Tanaka's Theorem Revisited

Saeideh Bahrami
bahrami.saeideh@gmail.com

November 23, 2018

Abstract

Tanaka (1997) proved a powerful generalization of Friedman's selfembedding theorem that states that given a countable nonstandard model $(\mathcal{M}, \mathcal{A})$ of the subsystem WKL_{0} of second order arithmetic, and any element m of \mathcal{M}, there is a self-embedding j of $(\mathcal{M}, \mathcal{A})$ onto a proper initial segment of itself such that j fixes every predecessor of m.

Here we extend Tanaka's work by establishing the following results for a countable nonstandard model $(\mathcal{M}, \mathcal{A})$ of WKL_{0} and a proper cut I of \mathcal{M} :

Theorem A. The following conditions are equivalent: (a) I is closed under exponentiation. (b) There is a self-embedding j of $(\mathcal{M}, \mathcal{A})$ onto a proper initial segment of itself such that I is the longest initial segment of fixed points of j.

Theorem B. The following conditions are equivalent: (a) I is a strong cut of \mathcal{M} and $\mathrm{I} \prec_{\Sigma_{1}} \mathcal{M}$. (b) There is a self-embedding j of $(\mathcal{M}, \mathcal{A})$ onto a proper initial segment of itself such that I is the set of all fixed points of j.

1 Introduction

One of the fundamental results concerning nonstandard models of Peano arithmetic (PA) is Friedman's theorem [4, Theorem 4.4] that states every countable nonstandard model of PA is isomorphic to a proper initial segment of itself. A notable generalization of Friedman's theorem was established by Tanaka [13] for models of the well-known subsystem WKL_{0} of second order arithmetic, who established:

Theorem 1.1. (Tanaka) Suppose $(\mathcal{M}, \mathcal{A})$ is a countable nonstandard model of WKL_{0}.
(a) There is a proper initial segment I of \mathcal{M} and an isomorphism j between $(\mathcal{M}, \mathcal{A})$ and $\left(\mathrm{I}, \mathcal{A}_{\mathrm{I}}\right)$, where $\mathcal{A}_{\mathrm{I}}:=\{\mathrm{A} \cap \mathrm{I}: \mathrm{A} \in \mathcal{A}\}$.
(b) Given any prescribed m in \mathcal{M}, there is an I and j as in (a) such that $j(x)=x$ for all $x \leq m$.

Tanaka's principal motivation in establishing Theorem 1.1 was the development of non-standard methods within WKL_{0} in the context of the reverse mathematics research program; for example Tanaka and Yamazaki (14] used Theorem 1.1 to show that the Haar measure over compact groups can be implemented in WKL_{0} via a detour through nonstandard models. This is in contrast to the previously known constructions of the Haar measure whose implementation required the stronger subsystem ACA_{0}. Other notable applications of the methodology of nonstandard models can be found in the work of Sakamato and Yokoyama [11], who showed that over the subsystem RCA_{0} the Jordan curve theorem and the Schönflies theorem are equivalent to WKL_{0}; and in the work of Yokoyama and Horihata [8], who established the equivalence of ACA_{0} and Riemann's mapping theorem for Jordan regions over WKL_{0}.

Here we continue our work [1] on the study of fixed point sets of selfembeddings of countable nonstandard models of $\mathrm{I} \Sigma_{1}$ by focusing on the behavior of fixed point sets in Tanaka's theorem. Our methodology can be generally described as an amalgamation of Enayat's strategy for proving Tanaka's theorem [3] with some ideas and results from [1] Before stating our results, recall that j is said to be a proper initial self-embedding of $(\mathcal{M}, \mathcal{A})$ if there is a proper initial segment I of \mathcal{M} and an isomorphism j between $(\mathcal{M}, \mathcal{A})$ and $\left(\mathrm{I}, \mathcal{A}_{\mathrm{I}}\right)$, where $\mathcal{A}_{\mathrm{I}}:=\{\mathrm{A} \cap \mathrm{I}: \mathrm{A} \in \mathcal{A}\} ; \mathrm{I}_{\text {fix }}(j)$ is the longest initial segment of fixed points of j; and $\operatorname{Fix}(j)$ is the fixed point set of j, in other words:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{fix}}(j):=\{m \in M: \forall x \leq m j(x)=x\}, \text { and } \\
\operatorname{Fix}(j):=\{m \in M: j(m)=m\} .
\end{gathered}
$$

Our main results are Theorems A and B below. Note that Theorem A is a strengthening of Tanaka's Theorem (see Section 3 for more detail).
Theorem A. Suppose $(\mathcal{M}, \mathcal{A})$ is a countable nonstandard model of WKL_{0}. The following conditions are equivalent for a proper cut I of \mathcal{M} :

[^0](1) There is a self-embedding j of $(\mathcal{M}, \mathcal{A})$ such that $\mathrm{I}_{\mathrm{fix}}(j)=\mathrm{I}$.
(2) I is closed under exponentiation.
(3) There is a proper initial self-embedding j of $(\mathcal{M}, \mathcal{A})$ such that $\mathrm{I}_{\mathrm{fix}}(j)=\mathrm{I}$.

Theorem B. Suppose $(\mathcal{M}, \mathcal{A})$ is a countable nonstandard model of WKL_{0}. The following conditions are equivalent for a proper cut I of \mathcal{M} :
(1) There is a self-embedding j of $(\mathcal{M}, \mathcal{A})$ such that $\operatorname{Fix}(j)=\mathrm{I}$.
(2) I is a strong cut of \mathcal{M} and $\mathrm{I} \prec \Sigma_{1} \mathcal{M}$.
(3) There is a proper initial self-embedding j of $(\mathcal{M}, \mathcal{A})$ such that $\operatorname{Fix}(j)=I$.

Theorem A is established in Section 3, and Section 4 is devoted to proving Theorem B.

Acknowledgment. I am indebted to my PhD supervisor, Ali Enayat, for his encouragements, precious comments and feedback in the formation of this paper.

2 Preliminaries

In this section we review some definitions and basic results that are relevant to the statements and proofs of our main results.

