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Abstract

The so-called paradoxes of material implication have ratdd the development of many non-
classical logics over the years{5, 11]. In this note, we investigate some of these paradoxes and
classify them, over minimal logic. We provide proofs of e@lénce and semantic models separating
the paradoxes where appropriate. A number of equivalentpgrarise, all of which collapse with
unrestricted use of double negation elimination. Intémgst, the principleex falso quodlibetand
several weaker principles, turn out to be distinguishabieing perhaps supporting motivation for
adopting minimal logic as the ambient logic for reasoninthim possible presence of inconsistency.

Keywords: reverse mathematics; minimal logic; ex falso quodlibetplioation; paraconsistent
logic; Peirce’s principle.

1 Introduction

The project of constructive reverse mathematig$fs given rise to a wide literature where various the-
orems of mathematics and principles of logic have beenililed®ver intuitionistic logic. What is less
well-known is that the subtle difference that arises whengttinciple of explosionex falso quodlibet

is dropped from intuitionistic logic (thus giving (Johaaes) minimal logig enables the distinction of
many more principles. The focus of the present paper arege mafrprinciples known collectively (but
not exhaustively) as thearadoxes of material implicatigrparadoxes because they illustrate that the
usual interpretation of formal statements of the form.“— ...” as informal statements of the form
“if...then...” produces counter-intuitive results.

Some of these principles were hinted at #). [ Here we present a carefully worked-out chart,
classifying a number of such principles over minimal logithese principles hold classically, and
intuitionistically either hold or are equivalent to one bfee well-known principles (see Sectiéh
As it turns out, over minimal logic these principles divideanly into a small number of distinct
categories. We hasten to add that the principles we clabsify are considered &rmula schemas
and not individual instances. For example, when we writddhmula——yo — ¢ for double negation
elimination (DNE), we mean that this should apply to all wielimed formulaep. The work presented
here is thus not a narrowly-focused investigation of whatance-implies-what-instance, but rather a
broad-stroke painting that classifies formula schemas awotew

This paper may be received in two ways: straightforwardiyg aontribution to reverse mathematics
over non-classical logics; or more subtly as providing samseght into the kinds of distinctions that
a good paraconsistent logic might contribute. Highlightthe paper include many refinements over
[14, chapter 6].

In what follows, we take:— to be minimal implication;L a logical constant not further defined
(with the usual identification ofia with o — L for any well-formed formulax); T a logical constant
interchangeable with — « for some (arbitrary) well-formed formula (that is, T is always satisfied).

We will be interested in propositional axiom schemas, asthimces of such schemas.(gxoposi-
tional) axiom schem# any well-formed formula, where the propositional valésbare interpreted as


http://arxiv.org/abs/1606.08092v1

ranging over well-formed formulas. Anstanceof a formula schema is the schema with well-formed
formulae consistently substituting for propositionalisétes in the schema in the intuitively obvious
way. For example, the well-formed formula

“(aApB) = (aNB — )
is an instance of the formula schema
o = (o = 1)
(5 in what follows), wherep is replaced witho A 3, andv is replaced with—-v. We also say that
formula schemad impliesformula schemal if, given any instance) of ¥, there are finitely many
instanceq y1, 2, . . ., pn } of ® such that
‘P179027--~790n :>¢7

where=> is understood as the (meta-theoretic) minimal logic cousage relation. We also say that
® and ¥ are equivalent if bothb implies ¥ and vice versa. Often it is theoretically useful to distin-
guish instance-wise implication from schematic implioat[7], which is why we restrict ourselves to
instance-wise proofs.

2 Paradoxes of material implication

The paradoxes we classify are the following schemas. Wheyre 3, ¢ are any well-formed formulas,

L=V —9) (linearity, strong form)
2. (pAop) = 9 (ex contradictione quodlibethe paradox of entailment)
3. 9= (V)

4. (p =)V

5. 2 = (¢ = ¥)

6. (~p =)= (consequentia mirabilisClavius’s law}

7. ((pAY) = 0) = (¢ = 9) V(¢ = ¥))

8 (p=NAW—=p) = ((e=p8)VEW—=1)

9. (=l =) = (¢ A—) (the counterexample principle)
10. (((¢ = %) = ©) = @) (Peirce’s Principle (PP))
1L (p =)V (¥ — ) (Dirk Gently’s Principlé (DGP))
12. (=@ V ) = ¢°
3.9V (Y —9) (Tarski's formula)
14. (—¢ — =) V (—9p — —p) (weak Dirk Gently’s Principle)
15. (p =9 Vi) = (g = 9) V(e = 9))

16. ~(¢ = ~p) = o (a form of Aristotle’s lav()
1The version(p — —p) — —p is used in [ 7. However, sinceex falso quodlibet falsural. — —¢) holds in minimal logic,

that version is provable over minimal logic. This suggebt tvhile the present work illustrates many distinctiomeré are still
more distinctions that are not apparent here.

20ur name for this is based on the guiding principle of thegmyonist of Douglas Adam’s novBlirk Gently’s Holistic Detective
Agency[ 1] who believes in the “fundamental interconnectednessl dfialgs.” It also appears as an axiom in Godel-Dummetidogi
and is more commonly known as (weak) linearity.

