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Abstract

Tanaka (1997) proved a powerful generalization of Friedman’s self-
embedding theorem that states that given a countable nonstandard
model (M,A) of the subsystem WKL0 of second order arithmetic,
and any element m of M, there is a self-embedding j of (M,A) onto
a proper initial segment of itself such that j fixes every predecessor of
m.

Here we extend Tanaka’s work by establishing the following results
for a countable nonstandard model (M,A) of WKL0 and a proper cut
I of M:

Theorem A. The following conditions are equivalent :
(a) I is closed under exponentiation.
(b) There is a self-embedding j of (M,A) onto a proper initial segment
of itself such that I is the longest initial segment of fixed points of j.

Theorem B. The following conditions are equivalent :
(a) I is a strong cut of M and I ≺Σ1

M.
(b) There is a self-embedding j of (M,A) onto a proper initial segment
of itself such that I is the set of all fixed points of j.

1 Introduction

One of the fundamental results concerning nonstandard models of Peano
arithmetic (PA) is Friedman’s theorem [4, Theorem 4.4] that states every
countable nonstandard model of PA is isomorphic to a proper initial segment
of itself. A notable generalization of Friedman’s theorem was established by
Tanaka [13] for models of the well-known subsystem WKL0 of second order
arithmetic, who established:
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Theorem 1.1. (Tanaka) Suppose (M,A) is a countable nonstandard model
of WKL0.
(a) There is a proper initial segment I of M and an isomorphism j between
(M,A) and (I,AI), where AI := {A ∩ I : A ∈ A}.
(b) Given any prescribed m in M, there is an I and j as in (a) such that
j(x) = x for all x ≤ m.

Tanaka’s principal motivation in establishing Theorem 1.1 was the devel-
opment of non-standard methods within WKL0 in the context of the reverse
mathematics research program; for example Tanaka and Yamazaki [14] used
Theorem 1.1 to show that the Haar measure over compact groups can be
implemented in WKL0 via a detour through nonstandard models. This is in
contrast to the previously known constructions of the Haar measure whose
implementation required the stronger subsystem ACA0. Other notable ap-
plications of the methodology of nonstandard models can be found in the
work of Sakamato and Yokoyama [11], who showed that over the subsystem
RCA0 the Jordan curve theorem and the Schönflies theorem are equivalent
to WKL0; and in the work of Yokoyama and Horihata [8], who established
the equivalence of ACA0 and Riemann’s mapping theorem for Jordan regions
over WKL0.

Here we continue our work [1] on the study of fixed point sets of self-
embeddings of countable nonstandard models of IΣ1 by focusing on the
behavior of fixed point sets in Tanaka’s theorem. Our methodology can be
generally described as an amalgamation of Enayat’s strategy for proving
Tanaka’s theorem [3] with some ideas and results from [1].1 Before stating
our results, recall that j is said to be a proper initial self-embedding of
(M,A) if there is a proper initial segment I of M and an isomorphism j
between (M,A) and (I,AI), where AI := {A ∩ I : A ∈ A}; Ifix(j) is the
longest initial segment of fixed points of j; and Fix(j) is the fixed point set
of j, in other words:

Ifix(j) := {m ∈ M : ∀x ≤ m j(x) = x}, and
Fix(j) := {m ∈ M : j(m) = m}.

Our main results are Theorems A and B below. Note that Theorem A
is a strengthening of Tanaka’s Theorem (see Section 3 for more detail).

Theorem A. Suppose (M,A) is a countable nonstandard model of WKL0.The
following conditions are equivalent for a proper cut I of M:

1Enayat’s paper [3] provides a complete proof of part (a) of Theorem 1.1, and an outline
of the proof of part (b) of Theorem 1.1.

2



(1) There is a self-embedding j of (M,A) such that Ifix(j) = I.

(2) I is closed under exponentiation.

(3) There is a proper initial self-embedding j of (M,A) such that Ifix(j) = I.

