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Abstract
This paper establishesmodel-theoretic properties ofME∞, a variation of monadic first-
order logic that features the generalised quantifier ∃∞ (‘there are infinitely many’).We
will also prove analogous versions of these results in the simpler setting of monadic
first-order logic with and without equality (ME and M, respectively). For each logic
L ∈ {M,ME,ME∞}we will show the following. We provide syntactically defined frag-
ments of L characterising four different semantic properties of L-sentences: (1) being
monotone and (2) (Scott) continuous in a given set of monadic predicates; (3) having
truth preserved under taking submodels or (4) being truth invariant under taking quo-
tients. In each case, we produce an effectively defined map that translates an arbitrary
sentence ϕ to a sentence ϕ p belonging to the corresponding syntactic fragment, with
the property that ϕ is equivalent to ϕ p precisely when it has the associated seman-
tic property. As a corollary of our developments, we obtain that the four semantic
properties above are decidable for L-sentences.
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466 F. Carreiro et al.

1 Introduction

Model theory investigates the relationship between formal languages and semantics.
From this perspective, among the most important results are the so called preserva-
tion1 or characterisation theorems, linking the syntactic shape of formulas to some
semantic property. Typically, these results characterise a certain language as the frag-
ment of another, richer language consisting of those formulas that satisfy the given
model-theoretic property. In the case of classical first-order logic, notable examples
are the Łoś–Tarski theorem, stating that a first-order formula is equivalent to a uni-
versal one if and only if the class of its models is closed under taking submodels, and
Lyndon’s theorem, stating that a first-order formula is equivalent to one for which each
occurrence of a relation symbol R is positive if and only if it is monotone with respect
to the interpretation of R (see e.g. [17]).

The aim of this paper is to show that similar results also hold for the predicate logic
ME∞ that allows only monadic predicate symbols and no function symbols, but that
goes beyond standard first-order logic with equality in that it features the generalised
quantifier ‘there are infinitely many’.

Generalised quantifierswere introducedbyMostowski in [24], and in amore general
sense by Lindström in [21], the main motivation being the observation that standard
first-order quantifiers ‘there are some’ and ‘for all’ are not sufficient for expressing
some basic mathematical concepts. Since then, they have attracted a lot of interest,
insomuch that their study constitutes nowadays a well-established field of logic with
important ramifications in disciplines such as linguistics and computer science.2

Despite the fact that the absence of polyadic predicates clearly restricts its expres-
sive power, monadic first-order logic (with identity) displays nice properties, both
from a computational and a model-theoretic point of view. Indeed, the satisfiability
problem becomes decidable [4,22], and, in addition to an immediate application of
Łoś–Tarski and Lyndon’s theorems, one can also obtain a Lindström like characterisa-
tion result [26]. Moreover, adding the possibility of quantifying over predicates does
not increase the expressiveness of the language [2], meaning that when restricted to
monadic predicates, monadic second-order logic collapses into first-order logic.

Concerningmonadicfirst-order logic extendedwith an infinity quantifier,Mostowski
[24] already proved a decidability result, whereas from work of Väänänen [27] we
know that its expressive power coincides with that of weak monadic second-order
logic restricted to monadic predicates, that is monadic first-order logic extended with
a second-order quantifier ranging over finite sets.3

1 Although it is quite commom to refer to these results as preservation theorems, in this paper we shall
exclusively use the terminology characterisation theorem, reserving the term ‘preservation’ for the easier
part of a characterisation result, which states that formulas in the given syntactic shape have the semantic
property.
2 For an overview see e.g. [6,28,33]. For an introduction to the model theory of generalised quantifiers, the
interested reader can consult for instance [29, Chapter 10].
3 Extensions of monadic first-order logic with other generalised quantifiers have also been studied (see e.g.
[7,25]).

123



Model theory of monadic predicate logic with the infinity… 467

Characterisation results and proof outline

A characterisation result involves some fragment LP of a given yardstick logic L,
related to a certain semantic property P. It is usually formulated as

ϕ ∈ L has the property P iff ϕ is equivalent to some ϕ′ ∈ LP. (1)

In thiswork, ourmain yardstick logicwill beME∞. Table 1 summarises the semantic
properties (P) we are going to consider, the corresponding expressively complete
fragment (LP) and the actual characterisation theorem.

The proof of each characterisation theorem is composed of two parts. The first,
simpler one concerns the claim that each sentence in the fragment satisfies the con-
cerned property. It is usually proved by a straightforward induction on the structure of
the formula. The other direction is the expressive completeness statement, stating that
within the considered logic, the fragment is expressively complete for the property.
Its verification generally requires more effort. In this paper, we will actually verify a
stronger expressive completeness statement. Namely, for each semantic property P
and corresponding fragment LP from Table 1, we are going to provide an effective
translation operation (·)p : ME∞ → LP such that

if ϕ ∈ ME∞ has the property P then ϕ is equivalent to ϕ p. (2)

The proof of each instance of (2) will follow a uniform pattern, analogous to the one
employed in the aim of obtaining similar results in the context of the modalμ-calculus
[11,15,19]. The crux of the adopted proof method is the following. Extending known
results on monadic first-order logic and using an appropriate version of Ehrenfeucht–
Fraïssé games, for each sentence ϕ in ME∞ it is possible to compute a logically
equivalent sentence in basic normal norm. Such normal forms will take the shape of
a disjunction

∨∇ME∞ , where each disjunct ∇ME∞ characterises a class of models of
ϕ satisfying the same set of ME∞-sentences of equal quantifier rank as ϕ. Based on
this, it will therefore be enough to define an effective translation (·)p for sentences in

Table 1 A summary of our characterisation theorems

P LP Characterisation theorem

Monotonicity Positive fragment Theorem 3

(Definition 16) Pos(ME∞)

Continuity Continuous fragment Theorem 4

(Definition 22) Con(ME∞)

Preservation under submodels Universal fragment Theorem 5

(Definition 26) Univ(ME∞)

Invariance under quotients Monadic first-order logic Theorem 6

(Definition 26) M
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468 F. Carreiro et al.

Table 2 An overview of our expressive completeness and normal form results

Language

M ME ME∞
Normal forms Fact 2 Theorem 1 Theorem 2

Monotonicity Completeness Proposition 8 Proposition 9 Proposition 10

Normal forms Corollary 1 Corollary 2 Corollary 3

Continuity Completeness Proposition 14 Fact 11 Proposition 15

Normal forms Corollary 4 – Corollary 5

Preservation under submodels Completeness Proposition 17

Normal forms Corollary 6(1) Corollary 6(2) Corollary 6(3)

Invariance under quotients Completeness Proposition 18 Proposition 20

Normal forms Fact 2 Corollary 7

normal form, point-wise in each disjunct ∇ME∞ , and then verify that it indeed satisfies
(2).

As a corollary of the employed proof method, we obtain effective normal forms for
sentences satisfying the considered property.

In addition to ME∞, in this paper we also consider monadic first-order logic with
and without equality, denoted by ME and M, respectively. Table 2 shows a summary of
the expressive completeness and normal form results presented in this paper.

Since the satisfiability problem for ME∞ is decidable and the translation (·)p is
effectively computable, we obtain, as an immediate corollary of (2), that for each
property P listed in Table 1

the problem whether a ME∞ − sentence satisfies propertyPor not is decidable. (3)

We consider these decidability results as a byproduct of our characterisation results,
and we do not explore, for instance, computational complexity questions. Addressing
these would involve a study of the complexity of the procedure that brings a formula
ϕ into normal form and then translates it into a formula (ϕ)p of the required shape.
There are easier ways to prove the mentioned decidability results4 and these may be
useful as well to obtain complexity results.

Application of obtained results: the companion paper

Our original motivation to study characterisation results for these logics stems from
our interest in so-called parity automata: these are finite-state systems that play a
crucial role in obtaining decidability and expressiveness results in fixpoint logics and
monadic second-order logics over trees and labelled transition systems (see e.g. [30]).
Parity automata are specified by a finite set of states A, a distinguished, initial state

4 In particular, A. Rabinovitch suggested to us (in personal communication), that our decidability results
can be obtained by formulating semantic properties of our monadic predicate logic formulas in certain
propositional languages.
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Model theory of monadic predicate logic with the infinity… 469

a ∈ A, a function � assigning to each states a priority (a natural number), and a
transition map Δ. In various interesting cases, the co-domain of this transition map is
given by a monadic logic in which the set of (monadic) predicates coincides with A.
Hence, each monadic logic L induces its own class of automata Aut(L).

