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 Introduction

The question has been of interest for decades: If a model-
complete theory T is augmented with axioms for an automor-
phism σ of its models, does the resulting theory Tσ have a
model-companion?

It does have, when T is the theory ACF of algebraically
closed fields. The model companion of Tσ in this case is ACFA,
studied by Macintyre [] and Chatzidakis and Hrushovski []
and others. However, Tσ is not companionable when T is ACFA
itself [] .

A more general result, established by Kikyo [], is that if
Tσ is companionable, and T is dependent, then T must also be
stable. In particular then, Tσ cannot be companionable when
T is the theory ACVF of algebraically closed valued fields in
the signature of fields with a predicate for a valuation ring.
Note that an automorphism σ of a valued field induces an au-
tomorphism σv of the the value group Γ and an automorphism
σ̄ of the residue field. Then Tσ is companionablewhen T is the
model companion of the theory of any of the following classes
of valued fields:

) valued D-fields [],
) isometric valued difference fields, where σv(γ) = γ for all

γ in Γ [, ],
) contractive valued difference fields, where σv(γ) > nγ

for all positive γ in Γ and n in ω [],
) multiplicative valued fields, where σv(γ) = ργ for all γ

in Γ, for a certain constant ρ [].
Moreover,

) Tσ ∪ Tv is companionable when T is ACVF and Tv
is a companionable theory of ordered abelian groups
equipped with an automorphism [] (in this case





(Γ, σv) |= Tv).

The corresponding model companion in each of the five cases
satisfies an analogue of Hensel’s lemma for σ-polynomials (see
[, Definition .]).

In this paper we consider the theory FAV of a valued field
equipped with an automorphism of the field alone. There is no
required interaction of valuation and the automorphism: the
automorphism need not fix the valuation ring (setwise). The
similar case of a differential field with an automorphism of the
field alone was treated in []. Our main theorem, Theorem
, is that FAV has a model companion, FAV∗.

There is an obvious candidate for FAV∗, since FAV is included
in the union of two model-complete theories, namely ACFA and
ACVF. However, we show, as Theorem , that ACFA ∪ ACVF

is not model complete.

Our paper is organized as follows. In § we give axioms
of FAV. In § preliminaries about companionable theories are
explained. Then in §, Theorem  establishes a geometric
axiomatization of ACFA. Using this, in § we prove Theorems
 and .

We thank the Nesin Mathematics Village in Şirince, Selçük,
İzmir, Turkey, for hosting the workshop in July, , where
these results were worked out; and Rahim Moosa and Thomas
Scanlon, for organizing the workshop; and Moshe Kamensky
and Piotr Kowalski, who also participated.





 Fields with an automorphism and a

valuation

A signature sufficient for a first-order axiomatization of fields
with an automorphism and a valuation is the signature
{+,−,×, 0, 1} of fields, augmented with

) a singulary operator σ for the automorphism and
) a singulary predicate ∈O for membership in the valua-

tion ring.
We shall write the last two symbols after their arguments.
The fields with an automorphism and a valuation are then
axiomatized by the field axioms, along with axioms

(x+ y)σ = xσ + yσ, (x · y)σ = xσ · yσ, ∃y yσ = x

for a surjective endomorphism (which for a field is an auto-
morphism), and axioms

0 ∈ O,

x ∈ O ∧ y ∈ O ⇒ −x ∈ O ∧ x+ y ∈ O ∧ x · y ∈ O,

∃y (x /∈ O ⇒ x · y = 1 ∧ y ∈ O)

for a valuation ring. It will be our habit, as here, to suppress
outer universal quantifiers. For convenience, we introduce a
singulary predicate ∈M for membership in the unique maxi-
mal ideal of the valuation ring. This means requiring

x ∈ M ⇔ ∃y
(
x = 0 ∨ (x · y = 1 ∧ y /∈ O)

)
,

or equivalently

x /∈ M ⇔ ∃y (x · y = 1 ∧ y ∈ O). ()





Because both the new predicate and its negation can thus
be given existential definitions, use of the predicate does not
affect the existence of a model-companion of the theory being
axiomatized [, Lem. ., p. ]. Let us denote this theory
by FAV; officially, its signature is

{+,−,×, 0, 1, σ,∈O,∈M}.