3The Wikipedia page ahttps://en.wikipedia.org/wiki/Consequentia mirabilis actually lists this as
equivalent to6, however that is not quite correct as we can see below. If viethe assumption thap — 1 = —¢ V ¥,
then they do turn out to be equivalent. Howetleait statement—interpreting> as material implication—is minimally at least as
strong as LEM.

4Connexive logics are closely related. There, instead, ritecadent is taken as axiom schema; thus connexive logienirely
non-classical, since(y — =) is not classical valid.
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Strictly speaking, these are of course axiom schemes rtearsingle axioms. These sentences are
all classical theorems, where the arrewis interpreted as material implicatiGrinitially, we are inter-
ested how these principles relate to the following basickdgrinciples, the universal applicability of
which is well-known to be rejected by intuitionistic (or, time third case, minimal) logic:

DNE ——¢ — ¢ (double negation elimination)
LEM ¢V —p (law of excluded middle)
EFQ L — ¢ (ex falso quodlibef)
WLEM = V = (weak law of excluded middIé)

It will turn out that there are two further important distirighable classes; those related to Peirce’s
Principle, and those related to Dirk Gently’s Principle.
We will also consider the following versions of De Morgaresvis
DML =(p A9) <> —p V=t
DM2 =(p V) <> ~p A =9
DM1’ —(=p A —h) <> oV 1h
DM2" =(=p V =) > 9 A ¢

Notice that DM2 can be proven in minimal logic.

3 Equivalents

Proposition 1. The following are equivalent:
a) DNE,9, 12, 16, DM1’, and DMZ;
b) LEM,3, 4, and6;
¢) EFQ,2, and5;
d) WLEM,14, and DM1

Proof. a) Clearly DNE< 12 and DNE<« 16. To see that DNE= 9, assume DNE and suppose

that

—(p = ). 1)
Suppose also, for contradiction, that

(e A ). )
Suppose further that and—. Adjunction then givesp A =), contradicting 2); and so——
(discharging the assumptiom)). DNE yields, whencep — v (dischargingyp). This contra-
dicts (1), and so-—(¢ A —). Another application of DNE yieldS.
For the converse, suppose-y; thatis,~(¢ — L). Then by9, ¢ A =.L. Hencep.

Clearly DNE implies both versions of De Morgan’s laws. Casedy we see that fap = ¢ they
both reduce to DNE.

b) LEM < 3, LEM < 4 and LEM = 6 are straightforward. To see that = LEM, it is enough
to show that-(p V =) — ¢ V —p. So assume:(p V —p). Theny leads to a contradiction,
whence—p holds. This can be weakened¢ov —¢ and we are done.

Clearly, EFQ= 2 = 5. To see thab = EFQ, note that fromL we may deducél — 1 by
weakening; that isT. Applying 5, T — ¢, whenceyp. The deduction theorem then yields
EFQ.

c

~

5Since all of these axioms are not provable in minimal logieduting them in classical logic is not mechanic and they are
therefore good exercises for students.

60f course thigs intuitionistically provable/definitional.

7An axiom in Jankov’s logic, and De Morgan logic.

8Wwith judicious substitutions—in particular, usigg= T in the right-to-left implications.



d) First we show WLEM< 14. We have that eitherw) or =— holds. In the first case we also
have—-yp — —). In the second case assume thdt holds. So we have., which gives—y by
weakening.

Conversely we either havep — ——p or =—p — —p. In the first case the assumption thab
holds leads tal, and hence-—p. In the second case, assumipgwe get——¢ and thus—y,
which gives_L by detachment; thereforeyp.
Next we show WLEM< DM1. Assume DM1 and lefp be arbitrary. Since-(—¢ A ¢) is
provable in intuitionistic logic we have—p V —y; that is WLEM holds.
Conversely assume that(p A ). By WLEM either—p or =—¢. It is easy to see that in the
second case the assumption thatolds leads to a contradiction. Heneé and we are done.

O

Next, we single out Peirce’s Principlé(, PP), and Dirk Gently’s Principlel(, DGP). As will be
shown in the next section, these principles are strictlgirdisiishable from the others.

Proposition 2. The following are equivalent:
(@) PP,1, and13;
(b) DGP,7, 8, and15.

Proof. (a) We showl = PP=- 13 = 1.

First, considerp, andy such thatly — ¥) — ¢. By 1 eitherT — ¢ or ¢ — 2. In the first
casep holds. In the second case we can use the assumption to shipaltioey holds. Together

(=) =)=

so that PP holds.
Next, assume PP, and l¢tand« be arbitrary well-formed formulas. By PP,

(V@ —=9)=0) =y V(W —=7) =9V (P —9).

We show that the antecedent (and hence, by modus ponengrtheqeient) of this holds. So
assumgy V (¢ — 9)) — 19). Furthermore assumg. Thend, so (discharging the assumption
1) we havey) — 9. This weakens t@ V (i» — 9), so13follows.

Last, since— weakens, clearly3implies 1.