Theorem B. Suppose (M,A) is a countable nonstandard model of WKL0.The
following conditions are equivalent for a proper cut I of M:

(1) There is a self-embedding j of (M,A) such that Fix(j) = I.

(2) I is a strong cut of M and I ≺Σ1
M.

(3) There is a proper initial self-embedding j of (M,A) such that Fix(j) = I.

Theorem A is established in Section 3, and Section 4 is devoted to proving
Theorem B.

Acknowledgment. I am indebted to my PhD supervisor, Ali Enayat, for
his encouragements, precious comments and feedback in the formation of
this paper.

2 Preliminaries

In this section we review some definitions and basic results that are relevant
to the statements and proofs of our main results.

• WKL0 is the second order theory whose models are of the form of
(M,A), where (M,A) satisfies (1) Induction for Σ0

1 formulas; (2)
Comprehension for ∆0

1-formulas; and (3) Weak König’s Lemma (which
asserts that every infinite subtree of the full binary tree has an infinite
branch).

• Exp := ∀x∃y Exp(x, y), where Exp(x, y) is a ∆0-formula that expresses
2x = y within I∆0.

• The binary ∆0-formula xEy, known as Ackermann’s membership rela-
tion, expresses “the x-th bit of the binary expansion of y is 1” within
I∆0.

• A subset X of M is coded in M iff there is some a ∈ M such that
X = (aE)

M := {x ∈ M : M |= xEa}.
Given a ∈ M, by a we mean the set {x ∈ M : x < a}. Note that a is
coded in M, where M is a model of I∆0, provided 2a exists in M.
It is well-known that for any n > 0 and M |= IΣn, if ϕ(x, a) is an
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unary Σn-formula, where a is a parameter from M, then the set
ϕM(a) := {b ∈ M: M |= ϕ(b, a)} is piece-wise coded in M; i.e. for
every c ∈ M, ϕM(a) ∩ c is coded in M. More specifically, there is
some element less than 2c which codes ϕM(a) ∩ c.
Moreover, the above statement holds for n = 0 if M |= I∆0 + Exp.

• For every cut I of M, the I-standard system of M, presented by
SSyI(M), is the family consisting of sets of the form aE ∩ I, where
a ∈ M; in other words:

SSyI(M) = {(aE)
M ∩ I : a ∈ M}.

When I is the standard cut, i.e. I = N, we simply write SSy(M)
instead of SSyN(M).

• Given a proper cut I of M, I is called a strong cut, if for every coded
function f in M whose domain contains I, there exists some s ∈ M
such that for every i ∈ I it holds that f(i) /∈ I iff s < f(i).

• Sat
Σn

is the arithmetical formula defining the satisfaction predicate for
Σn-formulas within I∆0 +Exp. It is well-known that for each positive
n ∈ ω, Sat

Σn
can be expressed by a Σn-formula in IΣn; furthermore,

within a model of I∆0 + Exp (with the help of a nonstandard parame-
ter if the model is nonstandard), Sat

Σ0
(which is also written as Sat

∆0
)

is expressible both as a Σ1 and Π1-formula.

• The strong Σn-Collection scheme consists of formulas of the following
form where ϕ is a Σn-formula:

∀w ∀v ∃z∀x < v(∃y ϕ(x, y, w) → ∃y < z ϕ(x, y, w)).

It is well-known that the strong Σn-Collection scheme is provable in
IΣn for every n > 0.

• Every model M of I∆0+Exp satisfies the Coded Pigeonhole Principle,
i.e. if b ∈ M, and f : b+ 1 → b is a coded function in M, then f is
not injective.

• By an embedding j from second order model (M,A) into (N ,B), we
mean that j is an embedding from M into N such that for every
X ⊆ M , X ∈ A iff j(X) = Y ∩ j(M) for some Y ∈ B.

• When M and N are models of arithmetic and b is in M, we write
M ⊆end,Π1,≤b

N , whenN is an end extension ofM and all Π1-formulas
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whose parameters are in b+ 1 are absolute in the passage between M
and N , i.e., ThΠ1

(M,m)m≤b = ThΠ1
(N ,m)m≤b.

