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Abstract
We characterize the category of Sambin’s positive topologies as the result of the
Grothendieck construction applied to a doctrine over the category Loc of locales. We
then construct an adjunction between the category of positive topologies and that of
topological spaces Top, and show that the well-known adjunction between Top and
Loc factors through the constructed adjunction.
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1 Introduction

Positive topologies are introduced by Sambin [22] (see also [7]) as a natural structure
for developing constructive pointfree topology. The category PTop of positive topolo-
gies can be regarded as a natural extension of the category Loc of locales; actually
Loc is a reflective subcategory of PTop (see e.g. [7]). In a predicative setting, the role
of a locale is played by a formal cover (S, �), sometimes called a formal topology,
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968 F. Ciraulo et al.

which can be read as a presentation of a frame by generators and relations, see e.g.
[5]. A positive topology is then a formal cover endowed with a positivity relation, that
is a relation � between S and P(S) such that for every a ∈ S and U , V ⊆ S

1. a � U �⇒ a ∈ U ;
2. a � U ∧ (∀b ∈ S)(b � U → b ∈ V ) �⇒ a � V ;
3. a �U ∧ a � V �⇒ (∃b ∈ U )(b � V ).

The motivating example of a positive topology is built from a topological space in
such a way as to keep the information about its closed subsets (classically, all such
information is already encoded by the opens); see Sect. 5.2.

In [8] the first author and Vickers characterize positive topologies as locales
endowed with a suitable family of suplattice homomorphisms. Here we show that
this characterization can be organized into a fibration arising from a doctrine1 over
Loc via the so-called Grothendieck construction (see, e.g. [11]).

We will then use this representation of PTop to give an adjunction between the
category Top of topological spaces and PTop; in particular, the notion of sobriety
provided by this adjunction coincides with the one introduced in [22], which is known
[1] to be constructively weaker than the notion of sobriety provided by the usual
Top–Loc adjunction [13]. Moreover, the Top–Loc adjunction can be factorized as the
composition of the Top–PTop adjunction above and the reflection PTop–Loc.

As a by-product, we get the completeness and cocompleteness of the category
PTop and of the wider category BTop of basic topologies, which can be similarly
characterized as a Grothendieck construction over the category of suplattices. This
completes the picture in [10], where the pointwise counterparts of BTop and PTop
were shown to be complete and cocomplete.

Our foundational framework is intuitionistic and impredicative, like that provided
by the internal language of a topos. We use the term “constructive” in this sense.

2 Basic topologies and positive topologies

A suplattice (or complete join semilattice) is a poset (L,≤)with all joins, that is,
∨

X
exists for all subsets X ⊆ L .2 A map f : L → M between two suplattices preserves
joins if

f
( ∨

i∈I
xi

) =
∨

i∈I
f (xi )

1 In this paper we will always use the term “doctrine” to mean an indexed preorder, that is a contravariant
functor towards the category PreOrd of preorders and monotone maps. The “logical” intuition behind a
doctrine Q : C

op → PreOrd is that an object A of C can be seen as a type, an element ϕ ∈ Q(A) can
be seen as a proposition in context ϕ(x) [x : A], an arrow f : B → A of C represents a term in context
f (y) : A [y : B], and the map Q( f ) represents the substitution operation ϕ(x) �→ ϕ( f (y)).
Such a categorical approach to logic, which dates back to Lawvere [16], is still a topic of interest aswitnessed
by many recent works such as [17,18] and [9].
2 In particular, L has least element 0, namely the empty join. Moreover, L has also all meets and, in
particular, the top element 1, namely the empty meet.

123



Factorizing the Top–Loc adjunction through positive topologies 969

for every family (xi )i∈I in L . Suplattices and join-preserving maps form a category
SL. We hence refer to join-preserving maps between suplattices as suplattice homo-
morphisms.

If X is a set and L is (the carrier of) a suplattice, then the collection of maps
Set(X , L) has a natural suplattice structure where joins are computed pointwise, that
is,

(∨

i∈I
ϕi

)
(x) :=

∨

i∈I

(
ϕi (x)

)
.

