Z}), where Z is the set of
integers, will be denoted by G, and Gz, respectively.

Claim 6.4 A graph X is a maximal graph of degree < 2 iff X = Y U Z, where
- Y is (), or a 2-regular graph,
-Zis 0, or Ky, or Ky, or G,,.

Proof. The implication <« is evident.

(=) Let X = (X, ~) be a maximal graph of degree < 2. Suppose that there
are three different vertices z,y,z € X of degree < 2. Then the substructure of
X determined by {x,y, z} is not a complete graph, say {x,y} ¢ ~ and the graph
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(X, ~ U{{x,y}}) is of degree < 2, which contradicts the maximality of X. If all
the vertices of X are of degree 2, then X = Y U (), where Y is a 2-regular graph.

If two vertices of X, say x and y, are of degree < 2, then by the maximality of
X, {z,y} € ~ and, hence, X = Y U Ky, where Y is a 2-regular graph or §.

If exactly one vertex of X, say z, is of degree < 2 and deg(z) = 0, then
X =Y U Ky, where Y is a 2-regular graph or (). Otherwise we have deg(z) = 1
and, hence, there is y € X \ {z} such that {z,y} € ~. If C, is the connectivity
component of X containing x, then in C, we have deg(x) = 1 and deg(z) = 2, for
all z € C, \ {z}. Now defining o = x, 1 = y and z,,41 as the unique neighbor
of x,, different from xz,_ we have {x,, : n € w} C C, and, by the connectedness
of C; we have the equality. Thus C, = G,,. Now, if the graph X is connected,
then X = () U G,,. Otherwise, the graph induced on the set X \ C, is 2-regular
and we have X 2 Y U G,,, where Y is a 2-regular graph. O

It is known that 2-regular graphs are characterized as disjoint unions of copies
of Gz and C,,, for n > 3. Thus there are c-many non-isomorphic maximal count-
able graphs of degree < 2; so, the poset Intﬁm” hu{wdeggz}(w) has c-many non-

isomorphic maximal elements; they are reversible and characterized in Claim [6.4

Example 6.5 Maximal connected graphs of degree < n. Since @eonn € P,
by Theorem [6.1] maximal elements of the poset <Int2imp hu{wdcggn’%onn}(X ), C)
form a co-dense set in it consisting of reversible interpretations. By the analysis
from Example[6.3] MaX(IntE"“P ’Lu{wdeggz’%o""}(w)) = [Gy)= U [Gz]=~.
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