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Abstract

A relational structure X is called reversible iff each bijective homomorphism

from X onto X is an isomorphism, and linear orders are prototypical exam-

ples of such structures. One way to detect new reversible structures of a

given relational language L is to notice that the maximal or minimal ele-

ments of isomorphism-invariant sets of interpretations of the language L on

a fixed domain X determine reversible structures. We isolate certain syn-

tactical conditions providing that a consistent L∞ω-theory defines a class of

interpretations having extreme elements on a fixed domain and detect several

classes of reversible structures. In particular, we characterize the reversible

countable ultrahomogeneous graphs.
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1 Introduction

Generally speaking, a structure is reversible iff each bijective endomorphism of that

structure is an automorphism. Several prominent structures have this property; for

example, each compact Hausdorff space X is reversible (because each continuous

bijection f : X → X is a closed mapping and, hence, a homeomorphism) and,

similarly, each linear order X is a reversible relational structure (since an increasing

bijection f : X→ X must be an isomorphism).

The reversible structures mentioned above are extreme: compact Hausdorff

topologies are, on one hand, maximal compact and, on the other hand, minimal

Hausdorff topologies, and linear orders are maximal partial orders. In this paper,

searching for reversible structures, we investigate this phenomenon in the class of

relational structures. So throughout the paper we assume that L = 〈Ri : i ∈ I〉 is

a relational language, where ar(Ri) = ni ∈ N, for i ∈ I , that X is a non-empty

set and IntL(X) =
∏
i∈I P (X

ni) the set of all interpretations of the language L,

over the domain X. An interpretation ρ = 〈ρi : i ∈ I〉 ∈ IntL(X) will be called

reversible iff 〈X, ρ〉 is a reversible structure.
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First in Section 3 we easily establish the reversibility of minimal and maximal

elements of the poset 〈C,⊂〉, where C ⊂ IntL(X) is an isomorphism-invariant set,

and, in particular, if C is of the form IntTL (X) = {ρ ∈ IntL(X) : 〈X, ρ〉 |= T }, for

some set T of sentences of the infinitary language L∞ω. Of course, there are sets

of the form IntTL (X) having neither minimal nor maximal elements, and, hence, in

Section 4 we isolate a class of formulas F such that the set of maximal elements

of the poset IntTL (X) is co-dense, whenever T ⊂ F , and prove a dual statement

concerning minimal elements. We note that it is not our goal to find a syntac-

tical characterization of the largest class F with the property mentioned above,

because, for example, for a countable language L, each isomorphism-invariant set

C ⊂ IntL(ω) is of the form Int
{ϕ}
L (ω), where ϕ is the disjunction of the Scott sen-

tences of the structures belonging to C and, trivially, the set Int
{ϕ∨ϕm}
L (ω), where

ϕm :=
∧
i∈I ∀v̄ Ri(v̄) has a largest element, 〈Xni : i ∈ I〉. Our goal is to find a

reasonable class of sentences providing relevant examples of reversible structures.

Sections 5 and 6 contain some applications of the results mentioned above. In

particular it is shown that the concept of “forbidden finite substructures” provides

a large class of extreme (and, hence, reversible) structures. Clearly, one thing is

to prove that extreme interpretations exist and the other is to find (or characterize)

them. Some results on this topic are given in examples.

2 Preliminaries

The algebra of interpretations Abusing notation, for ρ, σ ∈ IntL(X) we will

write ρ ⊂ σ iff ρi ⊂ σi, for all i ∈ I . Clearly 〈IntL(X),⊂〉 is a Boolean lattice

and, abusing notation again, the operations in the corresponding Boolean algebra

will be denoted in the following way: if ρj ∈ IntL(X), for j ∈ J , then
⋂
j∈J ρ

j :=

〈
⋂
j∈J ρ

j
i : i ∈ I〉,

⋃
j∈J ρ

j := 〈
⋃
j∈J ρ

j
i : i ∈ I〉, ρc := 〈Xni \ ρi : i ∈ I〉,

0 := 〈∅ : i ∈ I〉 and 1 := 〈Xni : i ∈ I〉.

Direct and inverse images of interpretations If X and Y are non-empty sets

and n ≥ 2, the n-th power of a mapping f : X → Y is the mapping fn : Xn → Y n

defined by fn(〈x1, . . . , xn〉) = 〈f(x1), . . . , f(xn)〉, for each 〈x1, . . . , xn〉 ∈ Xn.

Clearly, f is an injection (surjection) iff fn is an injection (surjection).

For L-interpretations ρ = 〈ρi : i ∈ I〉 ∈ IntL(X) and σ = 〈σi : i ∈ I〉 ∈
IntL(Y ) the interpretations f [ρ] ∈ IntL(Y ) and f−1[σ] ∈ IntL(X) are defined by

f [ρ] := 〈fni [ρi] : i ∈ I〉 and f−1[σ] := 〈(fni)−1[σi] : i ∈ I〉, (1)

and these operators have all properties of direct and inverse images: ρ ⊂ f−1[f [ρ]],
f [f−1[σ]] = σ ∩ f [1], f [

⋂
j∈J ρ

j ] ⊂
⋂
j∈J f [ρ

j ], f−1[ρc] = (f−1[ρ])c, etc.
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Morphisms Bijective homomorphisms will be called condensations. Working

with elements of IntL(X), instead of Hom(〈X, ρ〉, 〈X,σ〉) we will write Hom(ρ, σ).
Also, instead of 〈X, ρ〉 ∼= 〈X,σ〉 we will shortly write ρ ∼= σ and regard ∼= as an

equivalence relation on the set IntL(X). Let [ρ]∼= := {σ ∈ IntL(X) : σ ∼= ρ}.

Fact 2.1 For each ρ = 〈ρi : i ∈ I〉, σ = 〈σi : i ∈ I〉 ∈ IntL(X) we have:

(a) Hom(ρ, σ) = {f ∈ XX : f [ρ] ⊂ σ};

(b) [ρ]∼= = {f [ρ] : f ∈ Sym(X)}.

The condensation order and reversibility If P = 〈P,≤〉 is a partial order, a

subset C of P is called convex iff p ≤ q ≤ r and p, r ∈ C implies q ∈ C . A set

A ⊂ P is called an antichain iff different elements of A are incomparable. Clearly,

each antichain is convex and ConvP(A) = {p ∈ P : ∃a′, a′′ ∈ A a′ ≤ p ≤ a′′} is

the minimal convex set containing the set A ⊂ P (the convex closure of A).

Here we recall some facts from [8, 9, 10]. Let 4c be the pre-order on the set

IntL(X) defined by: ρ 4c σ iff there is a condensation f : 〈X, ρ〉 → 〈X,σ〉.
The corresponding antisymmetric quotient, the poset 〈IntL(X)/∼c,≤c〉, where

ρ ∼c σ ⇔ ρ 4c σ ∧ σ 4c ρ and [ρ]∼c ≤c [σ]∼c ⇔ ρ 4c σ, for ρ, σ ∈ IntL(X),
is called the condensation order. Defining [ρ]∼c := {σ ∈ IntL(X) : σ ∼c ρ}, for

each ρ ∈ IntL(X) we have

[ρ]∼= ⊂ [ρ]∼c = Conv〈IntL(X),⊂〉([ρ]∼=). (2)

Fact 2.2 For each interpretation ρ ∈ IntL(X) the following is equivalent:

(a) ρ is reversible, that is Cond(ρ) = Aut(ρ),

(b) [ρ]∼= is an antichain in the Boolean lattice 〈IntL(X),⊂〉,

(c) there is no σ ∈ [ρ]∼= such that ρ  σ,

(d) there is no σ ∈ [ρ]∼= such that σ  ρ,

(e) ρc is reversible.

An interpretation ρ ∈ IntL(X) will be called strongly reversible iff [ρ]∼= = {ρ};

weakly reversible iff [ρ]∼= is a convex set in the Boolean lattice 〈IntL(X),⊂〉.
Clearly we have sRevL(X) ⊂ RevL(X) ⊂ wRevL(X), where RevL(X) (resp.

sRevL(X), wRevL(X)) denotes the set of all reversible (resp. strongly reversible,

weakly reversible) interpretations ρ ∈ IntL(X).

It is easy to see that both reversibility and its two variations are ∼c-invariants

and, hence, ∼=-invariants. (A property P is called ∼-invariant iff for each ρ, σ ∈
IntL(X) we have: if ρ has P and σ ∼ ρ, then σ has P). In addition, weakly
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reversible interpretations have the Cantor-Schröder-Bernstein property for conden-

sations (if ρ is weakly reversible and there are condensations f : 〈X,σ〉 → 〈X, ρ〉
and g : 〈X, ρ〉 → 〈X,σ〉, then σ ∼= ρ).

Concerning strong reversibility we have: an interpretation ρ ∈ IntL(X) is

strongly reversible iff for each i ∈ I , the relation ρi is a subset of Xni which is

definable by a first-order formula of the empty language without parameters.

Example 2.3 If Lb = 〈R〉 is the binary language (i.e. ar(R) = 2) and X 6= ∅,

then the only strongly reversible elements of IntLb
(X) are: ∅ (the empty relation),

∆X (the diagonal), X2 \∆X (the complete graph) and X2 (the full relation).

Partial orders If P = 〈P,≤〉 is a partial order, by MinP (resp. MaxP) we

denote the set of minimal (resp. maximal) elements of P. A set D ⊂ P is called

dense (resp. co-dense) in P iff for each p ∈ P there is q ∈ D such that q ≤ p (resp.

p ≤ q). A set of L-interpretations C ⊂ IntL(X) will be called union-complete

(resp. intersection-complete) iff
⋃

L ∈ C (resp.
⋂

L ∈ C) for each chain L ⊂ C.

The partial order 〈C,⊂〉 will be shortly denoted by C, when it is convenient.

Fact 2.4 If C ⊂ IntL(X) is a union-complete (resp. intersection-complete) set,

then Max C (resp. Min C) is a co-dense (resp. dense) subset of C.

Proof. If C is union-complete and ρ ∈ C, then, by the Hausdorff maximal principle,

there is a maximal chain L in C such that ρ ∈ L. By the union-completeness of C,

we have
⋃
L ∈ C, by the maximality of L we have

⋃
L ∈ Max〈C,⊂〉 and, since

ρ ∈ L, we have ρ ⊂
⋃
L. The proof for intersection-complete sets is dual. ✷

Infinitary languages Let L = 〈Ri : i ∈ I〉 be a relational language, κ an infinite

cardinal and Var = {vα : α ∈ κ} a set of variables. By AtL we denote the

corresponding set of atomic formulas, that is,

AtL = {vα = vβ : α, β ∈ κ}∪{Ri(vα1
, . . . , vαni

) : i ∈ I∧〈α1, . . . , αni
〉 ∈ κni}.