For later use, we note that the identity

x /∈ O ⇔ ∃y (x · y = 1 ∧ y ∈ M) ()

holds in FAV.
For a valuation as such, we can introduce a new sort having

signature {+, 0,∞, >}, so that the valuation is a surjective
function val from the original sort to the new sort that satisfies
also

val(x) + val(y) = val(x · y), ()

0 = val(1),

∞ = val(0),

val(x) > val(y) ⇔ ∃z (y · z = 1 ∧ x · z ∈ M).

These rules ensure that the new sort is an ordered additive
abelian group—the value group—with an additional element
∞ that is greater than all others, and

∞+ x = ∞ = x+∞.

Also, val restricts to a homomorphism from the multiplicative
group of units of the field onto the value group, and the kernel
of this homomorphism is O rM, which is the group of units





of the valuation ring O. Moreover,

val(x) > 0 ⇔ x ∈ O,

val(x) > 0 ⇔ x ∈ M,

val(x) < 0 ⇔ x 6∈ O.

As with the maximal ideal M, so with the value group, its
official status does not matter for our purposes. Officially we
shall not use the value group, and so we may write a typical
model of FAV as (K, σ,O). However, the value group may be
useful for thinking things through.

 Model-companions and

-completions

The (Robinson) diagram of a structure A in a signature S

is the theory diag(A), in the signature S (A) (where A is the
domain of A), of structures in which A embeds. This means
diag(A) is axiomatized by all of the quantifier-free sentences
of S with parameters from (the underlying set A of) A that
are true in A. Thus diag(A) is also axiomatized simply by the
atomic and negated atomic sentences of S (A) that are true
in A.

When it exists, a model-companion of a theory T0 is a
theory T1 in the same signature such that

) for each i, every model of Ti embeds in a model of T1−i,
that is, T1−i∪diag(A) is consistent whenever A is a model
of Ti; and

) T1 is model-complete, that is, T1∪diag(A) is complete
whenever A |= T1.





The model-companion of a theory is unique when it exists. It
was “introduced by Barwise, Eklof, Robinson, and Sabbagh in
” [, p. ], these four logicians being known collectively
as Eli Bers [, p. ]. The model-companion generalizes
an earlier notion of Robinson [, §., p. ]: the theory
T1 is a model-completion of T0 in case T0 ⊆ T1 and T1 ∪
diag(A) is consistent and complete whenever A |= T0. If T0
has the model-companion T1, then T1 is a model-completion
of T0 just in case T0 has the amalgamation property, that
is, two models having a common submodel have a common
supermodel (this is an exercise in Hodges [, §., exer. , p.
] attributed to Eli Bers [, Lem. ., p. ]).

We say that a theory is inductive if every union of a chain
of models is a model. Robinson’s name for such a theory was
σ-persistent; but since we are already using the symbol σ
for a field automorphism, we prefer the simpler term for the
kind of theory in question. By the Chang–Łoś–Suszko Theo-
rem [, .., p. ], A theory T is inductive if and only if
it is precisely the theory T∀∃ axiomatized by the ∀∃ (or ∀2)
consequences of T .

By a system we shall mean a (finite) conjunction of atomic
and negated atomic formulas. For theories, having a model-
companion or -completion means having an appropriate con-
dition for when systems over a given model have solutions in
a larger model. We recall first Robinson’s equivalent formu-
lation of when inductive theories have model-completions; we
review also the proof, for the sake of the variations that we
shall state and use.

Theorem  (Robinson [, §., p. ]). For an inductive
theory T to have a model-completion, a sufficient and neces-
sary condition is that, for every system ϕ(x, z) in the signa-





ture of T , there is a quantifier-free formula ϑ(x,y) in that
signature such that, for all models M of T , for all tuples a of
parameters from M having the same length as x, the following
conditions are equivalent:

(i) ϕ(a, z) is soluble in some model of T ∪ diag(M),
(ii) ϑ(a,y) is soluble in M itself.

When such ϑ do exist, then the model-completion of T is the
theory T ∗ axiomatized by the sentences

∃y ϑ(x,y) ⇒ ∃z ϕ(x, z), ()

along with axioms for T itself.

The sentence () is equivalent to the ∀∃ sentence
∃z

(
ϑ(x,y) ⇒ ϕ(x, z)

)
, outer universal quantifiers being sup-

pressed.

Proof of Robinson’s theorem. For the necessity of the given
condition, suppose T has the model-completion T ∗. For ev-
ery system ϕ(x, z) in the signature of T , for every model M
of T , for every tuple a of parameters from M such that (i)
holds, since every model of T embeds in a model of T ∗, we can
conclude from the completeness of T ∗ ∪ diag(M) that

T ∗ ∪ diag(M) ⊢ ∃z ϕ(a, z).