Theorem 2.1. ([3, Theorem 3.2]) Let (M,A) be a countable model of
WKL0 and let b ∈ M. Then M has a countable recursively saturated proper
end extension N satisfying I∆0 +Exp+BΣ1 such that SSyM(N ) = A, and
M ⊆end,Π1,≤b N .

Remark 2.2. The proofs of our main results take advantage of the following
additional features of the model N constructed in Enayat’s proof of The-
orem 2.1, namely: given b in M, there is an elementary chain of models
(Nn : n ∈ ω) satisfying the following three properties:

(i) N = ∪n∈ωNn;

(ii) For every n ∈ ω, M ⊆end,Π1,≤b Nn ≺ N ;

(iii) For every n ∈ ω the elementary diagram of (Nn, a)a∈Nn is available in
(M,A) via some EDn ∈ A. Note that Th ((Nn, a)a∈Nn) is a proper
subset of EDn since EDn includes sentences of nonstandard length.

Remark 2.3. Enayat [3] noted that if (M,A) is a model of WKL0 and b is
in M, and there is some end extension N of M such that (1) N |= I∆0+Exp,
(2) SSyM(N ) = A, and (3) there is an initial self-embedding j1 of N onto
an initial segment that is bounded above by b, then the restriction j of j1 to
M is an embedding of M onto an an initial segment J of M that is below b
which has the important feature that j is an isomorphism between (M,A)
and (J,AJ). Note that if I is a proper cut of M, then Ifix(j1) = I implies
that Ifix(j) = I; and Fix(j1) = I implies that Fix(j) = I.

• The following theorem summarizes some of the results about Ifix(j)
and Fix(j) from [1] which will be employed in this paper:

Theorem 2.4. SupposeM |= I∆0+Exp and j is a nontrivial self-embedding
of M. Then:
(a) Ifix(j) |= I∆0 + BΣ1 + Exp.
(b) If M |= IΣ1 then Fix(j) is a Σ1-elementary submodel of M. Moreover,
if Fix(j) is a proper initial segment of M, then it is a strong cut of M.

• Given two countable nonstandard model M and N of IΣ1 which share
a common proper cut I, the following theorem from [1, Cor. 3.3.1]
provides a useful sufficient condition for existence of a proper initial
embedding between M and N which fixes each element of I:
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Theorem 2.5. Let M, N and I be as above such that I is closed under
exponentiation. The following are equivalent :

(1) There is a proper initial embedding f of M into N such that f(i) = i
for all i ∈ I.

(2) ThΣ1
(M, i)i∈I ⊆ ThΣ1

(N , i)i∈I and SSyI(M) = SSyI(N ).

• Another prominent subsystem of second order arithmetic is ACA0,
in which the comprehension scheme is restricted to formulas with no
second order quantifier. The following results of Paris and Kirby [9]
and Gaifman [6, Thm. 4.9-4.11] concerning ACA0 are employed in the
proof of Theorem B.2

Theorem 2.6. (Paris and Kirby) Suppose M |= I∆0. The following are
equivalent for a proper cut I of M:

(a) I is a strong cut of M.

(b) (I,SSyI(M)) |= ACA0.

Theorem 2.7. (Gaifman) Given a countable model (M,A) of ACA0 and
a linear order L, there exists an end extension ML of M such that there
is an isomorphic copy L′ = {cl : l ∈ L} of L in ML\M, and there is a
composition preserving embedding j 7→ ĵ from the semi-group of initial self-
embeddings of L into the semi-group of initial self-embeddings of ML that
satisfy the following properties:

(a) SSyM(ML) = A and Fix(ĵ) = M for each initial self-embedding j of L

that is fixed point free.

(b) For each initial self-embedding j of L, ĵ is an elementary initial self-
embedding of NL, i.e. ĵ(ML) �end NL.

(c) L′ is downward cofinal in ML\M if L has no first element.

(d) For any l0 ∈ L, l0 is a strict upper bound for j(L) iff cl0 is a strict
upper bound for ĵ(ML).