The class of L∞ω-formulas is the class FormL∞ω =
⋃
ξ∈Ord Formξ , where

Form0 = AtL,

Formξ+1 = Formξ ∪ {¬ϕ : ϕ ∈ Formξ}

∪ {∀vα ϕ : α ∈ κ ∧ ϕ ∈ Formξ} ∪ {∃vα ϕ : α ∈ κ ∧ ϕ ∈ Formξ}

∪ {
∧

Φ : Φ ⊂ Formξ} ∪ {
∨

Φ : Φ ⊂ Formξ},

Formγ =
⋃
ξ<γ Formξ, for a limit ordinal γ.
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Let X = 〈X, 〈RXi : i ∈ I〉 be an L-structure and ~x = 〈xα : α ∈ κ〉 ∈ κX a

valuation. If β ∈ κ and x′ ∈ X, by ~x〈β,x′〉 we denote the valuation ~y ∈ κX defined

by: yα = xα, for all α 6= β; and yβ = x′. The satisfiability relation for L∞ω-

formulas is defined in a standard way, for example, X |= (Ri(vα1
, . . . , vαni

))[~x] iff

〈xα1
, . . . , xαni

〉 ∈ RXi ; X |= (¬ϕ)[~x] iff X |= ϕ[~x] is not true; X |= (∀vα ϕ)[~x]
iff X |= ϕ[~x〈α,x〉], for each x ∈ X; X |= (

∨
Φ)[~x] iff X |= ϕ[~x], for some ϕ ∈ Φ.

L∞ω-formulas ϕ and ψ are called logically equivalent, in notation ϕ ↔ ψ iff

they are equivalent in all L-structures, that is, iff for each L-structure X we have:

∀~x ∈ κX
(
X |= ϕ[~x] ⇔ X |= ψ[~x]

)
. (3)

If X and Y are L-structures, a mapping f : X → Y preserves an L∞ω-formula ϕ
iff

∀~x ∈ κX
(
X |= ϕ[~x] ⇒ Y |= ϕ[f~x]

)
, (4)

where f~x = 〈f(xα) : α ∈ κ〉. We say that the formula ϕ is absolute under f iff in

(4) we have “⇔” instead of “⇒”.

3 Reversibility of maximal and minimal structures

A set C ⊂ IntL(X) is said to be isomorphism-invariant or, shortly, ∼=-invariant iff

∀ρ ∈ C [ρ]∼= ⊂ C. (5)

By Cc we will denote the set {ρc : ρ ∈ C}. (Clearly, Cc 6= IntL(X) \ C.)

Theorem 3.1 If C ⊂ IntL(X) is an ∼=-invariant set and τ ∈ Max C (respectively,

τ ∈ Min C), then

(a) τ is a reversible interpretation;

(b) [τ ]∼= = [τ ]∼c is an antichain in C and [τ ]∼= ⊂ Max C (resp. [τ ]∼= ⊂ Min C);

(c) The set Cc is ∼=-invariant and τ ∈ Max C iff τ c ∈ Min(Cc), for any τ .

Proof. (a) Suppose that τ is not reversible. Then, by Fact 2.2, there is σ ∈ [τ ]∼=
such that τ  σ and, by (5), σ ∈ C, which is impossible, by the maximality of τ .

(b) By (a) and Fact 2.2, [τ ]∼= is an antichain and, by (2), [τ ]∼= = [τ ]∼c . Suppose

that there are τ1 ∈ [τ ]∼= and ρ ∈ C such that τ1  ρ. Then, by Fact 2.1(b) there is

f ∈ Sym(X) such that f [τ1] = τ , which, together with (5) implies τ  f [ρ] ∈ C.

But, by the maximality of τ , this is impossible. For τ ∈ Min C the proof is dual.

(c) For ρ ∈ C we show that [ρc]∼= ⊂ Cc. So, if σ ∈ [ρc]∼=, then, by Fact

2.1(b), there is a bijection f : X → X such that σ = f [ρc] = f [ρ]c and, since

f [ρ] ∈ [ρ]∼= ⊂ C, we have σ ∈ Cc. Let τ ∈ IntL(X). Then τ c ∈ Min(Cc) iff
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τ c = ρc, for some ρ ∈ C, and for each ρ ∈ C we have ρc ⊂ τ c ⇒ ρc = τ c. In other

words, τ = ρ, for some ρ ∈ C and for each ρ ∈ C we have τ ⊂ ρ⇒ ρ = τ , which

means that τ ∈ Max C. ✷

We note that, in fact, an interpretation τ ∈ IntL(X) is reversible iff τ ∈ Max C
for some ∼=-invariant set C ⊂ IntL(X). Namely, the remaining implication is

trivial: if τ is reversible, then by Fact 2.2 we have τ ∈ [τ ]∼= = Max[τ ]∼=.

Now we consider the sets of interpretations satisfying L∞ω-sentences. In order

to make a correspondence between interpretations and their complements to each

L∞ω-formula ϕ we adjoin the formula ϕc defined in the following way:

(vα = vβ)
c := vα = vβ and (Ri(vα1

, . . . , vαni
))c := ¬Ri(vα1

, . . . , vαni
);

If ξ ∈ Ord and ϕc is defined for a formula ϕ ∈ Formξ , then

(¬ϕ)c := ¬ϕc, (∀vα ϕ)
c := ∀vα ϕ

c and (∃vα ϕ)
c := ∃vα ϕ

c;

If Φ ⊂ Formξ and ϕc is defined for each formula ϕ ∈ Φ, then

(
∧

Φ)c :=
∧

Φc and (
∨

Φ)c :=
∨

Φc,
where, for a set Φ of L∞ω-formulas Φc denotes the set {ϕc : ϕ ∈ Φ}.

Theorem 3.2 If X is a non-empty set and T a set of L∞ω-sentences, then

(a) The set IntTL (X) is ∼=-invariant;

(b) (IntTL (X))c = IntT
c

L (X) and this set is ∼=-invariant;

(c) Maximal and minimal elements of IntTL (X) are reversible interpretations;

(d) τ ∈ Max IntTL (X) iff τ c ∈ Min IntT
c

L (X), for τ ∈ IntL(X).

Proof. (a) If ρ ∈ IntTL (X) and σ ∈ [ρ]∼=, then there exists an isomorphism f :
〈X, ρ〉 → 〈X,σ〉. Since for each sentence ϕ ∈ T we have 〈X, ρ〉 |= ϕ, by a

standard fact that each L∞ω-formula is absolute under each isomorphism we have

〈X,σ〉 |= ϕ as well. Thus σ ∈ IntTL (X) and (5) is true.

(b) First, using induction we prove the following auxiliary statement.

Claim 3.3 For each L-structure 〈X, ρ〉 and each formula ϕ ∈ FormL∞ω we have

∀~x ∈ κX
(
〈X, ρc〉 |= ϕc[~x] ⇔ 〈X, ρ〉 |= ϕ[~x]

)
. (6)

Proof. Let ~x ∈ κX. Then 〈X, ρc〉 |= (vα = vβ)
c[~x] iff 〈X, ρc〉 |= (vα = vβ)[~x] iff

xα = xβ iff 〈X, ρ〉 |= (vα = vβ)[~x]. Also, 〈X, ρc〉 |= (Ri(vα1
, . . . , vαni

))c[~x] iff

〈X, ρc〉 |= ¬Ri(vα1
, . . . , vαni

)[~x] iff 〈xα1
, . . . , xαni

〉 6∈ ρc iff 〈xα1
, . . . , xαni

〉 ∈ ρ
iff 〈X, ρ〉 |= Ri(vα1

, . . . , vαni
)[~x].

Suppose that (6) holds for a formula ϕ and let ~x ∈ κX. Then 〈X, ρc〉 |=
(¬ϕ)c[~x] iff not 〈X, ρc〉 |= ϕc[~x], iff not 〈X, ρ〉 |= ϕ[~x], iff 〈X, ρ〉 |= (¬ϕ)[~x].
〈X, ρc〉 |= (∀vα ϕ)c[~x] iff 〈X, ρc〉 |= ∀vα ϕc[~x] iff for each x ∈ X we have

〈X, ρc〉 |= ϕc[~x〈α,x〉], that is, by (6), 〈X, ρ〉 |= ϕ[~x〈α,x〉], iff 〈X, ρ〉 |= (∀vα ϕ)[~x].
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〈X, ρc〉 |= (∃vα ϕ)c[~x] iff 〈X, ρc〉 |= ∃vα ϕc[~x] iff there is x ∈ X such that

〈X, ρc〉 |= ϕc[~x〈α,x〉], that is, by (6), 〈X, ρ〉 |= ϕ[~x〈α,x〉], iff 〈X, ρ〉 |= (∃vα ϕ)[~x].
Let Φ ⊂ FormL∞ω and suppose that (6) holds for each formula ϕ ∈ Φ.

〈X, ρc〉 |= (
∧

Φ)c[~x] iff 〈X, ρc〉 |=
∧
{ϕc : ϕ ∈ Φ}[~x], iff for each ϕ ∈ Φ we

have 〈X, ρc〉 |= ϕc[~x], that is, by (6), 〈X, ρ〉 |= ϕ[~x], iff 〈X, ρ〉 |= (
∧

Φ)[~x].
〈X, ρc〉 |= (

∨
Φ)c[~x] iff 〈X, ρ〉 |=

∨
{ϕc : ϕ ∈ Φ}[~x] iff for some ϕ ∈ Φ we have

〈X, ρc〉 |= ϕc[~x], that is, by (6), 〈X, ρ〉 |= ϕ[~x], iff 〈X, ρ〉 |= (
∨

Φ)[~x]. ✷

By Claim 3.3, the sets (IntTL (X))c = {ρc : ∀ϕ ∈ T 〈X, ρ〉 |= ϕ} and

IntT
c

L (X) = {ρc : ∀ϕ ∈ T 〈X, ρc〉 |= ϕc} are equal.

Statements (c) and (d) follow from (a), (b) and Theorem 3.1(a) and (c). ✷

Example 3.4 Reversibility, complete theories and elementary equivalence.