- WKL_{0} is the second order theory whose models are of the form of $(\mathcal{M}, \mathcal{A})$, where $(\mathcal{M}, \mathcal{A})$ satisfies (1) Induction for Σ_{1}^{0} formulas; (2) Comprehension for Δ_{1}^{0}-formulas; and (3) Weak König's Lemma (which asserts that every infinite subtree of the full binary tree has an infinite branch).
- $\operatorname{Exp}:=\forall x \exists y \operatorname{Exp}(x, y)$, where $\operatorname{Exp}(x, y)$ is a Δ_{0}-formula that expresses $2^{x}=y$ within $\mathrm{I} \Delta_{0}$.
- The binary Δ_{0}-formula $x E y$, known as Ackermann's membership relation, expresses "the x-th bit of the binary expansion of y is 1 " within $\mathrm{I} \Delta_{0}$.
- A subset X of M is coded in \mathcal{M} iff there is some $a \in \mathrm{M}$ such that $\mathrm{X}=\left(a_{E}\right)^{\mathcal{M}}:=\{x \in \mathrm{M}: \mathcal{M} \models x E a\}$.
Given $a \in \mathrm{M}$, by \underline{a} we mean the set $\{x \in \mathrm{M}: x<a\}$. Note that \underline{a} is coded in \mathcal{M}, where \mathcal{M} is a model of $\mathrm{I} \Delta_{0}$, provided 2^{a} exists in \mathcal{M}.
It is well-known that for any $n>0$ and $\mathcal{M} \models \mathrm{I} \Sigma_{n}$, if $\varphi(x, a)$ is an
unary Σ_{n}-formula, where a is a parameter from \mathcal{M}, then the set $\varphi^{\mathcal{M}}(a):=\{b \in \mathrm{M}: \mathcal{M} \models \varphi(b, a)\}$ is piece-wise coded in \mathcal{M}; i.e. for every $c \in \mathrm{M}, \varphi^{\mathcal{M}}(a) \cap \underline{c}$ is coded in \mathcal{M}. More specifically, there is some element less than $\overline{2}^{c}$ which $\operatorname{codes} \varphi^{\mathcal{M}}(a) \cap \underline{c}$. Moreover, the above statement holds for $n=0$ if $\mathcal{M} \models \mathrm{I} \Delta_{0}+\operatorname{Exp}$.
- For every cut I of \mathcal{M}, the I-standard system of \mathcal{M}, presented by $\mathrm{SSy}_{I}(\mathcal{M})$, is the family consisting of sets of the form $a_{E} \cap \mathrm{I}$, where $a \in \mathrm{M}$; in other words:

$$
\operatorname{SSy}_{\mathrm{I}}(\mathcal{M})=\left\{\left(a_{E}\right)^{\mathcal{M}} \cap \mathrm{I}: \quad a \in \mathrm{M}\right\}
$$

When I is the standard cut, i.e. $I=\mathbb{N}$, we simply write $\operatorname{SSy}(\mathcal{M})$ instead of $\mathrm{SSy}_{\mathbb{N}}(\mathcal{M})$.

- Given a proper cut I of \mathcal{M}, I is called a strong cut, if for every coded function f in \mathcal{M} whose domain contains I , there exists some $s \in \mathrm{M}$ such that for every $i \in \mathrm{I}$ it holds that $f(i) \notin \mathrm{I}$ iff $s<f(i)$.
- $\mathrm{Sat}_{\Sigma_{n}}$ is the arithmetical formula defining the satisfaction predicate for Σ_{n}-formulas within I $\Delta_{0}+$ Exp. It is well-known that for each positive $n \in \omega$, Sat $_{\Sigma_{n}}$ can be expressed by a Σ_{n}-formula in I Σ_{n}; furthermore, within a model of $\mathrm{I} \Delta_{0}+\operatorname{Exp}$ (with the help of a nonstandard parameter if the model is nonstandard), $\operatorname{Sat}_{\Sigma_{0}}$ (which is also written as Sat ${ }_{\Delta_{0}}$) is expressible both as a Σ_{1} and Π_{1}-formula.
- The strong Σ_{n}-Collection scheme consists of formulas of the following form where φ is a Σ_{n}-formula:
$\forall w \forall v \exists z \forall x<v(\exists y \varphi(x, y, w) \rightarrow \exists y<z \varphi(x, y, w))$.
It is well-known that the strong Σ_{n}-Collection scheme is provable in I Σ_{n} for every $n>0$.
- Every model \mathcal{M} of $\mathrm{I} \Delta_{0}+$ Exp satisfies the Coded Pigeonhole Principle, i.e. if $b \in \mathrm{M}$, and $f: \underline{b+1} \rightarrow \underline{b}$ is a coded function in \mathcal{M}, then f is not injective.
- By an embedding j from second order $\operatorname{model}(\mathcal{M}, \mathcal{A})$ into $(\mathcal{N}, \mathcal{B})$, we mean that j is an embedding from \mathcal{M} into \mathcal{N} such that for every $X \subseteq M, \quad X \in \mathcal{A}$ iff $j(X)=Y \cap j(M)$ for some $Y \in \mathcal{B}$.
- When \mathcal{M} and \mathcal{N} are models of arithmetic and b is in M , we write $\mathcal{M} \subseteq_{\text {end, } \Pi_{1, \leq b}} \mathcal{N}$, when \mathcal{N} is an end extension of \mathcal{M} and all Π_{1}-formulas
whose parameters are in $\underline{b+1}$ are absolute in the passage between \mathcal{M} and \mathcal{N}, i.e., $\operatorname{Th}_{\Pi_{1}}(\mathcal{M}, m)_{m \leq b}=\operatorname{Th}_{\Pi_{1}}(\mathcal{N}, m)_{m \leq b}$.

Theorem 2.1. ([3, Theorem 3.2]) Let $(\mathcal{M}, \mathcal{A})$ be a countable model of WKL_{0} and let $b \in \mathrm{M}$. Then \mathcal{M} has a countable recursively saturated proper end extension \mathcal{N} satisfying $\mathrm{I} \Delta_{0}+\operatorname{Exp}+\mathrm{B} \Sigma_{1}$ such that $\operatorname{SSy}_{\mathrm{M}}(\mathcal{N})=\mathcal{A}$, and $\mathcal{M} \subseteq_{\text {end }, \Pi_{1}, \leq \mathrm{b}} \mathcal{N}$.
Remark 2.2. The proofs of our main results take advantage of the following additional features of the model \mathcal{N} constructed in Enayat's proof of Theorem 2.1, namely: given b in \mathcal{M}, there is an elementary chain of models $\left(\mathcal{N}_{n}: n \in \omega\right)$ satisfying the following three properties:
(i) $\mathcal{N}=\cup_{n \in \omega} \mathcal{N}_{n} ;$
(ii) For every $n \in \omega, \mathcal{M} \subseteq_{\text {end }, \Pi_{1}, \leq \mathrm{b}} \mathcal{N}_{n} \prec \mathcal{N}$;
(iii) For every $n \in \omega$ the elementary diagram of $\left(\mathcal{N}_{n}, a\right)_{a \in \mathrm{~N}_{n}}$ is available in $(\mathcal{M}, \mathcal{A})$ via some $\mathrm{ED}_{n} \in \mathcal{A}$. Note that $\operatorname{Th}\left(\left(\mathcal{N}_{n}, a\right)_{a \in \mathrm{~N}_{n}}\right)$ is a proper subset of ED_{n} since ED_{n} includes sentences of nonstandard length.