(b) First, we show DGR= 7. Assume thafy A ¢) — 9. Now if DGP holds then eithep — 1 or
1) — . In the first case, ifp holds, then als@ A v, and hence) holds. Together that means
that in the first case we haye — ¢. Similarly, in the second casg — . Conversely, apply
to Y = ¢ A 1. Then the antecedentTs, and so(¢ — (¢ A ¥)) V (¢ — (¢ A ¥)). Hence the
desired(¢p — ¥) V (¢p — ) holds.
Next, we show DGR= 8. Assume thaty — ¥) A (¢ — ). By DGP eitherp — 8 and we
are done, o — . Butin that second case if we assugh@lsof holds, which in turn implies
», which in turn impliesd. Together, in the second case— . Conversely, appl to ¢ = ¢
andg = 1, which yields

((p=) AW =) = (p=29) V(Y —9).

Since the antecedent (S A T) = T, we get the desireflp — ¢) V (¢ — ¢).

Last, DGP < 15. For the forward direction, suppose that— ¢ Vv . DGP gives(y —
9)V (¥ — ). In the first case, assuming we gety V ¢, which (by modus ponens ap — )
isv in this case. S — 9, which weakens téy — 1)V (¢ — 9). Inthe second case, a similar
argument also shows> — ¥) V (¢ — 9). Either way the consequent o5 holds; whence, by
the deduction theorem/j. Conversely, appl{L5to ¢ V v, ¢, ands) to get:

(VY= pVh) = ((pVY = @) V(eVY—1)).



Now clearly the antecedent is always satisfied. So we havte tha

(VY = @) V(eVY =),

which is equivalent to the desiréd — ) V (¢ — ).

We are now in a position to lay out how these principles fit tbge
Proposition 3. The implications in Figure. hold:

DNE
PP EFQ
LEM DGP wWT
WLEM DGP”

Figure 1: Some principles distinguishable over minimalidogAs is shown in Sectio®, none of the
arrows can be reversed and no arrow can be added.

That DNE=- EFQ and LEM=- WLEM is clear; we prove the remaining implications.

Proof. e DNE = PP: Assuméy — ¢) — ¢, and—p. Modus tollens gives:(¢x — 1) whence,
by counterexample9j (see Propositiord), o A —; sop. With =, this givesL; and hence
(discharging the assumptioemny) ——¢. Appying DNE givesp.

e PP=- LEM: Assume—(¢ V —p); thatis,(¢ V =¢) — L. Theny leads to a contradiction; so
—p. Buttheny V —¢p. So we havé(p V —¢) = L) — (¢ V ). Applying PPy V —o.

e PP=- DGP: By PP,

((p=) V=) =)= (e=V)V (=)= (=) V@ —).

We show that the antecedent holds. Assume

((p= )V (=) =, (3)

and suppose&. Theny — 1, so by @), ¢. Thus (discharging the assumptionf, v — ¢.
But then again by3), ¢, which weakens tdy — 1) V (¢ — ¢) and we are done.

e DGP = WLEM: By DGP, we havel¢y — —¢) V (-¢ — ). In the former case, assumigg
gives_L, whence—y. In the latter case, assuming gives_L, whence——p.
O



4 The implicational fragment

For various technical reasons it is often interesting tokwanly with formulas built up from proposi-
tional symbols includingL with —. Of course, we still use» as an abbreviation for> L. Assuming
classical logic (DNE) this is no restriction, since thereand A are definable from— and—-. More
precisely we can defing v ¢ as—y — 1, but over minimal logic this validates EFQA more faithful
(but slightly weaker) translation is:

VY =(p=> L)@ =1 [E-¢—=-¢. 4)

Notice that we might also translate vV ¢ as—¢ — ——¢, whose equivalence talY is minimally
provable; we will use whichever of the two translations isrenexpedient. Moreover, conjunction can
be removed entirely alsa A ¢ — O translates tap — ¢ — 9,° and¥ — ¢ A ¢ translates to the
two separate cases— o andd — .** Translates of formulas are then defined in the obvious way.
We denote the translation of a formuyleinto the implication-only fragment by .

The following are of special note:

e 13, a strong form of linearity, which (by Propositiéhis equivalent to DNE. Its translation into
implicative form is:
) — (Y = 9, (Weak Tarski's Formula, WT)

which is an abbreviation fofyy — L) — ((¢ = 9) — 1) — L.
e 11, Dirk Gently’'s Principle, which translates to:

(=) = = — ). (Implicative Dirk Gently’s Principle, DGP)

The above principles are closely related, but distinct. pasation result can be found in Sectisn
Proposition 4. The following implications hold:

(&) PP=WT

(b) DGP= DGP™

(c) EFQ= WT

(d) WT= DGP™

Proof. (a) We use PP in the forf{L — ¥) — L) — L. For modus ponens we need to establish
that(L — ) — L. For the purpose of applying the deduction theorem to shésy(#md also
WT), assume:

@ v —L

(i) (v =) — L;and
(i) L — 9.
Then by transitivity on (i) and (iii))z» — «. Using (ii), L. The deduction theorem (discharging
(iii)) yields (L — ¢) — L. Applying PP givesL, whence (discharging (ii) in another applica-
tion of the deduction theorenffy» — 9¥) — L) — _L. The conclusion follows by yet another
application of the deduction theorem.