If ρ ∈ IntL(X) and Th(〈X, ρ〉) is the corresponding first-order theory, then

[ρ]≡ := Int
Th(〈X,ρ〉)
L (X) is the set of interpretations σ ∈ IntL(X) such that the

structures 〈X, ρ〉 and 〈X,σ〉 are elementarily equivalent. We show that, regarding

the relationship between the sets [ρ]≡ and RevL(X), everything is possible.

1. If Q = 〈Q, ρ〉 is the rational line, then Th(Q) is the theory of dense lin-

ear orders without end points which is ω-categorical and, hence, [ρ]≡ = [ρ]∼= ⊂

RevL(Q). By Fact 2.2 [ρ]∼= is an antichain so each element of the set Int
Th(Q)
L (Q)

is both a maximal and a minimal element of the set Int
Th(Q)
L (Q).

2. IfG = 〈G, ρ〉 is the countable universal homogeneous graph (also called the

Rado graph, the Erdős-Rényi graph [3]), then the theory Th(G) is ω-categorical

and the structure G is not reversible (since deleting of one of its edges produces

an isomorphic copy of G, see [1]). Thus Int
Th(G)
L (G) ∩ RevL(G) = ∅ and the set

Int
Th(G)
L (G) has neither minimal nor maximal elements.

3. It is well known that the theory T of one equivalence relation having exactly

one equivalence class of size n, for each n ∈ N, is complete. For a cardinal

κ ≤ ω let Eκ = 〈ω, ρκ〉 be a countable model of T having exactly κ-many infinite

equivalence classes. It is known that IntTL (ω) =
⋃
κ≤ω[ρκ]∼=(= [ρ0]≡) and, hence,

T is not an ω-categorical theory. By [10], an equivalence relation is reversible

iff the number of equivalence classes of the same size is finite or all equivalence

classes are finite and their sizes form a reversible sequence. Thus the structures

En, n < ω, are reversible, while Eω is not (even weakly) reversible. So we have

IntTL (ω) ∩ RevL(ω) =
⋃
n∈ω[ρn]∼= and IntTL (ω) \RevL(ω) = [ρω]∼=.

We show that Max(IntTL (ω)) = [ρ0]∼= ∪ [ρ1]∼=. Suppose that n ∈ {0, 1} and

ρn  σ ∈ IntTL (ω). For k ∈ N, let Ck be the unique equivalence class of size

k determined by ρn. Since ρn  σ, the equivalence classes corresponding to σ
are unions of those corresponding to ρ and, in addition, there is the minimal k0
such that, in 〈ω, σ〉, the class Ck0 is joined with some another ρ-class. But then
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there is no σ-class of size k0, which contradicts our assumption that σ ∈ IntTL (ω).
If κ ≥ 2, then ρκ ⊂ σ, for some σ ∼= ρ1 (we join κ infinite classes into one).

Similarly we show that Min(IntTL (ω)) = [ρ0]∼= and that for κ ≥ 1 there are no

minimal elements of IntTL (ω) below ρκ (split infinite ρκ-classes into infinite parts).

Since ρm 4c ρn, for 1 ≤ n ≤ m ≤ ω, the suborder {[ρ]∼c : ρ ∈ IntTL (ω)} =
{[ρn]∼= : n ∈ ω} ∪ {[ρω]∼c} of the condensation order 〈IntL(ω)/∼c,≤c〉 is iso-

morphic to the disjoint union of the one element poset (corresponding to [ρ0]∼=)

and the chain of the type 1 + ω∗, with the maximum [ρ1]∼= and minimum [ρω]∼c .

4 Theories having extreme interpretations

Example 3.4 shows that some sets of the form IntTL (X) have neither minimal nor

maximal elements. In this section we give some syntactical conditions providing

extreme interpretations in that sense. First, in order to provide maximal interpreta-

tions we define the class of R-positive L∞ω-formulas by P :=
⋃
ξ∈OrdPξ , where

P0 = AtL ∪{¬vα = vβ : α, β ∈ κ},

Pξ+1 = Pξ ∪ {∀vα ϕ : α ∈ κ ∧ ϕ ∈ Pξ} ∪ {∃vα ϕ : α ∈ κ ∧ ϕ ∈ Pξ}

∪ {
∧

Φ : Φ ⊂ Pξ} ∪ {
∨

Φ : Φ ⊂ Pξ},

Pγ =
⋃
ξ<γ Pξ, for a limit ordinal γ,

and the class of L∞ω-formulas F :=
⋃
ξ∈OrdFξ , where

F0 = P ∪ {¬Ri(vα1
, . . . , vαni

) : i ∈ I ∧ 〈α1, . . . , αni
〉 ∈ κni},

Fξ+1 = Fξ ∪ {∀vα ϕ : α ∈ κ ∧ ϕ ∈ Fξ}

∪ {
∧

Φ : Φ ⊂ Fξ} ∪ {
∨

Φ : Φ ⊂ Fξ ∧ |Φ| < ω},

Fγ =
⋃
ξ<γ Fξ, for a limit ordinal γ.

Concerning minimal interpretations, let us define the class of R-negative L∞ω-

formulas by N =
⋃
ξ∈OrdNξ , where

N0 = {¬Ri(vα1
, . . . , vαni

) : i ∈ I ∧ 〈α1, . . . , αni
〉 ∈ κni}

∪ {vα = vβ : α, β ∈ κ} ∪ {¬vα = vβ : α, β ∈ κ},

Nξ+1 = Nξ ∪ {∀vα ϕ : α ∈ κ ∧ ϕ ∈ Nξ} ∪ {∃vα ϕ : α ∈ κ ∧ ϕ ∈ Nξ}

∪ {
∧

Φ : Φ ⊂ Nξ} ∪ {
∨

Φ : Φ ⊂ Nξ},

Nγ =
⋃
ξ<γ Nξ, for a limit ordinal γ,

and let G be the class of L∞ω-formulas
⋃
ξ∈Ord Gξ, where

G0 = N ∪ {Ri(vα1
, . . . , vαni

) : i ∈ I ∧ 〈α1, . . . , αni
〉 ∈ κni},
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Gξ+1 = Gξ ∪ {∀vα ϕ : α ∈ κ ∧ ϕ ∈ Gξ}

∪ {
∧

Φ : Φ ⊂ Gξ} ∪ {
∨

Φ : Φ ⊂ Gξ ∧ |Φ| < ω},

Gγ =
⋃
ξ<γ Gξ, for a limit ordinal γ.

Theorem 4.1 Let L be a relational language, X a non-empty set and T a set of

L∞ω-sentences such that IntTL (X) 6= ∅. Then

(a) If T ⊂ F , then the set IntTL (X) is union-complete and Max(IntTL (X)) is

its co-dense subset consisting of reversible interpretations;

(b) If T ⊂ G, then IntTL (X) is intersection-complete and Min(IntTL (X)) is its

dense subset consisting of reversible interpretations.

A proof is given in the sequel. First by induction we prove the following claim.

Claim 4.2 (a) The formulas from the class P are preserved under condensations.

(b) For each formula ϕ ∈ F , each chain L ⊂ IntL(X) and valuation ~x ∈ κX
we have: (

∀ρ ∈ L 〈X, ρ〉 |= ϕ[~x]
)
⇒ 〈X,

⋃
L〉 |= ϕ[~x]. (7)

Proof. (a) Let X and Y be L-structures and f : X → Y a condensation. By

induction we show that (4) holds for each formula ϕ ∈ P. First, clearly, homomor-

phisms preserve all atomic formulas. If ~x ∈ κX and X |= (¬vα = vβ)[~x], that is

xα 6= xβ , then, since f is an injection, f(xα) 6= f(xβ), that isY |= (vα = vβ)[f~x].
Suppose that (4) holds for a formula ϕ ∈ P; let ~x ∈ κX. If X |= (∀vα ϕ)[~x],

then for each x ∈ X we have X |= ϕ[~x〈α,x〉] and, by (4), Y |= ϕ[(f~x)〈α,f(x)〉].
Since f is a surjection, for each y ∈ Y there is x ∈ X such that y = f(x) and,

hence, Y |= ϕ[(f~x)〈α,y〉]. Thus Y |= (∀vα ϕ)[f~x].
If X |= (∃vα ϕ)[~x], then for some x ∈ X we have X |= ϕ[~x〈α,x〉] which by (4)

implies Y |= ϕ[(f~x)〈α,f(x)〉]. Thus, for y = f(x) ∈ Y we have Y |= ϕ[(f~x)〈α,y〉]
and, hence, Y |= (∃vα ϕ)[f~x].

Let Φ ⊂ P, suppose that (4) holds for each formula ϕ ∈ Φ and let ~x ∈ κX. If

X |= (
∧

Φ)[~x], then for each ϕ ∈ Φ we have X |= ϕ[~x] and, by (4), Y |= ϕ[f~x],
which means that Y |= (

∧
Φ)[f~x]. If X |= (

∨
Φ)[~x], then for some ϕ ∈ Φ we

have X |= ϕ[~x], that is Y |= ϕ[f~x], which implies that Y |= (
∨

Φ)[f~x].
(b) Let L be a non-empty chain in IntL(X) and ~x ∈ κX. (We note that then⋃

L = 〈
⋃
ρ∈L ρi : i ∈ I〉 = 〈τi : i ∈ I〉 =: τ ∈ IntL(X) and, for an i ∈ I , the set

Li := {ρi : ρ ∈ L} is a chain in the algebra 〈Int〈Ri〉(X),⊂〉.)
Let ϕ ∈ P and suppose that 〈X, ρ〉 |= ϕ[~x], for each ρ ∈ L. If ρ ∈ L, then by

Fact 2.1(a) the identity mapping idX : 〈X, ρ〉 → 〈X,
⋃

L〉 is a condensation and,

by (a), preserves ϕ. Thus, since 〈X, ρ〉 |= ϕ[~x] we obtain 〈X,
⋃

L〉 |= ϕ[~x].
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If ϕ := ¬Ri(vα1
, . . . , vαni

), then for any ρ ∈ IntL(X) we have 〈X, ρ〉 |= ϕ[~x]
iff 〈xα1

, . . . , xαni
〉 6∈ ρi. Now, if 〈xα1

, . . . , xαni
〉 6∈ ρi, for each ρ ∈ L, then,

〈xα1
, . . . , xαni

〉 6∈ τi, that is 〈X,
⋃

L〉 |= ϕ[~x].