A landmark result in this area is Janin and Walukiewicz’s theorem stating that
the bisimulation-invariant fragment of monadic second-order logic coincides with
the modal μ-calculus [19], and the proof of this result is an interesting mix of the
theory of parity automata and the model theory of monadic predicate logic. First,
normal forms results and characterisation theorems are used to verify that (on tree
models) Aut(Pos(ME)) is the class of automata characterising the expressive power
of monadic second-order logic [32], whereas Aut(Pos(M)) corresponds to the modal
μ-calculus [18], where Pos(L) denote the positive fragment of the monadic logic
L. Then, Janin and Walukiewicz’ expressiveness theorem is a consequence of these
automata characterisations and the fact that positive monadic first-order logic without
equality provides the quotient-invariant fragment of positive monadic first-order logic
with equality (see Theorem 7).

In our companion paper [10], among other things we provide a Janin–Walukiewicz
type characterisation result for weak monadic second-order logic. Analogous to the
case of full monadic second-order logic discussed previously, our proof crucially
employs normal form results and characterisation theorems for ME∞, as listed in the
Tables 1 and 2.

Other versions

Results in this paper first appeared in the first author’s PhD thesis ( [8, Chapter 5]);
this journal version largely expands material first published as part of the conference
papers [9,14]. In particular, the whole of Sect. 6 below contains new results.

2 Basics

In this section we provide the basic definitions of the monadic predicate logics that
we study in this paper.

Throughout this paper we fix a finite set A of objects that we shall refer to as
(monadic) predicate symbols or names. We shall also assume an infinite set iVar of
individual variables.

Definition 1 Given a finite set Awe define a (monadic) model to be a pairD = (D, V )

consisting of a set D, which we call the domain ofD, and an interpretation or valuation
V : A→ ℘(D). The class of all models will be denoted by M.

Remark 1 Note that we make the somewhat unusual choice of allowing the domain of
a monadic model to be empty. In view of the applications of our results to automata
theory (see Sect. 1) this choice is very natural, even if it means that some of our
proofs here become more laborious in requiring an extra check. Observe that there is
exactly one monadic model based on the empty domain; we shall denote this model
as D∅:=(∅, ∅).

123
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Definition 2 Observe that a valuation V : A → ℘(D) can equivalently be presented
via its associated colouring V � : D→ ℘(A) given by

V �(d):={a ∈ A | d ∈ V (a)}.

We will use these perspectives interchangeably, calling the set V �(d) ⊆ A the colour
or type of d. In case D = ∅, V � is simply the empty map.

In this paper we study three languages of monadic predicate logic: the languages
ME and M of monadic first-order logic with and without equality, respectively, and the
extension ME∞ of ME with the generalised quantifiers ∃∞ and ∀∞. Probably the most
concise definition of the full language of monadic predicate logic would be given by
the following grammar:

ϕ ::= a(x) | x ≈ y | ¬ϕ | (ϕ ∨ ϕ) | ∃x .ϕ | ∃∞x .ϕ,

where a ∈ A and x and y belong to the set iVar of individual variables. In this set-up
we would need to introduce the quantifiers ∀ and ∀∞ as abbreviations of ¬∃¬ and
¬∃∞¬, respectively. However, for our purposes it will be more convenient to work
with a variant of this language where all formulas are in negation normal form; that is,
we only permit the occurrence of the negation symbol¬ in front of an atomic formula.
In addition, for technical reasons we will add⊥ and
 as constants, and we will write
¬(x ≈ y) as x �≈ y. Thus we arrive at the following definition of our syntax.

Definition 3 The setME∞(A) ofmonadic formulas is given by the following grammar:

ϕ ::= 
 | ⊥ | a(x) | ¬a(x) | x ≈ y | x �≈ y | (ϕ ∨ ϕ) | (ϕ ∧ ϕ)

× | ∃x .ϕ | ∀x .ϕ | ∃∞x .ϕ | ∀∞x .ϕ

where a ∈ A and x, y ∈ iVar. The language ME(A) of monadic first-order logic with
equality is defined as the fragment of ME∞(A) where occurrences of the generalised
quantifiers ∃∞ and ∀∞ are not allowed:

ϕ ::= 
 | ⊥ | a(x) | ¬a(x) | x ≈ y | x �≈ y | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∃x .ϕ | ∀x .ϕ

Finally, the language M(A) of monadic first-order logic is the equality-free fragment
of ME(A); that is, atomic formulas of the form x ≈ y and x �≈ y are not permitted
either:

ϕ ::= 
 | ⊥ | a(x) | ¬a(x) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∃x .ϕ | ∀x .ϕ

In all three languages we use the standard definition of free and bound variables,
and we call a formula a sentence if it has no free variables. In the sequel we will often
use the symbol L to denote either of the languages M, ME or ME∞.

For each of the languages L ∈ {M,ME,ME∞}, we define the positive fragment L+
of L as the language obtained by almost the same grammar as for L, but with the
difference that we do not allow negative formulas of the form ¬a(x).

123



Model theory of monadic predicate logic with the infinity… 471

To define the semantics of these languages we need to make a case distinction.
For non-empty models we use the standard truth definition, which applies to arbitrary
formulas since we can introduce the notion of an assignment, mapping individual
variables to elements of the domain. In the case of the empty model, however, it is not
possible to define assignments, so here we restrict the truth definition to sentences.

Definition 4 The meaning of sentences in the languages M,ME and ME∞ is given in
the form of a truth relation |�. To define this truth relation on a model D = (D, V ),
we distinguish cases.

Case D = ∅: We define the truth relation |� on the emptymodelD∅ for all formulas
that are Boolean combinations of sentences of the form Qx .ϕ, where
Q ∈ {∃, ∃∞,∀,∀∞} is a quantifier. The definition is by induction
on the complexity of such sentences; the “atomic” clauses, where the
sentence is of the form Qx .ϕ, are as follows:

D∅ �|� Qx .ϕ if Q ∈ {∃, ∃∞},
D∅ |� Qx .ϕ if Q ∈ {∀,∀∞}.

The clauses for the Boolean connectives are standard.
Case D �= ∅: In the case of a non-empty model D, we extend the truth relation to

arbitrary formulas in a standard way, involving assignments of indi-
vidual variables to elements of the domain. That is, given a model
D = (D, V ), an assignment g : iVar→ D and a formulaϕ ∈ ME∞(A)

we define the truth relation |� by a straightforward induction on the
complexity of ϕ. Below we explicitly provide the clauses of the quan-
tifiers:

D, g |� ∃x .ϕ iff D, g[x �→ d] |� ϕ for some d ∈ D,

D, g |� ∀x .ϕ iff D, g[x �→ d] |� ϕ for all d ∈ D,

D, g |� ∃∞x .ϕ iff D, g[x �→ d] |� ϕ for infinitely many d ∈ D,

D, g |�∀∞x .ϕ iff D, g[x �→d] |� ϕ for all but at most finitely many d∈D.

The clauses for the atomic formulas and for the Boolean connectives
are standard.

In what follows, when discussing the truth of ϕ on the empty model, we always
implicitly assume that ϕ is a sentence.

As mentioned in the introduction, general quantifiers such as ∃∞ and ∀∞ were
introduced by Mostowski [24], who proved the decidability for the language obtained
by extending M with such quantifiers. The decidability of the full language ME∞ was
then proved by Slomson in [25].5 The case for M and ME goes back already to [4,22].

5 The argument in [25] is given in terms of the so called Chang quantifier QC given by (D, V ) |� QC x .ϕ
iff the set {d ∈ D | (D, V ) |� ϕ(d)} of objects that satisfy ϕ has the same cardinality as D itself. The proof
is easily seen to work also for ∃∞ and ∀∞, however. Both Mostowski’s and Slomson’s decidability results
can be extended to the case of the empty domain.
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Fact 1 For each logic L ∈ {M,ME,ME∞}, the problem of whether a given L-sentence
ϕ is satisfiable, is decidable.

In the remainder of the section we fix some further definitions and notations, starting
with some useful syntactic abbreviations.

Definition 5 Given a list y = y1 . . . yn of individual variables, we use the formula

diff(y):=
∧

1≤m<m′≤n
(ym �≈ ym′)

to state that the elements y are all distinct. An A-type is a formula of the form

τS(x):=
∧

a∈S
a(x) ∧

∧

a∈A\S
¬a(x),

where S ⊆ A. Here and elsewherewe use the convention that
∧

∅=
 (and
∨

∅=⊥).
The positive A-type τ+S (x) only bears positive information, and is defined as

τ+S (x):=
∧

a∈S
a(x).

Given a monadic model D = (D, V ) and a subset S of A, we define

|S|D:=|{d ∈ D | D |� τS(d)}|

as the number of elements of D that realise the type τS .

We often blur the distinction between the formula τS(x) and the subset S ⊆ A,
calling S an A-type as well. Note that we have D |� τS(d) iff V �(d) = S, so that we
may refer to V �(d) as the type of d ∈ D indeed.