By Compactness and the Lemma on Constants [, .., p.
], there is a quantifier-free formula ϑ(M,a)(x,y) of the signa-
ture of T such that

T ∗ ⊢ ∃y ϑ(M,a)(x,y) ⇒ ∃z ϕ(x, z). ()

By Compactness again, for the given system ϕ, there is a dis-
junction ϑ of finitely many of the formulas ϑ(M,a) such that for





every model M of T , for every tuple a of parameters from M
having the length of x, if (i), then (ii). If conversely (ii), then
ϕ(a, z) is soluble in every model of T ∗ ∪ diag(M), by (); but
such a model is a model of T ∪ diag(M), and so (i) holds.

For the sufficiency of Robinson’s condition, we first show
that every model M of T embeds in a model of the theory T ∗

having the axioms () in addition to those of T . Here we shall
use (ii) implies (i), but not the converse. For every system
ϕ(x, z) in the signature of T , for all a and b from M such
that M |= ϑ(a, b), for some model N of T ∪ diag(M), the
sentence

∃z ϕ(a, z)

is true in N. This sentence being existential and thus preserved
in larger models, by Zorn’s Lemma and inductivity of T , we
can move the last of the three bold quantifiers to the front: in
some model M′ of T ∪diag(M), for all systems ϕ(x, z), for all
a and b from M , the sentence

∃z
(
ϑ(a, b) ⇒ ϕ(a, z)

)
.

is true in N. Now we can form the chain

M ⊆ M′ ⊆ M′′ ⊆ · · · ,

whose limit is a model of T ∗. Thus T ∗∪diag(M) is consistent.
We now show T ∗ ∪ diag(M) is complete by induction on

the complexity of sentences. The theory is complete with re-
spect to existential sentences, namely ∃1 sentences, since (i)
implies (ii). Indeed, suppose the sentence ∃z ϕ(a, z) is true
in some model of T ∗ ∪ diag(M), where ϕ is quantifier-free in
the signature of T , and a is from M . Since ϕ is a disjunction
of systems, it is enough to assume ϕ itself is a system. Since





T ⊆ T ∗, we have (i) and therefore (ii). Since the formula ϑ
here is quantifier-free, the sentence ϑ(a, b) belongs to diag(M)
for some b from M . Since the sentence () is an axiom of T ∗,
we conclude

T ∗ ∪ diag(M) ⊢ ∃y ϕ(a,y).

Thus T ∗ ∪ diag(M) is complete with respect to ∃1 sentences.
Suppose now that for some positive integer n, for all models

M of T , the theory T ∗ ∪ diag(M) is complete with respect to
∃n sentences. For an arbitrary model M of T , let ϕ(x, z) be
an ∀n formula, and let a be a tuple of parameters from M such
that the ∃n+1 sentence ∃z ϕ(a, z) is true in some model N of
T ∗ ∪ diag(M). Then for some c from N , the sentence ϕ(a, c)
is true in N. Since N |= T , by inductive hypothesis we have

T ∗ ∪ diag(N) ⊢ ∃z ϕ(a, z).

By Compactness, there is a quantifier-free formula ψ(x,y)
such that

N |= ∃y ψ(a,y), T ∗ ⊢ ∃y ψ(x,y) ⇒ ∃z ϕ(x, z).

Since again N is a model of T ∗ ∪ diag(M), which is complete
with respect to existential sentences, we can conclude

T ∗ ∪ diag(M) ⊢ ∃z ϕ(a, z).

Thus T ∗∪diag(M) is complete with respect to ∃n+1 sentences.
By induction, T ∗ ∪ diag(M) is complete.

A model M of a theory T is existentially closed if T ∪
diag(M) is complete with respect to existential formulas. For
Theorem  then, the proof of completeness of T ∗ ∪ diag(M) is
a generalization of the proof of the following.





Porism  (Robinson’s Test [, .., p. ]). A theory T is
model-complete, provided that all of its models are existentially
closed.

For an inductive theory T with a model M, for every sys-
tem ϕ(x, z) in the signature of T , for all a from M , for
some model N of T ∪diag(M), if T ∪diag(M)∪{∃z ϕ(a, z)}
is consistent, then ϕ(a, z) is solved in N. By the method of
the proof that every model of T embeds in a model of T ∗, we
can again put the last bold quantifier in front and go on to
obtain the following.

Porism . Every model of an inductive theory embeds in an
existentially closed model.