2Gaifman couched his results in terms of arbitrary models of PA(L) for countable L.
Note that if (M,A) |= ACA0, then the expansion (M, A)A∈A of M is a model of PA(L),
where L is the extension of LA by predicate symbols for each A ∈ A. Moreover, the
collection of subsets of M that are parametrically definable in (M, A)A∈A coincides with
A.
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3 The longest cut fixed by self-embeddings

This section is devoted to the proof of Theorem A. Recall that if (M,A) is a
model of WKL0 there are arbitrary large as well as arbitrary small nonstan-
dard cuts in M that are closed under exponentiation. More specifically, for
every nonstandard a in M, there are nonstandard cuts I1 and I2 (as defined
below) such that I1 < a ∈ I2, and both are closed under exponentiation:

I1 := {x ∈ M : 2xn < a for all n ∈ ω}, where 2x0 := x, and for every n ∈ ω,
2xn+1 := 22

x
n ;

I2 := {x ∈ M : x < 2an for some n ∈ ω}.

So Theorem A implies that Ifix(j) can be arranged to be as high or as low
in the nonstandard part of M as desired. In particular, Theorem A is a
strengthening of Tanaka’s Theorem.

Proof of Theorem A. (1) ⇒ (2) is an immediate consequence of Theorem
2.4.(a), and (3) ⇒ (1) is trivial so we concentrate on establishing (2) ⇒ (3).

Assume that I is closed under exponentiation and fix some a ∈ M \ I.
We leave it as an exercise for the reader to use strong Σ1-Collection along
with the fact that Sat∆0

has a Σ1-description in M to show that there is
some b ∈ M such that:

(♯) M |= ∀w < a (∃z δ(z, w) → ∃z < b δ(z, w)), for all ∆0-formulas δ.

Next we invoke Theorem 2.1 to get hold of a countable recursively satu-
rated proper end extension N of M such that N |= I∆0 + BΣ1 + Exp,
SSyM(N ) = A, and M ⊆end,Π1,≤b N . Moreover, we will safely assume that
the model N additionally satisfies the three properties listed in Remark 2.2.
In light of Remark 2.3, in order to establish (3) it suffices to construct a
proper initial self-embedding j of N such that j(N) < b and Ifix(j) = I. The
construction of the desired j is the novel element of the proof of Theorem
A, which we now turn to.

To construct j we will employ a modification of the strategy employed
in the proof of (2) ⇒ (3) of [1, Theorem 4.1], using a 3-level back-and-forth
method. A modification is needed since we need to overcome the fact that
IΣ1 need not hold in N ; instead we will rely on recursive saturation of N
and the properties of N listed in Remark 2.2. First, note that (♯) together
with the fact that ThΠ1

(M, x)x≤b = ThΠ1
(N , x)x≤b, implies:
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(∗) N |= ∀w < a (∃z δ(z, w) → ∃z < b δ(z, w)), for all ∆0-formula δ.

Since I is closed under exponentiation, we can choose {cn : n ∈ ω} that is
downward cofinal in M \ I such that c0 = a and 2cn+1 < cn for all n ∈ ω.

The proof will be complete once we recursively construct finite sequences
ū := (u0, ..., um−1) and v̄ := (v0, ..., vm−1) of elements of N for all n ∈ ω
such that:

(i) u0 = 0 = v0.

(ii) For every c in N there is some n ∈ ω such that c = un.

(iii) For every n ∈ ω, vn < b, and if for some c in N it holds that c < vn,
then there is some m ∈ ω such that c = vm.

(iv) For every m ∈ ω the following condition holds:

(∗m) : N |= ∀w < cm (∃z δ(z, w, ū) → ∃z < b δ(z, w, v̄)),
for every ∆0-formula δ.

(v) For every m ∈ ω, there is some n ∈ ω such that un < cm and un 6= vn.