Definition 6 The quantifier rank qr(ϕ) of a formula ϕ ∈ ME∞ (hence also for M and
ME) is defined as follows:

qr(ϕ) := 0 if ϕis atomic,
qr(¬ψ) := qr(ψ)

qr(ψ1 ♥ ψ2) := max{qr(ψ1),qr(ψ2)} where ♥ ∈ {∧,∨}
qr(Qx .ψ) := 1+ qr(ψ), where Q ∈ {∃,∀, ∃∞,∀∞}

Given amonadic logic LwewriteD ≡L
k D

′ to indicate that the modelsD andD
′ satisfy

exactly the same sentences ϕ ∈ L with qr(ϕ) ≤ k. We write D ≡L
D
′ if D ≡L

k D
′ for

all k. When clear from context, we may omit explicit reference to L.

Definition 7 A partial isomorphism between two models (D, V ) and (D′, V ′) is a
partial function f : D⇀D′ which is injective and satisfies that d ∈ V (a) ⇔ f (d) ∈
V ′(a) for all a ∈ A and d ∈ Dom( f ). Given two sequences d ∈ Dk and d′ ∈ D′k we
use f : d �→ d′ to denote the partial function f : D⇀D′ defined as f (di ):=d ′i . We
will take care to avoid cases where there exist di , d j such that di = d j but d ′i �= d ′j .
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Finally, for future reference we briefly discuss the notion of Boolean duals. We first
give a concrete definition of a dualisation operator on the set of monadic formulas.

Definition 8 The (Boolean) dual ϕδ ∈ ME∞(A) of ϕ ∈ ME∞(A) is the formula given
by:

(a(x))δ:=a(x) (¬a(x))δ:=¬a(x)

(
)δ:=⊥ (⊥)δ:=

(x ≈ y)δ:=x �≈ y (x �≈ y)δ:=x ≈ y

(ϕ ∧ ψ)δ:=ϕδ ∨ ψδ (ϕ ∨ ψ)δ:=ϕδ ∧ ψδ

(∃x .ψ)δ:=∀x .ψδ (∀x .ψ)δ:=∃x .ψδ

(∃∞x .ψ)δ:=∀∞x .ψδ (∀∞x .ψ)δ:=∃∞x .ψδ

Remark 2 Where L ∈ {M,ME,ME∞}, observe that if ϕ ∈ L(A) then ϕδ ∈ L(A).
Moreover, the operator preserves positivity of the predicates, that is, if ϕ ∈ L+(A)

then ϕδ ∈ L+(A).

The following proposition states that the formulas ϕ and ϕδ are Boolean duals. We
omit its proof, which is a routine check.

Proposition 1 Let ϕ ∈ ME∞(A) be a monadic formula. Then ϕ and ϕδ are indeed
Boolean duals, in the sense that for every monadic model (D, V ) we have that

(D, V ) |� ϕ iff (D, V c) �|� ϕδ,

where V c : A→ ℘(D) is the valuation given by V c(a):=D \ V (a).

3 Normal forms

In this sectionwe provide, for each of the logicsM,ME andME∞, normal forms that will
be pivotal for characterising the different fragments of these logics in later sections.
Our approach will be game-theoretic, based on Ehrenfeucht–Fraïssé style model com-
parison games. These games were introduced by Ehrenfeucht [13] to study Fraïssé’s
analyis of first-order logic using so-called back-and-forth systems. Over the years,
similar games have been introduced for various other logics, including extensions
of first-order logic with generalised quantifiers [20]. As an important application of
Ehrenfeucht–Fraïssé games one may use the notion of a winning strategy to obtain
certain normal forms for formulas in the formalism under scrutiny. In the case of
monadic first-order logic, one may extract relatively simple normal forms; this obser-
vation goes back to (at least) the work of Walukiewicz [32]. Our contribution here is
that we use the method to obtain normal forms for the logic ME∞.

Convention Here and in the sequel it will often be convenient to blur the distinction
between lists and sets. For instance, identifying the list T = T1 . . . Tn with the set
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{T1, . . . , Tn}, we may write statements like S ∈ T or � ⊆ T. Moreover, given a finite
set Φ = {ϕ1, . . . , ϕn}, we write ϕ1 ∧ · · · ∧ ϕn as

∧
Φ, and ϕ1 ∨ · · · ∨ ϕn as

∨
Φ. If

Φ is empty, we set as usual
∧

Φ = 
 and
∨

Φ = ⊥. Finally, notice that we write∨
1≤m<m′≤n(ym ≈ ym′) ∨ ψ as diff(y)→ ψ .

3.1 Normal form for M

We start by introducing a normal form for monadic first-order logic without equality.

Definition 9 Given sets of types 
,� ⊆ ℘(A), we define the following formulas:

∇M(
,�) := ∧
S∈
 ∃x .τS(x) ∧ ∀x .

∨
S∈� τS(x)

∇M(
) := ∇M(
,
)

A sentence ofM(A) is in basic form if it is a disjunction of formulas of the form∇M(
).

Observe that∇M(
,�) ≡ ⊥ in case
 � � and that∇M(
,�) = ∇M(
) = ∀x .⊥
if
 = � = ∅. The meaning of the formula∇M(
) is that
 is a complete description
of the collection of types that are realised in a monadic model. The formula ∇M(∅)

distinghuishes the empty model from the non-empty ones.
Every M-formula is effectively equivalent to a formula in basic form.

Fact 2 There is an effective procedure that transforms an arbitrary M-sentence ϕ into
an equivalent formula ϕ∗ in basic form.

This observation is easy to prove using Ehrenfeucht–Fraïssé games (proof sketches
can be found in [16, Lemma 16.23] and [31, Proposition 4.14]), and the decidability
of the satisfiability problem for M (Fact 1). We omit a full proof because it is very
similar to the following more complex cases.

3.2 Normal form for ME

Due to the additional expressive power provided by the (in-)equalities, the basic normal
forms of ME take a more involved shape than those of M.

Definition 10 We say that a formula ϕ ∈ ME(A) is in basic form if ϕ =∨∇ME(T,�)

where each disjunct is of the form

∇ME(T,�) = ∃x.(diff(x) ∧
∧

i

τTi (xi ) ∧ ∀z.(diff(x, z) →
∨

S∈�

τS(z))
)

with T ∈ ℘(A)k for some k and � ⊆ T.

We prove that every sentence ofmonadic first-order logicwith equality is equivalent
to a formula in basic form. Although this result seems to be folklore, we provide a
detailed proof because some of its ingredients will be used later, when we give a
normal form for ME∞. We start by defining the following relation between monadic
models.
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Model theory of monadic predicate logic with the infinity… 475

Definition 11 For every k ∈ N we define the relation ∼=k on the class M of monadic
models by putting

D ∼=k D
′ ⇐⇒ ∀S ⊆ A

(|S|D = |S|D′ < k or |S|D, |S|D′ ≥ k
)
,

where D and D
′ are arbitrary monadic models.

Intuitively, two models are related by ∼=k when their type information coincides
‘modulo k’. Later on we prove that this is the same as saying that they cannot be
distinguished by a sentence of ME with quantifier rank at most k. As a special case,
observe that any two monadic models are related by ∼=0 .

For the moment, we record the following properties of these relations.

Proposition 2 The following hold:

1. The relation ∼=k is an equivalence relation of finite index.
2. Every E ∈M/∼=k is characterised by a sentence ϕ=E ∈ ME(A) with qr(ϕ=E ) = k.

Proof We only prove the second statement, and first we consider the case where
k = 0. The equivalence relation ∼=0 has the class M of all monadic models as its
unique equivalence class, so here we may define ϕ=M:=
.

From now on we assume that k > 0. Take some equivalence class E ∈M/∼=k , and
some representative D ∈ E . Let S1, . . . , Sn ⊆ A be the types such that |Si |D = li < k
and let S′1, . . . , S′m ⊆ A be those satisfying |S′i |D ≥ k. Note that the union of all the
Si and S′i yields all the possible A-types, and that if a type S j is not realised at all, we
take l j = 0. Now define

ϕ=E :=
∧

i≤n

(
∃x1, . . . , xli .diff(x1, . . . , xli ) ∧

∧

j≤li
τSi (x j )

∧ ∀z.diff(x1, . . . , xli , z) → ¬τSi (z)
)

∧
∧

i≤m

(∃x1, . . . , xk .diff(x1, . . . , xk) ∧
∧

j≤k
τS′i (x j )

)
,

where we understand that any conjunct of the form ∃x1, . . . , xl .ψ with l = 0 is simply
omitted (or, to the same effect, defined as 
). It is easy to see that qr(ϕ=E ) = k and
that D

′ |� ϕ=E iff D
′ ∈ E . Intuitively, ϕ=E gives a specification of E “type by type”; in

particular observe that ϕ=
D∅
≡ ∀x .⊥. ��

Next we recall a (standard) notion of Ehrenfeucht–Fraïssé game for ME which will
be used to establish the connection between ∼=k and ≡ME

k .