The two porisms lead to the following result, now standard
[, .., p. ].

Theorem  (Eklof and Sabbagh [, .–, pp. –]). An
inductive theory T has a model companion T ∗ if and only if
the models of T ∗ are precisely the existentially closed models
of T .

Robinson used Theorem  to prove that the theory DF0

of fields of characteristic 0 with a derivation had a model-
completion, DCF0. But there are simpler practical approaches
to obtaining model-completions; simpler still, if all we want
are model-companions. First of all, in the proof of Theorem ,
we did not really need to extract the finite disjunction ϑ from
all of the formulas ϑ(M,a). Moreover, the proof that models of
T embed in models of T ∗ did not require the formulas ϑ to
be quantifier-free. Neither is this required for the observation
that the models of T ∗ are the existentially closed models of T .
Thus we have the following.





Porism . For an inductive theory T to have a model-
completion, a sufficient and necessary condition is that, for
every system ϕ(x, z) in the signature of T , there is a set Θ
of quantifier-free formulas ϑ(x,y) in that signature such that,
for all models M of T , for all tuples a of parameters from
M having the same length as x, the following conditions are
equivalent:

(i) ϕ(a, z) is soluble in some model of T ∪ diag(M),
(ii) ϑ(a,y) is soluble in M itself for some ϑ in Θ.

When such Θ do exist, then the model-completion of T is the
theory T ∗ axiomatized by the sentences (), where ϑ ranges
over Θ, along with axioms for T itself. If the formulas in the
sets Θ are not necessarily quantifier-free, the theory T ∗ is still
the model-companion of T .

Simpler axiomatizations than Robinson’s for DCF0 were
found by showing that the axioms need not explicitly concern
all systems [, ]. The general observation can be formulated
as follows.

Porism . Theorem  and its Porism  still hold, even if ϕ is
constrained to range over a collection of systems containing,

) for each system ψ(x,u) in the signature of T ,
) for each model M of T ,
) for each tuple a of parameters from M ,

a system ϕ(x,u, v) such that, if ∃u ψ(a,u) is consistent with
T ∪ diag(M), then so is ∃u ∃v ϕ(a,u, v), and

T ∪ diag(M) ⊢ ϕ(a,u, v) ⇒ ψ(a,u). ()

We may refer to ϕ(x,u, v) as a refinement of the system
ψ(x,u). We shall apply Porism  when T is FAV or, as in the
next section, the theory of difference fields.





 Difference fields

A difference field is a field equipped with an automorphism.
As was observed in the introduction, the theory of difference
fields in the signature {+,−,×, 0, 1, σ} has a model-compan-
ion, called ACFA. Perhaps any axiomatization of ACFA can be
made to serve present purposes; we shall derive the one that
we shall use from Theorem . which is in the style of [,
Thm ., p. ].

The following lemma will be the reason for condition ()
in Theorem . For notational economy, our set ω of natural
numbers is the set of von Neumann natural numbers, where

n = {0, . . . , n− 1} = {i : i < n}.

Fact . Suppose (K, σ) is a difference field, and I is a prime
ideal of the polynomial ring K[Xj : j < n], and τ is an embed-
ding of m in n. Write Xj + I as aj whenever j < n. For σ
to extend to an automorphism of a field that includes K[a] so
that ai

σ = aτ(i) whenever i < m, it is necessary and sufficient
that

f(ai : i < m) = 0 ⇐⇒ f(aτ(i) : i < m) = 0

for all f in K[Xi : i < m].

Theorem . A difference-field (K, σ) is existentially closed
among all difference fields if and only if,

) for all m and n in ω such that m 6 n,
) for every injective function τ from m into n,
) for every finite subset I0 of K[Xj : j < n],

if I0 generates a prime ideal (I0) of K[Xj : j < n], and

{
f(Xτ(i) : i < m) : f ∈ (I0) ∩K[Xi : i < m]

}

= (I0) ∩K[Xτ(i) : i < m], ()





then the system
∧

f∈I0

f = 0 ∧
∧

i<m

Xi
σ = Xτ(i) ()

has a solution in K (the case m = 0 ensures that K is alge-
braically closed).

Proof. We refine an arbitrary system of difference equations
and inequations as follows. Over a difference field (K, σ), sup-
pose a system has a solution (ai : i < k) from some larger
model. Whenever i < j < k, we may assume that ai 6= aj
and that the system has the inequation Xi 6= Xj as one of
its conjuncts. We obtain a refinement having the form () as
follows.