If X has a suplattice structure, then SL(X , L) is a sub-suplattice of Set(X , L).
A base for a suplattice L is a subset S ⊆ L such that p =

∨{a ∈ S | a ≤ p} for all
p ∈ L . For instance, the powersetP(S) of a set S is a suplattice (with respect to union)
and a base for P(S) is given by all singletons.3 Given a base S, let � ⊆ S × P(S)

be the relation defined as a � U iff a ≤ ∨
U . It is easy to check that � satisfies the

following properties:

1. a ∈ U �⇒ a �U ;
2. a �U ∧ (∀u ∈ U )(u � V ) �⇒ a � V ;

for every a ∈ S and U , V ⊆ S. A pair (S, �) satisfying 1 and 2 above is called a
basic cover. A basic cover has to be understood as a presentation of a suplattice by
generators and relations. Indeed, any basic cover induces an equivalence relation =�
on P(S) where U =� V is

(∀u ∈ U )(u � V ) ∧ (∀v ∈ V )(v �U ).

The quotient P(S)/=� is a suplattice (with a base indexed by S) where joins
∨

i [Ui ]
can be computed as [⋃i Ui ]. To complete the picture, one should note that the basic
cover induced by a suplattice L (with any base S) presents a suplattice which is
isomorphic to L itself.

Two basic covers S1 = (S1, �1) and S2 = (S2, �2) are isomorphic if they induce
isomorphic suplattices. More generally we say that a morphism from S1 to S2 is a
suplattice homomorphism from P(S2)/ =�2 to P(S1)/ =�1 .4 This corresponds to
having a relation s ⊆ S1 × S2 which respects the covers in the following sense:

if a s b and b �2 V , then a �1 s−V

where s−V := {x ∈ S1 | (∃v ∈ V )(x s v)}. Actually, the same homomorphism
corresponds to several relations which we want to consider equivalent; explicitly, two
relations s and s′ are equivalent if s−V =�1 s′−V for all V ⊆ S2.

Basic covers and their morphisms form a category which is dual to the category
SL of suplattices, that is, a category equivalent to SLop. We refer the reader to [2] for
further details.

3 Incidentally, note that P(S) is the free suplattice over the set S.
4 Contravariance is chosen to match the direction of locales.
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2.1 Basic topologies

A basic topology [22] is a triple (S, �, �) where (S, �) is a basic cover and � is a
relation between S and P(S) such that

1. a � U �⇒ a ∈ U ;
2. a � U ∧ (∀b ∈ S)(b � U → b ∈ V ) �⇒ a � V ;
3. a �U ∧ a � V �⇒ (∃b ∈ U )(b � V ).

The relation � is called a positivity relation on (S, �). Thus, a basic topology can
be regarded as a suplattice together with the extra structure specified by a positivity
relation.

The powerset Ω := P(1) of a singleton can be identified with the algebra of
propositions up to logical equivalence.5 Condition 3. in the definition above says that
the map6

ϕZ : P(S)/ =� −→ Ω

[U ] �−→ U � Z

is well-defined if Z is of the form {a ∈ S | a � V }, in which case ϕZ is a suplattice
homomorphism. Given any positivity relation� on (S, �), the collection of all such ϕZ

forms a sub-suplattice of SL(P(S)/=� , Ω). The first author andVickers [8, Theorem
2.3] have shown that there is a bijective correspondence between positivity relations
on (S, �) and sub-suplattices of SL(P(S)/=� , Ω). Thus, a basic topology can be
identified with a pair (L, Φ) where L is a suplattice and Φ is a sub-suplattice of the
collection SL(L,Ω) of suplattice homomorphisms from L to Ω .7

LetS1 = (S1, �1, �1) andS2 = (S2, �2, �2) be basic topologies, and (L1, Φ1) and
(L2, Φ2) be the corresponding suplattices together with sub-suplattices of suplattice
homomorphisms toΩ . According to [22], amorphismbetweenbasic topologiesS1 and
S2 is a morphism s between (S1, �1) and (S2, �2) satisfying the following additional
condition

if a s b and a �1 U , then b �2 s U

for all a ∈ S1, b ∈ S2 and U ⊆ S1, where s U := {y ∈ S2 | (∃ u ∈ U )(u s y)}.
This corresponds to having a suplattice homomorphism f : L2 → L1 such that
Φ1 ◦ f ⊆ Φ2, where Φ1 ◦ f := {ϕ ◦ f | ϕ ∈ Φ1}; in other words

if L1
ϕ−→ Ω belongs to Φ1, then L2

f−→ L1
ϕ−→ Ω belongs to Φ2

5 Two relevant facts about Ω will be essential later: (i) for every a, b ∈ Ω , a ≤ b if and only if a = 1
implies b = 1; (ii) for every set-indexed family (ai )i∈I of elements of Ω ,