Definition 12 Let D0 = (D0, V0) and D1 = (D1, V1) be monadic models. We define
the game EF=k (D0, D1) between ∀ and ∃. If Di is one of the models we use D−i to
denote the other model. A position in this game is a pair of sequences s0 ∈ Dn

0 and
s1 ∈ Dn

1 with n ≤ k. The game consists of k rounds. To describe a single round of
the game, assume that n rounds have passed (where 0 ≤ n < k); round n + 1 then
consists of the following steps:
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1. ∀ chooses an element di in one of the Di ;
2. ∃ responds with an element d−i in the model D−i .
In this way, the sequences si ∈ Dn

i of elements chosen up to round n are extended
to si′:=si · di ∈ Dn+1

i . Player ∃ survives the round iff she does not get stuck and the
function fn+1 : s0′ �→ s1′ is a partial isomorphism of monadic models. Finally, player
∃ wins the match iff she survives all k rounds.

Given n ≤ k and si ∈ Dn
i such that fn : s0 �→ s1 is a partial isomorphism, we

write EF=k (D0, D1)@(s0, s1) to denote the (initialised) gamewhere nmoves have been
played and k − n moves are left to be played.

Proposition 3 The following are equivalent:

(1) D0 ≡ME
k D1,

(2) D0 ∼=k D1,
(3) ∃ has a winning strategy in EF=k (D0, D1).

Proof The implication from (1) to (2) is direct by Proposition 2. For the implication
from (2) to (3) we give a winning strategy for ∃ in EF=k (D0, D1) by showing the
following claim.

Claim 1 Let D0 ∼=k D1 and si ∈ Dn
i be such that n < k and fn : s0 �→ s1 is a partial

isomorphism; then ∃ can survive one more round in EF=k (D0, D1)@(s0, s1).

Proof of Claim 1 Let ∀ pick di ∈ Di such that the type of di is T ⊆ A. If di had already
been played then ∃ picks the same element as before and fn+1 = fn . If di is new and
|T |Di ≥ k then, as at most n < k elements have been played, there is always some
new d−i ∈ D−i that ∃ can choose to match di . If |T |Di = m < k then we know that
|T |D−i = m. Therefore, as di is new and fn is injective, there must be a d−i ∈ D−i
that ∃ can choose. ��

The implication from (3) to (1) is a standard result [12, Corollary 2.2.9] which we
prove anyway because we will need to extend it later. We prove the following loaded
statement.

Claim 2 Let si ∈ Dn
i and ϕ(z1, . . . , zn) ∈ ME(A) be such that qr(ϕ) ≤ k − n. If

∃ has a winning strategy in the game EF=k (D0, D1)@(s0, s1) then D0 |� ϕ(s0) iff
D1 |� ϕ(s1).

Proof of Claim 2 If ϕ is atomic the claim holds because of fn : s0 �→ s1 being a
partial isomorphism. The Boolean cases are straightforward. Let ϕ(z1, . . . , zn) =
∃x .ψ(z1, . . . , zn, x) and suppose D0 |� ϕ(s0). Hence, there exists d0 ∈ D0 such
that D0 |� ψ(s0, d0). By hypothesis we know that ∃ has a winning strategy for
EF=k (D0, D1)@(s0, s1). Therefore, if ∀ picks d0 ∈ D0 she can respond with some
d1 ∈ D1 and have a winning strategy for EF=k (D0, D1)@(s0·d0, s1·d1). By induc-
tion hypothesis, because qr(ψ) ≤ k − (n + 1), we have that D0 |� ψ(s0, d0) iff
D1 |� ψ(s1, d1) and hence D1 |� ∃x .ψ(s1, x). The opposite direction is proved by a
symmetric argument. ��
We finish the proof of the proposition by combining these two claims. ��
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Theorem 1 There is an effective procedure that transforms an arbitrary ME-sentence
ϕ into an equivalent formula ϕ∗ in basic form.

Proof Let qr(ψ) = k and let �ψ� be the class of models satisfying ψ . As M/≡ME
k

is the same as M/∼=k by Proposition 3, it is easy to see that ψ is equivalent to∨{ϕ=E | E ∈ �ψ�/∼=k }. Now it only remains to see that each ϕ=E is equivalent to the
sentence ∇ME(T,�) for some T,� ⊆ ℘(A) with � ⊆ T.

The crucial observation is that we will use T and � to give a specification of the
types “element by element”. Take some representative D of the equivalence class E .
Let S1, . . . , Sn ⊆ A be the types such that |Si |D = li < k and S′1, . . . , S′m ⊆ A those
satisfying |S′j |D ≥ k. The size of the sequence T is defined to be (

∑n
i=1 li ) + k × m

where T contains exactly li occurrences of type Si and at least k occurrences of each
S′j . On the other hand we set �:={S′1, . . . , S′m}. It is straightforward to check that

� ⊆ T and ϕ=E is equivalent to ∇ME(T,�). (Observe however, that the quantifier rank
of the latter is only bounded by k×2|A|+1.) In particular ϕ=

D∅
≡ ∇ME(∅, ∅) = ∀x .⊥.

The effectiveness of the procedure follows from the fact that, given the previous
bound on the size of a normal form, it is possible to non-deterministically guess the
number of disjuncts, types and associated parameters for each conjunct and repeatedly
check whether the formulas ϕ and

∨∇ME(T,�) are equivalent, this latter problem
being decidable by Fact 1. ��

3.3 Normal form for ME∞

The logic ME∞ extends ME with the capacity to tear apart finite and infinite sets of
elements. This is reflected in the normal form for ME∞ by adding extra information
to the normal form of ME.

Definition 13 We say that a formula ϕ ∈ ME∞(A) is in basic form if ϕ =∨∇ME∞(T,�,
) where each disjunct is of the form

∇ME∞(T,�,
):=∇ME(T,�) ∧ ∇∞(
)

where ∇ME(T,�) is as in Definition 10, and

∇∞(
):=
∧

S∈


∃∞y.τS(y) ∧ ∀∞y.
∨

S∈


τS(y).

Here T ∈ ℘(A)k for some k, and �,
 ⊆ ℘(A) are such that 
 ⊆ � ⊆ T.

Observe that basic formulas of ME are not basic formulas of ME∞.
Intuitively, the formula∇∞(
) says that (1) for every type S ∈ 
, there are infinitely

many elements satisfying S and (2) only finitely many elements do not satisfy any type
in 
. As a special case, the formula ∇∞(∅) expresses that the model is finite. A short
argument reveals that, intuitively, every disjunct of the form∇ME∞(T,�,
) expresses
that any monadic model satisfying it admits a partition of its domain in three parts:
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(i) distinct elements t1, . . . , tn with respective types T1, . . . , Tn ,
(ii) finitely many elements whose types belong to �, and
(iii) for each S ∈ 
, infinitely many elements with type S.

Note that this partition is not necessarily unique, unless we modify item (ii) so that it
mentions finitely many elements whose type belongs to � \
.

In the same way as before, we define an equivalence relation ∼∞k on monadic
models which refines∼=k by adding information about the (in-)finiteness of the types.

Definition 14 For every k ∈ N we define the relation ∼∞k on the classM of monadic
models by putting

D ∼∞k D
′ ⇐⇒ ∀S ⊆ A

(|S|D = |S|D′ < k or k ≤ |S|D, |S|D′ <ω or |S|D, |S|D′ ≥ ω
)
,

where D and D
′ are arbitrary monadic models.

As before, with this definition we find that D ∼∞0 D
′ holds always.

Proposition 4 The following hold, for every k ∈ N:

1. The relation ∼∞k is an equivalence relation of finite index.
2. The relation ∼∞k is a refinement of ∼=k .
3. Every E ∈M/∼∞k is characterised by a sentenceϕ∞E ∈ ME∞(A)withqr(ϕ) = k.

Proof We only prove the last item, for k > 0. Let E ∈ M/∼∞k and let D ∈ E be a
representative of the class. Let E ′ ∈M/∼=k be the equivalence class ofDwith respect
to ∼=k . Let S1, . . . , Sn ⊆ A be all the types such that |Si |D ≥ ω, and define

ϕ∞E :=ϕ=E ′ ∧ ∇∞({S1, . . . , Sn}).

It is not difficult to see that qr(ϕ∞E ) = k and that D
′ |� ϕ∞E iff D

′ ∈ E . In particular
ϕ∞

D∅
≡ ∇ME∞(∅, ∅, ∅) = ∀x .⊥ ∧ ∀∞y.⊥. ��

Nowwe give a version of the Ehrenfeucht–Fraŝsé game forME∞. This game, which
extends EF=k withmoves for ∃∞, is the adaptation of the Ehrenfeucht–Fraïssé game for
monotone generalised quantifiers found in [20] to the case of full monadic first-order
logic.