(b) Assume that:(¢ — ). By DGP eitherp — 1) or¢) — ¢. In the first case we get by modus
ponens, and therefore alse-(¢» — ). In the second case, since minimatly— ——c, also
——(¢p — ¢). Thus in both cases the conclusion holds.

9Simply useV-introduction and the proposed translation; EFQ follows. trEnslatep \V ¢ as—p — 1 would therefore be
disingenuous.

10Note that negated conjunction is a special case.

Ut is not clear, however, that this makes no differencprimofs more on this later.



(c) The proof is similar to (a), but simpler, since (iii) ismmo longer an assumption but an instance

of EFQ (and so we do not need to explicitly apply PP).

(d) Assume that-(p — ). Then, assuming and weakening leads to a contradiction;g6. By

WT, =—=(¢» — ¢). The conclusion follows from the deduction theorem.
O

In Section5 we show that these implications are strict. For the paraglokenaterial implication,
using the translationd) (and the comments following it), we have:

LEM™ is = — ===, Which is provable in minimal logic. Similarly, WLEM is provable.
17is=(p = ) — == (¢p = 9).

27isp — —p — 1.

37 isp — ) — ———p, a weakening of double negation introduction and hencegirlev
47 is =(¢ — ¥) — ==, and is provable.

T7is(p =Y =2 9) = (e = 9) = (Y = 9).

87 is (p = 0) = (1 = B) = (9 = B) = = (v = V).

97 is (@)~ (¢ — ) = p and (b)~(¢p — ¥) — —. The latter is provable.

117 isDGP™.

127 is (=== = =) — .

137 is WT.

147 is =(—¢ — =) = ==(—=1Y — —p). This is provable: assume(—¢ — —)) and—.

Weakening givesp — —, a contradiction; whencew. So— — -, which by double
negation introduction gives the conclusion.

157is(p = ) = =) = (¢ = ¥) = (e = 9).
DM17 is (¢ — —) <> (- — —~——p), which is provable.

DM27 is (= — ==h) = =, 2(—p = =) = =, and—p — —p = (= = ),
each of which is provable.

DM1'7 is (mp — =) <> (mp — =), which isT (always satisfied).

DM2'~ is (8) ~(~—¢ — ~==)) = @, (b) ~(~=p — —=1) — ¥, and (O)p — ¥ —
—(=—¢ — ———1). The latter, (c), is provable.

It is often technically useful to know when an operator maybked back through an implication, so
two further sentences of interest are:

17.
18.
Note:

(p = =) = —=(p = 7).
(=) = (2 = ).

The converse of7is provable. For, assume—(¢ — ). Further assume
0 «;
(i) —yp; and
(i) ¢ — .
(i) and (iii) lead to_L; whence (discharging (iiiy}(¢ — ). But then_L again, so (discharging
(ii)) =—p. Applying the deduction theorem twice gives the conversgrof

Likewise, the converse dR is provable. Assume—¢ — 1) andyp. Then——y, soy and hence,
in fact, o — 1, which is stronger than the conversel@t

We now turn to classifying the foregoing sentences, wharihey are not provable in minimal logic
alone.



Proposition 5. The following are equivalent:
(a) DNE,97(a), 127, DM2'~ (a), DM2'7 (b), 18.
(b) EFQ,27".
(c) WT, 17,157, 17.

Proof. (a) Since full classical logic is obtained by adding DNE taimial logic, it suffices to prove
that each numbered principle implies DNE.
Observe that DNE is a special case)of(a)—namely, the case where= 1.
To see thai 2~ = DNE, assume-—. By weakening——¢ — ==, and so byi27, ¢.
To see that DN’ (a), DM2'~ (b) each imply DNE, substitute for +; then, assuming—, in
each case the antecedent is satisfied, and in each case seggent isp.
To see thal.8implies DNE, substitute> := v; then the antecedent @B is always satisfied, and
the consequent is DNE.

(b) Itis clear that EFQ= 2. For the converse, suppose we wish to show that 9. Assumel..
Then (weakening)T. In particular, substituting” for ¢ and¥ for ¢ in 27 gives

T =T =9

Two applications of modus ponens followed by the deductimotem gives the desired conclu-
sion.

(c

~

Since—(¢ — ) — —p is provable, transitivity with WT shows that W 1. Conversely,
suppose thatw), and—(¢p — ¥). In view of the deduction theorem, we aim to derive
Consider the following form of ~:

(¢ =) = (¢ = D).

Using the assumption(y» — ), by the provable version of contraposition we conclud€ -1 —
). Since the converse Gf7 is provable,~) — ——1). But then, using the assumptien), -1,
which gives L and we are done.