∨
i∈I ai = 1 if and only if there

exists i ∈ I such that ai = 1.
6 ForU , V ⊆ S, we use Sambin’s “overlap” symbolU � V to mean thatU ∩V is inhabited. ClearlyU � V
implies U ∩ V �= ∅. The converse is equivalent to the law of excluded middle, as it is clear by considering
the case of Ω . In that case, p � q means p = q = 1, and so p � p is just p = 1. On the contrary, p∩ p �= 0
is p �= 0, that is (¬¬p) = 1.
7 When L is a frame, suplattice homomorphisms from L toΩ are known to correspond to the overt weakly
closed sublocales of L [4] (classically, these are just the closed sublocales).
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Factorizing the Top–Loc adjunction through positive topologies 971

(see [8, Proposition 2.9]).
Let BTop be the category whose objects are pairs (L, Φ) of a suplattice L and

a sub-suplattice Φ of SL(L,Ω), and whose arrows f : (L1, Φ1) → (L2, Φ2) are
suplattice homomorphisms f : L2 → L1 such that Φ1 ◦ f ⊆ Φ2. Apart from the
impredicativity involved, BTop is equivalent to the category of basic topologies in
[22].

2.2 Positive topologies

A positive topology [22] is a basic topology (S, �, �) such that the underlying basic
cover (S, �) is a formal cover [5] (sometimes called a formal topology). This means
that the suplattice presented by (S, �) is a frame, that is, binary meets distribute over
arbitrary joins.

By an observation similar to the one we made for a basic topology in Sect. 2.1, a
positive topology can be identified with a pair (L, Φ) where L is a frame and Φ is a
sub-suplattice of SL(L,Ω). A morphism between such pairs (L, Φ) and (M, Ψ ) is
a frame homomorphism f : M → L such that Φ ◦ f ⊆ Ψ , which corresponds to a
formal map between positive topologies as described in [22].

Let PTop be the subcategory of BTop consisting of those objects whose underly-
ing suplattice is a frame and arrows which are frame homomorphisms between the
underlying frames. The category PTop is thus equivalent to that of positive topologies
in [22].

3 A categorical characterization of BTop and PTop

In this section, we are going to give a categorical characterization ofBTop andPTop in
terms ofGrothendieck constructions over two doctrines on the opposite of the category
of suplattices and on the category of locales, respectively.

3.1 A doctrine on SLop

For L a suplattice, the (contravariant) hom-functor SL(_,L) : SLop → Set can be
also regarded as a functor

SL(_,L) : SL → SLop

where, for f ∈ SL(X ,Y ) and ϕ ∈ SL(Y , L), we have SL( f , L)(ϕ) = ϕ ◦ f .
Another well-known contravariant functor is the subobject functor

Sub : SLop → PreOrd

which sends each suplattice L to the preorder (actually a poset)Sub(L)of subobjects of
L in SL. Recall that a suboject of L can be represented as a subset I ⊆ L closed under
joins in L , that is a sub-suplattice of L . Given f : M → L in SL and I ∈ Sub(L),
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972 F. Ciraulo et al.

Sub( f ) sends I to the pullback {x ∈ M | f (x) ∈ I } of I along f .

Sub( f )(I ) I

M
f

L

The composition Sub ◦ SL(_,Ω) is a functor

P : SL → PreOrd

which, of course, can also be read as a contravariant functor on SLop

P : (SLop)op → PreOrd,

that is, a doctrine on SLop.
As the result of the so-called Grothendieck construction [11, Definition 1.10.1],8

we get a category
∫
P whose objects are pairs (L, Φ) with L a suplattice and Φ a

subobject of SL(L,Ω) in SL. An arrow (L, Φ) → (M, Ψ ) in
∫
P is a suplattice

homomorphism f : M → L such that

Φ ⊆ P( f )(Ψ ).