Definition 15 Let D0 = (D0, V0) and D1 = (D1, V1) be monadic models. We define
the game EF∞k (D0, D1) between ∀ and ∃. A position in this game is a pair of sequences
s0 ∈ Dn

0 and s1 ∈ Dn
1 with n ≤ k. The game consists of k rounds. To describe a single

round of the game, assume that n rounds have passed (where 0 ≤ n < k); round n+1
then consists of the following steps.

First ∀ chooses to perform one of the following types of moves:

(a) second-order move:

1. ∀ chooses an infinite set Xi ⊆ Di ;
2. ∃ responds with an infinite set X−i ⊆ D−i ;
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Fig. 1 Elements of type S have
coloured background

3. ∀ chooses an element d−i ∈ X−i ;
4. ∃ responds with an element di ∈ Xi .

(b) first-order move:

1. ∀ chooses an element di ∈ Di ;
2. ∃ responds with an element d−i ∈ D−i .

The sequences si ∈ Dn
i of elements chosen up to round n are then extended to

si′:=si · di ∈ Dn+1
i . ∃ survives the round iff she does not get stuck and the func-

tion fn+1 : s0′ �→ s1′ is a partial isomorphism of monadic models.

Note that the only items that are recorded in a play of this game are the objects
picked by the players; the subsets that are picked in a round starting with a second-
order move by ∀, are forgotten as soon as the players have selected inhabitants of these
sets (Fig. 1).

Proposition 5 The following are equivalent:

(1) D0 ≡ME∞
k D1,

(2) D0 ∼∞k D1,
(3) ∃ has a winning strategy in EF∞k (D0, D1).

Proof The implication from (1) to (2) is direct by Proposition 4. For the implication
from (2)) to (3) we show the following.

Claim 1 Let D0 ∼∞k D1 and si ∈ Dn
i be such that n < k and fn : s0 �→ s1 is a partial

isomorphism. Then ∃ can survive one more round in EF∞k (D0, D1)@(s0, s1).

Proof of Claim 1 We focus on the second-order moves because the first-order moves
are the same as in the corresponding Claim of Proposition 3. Let ∀ choose an infinite
set Xi ⊆ Di , we would like ∃ to choose an infinite set X−i ⊆ D−i such that the
following conditions hold:

(a) The map fn is a well-defined partial isomorphism between the restricted monadic
models D0�X0 and D1�X1,

(b) For every type S there is an element d ∈ Xi of type S which is not connected by
fn iff there is such an element in X−i .
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First we prove that such a set X−i exists. To satisfy item (a) ∃ just needs to add to
X−i the elements connected to Xi by fn ; this is not a problem.

For item (b) we proceed as follows: for every type S such that there is an element
d ∈ Xi of type S, we add a new element d ′ ∈ D−i of type S to X−i . To see that
this is always possible, observe first that D0 ∼∞k D1 implies D0 ∼=k D1. Using the
properties of this relation, we divide in two cases:

– If |S|Di ≥ k we know that |S|D−i ≥ k as well. From the elements of D−i of type
S, at most n < k are used by fn . Hence, there is at least one d ′ ∈ D−i of type S
to choose from.

– If |S|Di < k we know that |S|Di = |S|D−i . From the elements of Di of type S, at
most |S|Di − 1 are used by fn . (The reason for the ‘−1’ is that we are assuming
that we have just chosen a d ∈ Xi which is not in fn .) Using that |S|Di = |S|D−i
and that fn is a partial isomorphism we can again conclude that there is at least
one d ′ ∈ D−i of type S to choose from.

Finally, we need to show that ∃ can choose X−i to be infinite. To see this, observe
that Xi is infinite, while there are only finitely many types. Hence there must be some
S such that |S|Xi ≥ ω. It is then safe to add infinitelymany elements for S in X−i while
considering point (b). Moreover, the existence of infinitely many elements satisfying
S in D−i is guaranteed by D0 ∼∞k D1.

Having shown that ∃ can choose a set X−i satisfying the above conditions, it is now
clear that using point (b) ∃ can survive the “first-order part” of the second-order move
we were considering. This finishes the proof of the claim. ��
Returning to the proof of Proposition 5, for the implication from (3) to (1) we prove
the following.

Claim 2 Let si ∈ Dn
i and ϕ(z1, . . . , zn) ∈ ME∞(A) be such that qr(ϕ) ≤ k − n. If ∃

has a winning strategy in EF∞k (D0, D1)@(s0, s1) then D0 |� ϕ(s0) iff D1 |� ϕ(s1).

Proof of Claim 2 All the cases involving operators of ME are the same as in Proposi-
tion 3. We prove the inductive case for the generalised quantifier. Let ϕ(z1, . . . , zn)
be of the form ∃∞x .ψ(z1, . . . , zn, x) and let D0 |� ϕ(s0). Hence, the set X0:={d0 ∈
D0 | D0 |� ψ(s0, d0)} is infinite.

By assumption ∃ has a winning strategy in EF∞k (D0, D1)@(s0, s1). Therefore, if ∀
plays a second-order move by picking X0 ⊆ D0 she can respond with some infinite
set X1 ⊆ D1. We claim that D1 |� ψ(s1, d1) for every d1 ∈ X1. First observe that if
this holds then the set X ′1:={d1 ∈ D1 | D1 |� ψ(s1, d1)} must be infinite, and hence
D1 |� ∃∞x .ψ(s1, x).

Assume, for a contradiction, that D1 �|� ψ(s1, d ′1) for some d ′1 ∈ X1. Let ∀
play this d ′1 as the second part of his move. Then, as ∃ has a winning strategy,
she will respond with some d ′0 ∈ X0 for which she has a winning strategy in
EF∞k (D0, D1)@(s0·d ′0, s1·d ′1). But then by our induction hypothesis, which applies
since qr(ψ) ≤ k− (n+ 1), we may infer from D1 �|� ψ(s1, d ′1) that D0 �|� ψ(s0, d ′0).
This clearly contradicts the fact that d ′0 ∈ X0. ��
Combining the claims finishes the proof of the proposition. ��
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Theorem 2 There is an effective procedure that transforms an arbitraryME∞-sentence
ϕ into an equivalent formula ϕ∗ in basic form.

Proof This can be proved using the same argument as in Theorem 1 but based on
Proposition 5. Hence we only focus on showing that ϕ∞E ≡ ∇ME∞(T,�,
) for some
T,�,
 ⊆ ℘(A) such that 
 ⊆ � ⊆ T, where ϕ∞E is the sentence characterising
E ∈M/∼∞k from Proposition 4(2). Recall that

ϕ∞E = ϕ=E ′ ∧ ∇∞(
)

where 
 is the collection of types that are realised by infinitely many elements. Using
Theorem 1 on ϕ=E ′ we know that this is equivalent to

ϕ∞E = ∇ME(T,�) ∧ ∇∞(
)

where� ⊆ T. Observe that wemay assume that
 ⊆ �, otherwise the formula would
be inconsistent. We can then conclude that ϕ∞E ≡ ∇ME∞(T,�,
). ��

4 Monotonicity

In this section we provide our first characterisation result, which concerns the notion
of monotonicity.

Definition 16 Let V and V ′ be two A-valuations on the same domain D, and B ⊆ A.
Then we say that V ′ is a B-extension of V , notation: V ≤B V ′, if V (b) ⊆ V ′(b) for
every b ∈ B, and V (a) = V ′(a) for every a ∈ A \ B.

Given a monadic logic L and a formula ϕ ∈ L(A) we say that ϕ is monotone in
B ⊆ A if

(D, V ), g |� ϕ and V ≤B V ′ imply (D, V ′), g |� ϕ, (4)

for every pair of monadic models (D, V ) and (D, V ′) and every assignment
g : iVar→ D.

Remark 3 It is easy to prove that a formula is monotone in B ⊆ A if and only if it is
monotone in every b ∈ B.

The semantic property of monotonicity can usually be linked to the syntactic notion
of positivity. Indeed, for many logics, a formula ϕ is monotone in a ∈ A iff ϕ is
equivalent to a formula where all occurrences of a have a positive polarity, that is,
they are situated in the scope of an even number of negations.

Definition 17 For L ∈ {M,ME} we define the fragment of A-formulas that are positive
in all predicates in B, in short: the B-positive formulas by the following grammar:

ϕ ::= ψ | b(x) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x .ϕ | ∀x .ϕ,
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where b ∈ B and ψ ∈ L(A \ B) (that is, there are no occurrences of any b ∈ B in ψ).
Similarly, the B-positive fragment of ME∞ is given by

ϕ ::= ψ | b(x) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x .ϕ | ∀x .ϕ | ∃∞x .ϕ | ∀∞x .ϕ,

where b ∈ B and ψ ∈ ME∞(A \ B).
In all three cases, we let PosB(L(A)) denote the set of B-positive sentences.