Note that (∗0) holds thanks to (∗) since c0 = a. Let {an : n ∈ ω}
and {bn : n ∈ ω} respectively be enumerations of element of N and b. By
statement (i) and (∗0) the first step of induction holds. Suppose for m ∈ ω,
ū and v̄ are constructed such that (∗m) holds. In order to find suitable
um+1 and vm+1, by considering congruence modulo 3 we have three cases
for m+ 1: Case 0 takes care of (ii) and (iv), Case 1 takes care of (iii) and
(iv), and Case 2 takes care of (v) and (iv).

CASE 0 (m+ 1 = 3k, for some k ∈ ω): In this case if ak is one of the
elements of ū, put um+1 = um and vm+1 = vm. Otherwise, put um+1 = ak
and define:

p(y) := {y < b} ∪
{∀w < cm+1(∃z δ(z, w, ū, ak) → ∃z < b δ(z, w, v̄, y)) : δ is a ∆0−formula} .

Note that p(y) is a recursive type. SinceN is recursively saturated, it suffices
to prove that p(y) is finitely satisfiable and let vm+1 be one of the realizations
of p(y) in N . Since p(y) is closed under conjunctions we only need to show
that each formula in p(y) is satisfiable. For this purpose, suppose δ is a
∆0-formula, and let
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D :=
{
w ∈ cm+1 : N |= ∃z δ(z, w, ū, ak)

}
.

We claim that there is some d < 2cm+1 which codes D in N . To see this,
we note that in the above definition, N can be safely replaced by some
Nn, where n is large enough to contain the parameters ū and ak (thanks to
properties (i) and (ii) in Remark 2.2). On the other hand, by property (iii)
in Remark 2.2, there is some EDn ∈ A such that:

D =
{
w ∈ cm+1 : p∃z δ(z, w, ū, ak)q ∈ EDn

}
.

Since (M,A) satisfies IΣ0
1, the above characterization of D shows that D is

coded in M (and therefore in N ) by some d < 2cm+1 (recall that the code
of each subset of m is below 2m). Therefore we have:

(1) N |= ∀w < cm+1 (wEd → ∃z δ(z, w, ū, ak)) ;

By putting (1) together with BΣ1 in N , and existentially quantifying ak we
obtain:

(2) N |= ∃t, x ∀w < cm+1 (wEd → ∃z < t δ(z, w, ū, x)) .

On the other hand, coupling (2) with (∗m) yields:

(3) N |= ∃t, x < b ∀w < cm+1((wEd → ∃z < t δ(z, w, v̄, x))),

which makes it clear that each formula in p(y) is satisfiable in N .

CASE 1 (m+ 1 = 3k+ 1, for some k ∈ ω): In this case if bk ≥ Max{v̄}
or if it is one of the elements of v̄, put um+1 = um and vm+1 = vm. Other-
wise, put vm+1 = bk and define:

q(x) :=
{∀w < cm+1(∀z < b ¬δ(z, w, v̄, bk) → ∀z ¬δ(z, w, ū, x)) : δ is a ∆0−formula} .

q(x) is clearly a recursive type and closed under conjunctions, so by recursive
saturation of N it suffices to verify that each formula in q(x) is satisfiable
in N , and let um+1 be one of the realizations of q(x) in N . Suppose some
formula in q is not realizable in N , then for some ∆0-formula δ we have:

N |= ∀x (∃w < cm+1 (∀z < b ¬δ(z, w, v̄, bk) ∧ ∃z δ(z, w, ū, x))) .

Let:

R :=
{
w ∈ cm+1 : N |= ∀z < b ¬δ(z, w, v̄, bk)

}
.
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Since R is ∆0-definable in N there exists some r < 2cm+1 which codes R in
N . Therefore,

(4) N |= ∀x < Max{ū} (∃w < cm+1 (wEr ∧ ∃z δ(z, w, ū, x))) ,

which by Σ1-Collection in N implies:

(5) N |= ∃t ∀x < Max{ū} (∃w < cm+1 (wEr ∧ ∃z < t δ(z, w, ū, x))) .