Since P( f )(Ψ ) = {ϕ ∈ SL(L,Ω) | ϕ ◦ f ∈ Ψ } by definition, such a condition is
equivalent to the following

Φ ◦ f ⊆ Ψ

Therefore,
∫
P is exactly the category BTop of basic topologies which we introduced

in Sect. 2.1 above.
This construction yields a forgetful functor U : ∫

P → SLop, which is in fact a
fibration (see [11]). This functor has a right adjoint, the constant object functor

� : SLop →
∫

P,

8 The Grothendieck construction (which is formulated in [11] for the general case of an indexed category)
applied to a doctrine Q : C

op → PreOrd provides a category
∫
Q where objects are pairs (A, ϕ) with A

an object of C and ϕ ∈ Q(A), and arrows from (A, ϕ) to (B, ψ) are arrows f : A → B of C such that
ϕ ≤ Q( f )(ψ) in Q(A) (with composition of arrows inherited from C).
Recalling what we said in footnote 1, one can understand an object (A, ϕ) of

∫
Q as an object of C together

with a distinguished “subset” {x ∈ A| ϕ} obtained by separation by means of the proposition ϕ, and an
arrow f : (A, ϕ) → (B, ψ) as an operation from A to B such that the image of {x ∈ A| ϕ} is included in
{x ∈ B| ψ}.
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Factorizing the Top–Loc adjunction through positive topologies 973

which sends each suplattice L to the object (L,SL(L,Ω)) and each f : L → M in
SLop to itself as an arrow from �(L) to �(M) in

∫
P. So � is full.

BTop = ∫
P

U

⊥ SLop

�

Moreover U ◦ � is just the identity functor on SLop. Thus, � is full, faithful and
injective on objects, and so SLop can be regarded as a reflective subcategory of

∫
P.

In this way, we recover the result in [6].
Note that the monad T induced by the adjunction U � � is an idempotent monad.

By the results in Sect. 4.2 of [3], we have that SLop is equivalent both to the category
of free algebras (the Kleisli category) and to the category of algebras (the Eilenberg–
Moore category) on T . Hence the adjunction U � � is monadic.

Remark Since in a suplattice arbitrarymeets always exist, if (L,≤) is a suplattice, then
(L,≤)op := (L,≥) is a suplattice as well. Moreover, every suplattice homomorphism
f : X → Y has a right adjoint (as a monotone function) f op : Y → X which
preserves all meets. This determines a contravariant functor (_)op, which is in fact an
isomorphism between SL and SLop. In particular, SL(X ,Y ) ∼= SL(Yop, Xop) for all
X and Y .

Classically, SL(_,Ω) is naturally isomorphic to the functor (_)op because Ωop ∼=
Ω so that SL(L,Ω) ∼= SL(Ω, Lop) ∼= Lop.9 Therefore, for every L , P(L) =
Sub(SL(L,Ω)) ∼= Sub(Lop)which is isomorphic to the lattice of suplattice quotients
of L . In other words, an object (L, Φ) corresponds to an epimorphism e : L → Φop,
and an arrow (L, Φ) → (M, Ψ ) is a suplattice homomorphism f : M → L such
that e ◦ f : M → Φop preserves the congruence relation on M corresponding
to Ψ .

3.2 The case of frames (and locales)

The category Frm of frames is the subcategory of SL whose objects are frames and
whose arrows preserve finite meets (in addition to arbitrary joins). The category Loc
of locales is defined as Frmop. By restricting the functor P to Frm, we get a doctrine

P̃ : Locop = Frm −→ PreOrd

on Loc, which gives rise to a fibration U : ∫
P̃ → Loc fitting in a pullback square of

categories as follows.

9 This cannot hold constructively, for if ϕ were an order-isomorphism between (Ω, ≤) and (Ω, ≥), then
we could prove ¬¬p ≤ p for every p ∈ Ω as follows. If ϕ(p) = 1 = ϕ(0), then p = 0 and so
ϕ(¬¬p) = ϕ(0) = 1. This shows that ϕ(p) = 1 implies ϕ(¬¬p) = 1, that is, ϕ(p) ≤ ϕ(¬¬p). Since ϕ

is an isomorphism, this would entail ¬¬p ≤ p.
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974 F. Ciraulo et al.