Suppose that the statement is true for a formula ϕ ∈ Fξ . Let L be a chain

in IntL(X) and ~x ∈ κX. If for each ρ ∈ L we have 〈X, ρ〉 |= (∀vαϕ)[~x], that

is 〈X, ρ〉 |= ϕ[~x〈α,y〉], for all y ∈ X, then for each y ∈ X and each ρ ∈ L we

have 〈X, ρ〉 |= ϕ[~x〈α,y〉] and by the inductive hypothesis and (7) it follows that

〈X,
⋃

L〉 |= ϕ[~x〈α,y〉]. This holds for all y ∈ X so, 〈X,
⋃

L〉 |= (∀vαϕ)[~x].
Let Φ ⊂ Fξ and suppose that the statement is true for each formula ϕ ∈ Φ. Let

L be a chain in IntL(X) and ~x ∈ κX.

If Φ = {ψk : k ≤ n} and for each ρ ∈ L we have 〈X, ρ〉 |= (
∨n
k=1 ψk)[~x],

then there are k0 ≤ n and a cofinal subset L0 of L such that 〈X, ρ〉 |= ψk0 [~x],
for every ρ ∈ L0 and, by the induction hypothesis, 〈X,

⋃
L0〉 |= ψk0 [~x]. By the

cofinality of L0 we have
⋃
L0 =

⋃
L and, hence, 〈X,

⋃
L〉 |= (

∨n
k=1 ψk)[~x].

If for each ρ ∈ L we have 〈X, ρ〉 |= (
∧

Φ)[~x], that is 〈X, ρ〉 |= ϕ[~x], for

all ϕ ∈ Φ, then, for each ϕ ∈ Φ and ρ ∈ L we have 〈X, ρ〉 |= ϕ[~x], so, by the

induction hypothesis, 〈X,
⋃

L〉 |= ϕ[~x]. Thus 〈X,
⋃

L〉 |= (
∧

Φ)[~x]. ✷

Proof of Theorem 4.1(a) Let L ⊂ IntTL (X) be a chain. If ϕ ∈ T , then for each

ρ ∈ L we have ρ ∈ IntTL (X) and, hence, 〈X, ρ〉 |= ϕ, which, by (7), implies that

〈X,
⋃

L〉 |= ϕ. So
⋃

L ∈ IntTL (X) and, thus, the set IntTL (X) is union-complete.

The second statement follows from Fact 2.4 and Theorem 3.2(c). ✷

Claim 4.3 (a) N = {ϕc : ϕ ∈ P};

(b) G = {ϕc : ϕ ∈ F}, up to logical equivalence.

Proof. (a) (⊃) We show that for each ξ ∈ Ord and each ϕ ∈ Pξ we have ϕc ∈ Nξ.

For ξ = 0 we have: (vα = vβ)
c := vα = vβ ∈ N0, (¬vα = vβ)

c := ¬(vα =
vβ)

c := ¬vα = vβ ∈ N0, and (Ri(vα1
, . . . , vαni

))c := ¬Ri(vα1
, . . . , vαni

) ∈ N0.

Suppose that the statement is true for all ξ < ζ . If ζ is a limit ordinal, then,

clearly, the statement is true for ζ . Let ζ = ξ + 1. If ϕ ∈ Pξ , then ϕc ∈ Nξ and,

hence, (∀vα ϕ)
c := ∀vα ϕ

c ∈ Nξ+1 and (∃vα ϕ)
c := ∃vα ϕ

c ∈ Nξ+1.

If Φ ⊂ Pξ , then ϕc ∈ Nξ, for all ϕ ∈ Φ, and, hence, we have (
∧

Φ)c :=∧
{ϕc : ϕ ∈ Φ} ∈ Nξ+1, and (

∨
Φ)c :=

∨
{ϕc : ϕ ∈ Φ} ∈ Nξ+1.

(⊂) We show that for each ξ ∈ Ord and each ψ ∈ Nξ there is ϕ ∈ Pξ such

that ψ = ϕc. So vα = vβ is the formula (vα = vβ)
c, ¬vα = vβ is the formula

(¬vα = vβ)
c, and ¬Ri(vα1

, . . . , vαni
) is the formula (Ri(vα1

, . . . , vαni
))c.

Suppose that the statement is true for all ξ < ζ . If ζ is a limit ordinal, then,

clearly, the statement is true for ζ . Let ζ = ξ + 1. If ψ ∈ Nξ, then there is ϕ ∈ Pξ
such that ψ = ϕc. Now ∀vα ψ = ∀vα ϕ

c = (∀vα ϕ)
c, and ∀vα ϕ ∈ Pξ+1. Also

∃vα ψ = ∃vα ϕ
c = (∃vα ϕ)

c, and ∃vα ϕ ∈ Pξ+1.



Reversibility of extreme relational structures 11

If Φ ⊂ Nξ, then for each ψ ∈ Φ there is ϕψ ∈ Pξ such that ψ = ϕcψ . So∧
{ϕψ : ψ ∈ Φ} ∈ Pξ+1 and (

∧
{ϕψ : ψ ∈ Φ})c =

∧
{ϕcψ : ψ ∈ Φ} =

∧
Φ. Also∨

{ϕψ : ψ ∈ Φ} ∈ Pξ+1 and (
∨
{ϕψ : ψ ∈ Φ})c =

∨
{ϕcψ : ψ ∈ Φ} =

∨
Φ.

(b) (⊃) We show that for each ξ ∈ Ord and each ϕ ∈ Fξ we have ϕc ∈ Gξ .
For ξ = 0, if ϕ ∈ P , then, by (a), ϕc ∈ N ⊂ G0 and (¬Ri(vα1

, . . . , vαni
))c is the

formula ¬¬Ri(vα1
, . . . , vαni

), which is equivalent to Ri(vα1
, . . . , vαni

) ∈ G0.

Suppose that the statement is true for all ξ < ζ . If ζ is a limit ordinal, then,

clearly, the statement is true for ζ . Let ζ = ξ + 1. If ϕ ∈ Fξ , then ϕc ∈ Gξ and,

hence, (∀vα ϕ)
c := ∀vα ϕ

c ∈ Gξ+1.

If Φ ⊂ Fξ , then ϕc ∈ Gξ , for all ϕ ∈ Φ, and, hence, we have (
∧

Φ)c :=∧
{ϕc : ϕ ∈ Φ} ∈ Gξ+1, and (

∨
Φ)c :=

∨
{ϕc : ϕ ∈ Φ} ∈ Gξ+1, if |Φ| < ω.

(⊂) We show that for each ξ ∈ Ord and each ψ ∈ Gξ there is ϕ ∈ Fξ such

that ψ = ϕc. For ξ = 0, if ψ ∈ N , then we apply (a). Also, Ri(vα1
, . . . , vαni

) is

equivalent to the formula (¬Ri(vα1
, . . . , vαni

))c.

Suppose that the statement is true for all ξ < ζ . If ζ is a limit ordinal, then,

clearly, the statement is true for ζ . Let ζ = ξ + 1. If ψ ∈ Gξ , then there is ϕ ∈ Fξ
such that ψ = ϕc. Now ∀vα ψ = ∀vα ϕ

c = (∀vα ϕ)
c, and ∀vα ϕ ∈ Fξ+1.

If Φ ⊂ Gξ , then for each ψ ∈ Φ there is ϕψ ∈ Fξ such that ψ = ϕcψ . So∧
{ϕψ : ψ ∈ Φ} ∈ Fξ+1 and (

∧
{ϕψ : ψ ∈ Φ})c =

∧
{ϕcψ : ψ ∈ Φ} =

∧
Φ. If

|Φ| < ω, then
∨
{ϕψ : ψ ∈ Φ} ∈ Fξ+1 and (

∨
{ϕψ : ψ ∈ Φ})c =

∨
Φ. ✷

Proof of Theorem 4.1(b) If L is a chain in the poset 〈IntTL (X),⊂〉, then, by

Theorem 3.2(b) we have Lc = {ρc : ρ ∈ L} ⊂ {ρc : ρ ∈ IntTL (X)} =:
(IntTL (X))c = IntT

c

L (X). Since T ⊂ G, by Claim 4.3(b) w.l.o.g. we assume

that T ⊂ {ϕc : ϕ ∈ F} and, hence, T c ⊂ {(ϕc)c : ϕ ∈ F}. By Claim 3.3, for

each interpretation ρ ∈ IntL(X) and each L∞ω-sentence ϕ we have: 〈X, ρ〉 |= ϕ
iff 〈X, ρ〉 |= (ϕc)c so, w.l.o.g. again, we suppose that T c ⊂ F . Now, clearly, Lc

is a chain in the poset 〈IntT
c

L (X),⊂〉 and, by Theorem 4.1(a),
⋃
Lc =

⋃
ρ∈L ρ

c =

(
⋂
ρ∈L ρ)

c ∈ IntT
c

L (X) and, by Theorem 3.2,
⋂
ρ∈L ρ =

⋂
L ∈ IntTL (X). The

second statement follows from Fact 2.4 and Theorem 3.2(c). ✷

Example 4.4 Extreme partial orders. Clearly, for the set of axioms of the theory of

strict partial orders Tposet = {ϕirr, ϕtr} ⊂ SentLb
, where ϕirr := ∀v0 ¬R(v0, v0)

and ϕtr := ∀v0, v1, v2(¬R(v0, v1) ∨ ¬R(v1, v2) ∨ R(v0, v2)) we have Tposet ⊂

F ∩ G and, hence, the poset P := 〈Int
Tposet
Lb

(X),⊂〉 of all strict partial orders

on X has all the properties from (a) and (b) of Theorem 4.1. It is evident that

MinP = {∅} and, by Example 2.3, this antichain order is the unique strongly

reversible strict partial order on X.

The maximal elements of the poset P are exactly the strict linear orders. Namely,

it is clear that if 〈X, ρ〉 is a strict linear order and ρ  ρ′, then ρ′ is not a strict par-
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tial order. On the other hand, by the Order extension principle (i.e. the Szpilrajn

extension theorem [13], following from Zorn’s lemma), if ρ is a strict partial order

on X, then there is a strict linear order ρ′ on X such that ρ′ ⊃ ρ.

We note that, by a well-known theorem of Dushnik and Miller [2], the poset P

has the following property: each interpretation ρ ∈ Int
Tposet
Lb

(X) is the intersection

of a family of maximal elements of P and the minimal size of such a family is called

the Dushnik-Miller dimension of the poset 〈X, ρ〉. In [2] a poset is called reversible

iff it is of dimension ≤ 2, but it is easy to check that the poset X = 〈Z,<〉, where

Z is the set of integers and <:= {〈2n − 1, 2n〉 : n ∈ N} is of dimension 2, but

not reversible in our sense. In [7] Kukiela has shown that Boolean lattices are

reversible posets (in our sense), but, clearly, lot of them have dimension > 2.