Putting (5) together with (∗m) yields:

(6) N |= ∃t < b ∀x < Max{v̄} (∃w < cm+1 (wEr ∧ ∃z < t δ(z, w, v̄, x))) .

By substituting bk for x in (6) we obtain:

(7) N |= ∃t < b ∀x < Max{v̄} (∃w < cm+1 (wEr ∧ ∃z < t δ(z, w, v̄, bk))) .

But (7) contradicts the assumption that r codes R. So q(x) is finitely satis-
fiable.

CASE 2 (m+ 1 = 3k+ 2, for some k ∈ ω): Consider the type
l(x, y) := {x 6= y, x ≤ ck} ∪ l0(x, y), where:

l0(x, y) :=
{∀w < cm+1 (∃z δ(z, w, ū, x) → ∃z < b δ(z, w, v̄, y)) : δ is a ∆0−formula} .

Once we demonstrate that l(x, y) is realized in N we can define (um+1, vm+1)
as any realization in N of l(x, y). Since l0(x, y) is closed under conjunctions
and N is recursively saturated, to show that l(x, y) is realized in N it suffices
to demonstrate that the conjunction of x 6= y and x ≤ ck, and each formula
in l0(x, y) is satisfiable in N . So suppose δ is a ∆0-formula and for each
s < ck consider the map F from ck to the power set of cm+1 by:

F (s) := {w ∈ cm+1 : N |= ∃z δ(z, w, ū, s)}.

Thanks to properties (i) through (iii) of N listed in Remark 2.2, there is
some EDn ∈ A such that:

F (s) = {w ∈ cm+1 : p∃z δ(z, w, ū, s)q ∈ EDn}.

Since (M,A) satisfies IΣ0
1, the above characterization of F (s) together with

the veracity of IΣ0
1 in (M,A) makes it clear that F is coded in M by

some f (and therefore in N ) that codes a function from ck to 2cm+1 with
f(s) :=

∑
l∈F (s) 2

l. On the other hand the definition of f(s) and the assump-
tion that 2cn+1 < cn for all n ∈ ω makes it clear that:
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f(s) ≤
∑

l<cm+1
2l = 2cm+1 − 1 < 2cm+1 < cm < ck.

So by the coded pigeonhole principle there are distinct s, s′ < ck such that
f(s) = f(s′), in other words:

N |= ∀w < cm+1(∃z δ(z, w, ū, s) ↔ ∃z δ(z, w, ū, s′)).

Now by repeating the argument used in Case 0 for (ū, s, s′) we can find some
t, t′ < b such that:

N |= ∀w < cm+1(∃z δ(z, w, ū, s, s′) → ∃z < b δ(z, w, v̄, t, t′)).

Since s 6= s′, either s 6= t or s 6= t′. So the conjunction of x 6= y, x ≤ ck, and
each formula in l0(x, y) is satisfiable in N , and the proof is complete. �

4 Cuts which are fixed-point sets of self-embeddings

In this section we present the proof of Theorem B. But before going through
the proof, let us point out that a model of WKL0 does not necessarily carry
a cut satisfying statement (2) of Theorem B (see [1, Remark 5.1.1] for an
explanation). However, if M |= PA, there are arbitrarily high strong cuts
I in M such that I ≺Σ1

M. To see this when M is a countable model of
PA, let A be the family of definable subsets of M. Since (M,A) |= ACA0

and WKL0 is a subsystem of ACA0, by Theorem 1.1 (Tanaka’s theorem),
for every a ∈ M there is a cut I containing a such that (M,A) ∼= (I,AI)
and I ≺Σ1

M. Furthermore, I is strong cut of M by Theorem 2.6 since
AI = SSyI(M).

Proof of Theorem B. (1) ⇒ (2) is an immediate consequence of Theorem
2.4.(b), and (3) ⇒ (1) is trivial; so we concentrate on the proof of (2) ⇒ (3).