∫
P̃

U

∫
P

U

Loc SLop

Here
∫
P̃ is exactly the category PTop as introduced in Sect. 2.2.

As we have shown before in the case of SLop and
∫
P, there is an adjunctionU � �

between
∫
P̃ and Loc with � full, faithful and injective on objects. Thus, the category

Loc can be regarded as a reflective subcategory of PTop, as already shown in [7].

4 Weakly sober spaces

4.1 Irreducible closed subsets

The open sets of a topological space (X , τ ) form a frame with respect to set-theoretic
unions and intersections. A subset C ⊆ X is closed if

(∀I ∈ τ)(x ∈ I ⇒ C � I ) �⇒ x ∈ C

for all x ∈ X . The collection Closed(X , τ ) of closed subsets of (X , τ ) is a complete
lattice (where meets are given by intersections, and joins are given by closure of
unions), but it need not be a co-frame constructively.10

As usual, it makes sense to define the closure clD of a subset D ⊆ X as the
intersection of all closed subsets containing D.

Every closed subset C of X determines a map

ϕC : τ −→ Ω

I �−→ C � I

which preserves joins, that is, ϕC ∈ SL(τ,Ω). Note that ϕD makes sense also when
D is an arbitrary subset; however ϕD = ϕclD because I � D if and only if I � clD for
every I ∈ τ . So the mapping

Closed(X , τ ) −→ SL(τ,Ω)

C �−→ ϕC

is injective and preserves joins. Thus Closed(X , τ ) is a sub-suplattice of SL(τ,Ω).11

A closed subset C ⊆ X is irreducible if any of the following equivalent conditions
holds:

10 For a Brouwerian counterexample consider the discrete space and recall that the so-called “constant
domain axiom” ∀x(ϕ ∨ ψ) → ϕ ∨ ∀x ψ , with x not free in ϕ, is not provable constructively.
11 Classically, every ϕ ∈ SL(τ, Ω) is of the form ϕC : take C to be the closed subset X \⋃ {I ∈ τ | ϕ(I ) = 0}. Hence Closed(X , τ ) ∼= SL(τ, Ω). This cannot be the case constructively, as we
will see in Sect. 4.2.
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Factorizing the Top–Loc adjunction through positive topologies 975

1. ϕC preserves finite meets;
2. C is inhabited and for every I , J ∈ τ , if I � C and J � C , then (I ∩ J ) � C ;
3. {I ∈ τ | I � C} is a completely-prime filter of opens.

In other words, a closed subset C is irreducible if and only if ϕC is a frame homo-
morphism, that is, a point in the sense of locale theory. However we cannot show
constructively that all frame homomorphisms τ → Ω arise in this way; see Sect. 4.2.

Classically, C is irreducible if and only if it is non-empty and cannot be writ-
ten as a disjoint union of two non-empty closed subsets [13]; moreover {C ⊆
X | C is irreducible closed} can be identified with Frm(τ,Ω).

4.2 Weak sobriety

Recall that a space is T 0 or Kolmogorov if x = y follows from the assumption that
cl{x} = cl{y}. Since cl{x} is always irreducible, we have the following embeddings
for a T 0 space (X , τ ):

X ↪→ {C ⊆ X | C is irreducible closed} ↪→ Frm(τ,Ω).

A T 0 space is weakly sober if every irreducible closed subset is the closure of a
singleton, that is, if the embedding X ↪→ {C ⊆ X | C is irreducible closed} is a
bijection. It is sober if the embedding X ↪→ Frm(τ,Ω) is a bijection. Note that every
weakly sober space is sober classically.

Constructively, every T 2 space is weakly sober [1, Proposition 11.27], provided
that the T 2 separation property for (X , τ ) is understood as the following statement:
(∀I ∈ τ)(∀J ∈ τ)(x ∈ I ∧ y ∈ J −→ I � J ) −→ x = y, for all x, y ∈ X .