Note that the difference between the fragments PosB(M(A)) and PosB(ME(A))

lies in the fact that in the latter case, the ‘B-free’ formulas ψ may contain the equality
symbol, both positively (≈) and negatively ( �≈). Clearly PosA(L(A)) = L+.

Remark 4 Perhaps a more natural presentation of the fragment PosB(L(A))would be
via the following grammar (in the case of M, the other cases would be similar):

ϕ ::= 
 | ⊥ | a(x) | ¬a(x) | b(x) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x .ϕ | ∀x .ϕ, (5)

where a ∈ A \ B and b ∈ B. It is not difficult to see that the above grammar produces
the same formulas as the one inDefinition 17. The latter presentation, however, is more
convenient in the context of our companion paper [10], and in line with the definition
of the fragments ConB(ME∞(A)) studied in the next section.

Theorem 3 Let ϕ be a sentence of the monadic logic L(A), where L ∈ {M,ME,ME∞}.
Then ϕ is monotone in a set B ⊆ A if and only if there is an equivalent formula
ϕ� ∈ PosB(L(A)). Furthermore, it is decidable whether a sentence ϕ ∈ L(A) has
this property or not.

The ‘easy’ direction of the first claim of the theorem is taken care of by the following
proposition.

Proposition 6 Every formula ϕ ∈ PosB(L(A)) is monotone in B, where L is one of
the logics {M,ME,ME∞}.
Proof The case for D = ∅ being immediate, we assume D �= ∅. The proof is a routine
argument by induction on the complexity of ϕ. That is, we show by induction, that
any formula ϕ in the B-positive fragment (which may not be a sentence) satisfies (4),
for every monadic model (D, V ), valuation V ′ ≥B V and assignment g : iVar→ D.
We focus on the generalised quantifiers. Let (D, V ), g |� ϕ and V ≤B V ′.

• Case ϕ = ∃∞x .ϕ′(x). By definition there exists an infinite set I ⊆ D such that
for all d ∈ I we have (D, V ), g[x �→ d] |� ϕ′(x). By induction hypothesis
(D, V ′), g[x �→ d] |� ϕ′(x) for all d ∈ I . Therefore (D, V ′), g |� ∃∞x .ϕ′(x).

• Case ϕ = ∀∞x .ϕ′(x). Hence there exists C ⊆ D such that for all d ∈ C we
have (D, V ), g[x �→ d] |� ϕ′(x) and D \ C is finite. By induction hypothesis
(D, V ′), g[x �→ d] |� ϕ′(x) for all d ∈ C . Therefore (D, V ′), g |� ∀∞x .ϕ′(x).

This finishes the proof. ��
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The ‘hard’ direction of thefirst claimofTheorem3 states that the fragmentPosB(M)

is complete for monotonicity in B. In order to prove this, we need to show that every
sentence which is monotone in B is equivalent to some formula in PosB(M). We
actually are going to prove a stronger result.

Proposition 7 Let L be one of the logics {M,ME,ME∞}. There exists an effective trans-
lation (−)� : L(A) → PosB(L(A)) such that a sentence ϕ ∈ L(A) is monotone in
B ⊆ A only if ϕ ≡ ϕ�.

We prove the three manifestations of Proposition 7 separately, in three respective
subsections.

Proof of Theorem 3 The first claim of the Theorem is an immediate consequence of
Proposition 7. By effectiveness of the translation and Fact 1, it is decidable whether a
sentence ϕ ∈ L(A) is monotone in B ⊆ A or not. ��

The following definition will be used throughout in the remainder of the section.

Definition 18 Given S ⊆ A and B ⊆ A we use the following notation

τ B
S (x):=

∧

b∈S
b(x) ∧

∧

b∈A\(S∪B)

¬b(x),

for what we call the B-positive A-type τ B
S .

Intuitively, τ B
S works almost like the A-type τS , the difference being that τ B

S discards

the negative information for the names in B. If B = {a} we write τ aS instead of τ
{a}
S .

Observe that with this notation, τ+S is equivalent to τ A
S .

4.1 Monotone fragment of M

In this subsectionwe prove theM-variant of Proposition 7. That is, we give a translation
that constructively maps arbitrary sentences into PosB(M) and moreover preserves
truth iff the given sentence is monotone in B. To formulate the translation we need to
introduce some new notation.

Definition 19 Let B ⊆ A be a finite set of names and 
 ⊆ ℘(A) be types. The
B-positive variant of ∇M(
) is given as follows:

∇B
M (
):=

∧

S∈


∃x .τ B
S (x) ∧ ∀x .

∨

S∈


τ B
S (x).

We also introduce the following generalised forms of the above notation, with types
� ⊆ ℘(A):

∇B
M (
,�):=

∧

S∈


∃x .τ B
S (x) ∧ ∀x .

∨

S∈�

τ B
S (x).
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The positive variants of the above notations are defined as ∇+M (
):=∇ A
M (
) and

∇+M (
,�):=∇ A
M (
,�).

Proposition 8 There exists an effective translation (−)� : M(A)→ PosB(M(A)) such
that a sentence ϕ ∈ M(A) is monotone in B ⊆ A if and only if ϕ ≡ ϕ�.

Proof To define the translation, by Fact 2, we may assume without loss of generality
that ϕ is in the normal form

∨∇M(
). We define the translation as

(∨
∇M(
)

)� :=
∨
∇B
M (
).

From the construction it is clear that ϕ� ∈ PosB(M(A)). Then, the right-to-left direc-
tion of the proposition is immediate by Proposition 6. For the left-to-right direction,
assume that ϕ is monotone in B. It suffices to prove that (D, V ) |� ϕ if and only if
(D, V ) |� ϕ�.
⇒ This direction is trivial.
⇐ Assume (D, V ) |� ϕ� and let 
 be such that (D, V ) |� ∇B

M (
). If D = ∅, then

 = ∅ and ∇B

M (
) = ∇M(
). Hence, assume D �= ∅, and clearly 
 �= ∅.
We claim the existence of a surjective map T : D→ 
 such that (D, V ) |� τ B

Td
(d),

for every d in D. To see this, first note that, because of the existential part of ∇B
M (
),

every type S ∈ 
 has a ‘B-witness’ in D, that is, an element dS ∈ D such that
(D, V ) |� τ B

S (dS). It is in fact safe to assume that all these witnesses are distinct (this
is because (D, V ) can be proved to beM-equivalent to such amodel, cf. Proposition 18).
This means that we may define T : dS �→ S, which will ensure the surjectivity of
T . It remains to extend the definition of T to the elements of D that are not of the
form dS for some S ∈ 
. But this is easy: because of the universal part of ∇B

M (
),
we may find for every element d in D some type Sd in 
 such that (D, V ) |� τ B

Sd
(d).

Putting these observations together, it should be clear that the map T : D → ℘(A)

given by T (d):=S if d = dS for some S ∈ 
, and T (d):=Sd otherwise, satisfies the
requirements.

Now let U : A → ℘(D) be the valuation of which T is the associated colouring,
cf. Definition 2. That is, we put U (a):={d ∈ D | a ∈ Td}. The definition of U is
tailored towards the claim that

(D,U ) |� ∇M(
). (6)

To see why this is the case, first take an arbitrary d ∈ D; it is immediate by the
definitions that (D,U ) |� τTd (d), and since Td ∈ 
, this takes care of the universal
conjunct of the formula ∇M(
). Now take an arbitrary S ∈ 
. It follows by the
surjectivity of T that there is a d ∈ D such that 
 = Td ; and since we saw that
(D,U ) |� τTd (d), this takes care of the existential part.

Clearly it follows from (6) that (D,U ) |� ϕ. But then by monotonicity of ϕ, we
are done if we can show that

U ≤B V . (7)
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To see this, observe that for a ∈ A \ B we have the following equivalences:

d ∈ U (a) ⇐⇒ a ∈ Td ⇐⇒ (D, V ) |� a(d) ⇐⇒ d ∈ V (a),

while for b ∈ B we can prove

d ∈ U (b) ⇐⇒ b ∈ Td �⇒ (D, V ) |� b(d) ⇐⇒ d ∈ V (b).

This suffices to prove (7), and finishes the proof of the Proposition. ��
A careful analysis of the translation gives us the following corollary, providing

normal forms for the monotone fragment of M.

Corollary 1 For any sentence ϕ ∈ M(A), the following hold.

1. The formula ϕ is monotone in B ⊆ A iff it is equivalent to a formula in the basic
form

∨∇B
M (
) for some types 
 ⊆ ℘(A).

2. The formulaϕ ismonotone in every a ∈ A iffϕ is equivalent to a formula
∨∇+M (
)

for some types 
 ⊆ ℘(A).