Remark 2.3. Enayat [3] noted that if $(\mathcal{M}, \mathcal{A})$ is a model of WKL_{0} and b is in M , and there is some end extension \mathcal{N} of \mathcal{M} such that (1) $\mathcal{N} \models I \Delta_{0}+\operatorname{Exp}$, (2) $\mathrm{SSy}_{\mathrm{M}}(\mathcal{N})=\mathcal{A}$, and (3) there is an initial self-embedding j_{1} of \mathcal{N} onto an initial segment that is bounded above by b, then the restriction j of j_{1} to \mathcal{M} is an embedding of \mathcal{M} onto an an initial segment J of \mathcal{M} that is below b which has the important feature that j is an isomorphism between $(\mathcal{M}, \mathcal{A})$ and $\left(\mathrm{J}, \mathcal{A}_{\mathrm{J}}\right)$. Note that if I is a proper cut of \mathcal{M}, then $\mathrm{I}_{\text {fix }}\left(j_{1}\right)=\mathrm{I}$ implies that $\mathrm{I}_{\mathrm{fix}}(j)=\mathrm{I}$; and $\operatorname{Fix}\left(j_{1}\right)=\mathrm{I}$ implies that $\operatorname{Fix}(j)=\mathrm{I}$.

- The following theorem summarizes some of the results about $\mathrm{I}_{\mathrm{fix}}(j)$ and $\operatorname{Fix}(j)$ from [1] which will be employed in this paper:

Theorem 2.4. Suppose $\mathcal{M} \models \mathrm{I} \Delta_{0}+\operatorname{Exp}$ and j is a nontrivial self-embedding of \mathcal{M}. Then:
(a) $\mathrm{I}_{\mathrm{fix}}(j) \models \mathrm{I} \Delta_{0}+\mathrm{B} \Sigma_{1}+\operatorname{Exp}$.
(b) If $\mathcal{M} \models \mathrm{I} \Sigma_{1}$ then $\operatorname{Fix}(j)$ is a Σ_{1}-elementary submodel of \mathcal{M}. Moreover, if $\operatorname{Fix}(j)$ is a proper initial segment of \mathcal{M}, then it is a strong cut of \mathcal{M}.

- Given two countable nonstandard $\operatorname{model} \mathcal{M}$ and \mathcal{N} of $I \Sigma_{1}$ which share a common proper cut I, the following theorem from [1, Cor. 3.3.1] provides a useful sufficient condition for existence of a proper initial embedding between \mathcal{M} and \mathcal{N} which fixes each element of I:

Theorem 2.5. Let \mathcal{M}, \mathcal{N} and I be as above such that I is closed under exponentiation. The following are equivalent:
(1) There is a proper initial embedding f of \mathcal{M} into \mathcal{N} such that $f(i)=i$ for all $i \in I$.
(2) $\operatorname{Th}_{\Sigma_{1}}(\mathcal{M}, i)_{i \in I} \subseteq \operatorname{Th}_{\Sigma_{1}}(\mathcal{N}, i)_{i \in I}$ and $\operatorname{SSy}_{I}(\mathcal{M})=\operatorname{SSy}_{I}(\mathcal{N})$.

- Another prominent subsystem of second order arithmetic is ACA_{0}, in which the comprehension scheme is restricted to formulas with no second order quantifier. The following results of Paris and Kirby 9$]$ and Gaifman [6, Thm. 4.9-4.11] concerning ACA_{0} are employed in the proof of Theorem B ${ }^{2}$

Theorem 2.6. (Paris and Kirby) Suppose $\mathcal{M} \models \mathrm{I} \Delta_{0}$. The following are equivalent for a proper cut I of \mathcal{M} :
(a) I is a strong cut of \mathcal{M}.
(b) $\left(\mathrm{I}_{, ~ S S y_{\mathrm{I}}}(\mathcal{M})\right) \models \mathrm{ACA}_{0}$.

Theorem 2.7. (Gaifman) Given a countable model $(\mathcal{M}, \mathcal{A})$ of ACA_{0} and a linear order \mathbb{L}, there exists an end extension $\mathcal{M}_{\mathbb{L}}$ of \mathcal{M} such that there is an isomorphic copy $\mathbb{L}^{\prime}=\left\{c_{l}: l \in \mathbb{L}\right\}$ of \mathbb{L} in $\mathrm{M}_{\mathbb{L}} \backslash \mathrm{M}$, and there is a composition preserving embedding $j \mapsto \widehat{j}$ from the semi-group of initial selfembeddings of \mathbb{L} into the semi-group of initial self-embeddings of $\mathcal{M}_{\mathbb{L}}$ that satisfy the following properties:
(a) $\operatorname{SSy}_{\mathrm{M}}\left(\mathcal{M}_{\mathbb{L}}\right)=\mathcal{A}$ and $\operatorname{Fix}(\widehat{j})=M$ for each initial self-embedding j of \mathbb{L} that is fixed point free.
(b) For each initial self-embedding j of \mathbb{L}, \widehat{j} is an elementary initial selfembedding of $\mathcal{N}_{\mathbb{L}}$, i.e. $\widehat{j}\left(\mathcal{M}_{\mathbb{L}}\right) \preceq_{\text {end }} \mathcal{N}_{\mathbb{L}}$.
(c) \mathbb{L}^{\prime} is downward cofinal in $M_{\mathbb{L}} \backslash M$ if \mathbb{L} has no first element.
(d) For any $l_{0} \in \mathbb{L}$, l_{0} is a strict upper bound for $j(\mathbb{L})$ iff $c_{l_{0}}$ is a strict upper bound for $\widehat{j}\left(M_{\mathbb{L}}\right)$.

[^1]
3 The longest cut fixed by self-embeddings

This section is devoted to the proof of Theorem A. Recall that if $(\mathcal{M}, \mathcal{A})$ is a model of WKL_{0} there are arbitrary large as well as arbitrary small nonstandard cuts in \mathcal{M} that are closed under exponentiation. More specifically, for every nonstandard a in M , there are nonstandard cuts I_{1} and I_{2} (as defined below) such that $\mathrm{I}_{1}<a \in \mathrm{I}_{2}$, and both are closed under exponentiation:

$$
\begin{gathered}
\mathrm{I}_{1}:=\left\{x \in M: 2_{n}^{x}<a \text { for all } n \in \omega\right\}, \text { where } 2_{0}^{x}:=x, \text { and for every } n \in \omega, \\
\qquad 2_{n+1}^{x}:=2^{2_{n}^{x}} ; \\
\mathrm{I}_{2}:=\left\{x \in M: x<2_{n}^{a} \text { for some } n \in \omega\right\} .
\end{gathered}
$$

So Theorem A implies that $\mathrm{I}_{\mathrm{fix}}(j)$ can be arranged to be as high or as low in the nonstandard part of \mathcal{M} as desired. In particular, Theorem A is a strengthening of Tanaka's Theorem.