To see that WT” = 1577, assume:

W) ¢ = (- — =);

(i) =(¢ — 1); and
(i) (¢ —9).T
In light of the deduction theorem, it is enough to prate Supposep. Using (i) now yields
—p — ——¢. From (i) we see-); whence——9. But from (iii), =, a contradiction. Therefore,
—p. Applying WT, =—(p — ), which contradicts (ii). Hence., and we are done.
Conversely, suppose that) and (for the purpose of deriving a contradictiof) — ). Sup-

pose that). Then_ L, so that-—9, which weakens texy — ——1. Discharging the assumption,
1) — =9 — ——J. Then invokel 57 in the form

(= =0 = =) = (=¥ = 9) = 7=( = V)

and detach twice (using the assumptions still in play) to-gefy — ¢). This contradicts the
assumption, sd_. Hence WT*?
To see that WT* = 17, suppose thap — ——), and (for contradiction) that(¢ — ). From
the latter,~; whence, using the formerip. Applying WT, ——(¢ — %), which contradicts the
assumption; sd..
Conversely, suppose that). Assumingy, we getl, so we may conclude—J and therefore
1 — -9, Applying 17, =—(¢» — ) and we are done.

O

121t may be interesting to note that at least one instana®bofractionis used in this proof.



Proposition 6. The following implications hold:
(@ WT=77;
(b) DGP~ < 87;
(c) 77 = DGP (usingA).

Proof. (a) Assume thap — ¢ — . By interderivability of-a — ——3 and—8 — ——«, and in
view of the deduction theorem, we may show that

(¢ = 9) = = (p = 9).1°
Assume the antecedent. Transitivity over the assumptiwes gy. Applying WT, -—(¢ — 9)

and we are done.

(b) First considerp, v, ¢, andg such thatp — ¢, ¥ — B, and—¢ — 5. We want to show that
—=(¢p — 9). By DGP it is enough to show- (9 — ). So assume alsd — 1, which
together with the above assumption implies— £, but that contradicts the third of the initial
assumptions. Thus we can deriveand are done.

Conversely, a special case®f is
(p=9) =W —=9) = (0 =¢) = =W —=9).
Since the first to assumptions are tautologies we have
(o= 9) = (¢ = 9),

which is DGP”.

Let p andt) be such that:(¢ — 1) and—(¢¥» — ¢). Notice that then alse:(¢ — ¢ A ¢) and
-(v — v A1). We want to derive at a contradiction.

Applying 77 to p, ¥, andy A v gives us

(c

~

(= W= (pAY))) = (= (eAY) = (¥ = (@A) .
Notice that the antecedent is provable minimally, so we have
= (pAY)) =~ = (pAY)) = L,

and therefore, applying this to out assumptions we get thizet! .

We will comment on the strange status of statenténtin the last section.

5 Separation results (semantics)

To show the strictness of the implications summed up in Eigwe will use models rather than proof
theoretic methods, which is the route taken!liti][ We base our semantics for minimal logic on the one
described inJ]. More precisely, we considélV, C, Q) where(W, C) is a partial order and) C W
is acone—that is, an upwards closed setvAluationv is a monotone mapping froi to P (PROP).
We will call the elements ofV worlds

A modelis a pair(WV, v) and the forcing relation between a model and a formula is eéfin
almost the same way as for Kripke semantics. That is we set

ulF P <= P € v(u)

13gubstitutep — 9 for o, andyy — o for 3



for propositional formulas and then inductively

ulF p ANy <= ulF pandu - ¢
ulFpViy <= ulFgporul-vy
ulbp =2 Yp<=VyeW: (uCyAyltp=ylk).

A point of difference with the usual Kripke semantics is th&t do not assume that is never forced,
but that we have
ulF L<—=ue@.

The intuition behind Kripke style semantics is that we hawveudtitude of possible worlds ordered by
C with the requirement that if a formula is true in some world ialso true in worlds “above” it relative
to the order. Each world by itself behaves like a classicalehe-of course, apart from our treatment
of L. We will call worldsw such thatu € @ abnormal and the otherwiseaormal Since we have
defined—y asy — 1, we get

ulk—p<=VyeW: uCyAylkp=—=1y€Q),

that is—p holds in some world if the only worlds above in whighholds are abnormal ones.

We write (W, v) Ik o or simplyW I+ ¢, if ¢ is forced in all worlds o). As usual, the valuation
v should be clear from the context and will not be mentioneder&hs another reason whyfor us
is actually irrelevant: in the present paper, we only coaisidll models That is, we assume that for
every upward closed sét C W there exists a propositional symbB{; suchu I+ Py < w € U. This
excludes many pathological cases of considering complicstructures with trivial valuations. It also
means that for any well formed formutathere exists a propositional symh#8l, such that

Wika<= WIF P,,

which has the advantage, that we only need to consider oomesthemes to range over propositional
symbols and not arbitrary formulas.

Having an arbitrary partial order as our underlying struetis different from [, 16] which uses
tree like-orders—or to be precise finitely branching tr8dsere is a subtle difference between the two
notions as we will explain. On first glance the differencesnseninuscule:

Proposition 7. Assume thafV, v) is a model that is tame in the sense thaLifs a maximal chain
with maximal element, andu C v, then there exists some maximal chainhavingv as a maximal
element and. C L'.*®

Then there exists a tree-like mod@V*, v*) such that

WIFa e W IFa (5)

for any formulac.. Furthermore, if(W, v) is finite (i.e.W is finite as a set) theiV" is a finite and
finitely branching tree.