. In non-constant terms, repeatly make the replacements

of (t + u)σ, (−t)σ, (t · u)σ

with tσ + uσ, −tσ, tσ · uσ

respectively, until σ is applied only to variables and con-
stant terms.

. For every atomic or negated atomic formula ϕ of the
system that is not of the form Xσ = Y , but in which Xσ

appears as an argument, replace that argument with a
new variable Y , and introduce the new equation Xσ =
Y .

. If for some i less than k, there is not already an equation
of the form Xi

σ = Y , then introduce such an equation,
Y being a new variable.

. Replace any polynomial inequation f 6= g with

(f − g) ·X = 1,

where X is a new variable.





After indexing the new variables appropriately, we have that
) for some m and n in ω such that m 6 n,
) for some function τ from m into n,
) for some finite subset I0 of K[Xj : j < n],

our system has the form of (). (It may be that some of the
hidden parameters are part of compound terms that involve
σ; but such terms can just be understood as standing for the
appropriate elements of K.) If τ is not injective, then the
system must have equations Xi

σ = Xℓ and Xj
σ = Xℓ, where

k 6 i < j < m; but these equations imply Xi = Xj, and so
we can replace Xj throughout with Xi. Thus we may assume
τ is injective. In case the ideal generated by I0 is not prime,
still, for some (ai : k 6 i < n) in the larger difference field,
the new system has the solution (ai : i < n), and we can then
add enough equations f(Xj : j < n) = 0 that are satisfied by
(ai : i < n) so that I0 becomes a set of generators of a prime
ideal P, and (ai : i < n) is a generic point overK of the zero-set
of P. In this case () is satisfied. For every solution (bi : i < n)
of the latest system, (bi : i < k) solves the original system.
Thus if (K, σ) meets the given conditions, it is existentially
closed as a difference field.

Conversely, under the given conditions, every system of the
form () is indeed consistent with (K, σ), by Fact : if a is a
generic zero of I0, we can extend σ to an isomorphism from
K(ai : i < m) to K(aτ(i) : i < m), and then to an automor-
phism of a field including K(a). In this way, a solves (), so
this system must have a solution in K, if (K, σ) is existentially
closed as a difference field.

If we did not already know that ACFA existed, the foregoing
theorem would prove it by Porism , since the conditions that
() must satisfy are first-order. This is so, because of the





existence of appropriate bounds on degrees of polynomials, as
established in []. In particular, for all n and r in ω, there
are bounds s and t in ω such that, for all fields K, for all m
in ω, for every ideal I of K[Xj : j < n] generated by a set
{fi : i < m}, each fi having degree r or less,

) the primeness of the ideal can be established by showing

gh ∈ I & g /∈ I =⇒ h ∈ I

for all polynomials g and h in K[Xj : j < n] having de-
gree s or less, and

) membership in I by polynomials like gh having degree 2s
or less is established by polynomials of degree t or less,
in the sense that, if indeed gh ∈ I, then gh =

∑
i<m gi ·fi

for some gi having degree t or less.
Because ACF admits full elimination of quantifiers, ACFA is
the model-completion of the theory of difference fields that
are algebraically closed as fields (compare to the last sentence
in Porism ).

 A model-completion

We now consider the class of models (K, σ,O) of FAV such
that

∃x x /∈ O

and,
) for all m and n in ω such that m 6 n,
) for every injective function τ from m into n,
) for every finite subset I0 of O[Xj : j < n],
) for all subsets λ of n and κ of λ,

if





a) I0 generates a prime ideal (I0) of K[Xj : j < n] such that
the condition () in Theorem  holds, and

b) when S is the ring O
[
I0 ∪ {Xℓ : ℓ ∈ λ}

]
, the ideal of S

generated by the set M ∪ I0 ∪ {Xk : k ∈ κ} is proper,
that is, (

M ∪ I0 ∪ {Xk : k ∈ κ}
)
S ( S, ()

then K contains a common solution to the system () in The-
orem  and the system

∧

ℓ∈λ

Xℓ ∈ O ∧
∧

k∈κ

Xk ∈ M. ()

The case m = 0 = λ ensures that K is algebraically closed.
As the existentially closed difference-fields, characterized by

Theorem , are just the models of a certain theory ACFA, so
the models of FAV just described are the models of a certain
theory, which we shall call FAV∗. In particular, the condition
() is first-order. Indeed, this condition means there are no gf
and hk in S such that

∑

f∈I0

gf · f +
∑

k∈κ

hk ·Xk ≡ 1 (mod M). ()

The ring S is, for some subset I1 of I0, isomorphic to the
quotient of the polynomial ring O[{Yf : f ∈ I1}∪{Xℓ : ℓ ∈ λ}]
by an element of bounded degree. We can also work over the
residue field O/M, instead of O. Thus, by [], for we can
bound the degrees of the gf and hk that would make ()
true.