Proof of Theorem A. $(1) \Rightarrow(2)$ is an immediate consequence of Theorem 2.4.(a), and $(3) \Rightarrow(1)$ is trivial so we concentrate on establishing $(2) \Rightarrow(3)$.

Assume that I is closed under exponentiation and fix some $a \in \mathrm{M} \backslash \mathrm{I}$. We leave it as an exercise for the reader to use strong Σ_{1}-Collection along with the fact that $\operatorname{Sat}_{\Delta_{0}}$ has a Σ_{1}-description in \mathcal{M} to show that there is some $b \in \mathrm{M}$ such that:
(\ddagger) $\mathcal{M} \models \forall w<a(\exists z \delta(z, w) \rightarrow \exists z<b \delta(z, w))$, for all Δ_{0}-formulas δ.
Next we invoke Theorem 2.1 to get hold of a countable recursively saturated proper end extension \mathcal{N} of \mathcal{M} such that $\mathcal{N} \models \mathrm{I} \Delta_{0}+\mathrm{B} \Sigma_{1}+\operatorname{Exp}$, $\operatorname{SSy}_{\mathrm{M}}(\mathcal{N})=\mathcal{A}$, and $\mathcal{M} \subseteq_{\text {end }, \Pi_{1}, \leq \mathrm{b}} \mathcal{N}$. Moreover, we will safely assume that the model \mathcal{N} additionally satisfies the three properties listed in Remark 2.2. In light of Remark 2.3, in order to establish (3) it suffices to construct a proper initial self-embedding j of \mathcal{N} such that $j(\mathrm{~N})<b$ and $\mathrm{I}_{\mathrm{fix}}(j)=\mathrm{I}$. The construction of the desired j is the novel element of the proof of Theorem A, which we now turn to.

To construct j we will employ a modification of the strategy employed in the proof of $(2) \Rightarrow(3)$ of [1, Theorem 4.1], using a 3-level back-and-forth method. A modification is needed since we need to overcome the fact that I Σ_{1} need not hold in \mathcal{N}; instead we will rely on recursive saturation of \mathcal{N} and the properties of \mathcal{N} listed in Remark 2.2. First, note that (\sharp) together with the fact that $\operatorname{Th}_{\Pi_{1}}(\mathcal{M}, x)_{x \leq b}=\operatorname{Th}_{\Pi_{1}}(\mathcal{N}, x)_{x \leq b}$, implies:
(*) $\mathcal{N} \models \forall w<a(\exists z \delta(z, w) \rightarrow \exists z<b \delta(z, w))$, for all Δ_{0}-formula δ.
Since I is closed under exponentiation, we can choose $\left\{c_{n}: n \in \omega\right\}$ that is downward cofinal in $\mathrm{M} \backslash \mathrm{I}$ such that $c_{0}=a$ and $2^{c_{n+1}}<c_{n}$ for all $n \in \omega$.

The proof will be complete once we recursively construct finite sequences $\bar{u}:=\left(u_{0}, \ldots, u_{m-1}\right)$ and $\bar{v}:=\left(v_{0}, \ldots, v_{m-1}\right)$ of elements of \mathcal{N} for all $n \in \omega$ such that:
(i) $u_{0}=0=v_{0}$.
(ii) For every c in N there is some $n \in \omega$ such that $c=u_{n}$.
(iii) For every $n \in \omega, v_{n}<b$, and if for some c in N it holds that $c<v_{n}$, then there is some $m \in \omega$ such that $c=v_{m}$.
(iv) For every $m \in \omega$ the following condition holds:
$\left(*_{m}\right): \quad \mathcal{N} \models \forall w<c_{m}(\exists z \delta(z, w, \bar{u}) \rightarrow \exists z<b \delta(z, w, \bar{v}))$, for every Δ_{0}-formula δ.
(v) For every $m \in \omega$, there is some $n \in \omega$ such that $u_{n}<c_{m}$ and $u_{n} \neq v_{n}$.
Note that $\left(*_{0}\right)$ holds thanks to $(*)$ since $c_{0}=a$. Let $\left\{a_{n}: n \in \omega\right\}$ and $\left\{b_{n}: n \in \omega\right\}$ respectively be enumerations of element of N and \underline{b}. By statement (i) and ($*_{0}$) the first step of induction holds. Suppose for $m \in \omega$, \bar{u} and \bar{v} are constructed such that $\left(~_{m}\right)$ holds. In order to find suitable u_{m+1} and v_{m+1}, by considering congruence modulo 3 we have three cases for $m+1$: Case 0 takes care of (ii) and (iv), Case 1 takes care of (iii) and (iv), and Case 2 takes care of (v) and (iv).

CASE $0(\mathbf{m}+\mathbf{1}=\mathbf{3 k}$, for some $\mathbf{k} \in \omega)$: In this case if a_{k} is one of the elements of \bar{u}, put $u_{m+1}=u_{m}$ and $v_{m+1}=v_{m}$. Otherwise, put $u_{m+1}=a_{k}$ and define:

$$
\begin{gathered}
p(y):=\{y<b\} \cup \\
\left\{\forall w<c_{m+1}\left(\exists z \delta\left(z, w, \bar{u}, a_{k}\right) \xrightarrow{\rightarrow} \exists z<b \delta(z, w, \bar{v}, y)\right): \delta \text { is a } \Delta_{0} \text {-formula }\right\} .
\end{gathered}
$$

Note that $p(y)$ is a recursive type. Since \mathcal{N} is recursively saturated, it suffices to prove that $p(y)$ is finitely satisfiable and let v_{m+1} be one of the realizations of $p(y)$ in \mathcal{N}. Since $p(y)$ is closed under conjunctions we only need to show that each formula in $p(y)$ is satisfiable. For this purpose, suppose δ is a Δ_{0}-formula, and let

$$
\mathrm{D}:=\left\{w \in \underline{c_{m+1}}: \mathcal{N} \models \exists z \delta\left(z, w, \bar{u}, a_{k}\right)\right\} .
$$

We claim that there is some $d<2^{c_{m+1}}$ which codes D in \mathcal{N}. To see this, we note that in the above definition, \mathcal{N} can be safely replaced by some \mathcal{N}_{n}, where n is large enough to contain the parameters \bar{u} and a_{k} (thanks to properties (i) and (ii) in Remark 2.2). On the other hand, by property (i iii) in Remark 2.2, there is some $\mathrm{ED}_{n} \in \mathcal{A}$ such that:

$$
\mathrm{D}=\left\{w \in \underline{c_{m+1}}:\left\ulcorner\exists z \delta\left(z, w, \bar{u}, a_{k}\right)\right\urcorner \in \mathrm{ED}_{n}\right\}
$$

Since $(\mathcal{M}, \mathcal{A})$ satisfies $\mathrm{I} \Sigma_{1}^{0}$, the above characterization of D shows that D is coded in \mathcal{M} (and therefore in \mathcal{N}) by some $d<2^{c_{m+1}}$ (recall that the code of each subset of \underline{m} is below 2^{m}). Therefore we have:
(1) $\mathcal{N} \models \forall w<c_{m+1}\left(w E d \rightarrow \exists z \delta\left(z, w, \bar{u}, a_{k}\right)\right)$;

By putting (1) together with $\mathrm{B} \Sigma_{1}$ in \mathcal{N}, and existentially quantifying a_{k} we obtain:
(2) $\mathcal{N} \models \exists t, x \forall w<c_{m+1}(w E d \rightarrow \exists z<t \delta(z, w, \bar{u}, x))$.