Proof. DefineW"* to be
{(u, L) e W x P(W)| L is amaximal chain with. as a maximal elemert,

and set
(u, L) E (v,L'Y<=LcCL".

Notice that if(u, L) C (v, L’) thenu € L’ and that, in particular, C v. As our new valuation set
v (u, L) = v(u).

14This is a point of departure for many other non-classicaicegsuch as relevant logics, logics of formal inconsisgeaad the
like. As mentioned, this is a preliminary investigationarihe realm of non-classical reverse mathematics more aiyneso we
stick fairly close to the usual, classical, interpretatidmegation.

15This holds if, for exampleyV is finite, or one assumes Zorn’s Lemma.

10



Figure 2: The construction of this proposition removes ays.

We will proof that for any formulax for all (u, L) € W*
(u, L) Fa<=ulFa (6)

by induction on the formulav. If « is a propositional symbol (including ) then we haves by our
definition ofv’. The connectives andV are straightforward to deal with. So let= 5 — +.

For the direction =" fix (u, L) € W" and assume that |- 3 — ~. Now consider(v, L) such
that (u, L) C (v, L’) and that(v, L") I 8. By our induction hypothesis that meanst 3, which
implies thatv I . Using the induction hypothesis again we get the degived’) I ~.

For the direction =" assume thatu, L) I- 8 — -, and thaw is such that. C v andv IF 8. The
only really non-trivial step in this entire proof is to usettame-ness assumption to fihlwhich has
v as a maximal element and is such tha€ L’. Then(u, L) C (v, L’). By our induction hypothesis
we have thatv, L') IF 3, which means thatv, L) I . Using our induction hypothesis yet again this
means that |- v and we are done. |

The differences between tree-like and non-tree-like mosteim from our definition of a full model.
Notice that even itV is full WW* might not be. In the example sketched in Fig@rén W* there is no
proposition that is forced at one of the top nodes, but nobther; all propositions are either forced at
both top-nodes at the same time or not forced at both nodes.

If one does prefer to work with tree-like models one cannstriet to fullness. For example, as
one can easily see, any intuitionistic (i@.= ) tree-like model containing a branching, i.e. that is
notv-free, does not satisfy WLEM, which means thratitionistic tree-like models cannot distinguish
between WLEM and DGF’. So for a structural analysis of what principles hold depegdin the
underlying partial order it makes more sense to considetrarp partial orders rather than tree-like
ones. This also excludes Veldman'’s explosive nodé} {vhich do not add further distinctions here.

It is straightforward to see that we have soundné&s®foposition 2.3.2], which means we can use
these models to show the underivability of formulas in mialifegic. Models for intuitionistic logic,
that is minimal logic together with EFQ, are exactly the ombere_L is never forced (in this case we
recover the usual Kripke semantics):

Proposition 8. W I- EFQ if and only ifQ = 0.
Proof. Clearly, if @ = 0 thenW I EFQ. Conversely, if there is an abnormal word= @, then by

fullness we can consider the propositional symBplfor which« |- L, butu ¥ Py;ie.u ¥ 1 —
Py. O

Given a structuréW, C, Q) we define itdoBOTomyW= to be(W, T, W), that is we are making
all worlds are abnormal. Even this quite trivial constranthas very useful consequences for us.
Proposition 9. For any (full) model we have

1. WhIFLEM
2. W+ ¥ DNE
3. Wt KFEFQ

18Nor can they distinguish between DNE, LEM, and PP (see Pitgosl2), but these are all known to be intuitionistically
equivalent anyway; see Seg.
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Proof. The proofs are easy after one notices that- |- —a for any formulaa. It is also worth
pointing out that we need the fullness assumption for thersgand third part to ensure that there is a
propositional symboP such thatV ¥ P and thereforéV- ¢ P. a

Proposition 10. Let W, v be any full model, and let be a formula not containing.. Then
Wik a <= W IFa
Proof. Induction on the complexity of formulas. |

We say that a partial order isfree if it doesn’t containa, b, ¢ sucha < b, a < ¢, andb andc
incomparable.

Proposition 11. Let (W, C, Q) be a structure.
1. W I DGP if and only ifWW is v-free.
2. WIFWLEMifW \ Q is v-free!’