In both cases the normal forms are effective.

4.2 Monotone fragment of ME

In order to prove the ME-variant of Proposition 7, we need to introduce some new
notation.

Definition 20 Let B ⊆ A be a finite set of names, � ⊆ ℘(A) be some types, and
T ∈ ℘(A)k some list of types. The B-monotone variant of ∇ME(T,�) is given as
follows:

∇B
ME(T,�):=∃x.(diff(x) ∧

∧

i

τ B
Ti (xi ) ∧ ∀z.(diff(x, z)→

∨

S∈�

τ B
S (z))

)
.

When the set B is a singleton {a} we will write a instead of B. The positive variant
∇+ME(T,�) of ∇ME(T,�) is defined as above but with + in place of B.

Proposition 9 There exists an effective translation (−)� : ME(A) → PosB(ME(A))

such that a sentence ϕ ∈ ME(A) is monotone in B if and only if ϕ ≡ ϕ�.

Proof In proposition 10 this result is proved for ME∞ (i.e., ME extended with gener-
alised quantifiers). It is not difficult to adapt the proof for ME. The translation is defined
as follows. By Theorem 1 we may assume without loss of generality that ϕ is in basic
normal form

∨∇ME(T,�). Then ϕ�:=∨∇B
ME(T,�). ��

Combining the normal form for ME and the proof of the above proposition, we
obtain a normal form for the monotone fragment of ME.
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Corollary 2 For any sentence ϕ ∈ ME(A), the following hold.

1. The formula ϕ is monotone in B ⊆ A iff it is equivalent to a formula in the basic
form

∨∇B
ME(T,�) where for each disjunct we have T ∈ ℘(A)k for some k and

� ⊆ T.
2. The formula ϕ is monotone in all a ∈ A iff it is equivalent to a formula in the basic

form
∨∇+ME(T,�) where for each disjunct we have T ∈ ℘(A)k for some k and

� ⊆ T.

In both cases, normal forms are effective.

4.3 Monotone fragment of ME∞

First, in this case too we introduce some notation for the positive variant of a sentence
in normal form.

Definition 21 Let B ⊆ A be a finite set of names, 
,� ⊆ ℘(A) be some types, and
T ∈ ℘(A)k some list of types. The B-positive variant of ∇ME∞(T,�,
) is given as
follows:

∇B
ME∞(T,�,
):=∇B

ME(T,�) ∧ ∇B∞(
)

∇B∞(
):=
∧

S∈


∃∞y.τ B
S (y) ∧ ∀∞y.

∨

S∈


τ B
S (y).

When the set B is a singleton {a} we will write a instead of B. The positive variant of
∇ME∞(T,�,
) is defined as ∇+ME∞(T,�,
):=∇ A

ME∞(T,�,
).

We are now ready to proceed with the proof of the ME∞-variant of Proposition 7 and
to give the translation.

Proposition 10 There is an effective translation (−)� : ME∞(A)→ PosB(ME∞(A))

such that a sentence ϕ ∈ ME∞(A) is monotone in B if and only if ϕ ≡ ϕ�.

Proof By Theorem 2, we assume that ϕ is in the normal form
∨∇ME∞(T,�,
) =

∇ME(T,� ∪ 
) ∧ ∇∞(
) for some sets and list of types �,
,T ⊆ ℘(A) with

 ⊆ � ⊆ T. For the translation we define

( ∨
∇ME∞(T,�,
)

)�:=
∨
∇B
ME∞(T,�,
).

From the construction it is clear that ϕ� ∈ PosB(ME∞(A)). Then, the right-to-
left direction of the proposition is immediate by Proposition 6. For the left-to-right
direction, assume that ϕ is monotone in B, we have to prove that (D, V ) |� ϕ if and
only if (D, V ) |� ϕ�.
⇒ This direction is trivial.
⇐ Assume (D, V ) |� ϕ�, and in particular that (D, V ) |� ∇B

ME∞(T,�,
). If
D = ∅, then 
 = � = T = ∅ and ∇B

ME∞(T,�,
) = ∇ME∞(T,�,
). Hence,
assume D �= ∅. Observe that the elements of D can be partitioned in the following
way:
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(a) distinct elements ti ∈ D such that each ti satisfies τ B
Ti

(x),

(b) for every S ∈ 
 an infinite set DS , such that every d ∈ DS satisfies τ B
S ,

(c) a finite set D� of elements, each satisfying one of the B-positive types τ B
S with

S ∈ � \
.

Following this partition, with every element d ∈ D we may associate a type Sd in,
respectively, (a) T, (b) 
, or (c) � \ 
, such that d satisfies τ B

Sd
. As in the proof

of Proposition 8, we now consider the valuation U defined as U �(d):=Sd , and as
before we can show that U ≤B V . Finally, it easily follows from the definitions that
(D,U ) |� ∇ME∞(T,�,
), implying that (D,U ) |� ϕ. But then by the assumed
B-monotonicity of ϕ it is immediate that (D, V ) |� ϕ, as required. ��

As with the previous two cases, the translation provides normal forms for the
monotone fragment of ME∞.

Corollary 3 For any sentence ϕ ∈ ME∞(A), the following hold:

1. The formula ϕ is monotone in B ⊆ A iff it is equivalent to a formula∨∇B
ME∞(T,�,
) for 
 ⊆ � ⊆ ℘(A) and T ∈ ℘(A)k for some k.

2. The formula ϕ is monotone in every a ∈ A iff it is equivalent to a formula in the
basic form

∨∇+ME∞(T,�,
) for types 
 ⊆ � ⊆ ℘(A) and T ∈ ℘(A)k for
some k.

In both cases, normal forms are effective.

5 Continuity

In this section we study the sentences that are continuous in some set B of monadic
predicate symbols.

Definition 22 Let U and V be two A-valuations on the same domain D. For a set
B ⊆ A, we write U ≤ω

B V if U ≤B V and U (b) is finite, for every b ∈ B.
Given a monadic logic L and a formula ϕ ∈ L(A) we say that ϕ is continuous in

B ⊆ A if ϕ is monotone in B and satisfies the following:

if (D, V ), g |� ϕ then (D,U ), g |� ϕ for some U ≤ω
B V . (8)

for every monadic model (D, V ) and every assignment g : iVar→ D.

Remark 5 As for monotonicity it is straightforward to show that a formula ϕ is con-
tinuous in a set B iff it is continuous in every b ∈ B.

What explains both the name and the importance of this property is its equivalence
to so-called Scott continuity. To understand it, we may formalise the dependence of
the meaning of a monadic sentence ϕ with m free variables x in a monadic model
D = (D, V ) on a fixed name b ∈ A as a map ϕD

b : ℘(D) → ℘(Dm) defined by

X ⊆ D �→ {d ∈ Dm | (D, V [b �→ X ]) |� ϕ(d)}.
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One can then verify that a sentence ϕ is continuous in b if and only if the operation
ϕD

b is continuous with respect to the Scott topology on the powerset algebras.6 Scott
continuity is of key importance in many areas of theoretical computer sciences where
ordered structures play a role, such as domain theory (see e.g. [1]).

Similarly as for monotonicity, the semantic property of continuity can be provided
with a syntactic characterisation.

Definition 23 Let L ∈ {M,ME} The fragment of L(A)-formulas that are syntactically
continuous in a subset B ⊆ A is defined by the following grammar:

ϕ ::= ψ | b(x) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x .ϕ,

where b ∈ B and ψ ∈ L(A \ B). In both cases, we let ConB(L(A)) denote the set of
B-continuous sentences.

To define the syntactically continuous fragment of ME∞, we first introduce the
following binary generalised quantifierW: given two formulas ϕ(x) andψ(x), we set

Wx .(ϕ, ψ):=∀x .(ϕ(x) ∨ ψ(x)) ∧ ∀∞x .ψ(x).

The intuition behindW is the following. If (D, V ), g |�Wx .(ϕ, ψ), then because of
the second conjunct there are only finitely many d ∈ D refuting ψ . The point is that
this weakens the universal quantification of the first conjunct to the effect that only
the finitely many mentioned elements refuting ψ need to satisfy ϕ.

Definition 24 The fragment of ME∞(A)-formulas that are syntactically continuous in
a subset B ⊆ A is given by the following grammar:

ϕ ::= ψ | b(x) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x .ϕ |Wx .(ϕ, ψ),

where b ∈ B and ψ ∈ ME∞(A \ B). We let ConB(ME∞(A)) denote the set of B-
continuous ME∞-sentences.

For M and ME, the equivalence between the semantic and syntactic properties of
continuity was established by van Benthem in [5]. To keep this paper self-contained,
we give a sketch of this proof, which is based on a compactness argument.

Proposition 11 Let ϕ be a sentence of the monadic logic L(A), where L ∈ {M,ME}.
Then ϕ is continuous in a set B ⊆ A if and only if there is an equivalent sentence
ϕ� ∈ ConB(L(A)).