On the other hand, coupling (2) with $\left(*_{m}\right)$ yields:
(3) $\mathcal{N} \models \exists t, x<b \forall w<c_{m+1}((w E d \rightarrow \exists z<t \delta(z, w, \bar{v}, x)))$,
which makes it clear that each formula in $p(y)$ is satisfiable in \mathcal{N}.
CASE $1(\mathbf{m}+\mathbf{1}=\mathbf{3 k}+\mathbf{1}$, for some $\mathbf{k} \in \omega)$: In this case if $b_{k} \geq \operatorname{Max}\{\bar{v}\}$ or if it is one of the elements of \bar{v}, put $u_{m+1}=u_{m}$ and $v_{m+1}=v_{m}$. Otherwise, put $v_{m+1}=b_{k}$ and define:

$$
q(x):=
$$

$\left\{\forall w<c_{m+1}\left(\forall z<b \neg \delta\left(z, w, \bar{v}, b_{k}\right) \rightarrow \forall z \neg \delta(z, w, \bar{u}, x)\right): \delta\right.$ is a Δ_{0}-formula $\}$.
$q(x)$ is clearly a recursive type and closed under conjunctions, so by recursive saturation of \mathcal{N} it suffices to verify that each formula in $q(x)$ is satisfiable in \mathcal{N}, and let u_{m+1} be one of the realizations of $q(x)$ in \mathcal{N}. Suppose some formula in q is not realizable in \mathcal{N}, then for some Δ_{0}-formula δ we have:

$$
\mathcal{N} \models \forall x\left(\exists w<c_{m+1}\left(\forall z<b \neg \delta\left(z, w, \bar{v}, b_{k}\right) \wedge \exists z \delta(z, w, \bar{u}, x)\right)\right)
$$

Let:

$$
\mathrm{R}:=\left\{w \in \underline{c_{m+1}}: \mathcal{N} \models \forall z<b \neg \delta\left(z, w, \bar{v}, b_{k}\right)\right\} .
$$

Since R is Δ_{0}-definable in \mathcal{N} there exists some $r<2^{c_{m+1}}$ which codes R in \mathcal{N}. Therefore,
(4) $\mathcal{N} \models \forall x<\operatorname{Max}\{\bar{u}\}\left(\exists w<c_{m+1}(w \operatorname{Er} \wedge \exists z \delta(z, w, \bar{u}, x))\right)$,
which by Σ_{1}-Collection in \mathcal{N} implies:
(5) $\mathcal{N} \models \exists t \forall x<\operatorname{Max}\{\bar{u}\}\left(\exists w<c_{m+1}(w E r \wedge \exists z<t \delta(z, w, \bar{u}, x))\right)$.

Putting (5) together with $\left(*_{m}\right)$ yields:
(6) $\mathcal{N} \models \exists t<b \forall x<\operatorname{Max}\{\bar{v}\}\left(\exists w<c_{m+1}(w E r \wedge \exists z<t \delta(z, w, \bar{v}, x))\right)$.

By substituting b_{k} for x in (6) we obtain:
(7) $\mathcal{N} \models \exists t<b \forall x<\operatorname{Max}\{\bar{v}\}\left(\exists w<c_{m+1}\left(w E r \wedge \exists z<t \delta\left(z, w, \bar{v}, b_{k}\right)\right)\right)$.

But (7) contradicts the assumption that r codes R. So $q(x)$ is finitely satisfiable.

CASE $2(\mathbf{m}+1=3 \mathrm{k}+2$, for some $\mathbf{k} \in \omega)$: Consider the type $l(x, y):=\left\{x \neq y, x \leq c_{k}\right\} \cup l_{0}(x, y)$, where:

$$
\begin{aligned}
& l_{0}(x, y):= \\
&\left\{\forall w<c_{m+1}(\exists z \delta(z, w, \bar{u}, x) \rightarrow \exists z<b \delta(z, w, \bar{v}, y)): \delta \text { is a } \Delta_{0}-\text { formula }\right\} .
\end{aligned}
$$

Once we demonstrate that $l(x, y)$ is realized in \mathcal{N} we can define $\left(u_{m+1}, v_{m+1}\right)$ as any realization in \mathcal{N} of $l(x, y)$. Since $l_{0}(x, y)$ is closed under conjunctions and \mathcal{N} is recursively saturated, to show that $l(x, y)$ is realized in \mathcal{N} it suffices to demonstrate that the conjunction of $x \neq y$ and $x \leq c_{k}$, and each formula in $l_{0}(x, y)$ is satisfiable in \mathcal{N}. So suppose δ is a Δ_{0}-formula and for each $s<c_{k}$ consider the map F from $\underline{c_{k}}$ to the power set of $\underline{c_{m+1}}$ by:

$$
F(s):=\left\{w \in \underline{c_{m+1}}: \mathcal{N} \models \exists z \delta(z, w, \bar{u}, s)\right\} .
$$

Thanks to properties (i) through (iii) of \mathcal{N} listed in Remark 2.2, there is some $\mathrm{ED}_{n} \in \mathcal{A}$ such that:

$$
F(s)=\left\{w \in \underline{c_{m+1}}:\ulcorner\exists z \delta(z, w, \bar{u}, s)\urcorner \in \mathrm{ED}_{n}\right\} .
$$