However, if every weakly sober space were sober, then the non-constructive
principle LPO (the Limited Principle of Omniscience) would be derivable [1, Propo-
sition 11.25]. Thus, we cannot prove that all ϕ ∈ SL(τ,Ω) are of the form ϕC for
some closed subset C ; otherwise Frm(τ,Ω) could be identified with the irreducible
closed subsets, which would make sobriety and weak sobriety coincide.

5 Factorizing the Top–Loc adjunction

The usual � � Pt adjunction between the category Top of topological spaces and the
category Loc of locales does not compose with the adjunction U � � between Loc
and PTop (=∫

P̃) to give an adjunction between Top and PTop.

Top
�

⊥ Loc
Pt �

⊥ PTop
U

Nevertheless, a meaningful adjunction between Top and PTop can be given, as
explained in the following, through which the usual Top–Loc adjunction factors.
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976 F. Ciraulo et al.

5.1 Points of a positive topology

The suplatticeΩ is an initial frame, that is, a terminal locale. Hence�(Ω) is a terminal
object in PTop. We define a point of a positive topology (L, Φ) as a global point
�(Ω) → (L, Φ) in PTop, and we write Pt+(L, Φ) instead of PTop(�(Ω), (L, Φ)).
Thus, a point of (L, Φ) is a frame homomorphism f : L → Ω such that SL(Ω,Ω) ◦
f ⊆ Φ. Since SL(Ω,Ω) contains the identity map, we have f ∈ Φ. Conversely, if
f ∈ Φ and ϕ ∈ SL(Ω,Ω), then we have ϕ ◦ f = ∨{g ∈ { f }| ϕ = idΩ } ∈ Φ. In
other words, the points of (L, Φ) are exactly those points of the locale L that are in
Φ. Hence, Pt+(L, Φ) can be regarded as a subspace of the topological space Pt(L).

The construction Pt+ can be extended to a functor from PTop to Top as follows.
Given an arrow (L, Φ) → (M, Ψ ) with underlying frame homomorphism f : M →
L , the continuous map Pt( f ) : Pt(L) → Pt(M), which sends a point p : L → Ω

to the point p ◦ f : M → Ω , can be restricted to a continuous map Pt+(L, Φ) →
Pt+(M, Ψ ) because Φ ◦ f ⊆ Ψ .

5.2 The canonical positive topology associated to a space

As shown in Sect. 4.1, the closed subsets Closed(X , τ ) of a topological space (X , τ )

can be seen as a sub-suplattice of SL(τ,Ω) via the mapping C �→ ϕC . Thus, we can
define a functor � : Top → PTop whose object part is

�(X , τ ) = (
τ, {ϕC | C is closed}).

For a continuous map f : (X , τX ) → (Y , τY ), the PTop-morphism �( f ) is just the
locale morphism corresponding to the frame homomorphism f −1 : τY → τX . This
makes sense because for any closed subset C ⊆ X , the suplattice homomorphism
ϕC ◦ f −1 : τY → Ω is precisely ϕD , where D = cl f (C).

5.3 The adjunction between Pt+ and3

Theorem The following hold:

1. Pt = Pt+ ◦ �;
2. � = U ◦ �;
3. � � Pt+.

As a consequence, the usual adjunction between Top and Loc factors through an
adjunction between PTop and Loc.

Top

�

�

⊥ PTop
Pt+

U

⊥ Loc
�

Pt
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Factorizing the Top–Loc adjunction through positive topologies 977

Proof For every locale L , Pt(L) = Pt(L) ∩ SL(L,Ω) = Pt+(�(L)), and for every
topological space (X , τ ), U(�(X , τ )) = τ = �(X , τ ). Hence 1 and 2 hold.

For 3, if f : �(X , τ ) → (L, Φ) in PTop, then one can define a continuous map f̃
from (X , τ ) to Pt+(L, Φ) as follows:

f̃ (x) := ϕcl{x} ◦ f ,

that is, for every y ∈ L , f̃ (x)(y) := cl{x} � f (y) ∈ Ω .
Conversely, if g is a continuous map from (X , τ ) to Pt+(L, Φ), then an arrow ĝ

from �(X , τ ) to (L, Φ) in PTop is defined as follows:

ĝ(y) := g−1({ϕ ∈ Pt(L) ∩ Φ | ϕ(y) = 1}) ∈ τ

for every y ∈ L . This is an arrow inPTop because it preserves arbitrary joins and finite
meets, and for every closed subset C ⊆ X we have ϕC ◦ ĝ =

∨{ϕ ∈ Pt+(L, Φ) | ϕ ∈
g(C)} ∈ Φ.