Lemma . Every model of FAV embeds in a model of FAV∗.

Proof. Let (K, σ,O) be a model of FAV such that,





) for some m and n in ω, where m 6 n,
) for some injective function τ from m into n,
) for some finite subset I0 of O[Xj : j < n],
) for some sets λ and κ, where κ ⊆ λ ⊆ n,

we have that
a) I0 generates a prime ideal (I0) of K[Xj : j < n] such that

the condition () in Theorem  holds, and
b) when S is the ring O

[
I0 ∪ {Xℓ : ℓ ∈ λ}

]
, then () holds.

We already know, as in the proof of Theorem , that the sys-
tem () has a solution a in a difference field (L, σ̃) of which
(K, σ) is a substructure; and we may require a to be a generic
solution of the field-theoretic part

∧

f∈I0

f = 0

of the system. We now show that L has a valuation ring Õ

such that
K ∩ Õ = O

and a solves (), that is,
∧

ℓ∈λ

aℓ ∈ Õ ∧
∧

k∈κ

ak ∈ M̃. ()

We can do this by refining the proof of Chevalley’s theorem on
extending valuations (for which see [, Thm .., p. ]), or
simply by using a refinement [, Thm , p. ] of the theorem
itself. By this refinement, the sub-ring S = O[I0∪{Xℓ : ℓ ∈ λ}]
of K(Xj : j < n) has a prime ideal P that includes the proper
ideal generated by M ∪ I0 ∪ {Xk : k ∈ κ}; therefore some
valuation ring O∗ of K(Xj : j < n) with maximal ideal M∗

satisfies

S ⊆ O∗, P = M∗ ∩ S.





In particular,

{Xℓ : ℓ ∈ λ} ⊆ O∗, I0 ∪ {Xk : k ∈ κ} ⊆ M∗, M∗ ∩O = M.

Now we can understand O∗/(I0)O
∗ as a valuation ring of

K(a). By Chevalley’s Theorem, we can extend this valuation
ring to a valuation ring Õ of L. In this case () holds.

Lemma . FAV
∗ is model complete.

Proof. We proceed as in the proof of Theorem . Over a model
of FAV, supposing a system of atomic and negated atomic for-
mulas has a solution (ai : i < k) from some larger model, we
transform the system into the conjunction of a system of the
form () and a system of the form (). We proceed as before,
but now, since formulas f ∈ O and f ∈ M and their negations
may appear, we can eliminate negations by applying () and
(), and we can replace f ∈ O and f ∈ M themselves with
X ∈ O ∧ f = X and X ∈ M ∧ f = X respectively, where X
is a new variable.

Theorem . FAV
∗ is the model companion of FAV and the

model completion of the theory of models of FAV whose fields
are algebraically closed.

Proof. The first part is the content of Lemmas  and . When
the underlying field is required to be algebraically closed, then,
by quantifier-elimination in the theory of such fields, the con-
ditions that the systems () and () are to meet are given by
a quantifier-free formula.

Theorem . The theory of models of ACFA that also have
valuations is not the model companion of FAV.





Proof. We show that there is a model (K, σ,O) of FAV that is
not a model of FAV∗, although the reduct (K, σ) is a model of
ACFA.

It is known [] that every nonprincipal ultraproduct of the
algebraic closures of the fields of prime order, each equipped
with its Frobenius automorphism, is a model of ACFA. Now
let

(K, σ,O) =
∏

p

(
Fp(T )

alg, x 7→ xp,OT

)
/U

for some nonprincipal ultrafilter U on the set of primes and
some valuation ring OT of each Fp(T ). For example, OT might
be the T -adic valuation ring, consisting of those elements of
Fp(T ) that, considered as functions of T , are well-defined at
0. The structure is as desired since by () it satisfies

∀x
(
val(x) > 0 ⇒ val(xσ) > 0

)
,

that is, ∀x
(
x ∈ M ⇒ xσ ∈ M

)
, while in every model of FAV∗

the system
x ∈ M ∧ xσ /∈ M

is soluble.
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