Example 4.5 The poset of interpretations of countable connected graphs is union-

complete but not intersection-complete, although the minimal elements are dense

in it. For the set of axioms of graph theory Tgraph = {ϕirr, ϕsym}, where ϕirr :=
∀v0 ¬R(v0, v0) and ϕsym := ∀v0, v1(¬R(v0, v1)∨R(v1, v0)) we have Tgraph ⊂ F
and the L∞ω-sentence ϕconn given by

∀u, v
(
u = v ∨

∨
n≥2 ∃v1, . . . , vn (u = v1 ∧ v = vn ∧

∧n−1
k=1 R(vk, vk+1)

)

and expressing that a graph is connected belongs to P. So Tgraph ∪ {ϕconn} ⊂ F

and, by Theorem 4.1(a), the poset 〈Int
Tgraph∪{ϕconn}
Lb

(ω),⊂〉 is union-complete.

Since a graph is a tree iff it is a minimal connected graph, the minimal elements of

our poset are exactly the tree graph relations on X. Since every connected graph

admits a spanning tree (it is an easy application of Zorn’s lemma; see [12]), our

poset has dense set of minimal elements. For k ∈ ω, letGk = 〈ω∪{ω}, ρk〉, where

ρk = {{n, n + 1} : n ∈ ω} ∪ {{n, ω} : n ≥ k}. It is evident that the graphs Gk
are connected and ρ0 ! ρ1 ! ρ2 ! . . ., but the graph Gω = 〈ω ∪ {ω},

⋂
k∈ω ρk〉

is disconnected and, hence, the poset is not intersection-complete.

5 Omitting finite substructures

A class K ⊂ ModL is called a universal class iff it is axiomatizable by a finite

set of universal (Π0
1) sentences iff there exists a finite set of finite L-structures

{Fk : k ≤ n} ⊂ ModL such that X ∈ K iff Fk 6 →֒ X, for all k ≤ n (see

[14, 15, 4, 5]). Here, using that concept, we show that forbidding finite structures

provides a large zoo of reversible structures.

Fact 5.1 For each finite L-structure F there is an L∞ω-sentence ψF→֒ such that for

each L-structure Y we have: F →֒ Y iff Y |= ψF→֒. If, in addition, the language

L is finite, then the sentence ¬ψF→֒ is logically equivalent to a Π0
1 sentence ηF 6 →֒.
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Proof. Let L = 〈Ri : i ∈ I〉, where ar(Ri) = ni, for i ∈ I , and w.l.o.g. suppose

that F = 〈m, 〈RFi : i ∈ I〉〉 ∈ ModL, where m = {0, . . . ,m − 1} ∈ N. Let

χRF

i
: mni → 2, i ∈ I , be the characteristic functions of the sets RFi ⊂ mni and let

ϕF(v0, . . . , vm−1) be the L∞ω-formula defined by

ϕF(v̄) :=
∧

0≤j<k<m vj 6= vk ∧
∧
i∈I

∧
x̄∈mni Ri(vx0 , . . . , vxni−1

)
χ
RF

i
(x̄)
, (8)

where, by definition, η1 := η and η0 := ¬η. We show first that

F |= ϕF[0, 1, . . . ,m− 1]. (9)

For j < m, under the valuation 〈0, 1, . . . ,m−1〉 the variable vj obtains the value j
and, hence, F |= (

∧
0≤j<k<m vj 6= vk) [0, 1, . . . ,m− 1] is true. Let i ∈ I and x̄ =

〈x0, . . . , xni−1〉 ∈ m
ni . Then F |= Ri(vx0 , . . . , vxni−1

)
χ
RF

i
(x̄)

[0, 1, . . . ,m− 1] iff

F |= Ri[x0, . . . , xni−1]
χ
RF
i
(x̄)

iff (χRF

i
(x̄) = 1∧x̄ ∈ RFi )∨(χRF

i
(x̄) = 0∧x̄ 6∈ RFi )

which is true. Thus (9) is proved.

Let ψF→֒ := ∃v̄ ϕF(v̄). If Y ∈ ModL and f : F →֒ Y, then by (9) we have

Y |= ϕF[f(0), . . . , f(m − 1)] and, since ȳ := 〈f(0), . . . , f(m − 1)〉 ∈ Y m we

have Y |= ∃v̄ ϕF(v̄), that is, Y |= ψF→֒. Conversely, let ȳ = 〈y0, . . . ym−1〉 ∈ Y m

and Y |= ϕF[ȳ]. Since under the valuation ȳ the variable vj obtains the value yj , by

(8) y0, . . . ym−1 are different elements of Y and, hence, the mapping f : m → Y
defined by f(j) = yj , for j < m, is an injection. For a proof that f : F → Y is

a strong homomorphism we take i ∈ I and x̄ := 〈j0, . . . , jni−1〉 ∈ mni and show

that

〈j0, . . . , jni−1〉 ∈ R
F
i ⇔ 〈yj0 , . . . , yjni−1

〉 ∈ RYi .

Since Y |= ϕF[ȳ], by (8) for x̄ we have Y |= Ri(vj0 , . . . , vjni−1
)
χ
RF

i
(x̄)

[ȳ], that is

Y |= Ri[yj0 , . . . , yjni−1
]
χ
RF

i
(〈j0,...,jni−1〉)

, thus 〈yj0 , . . . , yjni−1
〉 ∈ RYi if and only

if χRF

i
(〈j0, . . . , jni−1〉) = 1 iff 〈j0, . . . , jni−1〉 ∈ RFi and that’s it.

If |L| < ω, then the sentence ¬ψF→֒ is equivalent to the Π0
1 sentence ηF 6 →֒ :=

∀v̄ (
∨

0≤j<k<m vj = vk ∨
∨
i∈I

∨
x̄∈mni Ri(vx0 , . . . , vxni−1

)
1−χ

RF
i
(x̄)

). ✷

Theorem 5.2 Let L be a finite language, T an L∞ω-theory and Fj , j ∈ J , finite

L-structures such that the poset P := 〈Int
T ∪{ηFj 6 →֒:j∈J}

L (X),⊂〉 is non-empty.

(a) If T ⊂ F , then the poset P is union-complete and MaxP is a co-dense set

in P consisting of reversible interpretations;

(b) If T ⊂ G, then the poset P is intersection-complete and MinP is a dense

set in P consisting of reversible interpretations;

(c) τ ∈ Max(Int
T ∪{ηFj 6 →֒:j∈J}

L (X)) iff τ c ∈ Min(Int
T c∪{ηFc

j
6 →֒:j∈J}

L (X)).
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Proof. Since Π0
1 ⊂ F ∩ G, (a) and (b) follow from Fact 5.1 and Theorem 4.1.

(c) It is easy to check that for each p ∈ {0, 1} we have (Ri(v̄)
1−p)c ↔ Ri(v̄)

p

and, also, that χRF

i
(x̄) = 1−χRFc

i
(x̄), which implies that (ηF 6 →֒)c ↔ ηFc 6 →֒. So the

statement follows from Theorem 3.2(d). ✷

MaximalKn-free graphs In the sequel, for convenience, for a graph X = 〈X, ρ〉
the relation ρ will be identified with the corresponding set of two-element subsets

of X, {{x, y} ∈ [X]2 : 〈x, y〉 ∈ ρ} and Xgc will denote the graph-complement,

〈X, [X]2 \ ρ〉, of the graph X. For a set Y ⊂ X, the subgraph 〈Y, ρ ↾ Y 〉 of X will

be sometimes denoted by Y . For a cardinal ν, Kν will denote the complete graph

of size ν, and Eν the graph with ν vertices and no edges. Clearly, Eν = K
gc
ν .

If F is a finite graph which is not complete, then, trivially, X2 \ ∆X is the

unique maximal element of the poset Int
Tgraph∪{ηF6 →֒}
Lb

(X) and here we consider

what forbidding Kn’s produce. By Theorem 5.2, the poset Int
Tgraph∪{ηKn 6 →֒}
Lb

(X)

has maximal elements, they are reversible and, clearly, different from X2 \ ∆X .

We recall that a graph is called Kn-free iff it has no subgraphs isomorphic to Kn;

trivially, the graphs Km, m < n, are maximal Kn-free graphs.

Claim 5.3 Let n ≥ 3 and let X = 〈X, ρ〉 be a Kn-free graph. Then

(a) X is a maximal Kn-free graph iff

∀{x, y} ∈ [X]2 \ ρ ∃K ∈ [X]n [K]2 \ ρ = {{x, y}}. (10)

(b) If X is a maximal Kn-free graph and |X| ≥ n− 1, then

∀x ∈ X ∃K ∈ [X \ {x}]n−2 {x} ∪K ∼= Kn−1. (11)

(c) If X is a maximal Kn-free graph, |X| ≥ n− 1, {Yx : x ∈ X} is a family of

non-empty sets, Y :=
⋃
x∈X{x} × Yx and

σ =
{
{〈x, y〉, 〈x′, y′〉} ∈ [Y ]2 : {x, x′} ∈ ρ

}
, (12)

then Y = 〈Y, σ〉 is a maximal Kn-free graph.

(d) X is a maximal Kn-free graph iff Xc is a minimal 〈n,∆n〉-free reflexive

graph iff Xgc is a minimal En-free graph.

Proof. (a) If |X| < n, then (10) holds iff ρ = [X]2 iff 〈X, ρ〉 ∼= K|X|. Let |X| ≥ n.

If X is maximal and {x, y} ∈ [X]2 \ ρ, then the graph 〈X, ρ ∪ {{x, y}}〉 is

not Kn-free, which means that there is a set K ∈ [X]n such that x, y ∈ K and

〈K, (ρ ∪ {{x, y}}) ↾ K〉 ∼= Kn, which implies that [K]2 \ ρ = {{x, y}}.
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Conversely, if (10) holds, then for any {x, y} ∈ [X]2 \ ρ there is K ∈ [X]n

such that 〈K, (ρ ∪ {{x, y}}) ↾ K〉 ∼= Kn, thus X is a maximal Kn-free graph.

(b) If |X| = n − 1, then X ∼= Kn−1 and (11) is evident. Let |X| ≥ n
and x ∈ X. If {x, y} 6∈ ρ, for some y ∈ X \ {x}, then by (10) there is a

set K ′ = {x, y, x1, . . . , xn−2} ∈ [X]n such that [K ′]2 \ ρ = {{x, y}} and for

K := {x1, . . . , xn−2} ∈ [X \ {x}]n−2 we have {x} ∪K ∼= Kn−1.