Since $(\mathcal{M}, \mathcal{A})$ satisfies $I \Sigma_{1}^{0}$, the above characterization of $F(s)$ together with the veracity of $\mathrm{I} \Sigma_{1}^{0}$ in $(\mathcal{M}, \mathcal{A})$ makes it clear that F is coded in \mathcal{M} by some f (and therefore in \mathcal{N}) that codes a function from $\underline{c_{k}}$ to $\underline{2^{c_{m+1}}}$ with $f(s):=\sum_{l \in F(s)} 2^{l}$. On the other hand the definition of $f(s)$ and the assumption that $2^{c_{n+1}}<c_{n}$ for all $n \in \omega$ makes it clear that:

$$
f(s) \leq \sum_{l<c_{m+1}} 2^{l}=2^{c_{m+1}}-1<2^{c_{m+1}}<c_{m}<c_{k}
$$

So by the coded pigeonhole principle there are distinct $s, s^{\prime}<c_{k}$ such that $f(s)=f\left(s^{\prime}\right)$, in other words:

$$
\mathcal{N} \models \forall w<c_{m+1}\left(\exists z \delta(z, w, \bar{u}, s) \leftrightarrow \exists z \delta\left(z, w, \bar{u}, s^{\prime}\right)\right)
$$

Now by repeating the argument used in Case 0 for $\left(\bar{u}, s, s^{\prime}\right)$ we can find some $t, t^{\prime}<b$ such that:

$$
\mathcal{N} \models \forall w<c_{m+1}\left(\exists z \delta\left(z, w, \bar{u}, s, s^{\prime}\right) \rightarrow \exists z<b \delta\left(z, w, \bar{v}, t, t^{\prime}\right)\right)
$$

Since $s \neq s^{\prime}$, either $s \neq t$ or $s \neq t^{\prime}$. So the conjunction of $x \neq y, x \leq c_{k}$, and each formula in $l_{0}(x, y)$ is satisfiable in \mathcal{N}, and the proof is complete.

4 Cuts which are fixed-point sets of self-embeddings

In this section we present the proof of Theorem B. But before going through the proof, let us point out that a model of WKL_{0} does not necessarily carry a cut satisfying statement (2) of Theorem B (see [1, Remark 5.1.1] for an explanation). However, if $\mathcal{M} \models \mathrm{PA}$, there are arbitrarily high strong cuts I in \mathcal{M} such that $\mathrm{I} \prec_{\Sigma_{1}} \mathcal{M}$. To see this when \mathcal{M} is a countable model of PA, let \mathcal{A} be the family of definable subsets of \mathcal{M}. Since $(\mathcal{M}, \mathcal{A}) \models \mathrm{ACA}_{0}$ and WKL_{0} is a subsystem of ACA_{0}, by Theorem 1.1 (Tanaka's theorem), for every $a \in \mathrm{M}$ there is a cut I containing $a \operatorname{such}$ that $(\mathcal{M}, \mathcal{A}) \cong\left(\mathrm{I}, \mathcal{A}_{\mathrm{I}}\right)$ and $\mathrm{I} \prec_{\Sigma_{1}} \mathcal{M}$. Furthermore, I is strong cut of \mathcal{M} by Theorem 2.6 since $\mathcal{A}_{\mathrm{I}}=\mathrm{SSy}_{\mathrm{I}}(\mathcal{M})$.

Proof of Theorem B. $(1) \Rightarrow(2)$ is an immediate consequence of Theorem 2.4.(b), and $(3) \Rightarrow(1)$ is trivial; so we concentrate on the proof of $(2) \Rightarrow(3)$.

Suppose I is a strong cut in \mathcal{M} and $\mathrm{I} \prec_{\text {end, }} \Sigma_{1} \mathcal{M}$. The proof of (3) is inspired by the proof of [1, Theorem 5.1] and consists of the following four stages:

Stage 1: Fix some $b_{0} \in \mathrm{M} \backslash \mathrm{I}$. Using Theorem 2.1, let \mathcal{N} be a model of $\mathrm{I} \Delta_{0}+\mathrm{B} \Sigma_{1}+\operatorname{Exp}$ such that $\operatorname{SSy}_{\mathrm{M}}(\mathcal{N})=\mathcal{A}, \mathcal{M} \subseteq_{\text {end, } \Pi_{1}, \leq \mathrm{b}_{0} \mathcal{N} \text {, and the three }}$ conditions specified in Remark 2.2 hold for \mathcal{N}.

Stage 2: Let \mathbb{Q} be the set of rational numbers with its natural ordering. Since I is a strong cut in \mathcal{M}, by Theorem 2.6 , and the case $\mathbb{L}=\mathbb{Q}$ of Theorem 2.7, we can find an elementary end extension $I_{\mathbb{Q}}$ of I such that
$\operatorname{SSy}_{\mathrm{I}}\left(\mathrm{I}_{\mathbb{Q}}\right)=\mathcal{A}$ and $\mathrm{I}_{\mathbb{Q}} \backslash \mathrm{I}$ contains a copy of $\mathbb{Q}^{\prime}:=\left\{c_{q}: q \in \mathbb{Q}\right\}$ of \mathbb{Q}, and there is a composition preserving embedding $j \mapsto \widehat{j}$ from the semi-group of initial self-embeddings of \mathbb{Q} into the semi-group of initial self-embeddings of $\mathrm{I}_{\mathbb{Q}}$ that satisfies conditions (a) through (d) of Theorem 2.7. In particular \mathbb{Q}^{\prime} is downward cofinal in $\mathrm{I}_{\mathbb{Q}} \backslash \mathrm{I}$.

Stage 3: An initial embedding $k: \mathcal{N} \rightarrow \mathrm{I}_{\mathbb{Q}}$ is constructed such that k fixes each element of I. Note that Theorem 2.5 cannot be invoked for this purpose since $\mathrm{I} \Sigma_{1}$ need not hold in \mathcal{N}; instead, we will take advantage of recursive saturation of \mathcal{N}, and the properties of \mathcal{N} listed in Remark 2.2. We will go through construction of k after describing stage 4 of the proof.

Stage 4: The desired self-embedding j satisfying (3) of Theorem B can be readily constructed as follows: Fix some $c_{q_{1}}<k\left(b_{0}\right)$ in \mathbb{Q}^{\prime} and let j_{1} be a fixed-point free initial embedding of \mathbb{Q} such that $j_{1}(\mathbb{Q})<q_{1}$. Then define $h:=k^{-1} \widehat{j_{1}} k$, and let j be the restriction of h to \mathcal{M}. First, note that by the way j_{1} is chosen, h is well-defined and $h(\mathrm{~N})<b_{0}$. Therefore, j is an isomorphism between \mathcal{M} and a proper cut J of \mathcal{M}. Moreover, Since Fix $\left(\widehat{j_{1}}\right)=\mathrm{I}$ (as arranged in Stage 2) and k fixes each element of I (as arranged in Stage 3), by Remark 2.3 we may conclude that $\operatorname{Fix}(j)=\mathrm{I}$ and j is an isomorphism between $(\mathcal{M}, \mathcal{A})$ and $\left(\mathrm{J}, \mathcal{A}_{\mathrm{J}}\right)$.