Proof. 1. AssuméV isv-free and letP andQ be arbitrary propositional symbols. Consider an arbi-
trary worldu € W. If P € v(u) we have that. IF @ — P. Similarly if Q@ € v(u) we have that
u - P — Q. Inboth cases |- P — Q@ V Q — P. So assume that neithét Q € v(u). Now
considerthesetd = {y e W|uCyAPecv(y)tandB={ye W|uLCyAQ €v(y)}.
We must have that eithet C B or B C A: for assume there wete 2’ suchthat € A, z ¢ B,
2’ € B,andz’ ¢ A. We must have that [Z 2/, sincez C 2’ implies thatz’ € B. Similarly
2’ IZ z, butthenu, z, 2’ contradict the assumption thet is v-free. If A ¢ B we have that for
everyu - Q — P,andifB C Awegetul- P — @Q. Inbothcases F P - QVQ — P.
Hence we have showw I DGP.
Conversely we will show that iFV is notv-free thenW J¥ DGP. So assume theredsb, c € W
such thata C b, a C ¢, but neitherb T ¢ norc C b. Let P+ and P, be the propositional
symbols corresponding to the upwards closed §etg W : b C z} and{z € W : ¢ C z},
respectively. Notice thai I Py, b ¥ Py, c I+ P, andc ¥ Py;. Assumea |- (Pyr —

P.+)V(P.s — Py ). Theneithew I+ (Pyy — Pt)oral- (P.r — Pyt ); w.l.o.g. the first case.

c

Then by monotonicity I+ (P,+ — P.+). Since als® |- P,+ we haveb I+ P,;; a contradiction.

2. AssumeW \ @ is v-free and letP be an arbitrary propositional symbol. Consider an arhjtrar
worldu € W. If u € Q we haveu IF -« for any«, so we may assume thate W \ Q. If there
isnou C y such thatP € v(y) andy ¢ Q thenu I =P. So assume that theredsC y such
thaty ¢ Q andP € v(y). We want to show that I- =—P. To do this we will show that for any
u C zif zIF ~Pthenz € Q. So assume that C z, andz ¢ Q. BecauséV \ @ was assumed
to bev-free we either have C y ory C z. In the second case, by monotonicity, we gét P
and therefore: I L; a contradiction. In the first case, similarly, by monotdtyie - =P and
thereforey I 1 ; again a contradiction. So € Q. Hence we are done, since eithet- =P or
u |- == P, so togethew |- =P VvV ——P. O

Proposition 12. Let (W, C, @) be a structure.
1. W Ik PP if and only ifW}W consists of pair-wise incomparable points.
2. Wk LEMif and only ifWw \ @ consists of pair-wise incomparable points.
3. W I DNE if and only ifWW consists of pair-wise incomparable points afjd= 0.
Proof. 1. Assume thalV consists of pair-wise incomparable points, f&tS be arbitrary proposi-
tional symbols, and consider an arbitrary woalde W. If S € v(u) we have thaw I- ((S —

P) — S) — S.If S ¢ v(u) we have that, I (S — P), and therefores ¥ ((S — P) — 5).
Hence also in that casel ((S — P) - S) — S.

1"The converse does not hold. See the madlin Section6.
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Conversely assume that there are distinef € W withu C y. Now letU = {u C y|u # y },
and considerPy as above, and lef = Pj. Then for everyu C y with v # y we have
y - (Py — S) — Py. Foru we have thaw ¥ Py — S (sincey ¥ Py — S) and hence
ul- (Py — S) — Py. Now, if u I PP we would also have thatl- Py; a contradiction. So
we have shown that ifV contains two comparable worlds then PP does not hold, ovalguitly
that if PP holds theiV does not contain comparable worlds.

2. Assume thatV\ @ consists of pair-wise incomparable points,febe an arbitrary propositional
symbol, and consider an arbitrary worde V. Now eitherP € v(u) and therefore: I- P or
P ¢ v(u). Since the only worlds above C y, u # y are such thay € @ and thereforey I- L
we have that for all: C y with y I P alsoy I L. Hence in that case I+ = P.
Conversely assume that there are distingt € W\Q withu C y. ConsiderP,+ as above. Then
u ¥ Pyr. Butalsou ¥ =P+, since ifu |- =P+ alsoy IF —~P,+ which would implyy I L; a
contradiction toy ¢ Q. Henceu ¥ LEM. Equivalently we have shown that¥ I LEM then
W \ @ cannot contain two comparable worlds.

3. This follows from Propositio together with either of the previous two items and Propositi
13 further down. O

To start with one of the most trivial models imaginable, ¢desWW; = {0} andv;(0) = @. That
is there is only one world. By Propositi@this means that

LEM #= DNE

and
LEM #= EFQ.

The second structure we are consideringVis = ({1, 2}, <, 0). Since@ = 0 this is a model of
EFQ. It does not, however, force DNE, since Hfis such thaff P] = {2} then no node forces P,
whenceWs I ——P. However, of coursel, ¥ P. The sameP also ensures thatd); ¥ LEM. A useful
variant of W, is Wy = ({1,2}, <, {2}); in that case, witfP] = {2} again, DGP” is forced since
it is v-free; however, WT is not forced. To see this, note that sihde forced wheneveP is forced,
1 IF =P. However, sincé® — S is nowhere forced] |- —=(P — S). Sincel ¥ L, 1 —-—(P — 5).
HenceW; ¥ WT. Note that LEM DGP, and WLEM are also forced in this model, separating WT and
DGP™ from these principles.