If {x, y} ∈ ρ, for all y ∈ X \ {x}, then, since |X| ≥ n, there is a pair

{u, v} ∈ [X \ {x}]2 \ ρ and, by (10), there is a set K = {u, v, x1, . . . , xn−2} ∈
[X]n such that [K]2 \ ρ = {{u, v}}. Now, if x 6∈ {x1, . . . , xn−2}, then {x} ∪
{x1, . . . , xn−2} ∼= Kn−1 and (11) is true. If x = xj , for some j ≤ n − 2, then

{x} ∪ {u, x1, . . . , xj−1, xj+1, . . . , xn−2} ∼= Kn−1 and (11) is true again.

(c) Suppose that {〈xi, yi〉 : 1 ≤ i ≤ n} is a copy of Kn in Y; then, by (12),

{xi : 1 ≤ i ≤ n} would be a copy of Kn in X, which contradicts our assumption.

Thus Y is a Kn-free graph.

Suppose that 〈Y, τ〉 is a Kn-free graph, where σ  τ . Let {〈x, y〉, 〈x′, y′〉} ∈
τ \ σ . If x = x′, then by (b) there is a set K = {x1, . . . , xn−2} ∈ [X \ {x}]n−2

such that {x} ∪ K ∼= Kn−1. For j ≤ n − 2 we choose yi ∈ Yxi and, by (12),

{〈x, y〉, 〈x, y′〉} ∪ {〈xj , yj〉 : j ≤ n− 2} is a copy of Kn in 〈Y, τ〉, contrary to our

assumption.

If x 6= x′, then {x, x′} ∈ [X]2\ρ and by (a) there isK = {x, x′, x1, . . . , xn−2}
∈ [X]n such that [K]2 \ ρ = {{x, x′}}. Again, for j ≤ n− 2 we choose yi ∈ Yxi
and, by (12), {〈x, y〉, 〈x′, y′〉} ∪ {〈xj , yj〉 : j ≤ n − 2} is a copy of Kn in 〈Y, τ〉,
contrary to our assumption. Thus Y is a maximal Kn-free graph.

(d) Clearly, up to logical equivalence we have T c
graph = {ϕrefl, ϕsym} and

Kcn
∼= 〈n,∆n〉. Now the first claim follows from Theorem 5.2(c) and the second

claim follows from the first one. ✷

Example 5.4 Claim 5.3 provides a large jungle of extreme and, hence, reversible

structures. So if n ≥ 3, X ∼= Kn−1 and {Yx : x ∈ X} is family of non-empty

sets, then the graph Y defined in Claim 5.3(c) is a maximal Kn-free graph. The

reader will notice that Y is in fact the complete (n− 1)-partite graph and that Ygc

is a disjoint union of n − 1 complete graphs, which is a minimal En-free graph.

If |Yx| = ω, for all x ∈ X, then Ygc is a reversible countable ultrahomogeneous

graph from the list of Lachlan and Woodrow (see Remark 5.6).

For n = 3, the complete bi-partite graphs Kν,ω, ν ≤ ω, are maximal count-

able triangle-free graphs. In particular, the star graph Sω := K1,ω, is a maximal

triangle-free graph. Furthermore, some maximal triangle-free graphs are not bi-

partite, for example the cycle graph C5. Also, by taking X ∼= C5 in Claim 5.3(c)

we obtain infinite maximal K3-free graphs which are not bi-partite.
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Of course, there are reversible K3-free graphs which are not maximal K3-free.

For example, the linear graph Gω = 〈ω, τ〉, where τ = {{n, n + 1} : n ∈ ω}, is

reversible since deleting an edge produces a disconnected graph.

Maximal Kn-free graphs with all vertices of infinite degree In the context of

graph theory, the sentence

ϕ∞ := ∀v
∧
n∈N ∃v1, . . . , vn

(∧
1≤i<j≤n vi 6= vj ∧

∧
1≤i≤nR(v, vi)

)

says that each vertex of a graph has infinitely many neighbors. Since ϕ∞ ∈ P,

by Theorem 5.2 the poset Int
Tgraph∪{ϕ∞,ηKn 6 →֒}
Lb

(X) has a co-dense set of maximal

elements and they are reversible. Some such interpretations are given in Example

5.4.

Example 5.5 The Henson graph Hn is a maximal Kn-free graph with all vertices

of infinite degree. For n ≥ 3, Hn denotes the unique countable homogeneous

universal Kn-free graph (the Henson graph, see [6]). In order to recall a convenient

characterization of Hn we introduce the following notation: if G = 〈G, ρ〉 is a

graph and n ≥ 3 let Cn(G) := {〈H,K〉 : K ⊂ H ∈ [G]<ω ∧ K is Kn−1-free}
and for 〈H,K〉 ∈ Cn(G) let

GHK := {v ∈ G \H : ∀k ∈ K {v, k} ∈ ρ ∧ ∀h ∈ H \K {v, h} /∈ ρ}.

Now, by [6] we have: a countable graph G = 〈G, ρ〉 is isomorphic to Hn iff G is

Kn-free and GHK 6= ∅, for each 〈H,K〉 ∈ Cn(G).
We show that the Henson graph Hn = 〈G, ρ〉 is a maximal Kn-free graph.

Suppose that 〈G, ρ′〉 is a Kn-free graph, where ρ  ρ′ and {a1, a2} ∈ ρ′ \ ρ. By

recursion we construct different elements a3, . . . , an ∈ G \ {a1, a2} such that

∀k ∈ {3, . . . , n} ∀i ∈ {1, 2, . . . , k − 1} {ai, ak} ∈ ρ. (13)

Let k ∈ {3, . . . , n} and suppose that the sequence a1, a2, . . . , ak−1 satisfies (13).

Then, since {a1, a2} 6∈ ρ, for H = K := {a1, a2, . . . , ak−1} we have Kn−1 6 →֒
〈K, ρ ↾ K〉 and, hence, 〈H,K〉 ∈ Cn(Hn) so, by the characterization mentioned

above, there is ak ∈ G \ {a1, a2, . . . , ak−1} such that {ai, ak} ∈ ρ, for all i < k.

So, the sequence a1, a2, . . . , ak satisfies (13) and the recursion works. But, since

{a1, a2} ∈ ρ′ the vertices a1, . . . , an determine a subgraph of the graph 〈G, ρ′〉
isomorphic to Kn, which contradicts our assumption.

Since the star graph Sω (see Example 5.4) isKn-free, by the universality ofHn
there is a copy of Sω in Hn and, hence, Hn contains a vertex of infinite degree. By

the homogeneity of Hn all vertices of Hn are of infinite degree.
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Remark 5.6 By a well-known characterization of Lachlan and Woodrow [11],

each countable ultrahomogeneous graph is isomorphic to one of the following:

- Gµν , the union of µ disjoint copies of Kν , where µν = ω, - reversible iff

µ < ω or ν < ω [10];

- GRado, the Rado graph - non-reversible (see Example 3.4);

- Hn, the Henson graph, for n ≥ 3 - reversible (see Example 5.5);

- the graph-complements of these graphs - a graph is reversible iff its graph-

complement is reversible (it is an easy consequence of Fact 2.2).

Omitting extreme finite structures Clearly, the minimal elements of the set

Int
{ηF6 →֒}
L (X), in the sequel denoted shortly by Int

ηF6 →֒
L (X), will be different from

the trivial one, 〈∅ : i ∈ I〉, iff the forbidden structure F is minimal, that is iso-

morphic to 〈m, 〈∅ : i ∈ I〉〉, for some m ∈ N. Dually, Max(Int
ηF6 →֒
L (X)) 6=

{〈X, 〈Xni : i ∈ I〉〉} iff F ∼= 〈m, 〈mni : i ∈ I〉〉. We give some examples of such

restrictions.

Claim 5.7 Let m,n ∈ N, Ln = 〈R〉, where ar(R) = n. Then

(a) If ρ ∈ Int
η〈m,∅〉6֒→

L (X), then ρ ∈ Min(Int
η〈m,∅〉6֒→

Ln
(X)) iff

∀x̄ ∈ ρ ∃K ∈ [X]m ρ ∩Kn = {x̄}; (14)

(b) If ρ ∈ Int
η〈m,mn〉6֒→

Ln
(X), then ρ ∈ Max(Int

η〈m,mn〉6֒→

Ln
(X)) iff

∀x̄ ∈ Xn \ ρ ∃K ∈ [X]m Kn \ ρ = {x̄}. (15)

Proof. (a) If there exists x̄ ∈ ρ such that ρ ∩Kn \ {x̄} 6= ∅, for each K ∈ [X]m

satisfying x̄ ∈ Kn, then ρ \ {x̄} ∈ Int
η〈m,∅〉6֒→

L (X) so, ρ is not minimal.

Suppose that (14) holds and that ρ ! σ ∈ Int
η〈m,∅〉6֒→

L (X). Then, by (14), for

x̄ ∈ ρ \ σ there is K ∈ [X]m such that ρ ∩Kn = {x̄} and, hence, σ capKn = ∅,

which is impossible because 〈m, ∅〉 6֒→ 〈X,σ〉.
(b) follows from (a) and Theorem 5.2(c). ✷

Now we show that the minimal binary structures omitting the minimal structure

〈m, ∅〉 can be characterized using maximal Km-free graphs.

Claim 5.8 If |X| ≥ m ≥ 2, then ρ ∈ Min(Int
η〈m,∅〉6֒→

Lb
(X)) iff ρ is of the form

ρ = σX\R ∪∆R,

where R ⊂ X, |X \ R| ≥ m − 1, and σX\R is an orientation of the graph-

complement of a maximal Km-free graph 〈X \R, τX\R〉.
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Proof. (⇒) Let ρ ∈ Min(Int
η〈m,∅〉6֒→

Lb
(X)) and let R := {x ∈ X : 〈x, x〉 ∈ ρ}.

|X \R| ≤ m− 2 would imply that for each K ∈ [X]m we have |K ∩R| ≥ 2 and,

hence, |ρ ∩K2| ≥ 2, which is impossible by (14); so, |X \R| ≥ m− 1.

By (14), for 〈x, y〉 ∈ ρ ∩ (R × X) there is K ∈ [X]m such that ρ ∩ K2 =
{〈x, y〉} and, since 〈x, x〉 ∈ ρ ∩ K2, we have x = y. Thus ρ ∩ (R × X) = ∆R

and, similarly, ρ ∩ (X × R) = ∆R, which means that ρ = ∆R ∪ σX\R, where

σX\R := ρ ∩ (X \R)2.