Suppose I is a strong cut inM and I ≺end, Σ1
M. The proof of (3) is inspired

by the proof of [1, Theorem 5.1] and consists of the following four stages:

Stage 1: Fix some b0 ∈ M \ I. Using Theorem 2.1, let N be a model of
I∆0+BΣ1+Exp such that SSyM(N ) = A, M ⊆end,Π1,≤b0 N , and the three
conditions specified in Remark 2.2 hold for N .

Stage 2: Let Q be the set of rational numbers with its natural ordering.
Since I is a strong cut in M, by Theorem 2.6, and the case L = Q of
Theorem 2.7, we can find an elementary end extension IQ of I such that
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SSyI(IQ) = A and IQ\I contains a copy of Q
′
:= {cq : q ∈ Q} of Q, and there

is a composition preserving embedding j 7→ ĵ from the semi-group of initial
self-embeddings of Q into the semi-group of initial self-embeddings of IQ
that satisfies conditions (a) through (d) of Theorem 2.7. In particular Q

′
is

downward cofinal in IQ\I.

Stage 3: An initial embedding k : N → IQ is constructed such that k
fixes each element of I. Note that Theorem 2.5 cannot be invoked for this
purpose since IΣ1 need not hold in N ; instead, we will take advantage of
recursive saturation of N , and the properties of N listed in Remark 2.2. We
will go through construction of k after describing stage 4 of the proof.

Stage 4: The desired self-embedding j satisfying (3) of Theorem B can
be readily constructed as follows: Fix some cq1 < k(b0) in Q

′
and let j1

be a fixed-point free initial embedding of Q such that j1(Q) < q1. Then
define h := k−1ĵ1k, and let j be the restriction of h to M. First, note
that by the way j1 is chosen, h is well-defined and h(N) < b0. Therefore, j
is an isomorphism between M and a proper cut J of M. Moreover, Since
Fix(ĵ1) = I (as arranged in Stage 2) and k fixes each element of I (as arranged
in Stage 3), by Remark 2.3 we may conclude that Fix(j) = I and j is an
isomorphism between (M,A) and (J,AJ).

The above description of the four stages of the proof should make it clear
that the proof of condition (3) of Theorem B will be complete once we verify
that Stage 3 can be carried out, so we focus on the construction of an initial
embedding k of N into IQ that fixes each element of I. To do so, we first
note that since (i) IΣ1 holds in both M and IQ , (ii) SSyI(M) = SSyI(IQ),
and (iii) ThΣ1

(M, i)i∈I = ThΣ1
(NQ, i)i∈I (because I ≺Σ1

M, and I ≺ IQ)
by Theorem 2.5 there is a proper initial embedding f : M → IQ such that
f(i) = i for each i ∈ I . In particular, f(M) < e for some e ∈ IQ. Moreover,
since ThΠ1

(M, x)x≤b0 = ThΠ1
(N , x)x≤b0 we have:

(∗0) : N |= ∃z δ(z, w) ⇒ IQ |= ∃z < e δ(z, f(w)), for all ∆0-formulas δ
and all w < b0.

Now choose {bn : n ∈ ω} to be a decreasing sequence in M \ I such that
b0 is the element chosen in Stage 1, and 2bn+1 < bn for all n ∈ ω. In order
to construct k, we recursively build finite sequences ū := (u0, ..., um) of
elements of N and v̄ := (v0, ..., vm) < e for each m ∈ ω such that:

(i) u0 = 0 = v0.

(ii) For every c in N there is some n ∈ ω such that c = un.
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(iii) For every n ∈ ω, vn < b, and if for some c in IQ it holds that c < vn,
then there is some m ∈ ω such that c = vm.