The third structurgWs, () is a simplev shape, so, for examplé{(, {1}, {2}}, C,?). W5 does
not satisfy WLEM, since fol® = P(;3 we have that) ¥ —P v -—P. Like W», a useful variant
is Wi = ({0,{1}, {2}}, c,{{1},{2}}). This model does not force DGP. To see this, assign
P = Py, S = Sgz;- Then since) ¥ P — S andf ¥ S — P, and since bot{1} I L and
{2} IF L, 01 =(S — P)and( I+ =(P — S). But sincel) ¥ L, we havel) ¥ -—(P — S). Hence
Ws ¥ DGP~.

Figure3includes the Hasse diagrams of the underlying orders oétimexlels.

SRRV

(@WwWh (L) W2 (©)Ws (d) Wa

Figure 3: The Hasse diagrams of the underlying orders of mdats

These models, together with thelirversions and useful variants (ahtly; see the next section),
show that all the implications in Figure are strict. These models also show that—apart from the
transitive closure—no arrows can be added to Fidgur&or simplicity we include a table. Further,
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DNE | EFQ | LEM | DGP | PP | WLEM | WT | DGP™
Wy | O 0 0 O | O 0 0 0
wi | O 0 0 O |0 0 O 0
Wy | O 0 0 O |0 0 0 0
Wy | O 0 0 0 0 0 O 0
wh | O 0 0 O |0 0 0 0
Wi | O 0 0 O | O 0 O 0
Wy | O 0 0 0O | O 0 0 0
wi | O 0 0 0O | O 0 O O
Wy | O 0 0 O | O 0 O 0
Wi | O 0 0 O |0 0 0 0

Figure 4: An overview, over all models over minimal logic.eSeext section foiV,.

note that since every principle fails to be enforced in asieme of the models, none of the principles
outlined are provable in minimal logic alone.

6 The intuitionistic case

It is well known that:
Proposition 13. LEM and EFQ imply DNE

Proof. Let ¢ be such that-—¢ holds. Thus if we have.p then_L, which by EFQ impliesp. Together
with LEM that means thap v —¢ implies¢. a

Thus under the assumption of EFQ our hierarchy collapsédetéotlowing simple one:

DNE, PP, LEM

WLEM

The modelW, shows that the first of these implications is strict, howewvene of the models
considered so far satisfy EFQ and WLEM, but not DGP. To do s@evesider the diamond-shaped
structure({0, {1}, {2}, {1, 2}}, C,0). AsQ = 0 this is a model of EFQ. A3V, is notv-free it does
not satisfy DGP (Propositiohl).

Finally we need to check that WLEM holds. So Btbe an arbitrary propositional symbol. If
P ¢ v({1,2}) thenW, IF P — L, sinceP is never forced. IfP € v({1,2}) thenP — L is never
forced in any world, s&V, IF == P vacuously. In both caséd/y I =P vV —-—P.
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7 Open Questions and Concluding Remarks
7.1 Statementi—

As shown in Sectiod we have

WT = 77 = DGP " .
One can check that™ holds in exactly the models discussed which validate DG8V it is provably
weaker than WT and one would naturally conjecture that igisielent to that statement. However
we could not find a proof of DGP = 77. Itis also interesting that we could not find a proof of the
converse that does not rely an

7.2 Kreisel Putham and Scott logic
In the fabulously titled (even for German speakers) pagt [s shown that the formula
(mp =Y V) = (e = Y) V (mp = 9) (KP)

is not derivable in intuitionistic logic. One can check thdtolds in exactly the same of the models
discussed as DGP. It is completely unclear, though, whether either one iegpthe other. In the same
paper P] also the following formula, which is not derivable intwitiistically, and which is due to Dana
Scott is mentioned

(5= = @) = (P V=) = (7 V ).

This formula is clearly implied by WLEM. It is, however, weak since it actually holds in all models
we have considered in this paper. It would also be intergstirhave intuitionistic models (i.e. ones
validating EFQ) rejecting these principles.

7.3 SmL

It is also worth mentioning another important formula cletegising an superintuitionistic logic, the
so called Smetanich’s logid f]. It is obtained by adding the following axiom scheme to ititunistic
logic.

(Y =9) = (=)= 0) 2 9). (SmL)
It is easily seen that this is implied by LEM. It also implied ¥8M which we can see if we apply it to
- V = and—y. However we can check that it holds)it; and does not hold ilV; which means
that it neither implies LEM nor is it implied by or implies DGBnd therefore neither by WLEM). That
means we have the following extension to the left bottom eoafi Figurel.

LEM DGP

<
WLEM
Figure 5: A small extension in the lower left corner of Figare
It is not clear, however, how SmL relates to DGP intuitioicesty. One can see that DGP does not

imply SmL even under the assumption of EFQ, since the formktstin the mode(Ws, 0, <), where
Ws = ({1, 2, 3}) and< is the usual order.
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7.4 Concluding Remarks

The distinctions and equivalences in this paper represgntpurse, only the tip of the proverbial
iceberg. Beyond what can be distinguished in other norsitdaklogics, of special mention are sub-
structural logics 10]. The proofs presented here assume all the usual structues. An analysis
of which proofs still go through in the various substructuegics will clearly shed further light on
computational aspects.
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