By (14), for 〈x, y〉 ∈ σX\R there is K ∈ [X]m such that ρ ∩ K2 = {〈x, y〉}

and, since x 6= y, we have 〈y, x〉 6∈ σX\R; thus σX\R ∩ σ−1
X\R = ∅. Moreover,

since x 6= y, we have K ∩ R = ∅, that is, K ∈ [X \ R]m; so, by Claim 5.7(a)

σX\R ∈ Min(Int
η〈m,∅〉6֒→

Ln
(X \ R)). Thus 〈X \ R,σX\R〉 is a minimal digraph

omitting 〈m, ∅〉 and, hence, its symmetrization 〈X \R,σX\R∪σ
−1
X\R〉 is a minimal

Em-free graph. By Claim 5.3(d), the graph-complement τX\R of σX\R ∪ σ−1
X\R is

a maximal Km-free graph and σX\R is an orientation of its graph-complement.

(⇐) Let K ∈ [X]m. If K ∩ R 6= ∅, then ρ ∩ K2 6= ∅, and if K ∩ R =
∅, then ρ ∩ K2 6= ∅ because otherwise the graph τX\R would not be Km-free.

Hence ρ ∈ Int
η〈m,∅〉6֒→

Lb
(X). Let ρ′  ρ and 〈x, y〉 ∈ ρ \ ρ′. If x = y, take

Z ∈ [X \R]m−1, such that ρ ∩ Z2 = ∅ (such Z exists because |X \ R| ≥ m− 1
and the graph τX\R is maximalKm-free, and thus notKm−1-free by Claim 5.3(b)).

Then ρ′∩(Z∪{x})2 = ∅, that is ρ′ 6∈ Int
η〈m,∅〉6֒→

Lb
(X). If x 6= y, then x, y ∈ X \R,

{x, y} 6∈ τX\R, and since the graph τX\R is maximal Km-free, there is Z ⊂ X \R
such that x, y ∈ Z and 〈Z, (τX\R ∪ {x, y}) ∩ Z2〉 ∼= Km. Now ρ′ ∩ Z2 = ∅ that

is ρ′ 6∈ Int
η〈m,∅〉6֒→

Lb
(X). Therefore ρ ∈ Min(Int

η〈m,∅〉6֒→

Lb
(X)). ✷

In particular, for m = 2, we have that ρ ∈ Min(Int
η〈2,∅〉6֒→
Lb

(X)) if and only if

there is a set R  X and a tournament relation σX\R on the set X \R such that

ρ = σX\R ∪∆R (16)

(〈X, ρ〉 is a disjoint union of a nonempty tournament and isolated reflexive points).

Dually we have: ρ ∈ Max(Int
η〈2,22〉6֒→
Lb

(X)) iff there is a set R  X and a

tournament relation σX\R on the set X \R such that

ρ = X2 \ (σX\R ∪∆R). (17)

For example, from (16) and (17) we obtain the reversibility of tournaments and

reflexivized tournaments (forR = ∅). In particular, strict linear orders and reflexive

linear orders are reversible. If we take R = X \ {x}, for some x ∈ X, then we

obtain the diagonal without one point and complete graph with one reflexivized

point. We note that complete graphs with n reflexivized points are also reversible,

but for n ≥ 2 they contain a copy of 〈2, 22〉.
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Maximal graphs without cycle subgraphs For n ≥ 4, and concerning infinite

graphs, the full graph is the only maximal graph which do not contain a copy

of Cn, while for n = 3 we obtain the triangle-free graphs considered above. If

3 ∈ A ⊂ ω \ 3, then we obtain non-trivial maximal interpretations which do

not contain copies of Cn, for n ∈ A, and in the extreme situation, when we take

A = ω \ 3, we obtain graphs without cycles. The maximal such graphs are the

trees (connected graphs without cycles). The bipartite graphs are obtained if we

take A = {3, 5, 7, . . .} and the maximal ones are the complete bipartite graphs.

Local cardinal bounds Let L = 〈Ri : i ∈ I〉 be a finite language, where

ar(Ri) = ni, for i ∈ I , let M ⊂ N and let k = 〈kim : m ∈ M ∧ i ∈ I〉 and

l = 〈lim : m ∈M ∧ i ∈ I〉 be sequences in ω such that for each m ∈M and i ∈ I
we have 0 ≤ kim ≤ lim ≤ mni . Then the set of L-sentences

T k,l
M :=

⋃
m∈M

{
η〈m,σ〉6֒→ : σ ∈ IntL(m) ∧ ∃i ∈ I (|σi| < kim ∨ |σi| > lim)

}

is a Π0
1 theory and for a non-empty set X and ρ ∈ IntL(X) we have

ρ ∈ Int
T k,l

M

L (X) ⇔ ∀m ∈M ∀K ∈ [X]m ∀i ∈ I kim ≤ |ρi ∩K
ni | ≤ lim

(the size of the components of ρ restricted to m-element subsets of X is bounded).

By Theorem 5.2, if T is an L∞ω-theory and the poset Int
T ∪T k,l

M

L (X) is non-empty,

then it has a dense set of minimal and co-dense set of maximal elements.

Example 5.9 Graph theory does not admit two non-trivial bounds. If 〈m,σ〉 is

a graph, then, by irreflexivity, 0 ≤ |σ| ≤ m2 − m. Let L = Lb, M = {3} and

0 < k ≤ l < 6. If T k,l

{3} = {η〈3,σ〉6֒→ : σ ∈ [32]<k∪[32]>l}, then T := Tgraph∪T
k,l

{3}

is a Π0
1 theory and ρ ∈ IntTLb

(ω) iff the structure X = 〈ω, ρ〉 is a graph such

that k ≤ |ρ ∩ K2| ≤ l, for each K ∈ [ω]3, which means that (by symmetry)

each 3-element substructure of X has one or two edges. But this is impossible,

because, by the Ramsey theorem, X must contain an infinite empty or complete

subgraph. On the other hand, if we take k = 0, then for l ∈ {4, 5} the condition

|ρ∩K2| ≤ l means that the graph is triangle-free and some maximal interpretations

with that property are described in Examples ?? and 5.5. For l ∈ {2, 3} maximal

interpretations satisfying |ρ ∩K2| ≤ l are
⋃
ωK2 and K1 ∪

⋃
ω K2.
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6 Uniform upper bounds for definable sets

If ϕ(v1, . . . , vp, w1, . . . , wq) is an L∞ω-formula and n ∈ N, then, denoting p-

tuples by¯and q-tuples by˜, by ∃≤nw̃ ϕ(v̄, w̃) we denote the formula

∀w1
1, . . . , w

1
q , . . . , w

n+1
1 , . . . , wn+1

q(∨
k≤n+1¬ϕ(v1, . . . , vp, w

k
1 , . . . , w

k
q ) ∨

∨
1≤k<l≤n+1

∧
1≤j≤q w

k
j = wlj

)
,

where {w1
1, . . . , w

1
q , . . . , w

n+1
1 , . . . , wn+1

q } is a set of q(n + 1) different variables

and ϕ(v1, . . . , vp, w
k
1 , . . . , w

k
q ) is the formula obtained from ϕ by replacement of

each free occurrence of wj by wkj . Or, shortly,

∃≤nw̃ ϕ(v̄, w̃) := ∀w̃1, . . . , w̃n+1
(∨

k≤n+1 ¬ϕ(v̄, w̃
k)∨

∨
1≤k<l≤n+1 w̃

k = w̃l
)
.

Clearly, ψ := ∀v̄ ∃≤nw̃ ϕ(v̄, w̃) is an L∞ω-sentence and, if X is an L-structure,

then X |= ψ iff for each x̄ ∈ Xp the set DX,ϕ,x̄,q := {ỹ ∈ Xq : X |= ϕ[x̄, ỹ]} is of

size ≤ n. (DX,ϕ,x̄,q is the q-ary relation on the set X definable in the structure X

by the formula ϕ with the parameters x1, . . . , xp.)

Let ¬F be the class of L∞ω-formulas
⋃
ξ∈Ord ¬Fξ, where

¬F0 = N ∪ {Ri(vα1
, . . . , vαni

) : i ∈ I ∧ 〈α1, . . . , αni
〉 ∈ κni},

¬Fξ+1 = ¬Fξ ∪ {∃vα ϕ : α ∈ κ ∧ ϕ ∈ ¬Fξ}

∪ {
∨

Φ : Φ ⊂ ¬Fξ} ∪ {
∧

Φ : Φ ⊂ ¬Fξ ∧ |Φ| < ω},

¬Fγ =
⋃
ξ<γ ¬Fξ, for a limit ordinal γ.

Also we define the class of L∞ω-formulas ¬G =
⋃
ξ∈Ord ¬Gξ, where

¬G0 = P ∪ {¬Ri(vα1
, . . . , vαni

) : i ∈ I ∧ 〈α1, . . . , αni
〉 ∈ κni},

¬Gξ+1 = ¬Gξ ∪ {∃vα ϕ : α ∈ κ ∧ ϕ ∈ ¬Gξ}

∪ {
∨

Φ : Φ ⊂ ¬Gξ} ∪ {
∧

Φ : Φ ⊂ ¬Gξ ∧ |Φ| < ω},

¬Gγ =
⋃
ξ<γ ¬Gξ, for a limit ordinal γ.

Theorem 6.1 Let ϕ(v̄, w̃) be an L∞ω-formula and T an L∞ω-theory such that the

poset P := 〈Int
T ∪{∀v̄ ∃≤nw̃ ϕ(v̄,w̃)}
L (X),⊂〉 is non-empty. Then

(a) If ϕ(v̄, w̃) ∈ ¬F and T ⊂ F , then P is a union-complete poset and MaxP
is a co-dense set in P consisting of reversible interpretations.

(b) If ϕ(v̄, w̃) ∈ ¬G and T ⊂ G, then P is an intersection-complete poset and

MinP is a dense set in P consisting of reversible interpretations.
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A proof of the theorem is given after some preliminary work. First, to each L∞ω-

formula ϕ we adjoin a formula ϕ¬ as follows:

(vα = vβ)
¬ := ¬vα = vβ and (Ri(vα1

, . . . , vαni
))¬ := ¬Ri(vα1

, . . . , vαni
);

If ξ ∈ Ord and ϕ¬ is defined for a formula ϕ ∈ Formξ , then

(¬ϕ)¬ := ϕ, (∀vα ϕ)
¬ := ∃vα ϕ

¬ and (∃vα ϕ)
¬ := ∀vα ϕ

¬;

If Φ ⊂ Formξ and ϕ¬ is defined for each formula ϕ ∈ Φ, then

(
∧

Φ)¬ :=
∨

Φ¬ and (
∨

Φ)¬ :=
∧

Φ¬,

where, for a set Φ of L∞ω-formulas by Φ¬ we denote the set {ϕ¬ : ϕ ∈ Φ}.