The above description of the four stages of the proof should make it clear that the proof of condition (3) of Theorem B will be complete once we verify that Stage 3 can be carried out, so we focus on the construction of an initial embedding k of \mathcal{N} into $\mathrm{I}_{\mathbb{Q}}$ that fixes each element of I . To do so, we first note that since $(i) \Sigma_{1}$ holds in both \mathcal{M} and $\mathrm{I}_{\mathbb{Q}},(i i) \operatorname{SSy}_{\mathrm{I}}(\mathcal{M})=\operatorname{SSy}_{\mathrm{I}}\left(\mathrm{I}_{\mathbb{Q}}\right)$, and $(i i i) \operatorname{Th}_{\Sigma_{1}}(\mathcal{M}, i)_{i \in \mathrm{I}}=\operatorname{Th}_{\Sigma_{1}}\left(\mathcal{N}_{\mathbb{Q}}, i\right)_{i \in \mathrm{I}}$ (because $\mathrm{I} \prec_{\Sigma_{1}} \mathcal{M}$, and $\left.\mathrm{I} \prec \mathrm{I}_{\mathbb{Q}}\right)$ by Theorem 2.5 there is a proper initial embedding $f: \mathcal{M} \rightarrow \mathrm{I}_{\mathbb{Q}}$ such that $f(i)=i$ for each $i \in I$. In particular, $f(\mathrm{M})<e$ for some $e \in \mathrm{I}_{\mathbb{Q}}$. Moreover, since $\operatorname{Th}_{\Pi_{1}}(\mathcal{M}, x)_{x \leq b_{0}}=\operatorname{Th}_{\Pi_{1}}(\mathcal{N}, x)_{x \leq b_{0}}$ we have:

$$
\begin{gathered}
\left(*_{0}\right): \quad \mathcal{N} \models \exists z \delta(z, w) \Rightarrow \mathrm{I}_{\mathbb{Q}} \models \exists z<e \delta(z, f(w)) \text {, for all } \Delta_{0} \text {-formulas } \delta \\
\text { and all } w<b_{0} .
\end{gathered}
$$

Now choose $\left\{b_{n}: n \in \omega\right\}$ to be a decreasing sequence in $\mathrm{M} \backslash \mathrm{I}$ such that b_{0} is the element chosen in Stage 1, and $2^{b_{n+1}}<b_{n}$ for all $n \in \omega$. In order to construct k, we recursively build finite sequences $\bar{u}:=\left(u_{0}, \ldots, u_{m}\right)$ of elements of N and $\bar{v}:=\left(v_{0}, \ldots, v_{m}\right)<e$ for each $m \in \omega$ such that:
(i) $u_{0}=0=v_{0}$.
(ii) For every c in N there is some $n \in \omega$ such that $c=u_{n}$.
(iii) For every $n \in \omega, v_{n}<b$, and if for some c in $\mathrm{I}_{\mathbb{Q}}$ it holds that $c<v_{n}$, then there is some $m \in \omega$ such that $c=v_{m}$.
(iv) For every $m \in \omega$ the following condition holds:
$\left(*_{m}\right): \quad \mathcal{N} \models \exists z \delta(z, w, \bar{u}) \Rightarrow \mathrm{I}_{\mathbb{Q}} \models \exists z<e \delta(z, f(w), \bar{v})$ for all $\Delta_{0^{-}}$ formulas δ and all $w<b_{m}$

Let $\left\{a_{n}: n \in \omega\right\}$ and $\left\{d_{n}: n \in \omega\right\}$ respectively be enumerations of element of N and $\underline{e} \subset \mathrm{I}_{\mathbb{Q}}$, and $\left\langle\delta_{r}: r \in \mathrm{M}\right\rangle$ be a canonical enumeration of Δ_{0}-formulas in \mathcal{M}. The first step of induction holds thanks to $\left(*_{0}\right)$ and the choice of u_{0} and v_{0} in statement (i). Next, suppose $\bar{u}:=\left(u_{0}, \ldots, u_{m}\right) \in \mathrm{N}$ and $\bar{v}:=\left(v_{0}, \ldots, v_{m}\right)<e$ are constructed, for given $m \in \omega$. In order to build u_{m+1} and v_{m+1} we distinguish two cases, one handling the 'forth' step and the other handling the 'back' step of the back-and-forth construction:

CASE $\mathbf{0}(\mathbf{m}+\mathbf{1}=\mathbf{2 k}$, for some $\mathbf{k} \in \omega)$: In this case if a_{k} is one of elements of \bar{u}, put $u_{m+1}=u_{m}$ and $v_{m+1}=v_{m}$. Otherwise, put $u_{m+1}=a_{k}$ and define:

$$
\mathrm{A}:=\left\{\langle r, w\rangle<b_{m+1}: \mathcal{N} \models \exists z \operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}\left(z, w, \bar{u}, a_{k}\right)\right)\right\} .
$$

Note that in the above definition, \mathcal{N} can be safely replaced by some \mathcal{N}_{n}, where n is large enough to contain the parameters \bar{u} and a_{k} (thanks to properties (i) and (ii) in Remark 2.2). On the other hand, by property (iii) in Remark 2.2, there is some $\mathrm{ED}_{n} \in \mathcal{A}$ such that:

$$
\mathrm{A}=\left\{\langle r, w\rangle<b_{m+1}:\left\ulcorner\exists z \operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}\left(z, w, \bar{u}, a_{k}\right)\right\urcorner \in \mathrm{ED}_{n}\right\} .\right.
$$

Since $(\mathcal{M}, \mathcal{A})$ satisfies $I \Sigma_{1}^{0}$, the above characterization of A shows that A is coded in \mathcal{N} by some $a<2^{b_{m+1}}$. Therefore we have:
(1) $\mathcal{N} \models \forall\langle r, w\rangle<b_{m+1}\left(\langle r, w\rangle E a \rightarrow \exists z \operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}\left(z, w, \bar{u}, a_{k}\right)\right)\right)$.

Recall that $\mathrm{B} \Sigma_{1}$ holds in \mathcal{N}, and $\operatorname{Sat}_{\Delta_{0}}$ has a Σ_{1}-description in \mathcal{N}, so (1) allows us to conclude:
(2) $\mathcal{N} \models \exists t \forall\langle r, w\rangle<b_{m+1}\left(\langle r, w\rangle E a \rightarrow \exists z<t \operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}\left(z, w, \bar{u}, a_{k}\right)\right)\right)$.

By quantifying out a_{k} in (2) and coupling it with $\left(*_{m}\right)$, we obtain:
(3) $\mathrm{I}_{\mathbb{Q}} \models \exists x, t<e \forall\langle r, w\rangle<f\left(b_{m+1}\right)\left(\langle r, w\rangle E f(a) \rightarrow \exists z<t \operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}(z, w, \bar{v}, x)\right)\right)$.