One can show that the maps (̃_) and (̂_) define a natural isomorphism between the
functors PTop(�(_), _) and Top(_ ,Pt+(_)). ��

SincePt+(�(X , τ )) is the space of irreducible closed subsets of X andPt(�(X , τ ))

is the space of frame homomorphisms from τ to Ω , a topological space (X , τ ) is
weakly sober when the unit of the adjunction � � Pt+ gives a homeomorphism
between (X , τ ) and Pt+(�(X , τ )), while it is sober when the unit of the adjunction
� � Pt gives a homeomorphism between (X , τ ) and Pt(�(X , τ )).

Classically, SL(τ,Ω) = {ϕC | C is closed} holds (see footnote 11). Hence � =
� ◦ �, and thus Pt+ ◦ � = Pt+ ◦ � ◦ � = Pt ◦ �. Therefore, as already noted,
sobriety and weak sobriety coincide classically.

Remark Apositivity relation on a formal cover is also called abinary positivity [21,22],
which is often explained as generalization of a (unary) positivity predicate. Impred-
icatively, formal covers with a unary positivity predicate (often called just formal
topologies [20]) correspond to open locales [12,14,15], which are also called overt
locales [23].

Overt locales form a coreflective subcategory oLoc of Loc [19]. On the other hand,
our result above presents Loc as a reflective subcategory of PTop. Thus, the relation
between oLoc and Loc and that between PTop and Loc seem to be of different kinds.
In particular, the two adjunctions oLoc–Loc and PTop–Loc do not compose to give
any adjunction between PTop and oLoc, apart from the fact that oLoc embeds into
PTop (via the embedding �). Moreover, classically, every locale is overt so that oLoc
and Loc coincide, but this is clearly not the case for PTop .

The relation between PTop and oLoc has much to be clarified. However, the above
observation suggests that the result of this section seems to be independent from what
is already known about oLoc.
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6 Limits and colimits in BTop and PTop

Let Q : C
op → PreOrd be a doctrine which factors through the embedding of the

category of inflattices (that is, the category whose objects are posets having all meets
and whose arrows are functions preserving them) in PreOrd.

Under this assumption, if C is complete, then the Grothendieck construction
∫
Q

gives a complete category. Indeed, it is easy to check that if (Ai , ϕi )i∈I is a set-indexed
family of objects in

∫
Q, its product is given by the object

∏

i∈I
(Ai , ϕi ) :=

(
∏

i∈I
Ai ,

∧

i∈I
Q(πi )(ϕi )

)

together with the projections πi inherited from C; and the equalizer of two parallel
arrows f , g : (A, ϕ) → (B, ψ) in

∫
Q is e : (

E,Q(e)(ϕ)
) → (A, ϕ), where e : E →

A is the equalizer of f and g in C.
On the other hand, if C is cocomplete, then

∫
Q is cocomplete as well. Indeed, if

we denote with ∃ f the left adjoint to Q( f ) for every arrow f of C, the coproduct of
a family of objects (Ai , ϕi )i∈I in

∫
Q is given by the object

∑

i∈I
(Ai , ϕi ) :=

(
∑

i∈I
Ai ,

∨

i∈I
∃ ji (ϕi )

)

together with the injections ji inherited from C; and the coequalizer of two arrows
f , g : (A, ϕ) → (B, ψ) is q : (B, ψ) → (Q, ∃q(ψ)), where q : B → Q is the
coequalizer of f and g in C.

The doctrines P and P̃ introduced in Sects. 3.1 and 3.2, respectively, satisfy the
above requirements. Indeed, every P(L) and every P̃(L) is an inflattice because an
arbitrary intersection of sub-suplattices is a sub-suplattice. Moreover, every P( f ) has
a left adjoint, namely ∃ f (Φ) := Φ ◦ f , essentially by the very definition of P; hence
every P( f ) preserves meets. Finally, it is well known that both SLop and Loc are
complete and cocomplete [13]. Thus, the categories PTop and BTop are complete and
cocomplete.
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