Fact 6.2 Let ϕ be an L∞ω-formula. Then

(a) ϕ¬ ↔ ¬ϕ;

(b) If ϕ ∈ N , then ϕ¬ ∈ P;

(c) If ϕ ∈ ¬F , then ϕ¬ ∈ F .

Proof. (a) Let X ∈ ModL. By induction we show that for each ϕ ∈ FormL∞ω we

have

∀~x ∈ κX
(
X |= ϕ¬[~x] ⇔ X |= (¬ϕ)[~x]

)
. (18)

For ϕ ∈ AtL by definition we have ϕ¬ = ¬ϕ, so (18) is true.

Let ϕ ∈ Formξ and suppose that (18) is true. For ~x ∈ κX we have X |=
(∀vα ϕ)

¬[~x] iff X |= (∃vα ϕ
¬)[~x] iff for some x ∈ X we have X |= ϕ¬[~x〈α,x〉],

that is, by (18), X |= (¬ϕ)[~x〈α,x〉], that is, X |= ϕ[~x〈α,x〉] is not true, iff it is

not true that for all x ∈ X we have X |= ϕ[~x〈α,x〉] iff X |= (∀vα ϕ)[~x] is not

true iff X |= (¬∀vα ϕ)[~x]. Also X |= (∃vα ϕ)¬[~x] iff X |= (∀vα ϕ¬)[~x] iff

for each x ∈ X we have X |= ϕ¬[~x〈α,x〉], that is, by (18), X |= (¬ϕ)[~x〈α,x〉],
that is, X |= ϕ[~x〈α,x〉] is not true, iff it is not true that for some x ∈ X we have

X |= ϕ[~x〈α,x〉] iff X |= (∃vα ϕ)[~x] is not true iff X |= (¬∃vα ϕ)[~x]. Finally,

X |= (¬ϕ)¬[~x] iff X |= ϕ[~x] iff X |= ¬(¬ϕ)[~x].

Let Φ ⊂ Formξ and suppose that ϕ satisfies (18), for all ϕ ∈ Φ. For ~x ∈ κX
we have X |= (

∧
Φ)¬[~x] iff X |=

∨
{ϕ¬ : ϕ ∈ Φ}[~x], iff for some ϕ ∈ Φ we

have X |= ϕ¬[~x], that is, by (18), X |= (¬ϕ)[~x], iff it is not true that for all ϕ ∈ Φ
we have X |= ϕ[~x], iff it is not true that X |= (

∧
Φ)[~x] iff X |= (¬

∧
Φ)[~x].

Also, X |= (
∨

Φ)¬[~x] iff X |=
∧
{ϕ¬ : ϕ ∈ Φ}[~x], iff for each ϕ ∈ Φ we have

X |= ϕ¬[~x], that is, by (18), X |= (¬ϕ)[~x], iff it is not true that for some ϕ ∈ Φ we

have X |= ϕ[~x], iff it is not true that X |= (
∨

Φ)[~x] iff X |= (¬
∨

Φ)[~x].

(b) First we have (vα = vβ)
¬ := ¬vα = vβ ∈ P and (¬Ri(vα1

, . . . , vαni
))¬ :=

Ri(vα1
, . . . , vαni

) ∈ P and, also, (¬vα = vβ)
¬ := vα = vβ ∈ P. If ϕ ∈ Nξ and

ϕ¬ ∈ P, then the formulas (∀vα ϕ)¬ := ∃vα ϕ¬ and (∃vα ϕ)¬ := ∀vα ϕ¬

belong to P. If Φ ⊂ Nξ and ϕ¬ ∈ P, for all ϕ ∈ Φ, then Φ¬ ⊂ P and, hence,

(
∧

Φ)¬ :=
∨

Φ¬ ∈ P and (
∨

Φ)¬ :=
∧

Φ¬ ∈ P.
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(c) By (b) the claim is true for allϕ ∈ N . Also we have (Ri(vα1
, . . . , vαni

))¬ :=
¬Ri(vα1

, . . . , vαni
) ∈ F . If ϕ ∈ ¬Fξ and ϕ¬ ∈ F , then (∃vα ϕ)

¬ := ∀vα ϕ
¬ ∈

F . If Φ ⊂ ¬Fξ and ϕ¬ ∈ F , for all ϕ ∈ Φ, then Φ¬ ⊂ F and, hence,

(
∨

Φ)¬ :=
∧

Φ¬ ∈ F . If Φ is a finite set, then, again, (
∧

Φ)¬ :=
∨

Φ¬ ∈ F . ✷

Proof of Theorem 6.1. (a) It is a standard fact that, if ψ is an L∞ω-formula, ϕ
its subformula, ϕ ↔ ϕ′ and ψ′ the formula obtained from ψ by replacement of ϕ
by ϕ′, then ψ ↔ ψ′. So, by Fact 6.2(a), the sentence ψ := ∀v̄ ∃≤nw̃ ϕ(v̄, w̃) is

logically equivalent to the sentence

ψ′ := ∀v̄ ∀w̃1, . . . w̃n+1
(∨

k≤n+1 ϕ
¬(v̄, w̃k) ∨

∨
1≤k<l≤n+1 w̃

k = w̃l
)
. (19)

By Fact 6.2(c) we have ϕ¬ ∈ F so the sentence ψ′ belongs to F and the statement

follows from Theorem 4.1(a).

(b) It is easy to check that for an L∞ω-formula ϕ, up to logical equivalence,

we have: ϕ ∈ P iff ϕc ∈ N and, also, ϕ ∈ ¬G iff ϕc ∈ ¬F . So, if ϕ(v̄, w̃) ∈ ¬G,

then ϕc(v̄, w̃) ∈ ¬F and, by (a), P′ := 〈Int
T c∪{∀v̄ ∃≤nw̃ ϕc(v̄,w̃)}
L (X),⊂〉 has the

properties from (a). Since ∀v̄ ∃≤nw̃ ϕc(v̄, w̃) is the formula (∀v̄ ∃≤nw̃ ϕc(v̄, w̃))c,

by Theorem 3.2(b) we have P′ = {ρc : ρ ∈ Int
T ∪{∀v̄ ∃≤nw̃ ϕ(v̄,w̃)}
L (X)}, which

means that P is the reverse of P′ and, hence, has the mentioned properties. ✷

Maximal graphs of finite degree If n ∈ ω, a graph G = 〈X, ρ〉 is of degree

≤ n iff deg(x) := |{y ∈ X : {x, y} ∈ ρ}| ≤ n, for all x ∈ X. Since the

atomic Lb-formula R(v,w) belongs to the class ¬F , by Theorem 6.1 the poset

P = 〈Int
Tgraph∪{ψdeg≤n}
Lb

(X),⊂〉, where ψdeg≤n := ∀v ∃≤nw R(v,w) is the Lb-
sentence saying that a graph is of degree ≤ n, is union-complete and MaxP ⊂
RevLb

(X) is a co-dense set in P.

Example 6.3 Maximal graphs of degree ≤ 2. We recall that, for n ∈ ω, a graph

G = 〈X, ρ〉 is called n-regular iff deg(x) = n, for all x ∈ X. The linear graphs

〈ω, {{n, n + 1} : n ∈ ω}〉 and 〈Z, {{n, n + 1} : n ∈ Z}〉, where Z is the set of

integers, will be denoted by Gω and GZ, respectively.

Claim 6.4 A graph X is a maximal graph of degree ≤ 2 iff X ∼= Y ∪̇ Z, where

- Y is ∅, or a 2-regular graph,

- Z is ∅, or K1, or K2, or Gω .

Proof. The implication ⇐ is evident.

(⇒) Let X = 〈X,∼〉 be a maximal graph of degree ≤ 2. Suppose that there

are three different vertices x, y, z ∈ X of degree < 2. Then the substructure of

X determined by {x, y, z} is not a complete graph, say {x, y} 6∈ ∼ and the graph
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〈X,∼ ∪{{x, y}}〉 is of degree ≤ 2, which contradicts the maximality of X. If all

the vertices of X are of degree 2, then X = Y ∪̇ ∅, where Y is a 2-regular graph.

If two vertices of X, say x and y, are of degree < 2, then by the maximality of

X, {x, y} ∈ ∼ and, hence, X = Y ∪̇ K2, where Y is a 2-regular graph or ∅.

If exactly one vertex of X, say x, is of degree < 2 and deg(x) = 0, then

X = Y ∪̇ K1, where Y is a 2-regular graph or ∅. Otherwise we have deg(x) = 1
and, hence, there is y ∈ X \ {x} such that {x, y} ∈ ∼. If Cx is the connectivity

component of X containing x, then in Cx we have deg(x) = 1 and deg(z) = 2, for

all z ∈ Cx \ {x}. Now defining x0 = x, x1 = y and xn+1 as the unique neighbor

of xn different from xn−1 we have {xn : n ∈ ω} ⊂ Cx and, by the connectedness

of Cx we have the equality. Thus Cx ∼= Gω. Now, if the graph X is connected,

then X ∼= ∅ ∪̇ Gω. Otherwise, the graph induced on the set X \ Cx is 2-regular

and we have X ∼= Y ∪̇ Gω, where Y is a 2-regular graph. ✷

It is known that 2-regular graphs are characterized as disjoint unions of copies

of GZ and Cn, for n ≥ 3. Thus there are c-many non-isomorphic maximal count-

able graphs of degree ≤ 2; so, the poset Int
Tgraph∪{ψdeg≤2}
Lb

(ω) has c-many non-

isomorphic maximal elements; they are reversible and characterized in Claim 6.4.

Example 6.5 Maximal connected graphs of degree ≤ n. Since ϕconn ∈ P,

by Theorem 6.1 maximal elements of the poset 〈Int
Tgraph∪{ψdeg≤n,ϕconn}
Lb

(X),⊂〉
form a co-dense set in it consisting of reversible interpretations. By the analysis

from Example 6.3, Max(Int
Tgraph∪{ψdeg≤2,ϕconn}
Lb

(ω)) = [Gω]∼= ∪ [GZ]∼=.
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