Clearly any element of $\mathrm{I}_{\mathbb{Q}}$ that witnesses x in (3) can serve as a suitable candidate for v_{m+1}.

CASE $\mathbf{1}(\mathbf{m}+\mathbf{1}=\mathbf{2 k}+\mathbf{1}$, for some $\mathbf{k} \in \omega)$: In this case if $d_{k} \geq \operatorname{Max}\{\bar{v}\}$ or if it is one of the elements of \bar{v}, put $u_{m+1}=u_{m}$ and $v_{m+1}=v_{m}$. Otherwise, put $v_{m+1}=b_{k}$ and define:

$$
\mathrm{B}:=\left\{\langle r, w\rangle<f\left(b_{m+1}\right): \mathrm{I}_{\mathbb{Q}} \models \forall z\left(\operatorname{Sat}_{\Delta_{0}}\left(\delta_{r}\left(z, w, \bar{v}, d_{k}\right)\right) \rightarrow b<z\right)\right\} .
$$

Note that B is Σ_{1}-definable in $\mathrm{I}_{\mathbb{Q}}$, so there is some $b<2^{f\left(b_{m+1}\right)}=f\left(2^{b_{m+1}}\right)$ which codes B in $\mathrm{I}_{\mathbb{Q}}$. Therefore $b=f(c)$ for some $c<2^{b_{m+1}}$. Define:
$p(x):=\left\{\forall w<b_{m+1}(\langle\ulcorner\delta\urcorner, w\rangle E c \rightarrow \forall z \neg \delta(z, w, \bar{u}, x)): \delta\right.$ is a Δ_{0}-formula $\}$.
Since \mathcal{N} is recursively saturated and $p(x)$ is recursive, in order to find a suitable element in N which serves as u_{m+1}, it suffices to prove that $p(x)$ is finitely satisfiable. So suppose $p(x)$ is not finitely satisfiable. It can be readily checked that $p(x)$ is closed under conjunction, so we can safely assume there is a Δ_{0}-formula δ such that:
(4) $\mathcal{N} \models \forall x\left(\exists w<b_{m+1}(\langle\ulcorner\delta\urcorner, w\rangle E c \wedge \exists z \delta(z, w, \bar{u}, x))\right)$.

Clearly (4) implies:
(5) $\mathcal{N} \models \forall x<\operatorname{Max}\{\bar{u}\}\left(\exists w<b_{m+1}(\langle\ulcorner\delta\urcorner, w\rangle E c \wedge \exists z \delta(z, w, \bar{u}, x))\right)$.

We can bound variable z in (5) by using $\mathrm{B} \Sigma_{1}$ in \mathcal{N}, and next employ ($*_{m}$) to deduce:
(6) $\mathrm{I}_{\mathbb{Q}} \models \exists t<e \forall x<\operatorname{Max}\{\bar{v}\}\left(\exists w<f\left(b_{m+1}\right)(\langle\ulcorner\delta\urcorner, w\rangle E f(c) \wedge \exists z<t \delta(z, w, \bar{v}, x))\right)$.

By replacing x in (6) with d_{k}, we obtain:
(7) $\mathrm{I}_{\mathbb{Q}} \models \exists t<e\left(\exists w<f\left(b_{m+1}\right)\left(\langle\ulcorner\delta\urcorner, w\rangle E b \wedge \exists z<t \delta\left(z, w, \bar{v}, d_{k}\right)\right)\right)$.

But (7) contradicts the assumption that b codes B in $\mathrm{I}_{\mathbb{Q}}$. So $p(x)$ is finitely satisfiable.

References

[1] S. Bahrami and A. Enayat, Fixed points of self-embeddings of models of arithmetic, Ann. Pure Appl. Logic 169, 2018, pp. 487-513.
[2] C. Dimitracopoulos and J. Paris, A note on a theorem of H. Friedman, Math. Logic Quart. 34, 1988, pp. 13-17.
[3] A. Enayat, A new proof of Tanaka's theorem, in New Studies in Weak Arithmetics, CSLI Lectures Notes 11, 2014, pp. 93-102.
[4] H. Friedman, Countable models of set theories, Lecture Notes in Math. 337, Springer, Berlin, 1973, pp. 539-573.
[5] H. Friedman, Some systems of second-order arithmetic and their use, Proceedings of the International Congress of Mathematicians, 1974, volume 1, pp. 235-242.
[6] H. Gaifman, Models and types of arithmetic, Ann. Math. Logic 9 (1976), pp. 223-306.
[7] P. Hájek and P. Pudlák, Two orderings of the class of all countable models of Peano arithmetic, Model theory of algebra and arithmetic, Lecture Notes in Math. 834, 1980, pp. 174-185.
[8] Y. Horihata and K. Yokoyama, Nonstandard second-order arithmetic and Riemann's mapping theorem, Ann. Pure Appl. Logic vol. 165, 2014, pp. 520-551.
[9] J. Paris and L. Kirby, Σ_{n}-collection schemas in arithmetic, in Logic Colloquium '77, North-Holland Publishing Company, Amsterdam, 1978, pp. 199-209.
[10] J.-P. Ressayre, Nonstandard universes with strong embeddings, and their finite approximations, Logic and combinatorics, Contemp. Math. 65, Amer. Math. Soc., Providence, RI, 1987, pp. 333-358.
[11] N. Sakamoto and K. Yokoyama, The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic, Arch. Math. Logic 46, 2007, pp. 465-480.
[12] C. Smoryński,, Recursively saturated nonstandard models of arithmetic, J. Symb. Logic 46 (1981), pp. 259-286.
[13] K. Tanaka, The self-embedding theorem of WKL_{0} and a non-standard method, Ann. Pure Appl. Logic vol. 84 1997, pp. 41-49.
[14] K. Tanaka and T. Yamazaki, A non-Standard vonstruction of Haar Measure and weak König's lemma, J. Symb. Logic, vol. 65, 2000, pp. 173-186.

[^0]: ${ }^{1}$ Enayat's paper 3] provides a complete proof of part (a) of Theorem 1.1, and an outline of the proof of part (b) of Theorem 1.1.

[^1]: ${ }^{2}$ Gaifman couched his results in terms of arbitrary models of $\mathrm{PA}(\mathcal{L})$ for countable \mathcal{L}. Note that if $(\mathcal{M}, \mathcal{A}) \models \mathrm{ACA}_{0}$, then the $\operatorname{expansion}(\mathcal{M}, A)_{A \in \mathcal{A}}$ of \mathcal{M} is a model of $\operatorname{PA}(\mathcal{L})$, where \mathcal{L} is the extension of \mathcal{L}_{A} by predicate symbols for each $A \in \mathcal{A}$. Moreover, the collection of subsets of M that are parametrically definable in $(\mathcal{M}, A)_{A \in \mathcal{A}}$ coincides with \mathcal{A}.