(iv) For every m ∈ ω the following condition holds:

(∗m) : N |= ∃z δ(z, w, ū) ⇒ IQ |= ∃z < e δ(z, f(w), v̄) for all ∆0-
formulas δ and all w < bm

Let {an : n ∈ ω} and {dn : n ∈ ω} respectively be enumerations of
element of N and e ⊂ IQ, and 〈δr : r ∈ M〉 be a canonical enumeration of
∆0-formulas in M. The first step of induction holds thanks to (∗0) and the
choice of u0 and v0 in statement (i). Next, suppose ū := (u0, ..., um) ∈ N
and v̄ := (v0, ..., vm) < e are constructed, for given m ∈ ω. In order to build
um+1 and vm+1 we distinguish two cases, one handling the ‘forth’ step and
the other handling the ‘back’ step of the back-and-forth construction:

CASE 0 (m+ 1 = 2k, for some k ∈ ω): In this case if ak is one of
elements of ū, put um+1 = um and vm+1 = vm. Otherwise, put um+1 = ak
and define:

A := {〈r, w〉 < bm+1 : N |= ∃z Sat∆0
(δr(z, w, ū, ak))}.

Note that in the above definition, N can be safely replaced by some Nn,
where n is large enough to contain the parameters ū and ak (thanks to
properties (i) and (ii) in Remark 2.2). On the other hand, by property (iii)
in Remark 2.2, there is some EDn ∈ A such that:

A = {〈r, w〉 < bm+1 : p∃z Sat∆0
(δr(z, w, ū, ak)q ∈ EDn} .

Since (M,A) satisfies IΣ0
1, the above characterization of A shows that A is

coded in N by some a < 2bm+1 . Therefore we have:

(1) N |= ∀〈r, w〉 < bm+1(〈r, w〉Ea → ∃z Sat∆0
(δr(z, w, ū, ak))).

Recall that BΣ1 holds in N , and Sat∆0
has a Σ1-description in N , so (1)

allows us to conclude:

(2) N |= ∃t ∀〈r, w〉 < bm+1(〈r, w〉Ea → ∃z < t Sat∆0
(δr(z, w, ū, ak))).

By quantifying out ak in (2) and coupling it with (∗m), we obtain:

(3) IQ |= ∃x, t < e ∀〈r, w〉 < f(bm+1) (〈r, w〉Ef(a) → ∃z < t Sat∆0
(δr(z, w, v̄, x))).

Clearly any element of IQ that witnesses x in (3) can serve as a suitable
candidate for vm+1.
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CASE 1 (m+ 1 = 2k+ 1, for some k ∈ ω): In this case if dk ≥ Max{v̄}
or if it is one of the elements of v̄, put um+1 = um and vm+1 = vm. Other-
wise, put vm+1 = bk and define:

B := {〈r, w〉 < f(bm+1) : IQ |= ∀z(Sat∆0
(δr(z, w, v̄, dk)) → b < z)}.

Note that B is Σ1-definable in IQ, so there is some b < 2f(bm+1) = f(2bm+1)
which codes B in IQ. Therefore b = f(c) for some c < 2bm+1 . Define:

p(x) := {∀w < bm+1(〈pδq, w〉Ec → ∀z ¬δ(z, w, ū, x)) : δ is a ∆0−formula}.

Since N is recursively saturated and p(x) is recursive, in order to find a
suitable element in N which serves as um+1 , it suffices to prove that p(x)
is finitely satisfiable. So suppose p(x) is not finitely satisfiable. It can
be readily checked that p(x) is closed under conjunction, so we can safely
assume there is a ∆0-formula δ such that:

(4) N |= ∀x(∃w < bm+1(〈pδq, w〉Ec ∧ ∃z δ(z, w, ū, x))).

Clearly (4) implies:

(5) N |= ∀x < Max{ū} (∃w < bm+1(〈pδq, w〉Ec ∧ ∃z δ(z, w, ū, x))).

We can bound variable z in (5) by using BΣ1 in N , and next employ (∗m)
to deduce:

(6) IQ |= ∃t < e∀x < Max{v̄}(∃w < f(bm+1)(〈pδq, w〉Ef(c) ∧ ∃z < t δ(z, w, v̄, x))).

By replacing x in (6) with dk, we obtain:

(7) IQ |= ∃t < e (∃w < f(bm+1)(〈pδq, w〉Eb ∧ ∃z < t δ(z, w, v̄, dk))).

But (7) contradicts the assumption that b codes B in IQ. So p(x) is finitely
satisfiable. �
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