Proof The direction from right to left is covered by Proposition 12 below, so we
immediately turn to the completeness part of the statement. The case of M being
treated in Sect. 5.1, we only discuss the statement for ME. Hence, let ϕ ∈ ME(A) be
continuous in B. For simplicity in the exposition, we assume B = {b}; the case of an
arbitrary B can easily be generalised from what follows.

6 The interested reader is referred to [15, Sec. 8] for a more precise discussion of the connection.
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Let y0, y1, . . . be an infinite list of variables not occurring in ϕ. For k ∈ ω, consider
the formula

ϕk :=∃y0 · · · ∃yk−1
(

∧

�<k

b(y�) ∧ ϕ([y/b])
)

,

where ϕ([y/b])) is obtained from ϕ by substituting each occurrence of an atomic
formula of the form b(x) with the formula

∨
�<k x ≈ y�. Intuitively, ϕk expresses that

ϕ holds if we reduce the current interpretation of b to some subset of size k. Define
Φ:={ϕk | k ∈ ω}∪{ϕD∅

}, where ϕD∅
:=∀x .⊥ ifD∅ |� ϕ and ϕD∅

:=∃x .⊥ otherwise.
Then by construction Φ ⊂ ConB(ME(A)). Now by continuity of ϕ we find that

ϕ |�
∨

Φ,

that is, any non-empty monadic model that validates ϕ must validate one of the ϕk . But
then by compactness of first-order logic, there is an n ∈ ω such that ϕ |� ∨

k<n ϕk ∨
ϕD∅

. By monotonicity, ϕk |� ϕ, for every k ∈ ω, and by definition ϕD∅
|� ϕ.

We therefore conclude that ϕ ≡ ∨
k<n ϕk ∨ ϕD∅

. As ConB(ME(A)) is closed under
disjunctions, this ends the proof of the statement. ��

In this paper, we extend such a characterisation to ME∞. Moreover, analogously
to what we did in the previous section, for M and ME∞ we provide both an explicit
translation and a decidability result. The corresponding results in the case ofME remain
open.

Theorem 4 Let ϕ be a sentence of the monadic logic L(A), where L ∈ {M,ME∞}.
Then ϕ is continuous in a set B ⊆ A if and only if there is an equivalent sentence
ϕ� ∈ ConB(L(A)). Furthermore, it is decidable whether a sentence ϕ ∈ L(A) has
this property or not.

Analogously to the previous case of monotonicity, the proof of the theorem is
composed of two parts. We start with the right-left implication of the first claim (the
preservation statement), which also holds for ME.

Proposition 12 Every sentence ϕ ∈ ConB(L(A)) is continuous in B, where L ∈
{M,ME,ME∞}.
Proof First observe that ϕ is monotone in B by Proposition 6. The case for D = ∅

being clear,we assume D �= ∅.We show, by induction, that anyfirst-order formulaϕ in
the fragment satisfies (8), for every non-emptymonadic model (D, V ) and assignment
g : iVar→ D.

• If ϕ = ψ ∈ L(A \ B), changes in the B part of the valuation will not affect the
truth value of ϕ and hence the condition is trivial.

• Case ϕ = b(x) for some b ∈ B: if (D, V ), g |� b(x) then g(x) ∈ V (b). Let U be
the valuation given byU (b):={g(x)},U (a):=∅ for a ∈ B \ {b} andU (a):=V (a)

for a ∈ A \ B. Then it is obvious that (D,U ), g |� b(x), while it is immediate by
the definitions that U ≤ω

B V .
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• Case ϕ = ϕ1 ∨ ϕ2: assume (D, V ), g |� ϕ. Without loss of generality we can
assume that (D, V ), g |� ϕ1 and hence by induction hypothesis there is U ≤ω

B V
such that (D,U ), g |� ϕ1 which clearly implies (D,U ), g |� ϕ.

• Case ϕ = ϕ1 ∧ ϕ2: assume (D, V ), g |� ϕ. By induction hypothesis we have
U1,U2 ≤ω

B V such that (D,U1), g |� ϕ1 and (D,U2), g |� ϕ2. Let U be the
valuation defined by puttingU (a):=U1(a)∪U2(a); then clearlywe haveU ≤ω

B V ,
while it follows bymonotonicity that (D,U ), g |� ϕ1 and (D,U ), g |� ϕ2.Clearly
then (D,U ), g |� ϕ.

• Case ϕ = ∃x .ϕ′(x) and (D, V ), g |� ϕ. By definition there exists d ∈ D such that
(D, V ), g[x �→ d] |� ϕ′(x). By induction hypothesis there is a valuationU ≤ω

B V
such that (D,U ), g[x �→ d] |� ϕ′(x) and hence (D,U ), g |� ∃x .ϕ′(x).

• Case ϕ =Wx .(ϕ′, ψ) ∈ ConB(ME∞(A)) and (D, V ), g |� ϕ. Define the formu-
las α(x) and β as follows:

ϕ = ∀x . (ϕ′(x) ∨ ψ(x))
︸ ︷︷ ︸

α(x)

∧∀∞x .ψ(x)
︸ ︷︷ ︸

β

.

Suppose that (D, V ), g |� ϕ. By the induction hypothesis, for every d ∈ D which
satisfies (D, V ), gd |� α(x) (where we write gd :=g[x �→ d]) there is a valuation
Ud ≤ω

B V such that (D,Ud), gd |� α(x). The crucial observation is that because
of β, only finitely many elements of d refute ψ(x). LetU be the valuation defined
by putting U (a):=⋃{Ud(a) | (D, V ), gd �|� ψ(x)}. Note that for each b ∈ B,
the set U (b) is a finite union of finite sets, and hence finite itself; it follows that
U ≤ω

B V . We claim that

(D,U ), g |� ϕ. (9)

It is clear that (D,U ), g |� β because ψ (and hence β) is B-free. To prove that
(D,U ), g |� ∀x α(x), we have to show that (D,U ), gd |� ϕ′(x) ∨ ψ(x) for any
d ∈ D. We consider two cases: If (D, V ), gd |� ψ(x) we are done, again because
ψ is B-free. On the other hand, if (D, V ), gd �|� ψ(x), then (D,Ud), gd |� α(x)
by assumption on Ud , while it is obvious that Ud ≤B U ; but then it follows by
monotonicity of α that (D,U ), gd |� α(x).

This finishes the proof. ��
The second part of the proof of the theorem, is constituted by the following stronger

versionof the expressive completeness result that provides, as a corollary, normal forms
for the syntactically continuous fragments.

Proposition 13 Let L be one of the logics {M,ME∞}. There exists an effective trans-
lation (−)� : L(A) → ConB(L(A)) such that a sentence ϕ ∈ L(A) is continuous in
B ⊆ A if and only if ϕ ≡ ϕ�.

We prove the two manifestations of Proposition 13 separately, in two respective
subsections.

By putting together the two propositions above, we are able to conclude.
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Proof of Theorem 4 The first claim follows from Proposition 13. Hence, by applying
Fact 1 to Proposition 13, the problem of checking whether a sentence ϕ ∈ L(A) is
continuous in B ⊆ A or not, is decidable. ��

We conjecture that Proposition 13, and therefore Theorem 4, holds also forL = ME.

5.1 Continuous fragment of M

Since continuity implies monotonicity, by Theorem 3, in order to verify the M-variant
of Proposition 13, it is enough to prove the following result.

Proposition 14 There is an effective translation (−)� : PosB(M(A))→ ConB(M(A))

such that a sentence ϕ ∈ PosB(M(A)) is continuous in B ⊆ A if and only if ϕ ≡ ϕ�.

Proof By Corollary 1, to define the translation we may assume without loss of gener-
ality that ϕ is in the basic form

∨∇B
M (
). For the translation, let

(∨
∇B
M (
)

)� :=
∨
∇B
M (
,
−B )

where 
−B :={S ∈ 
 | B ∩ S = ∅}. From the construction, it is clear that
ϕ� ∈ ConB(M(A)). Then the right-to-left direction of the proposition is immediate
by Proposition 12.

For the left-to-right direction, assume that ϕ is continuous in B. We have to prove
that (D, V ) |� ϕ iff (D, V ) |� ϕ�, for every monadic model (D, V ). Our proof
strategy consists of proving the same equivalence for the model (D × ω, Vπ ), where
D × ω consists of ω many copies of each element in D and Vπ is the valuation given
by Vπ (a):={(d, k) | d ∈ V (a), k ∈ ω}. It is easy to see that (D, V ) ≡M (D × ω, Vπ )

(see Proposition 18) and so it suffices indeed to prove that

(D × ω, Vπ ) |� ϕ iff (D × ω, Vπ ) |� ϕ�.

Consider first the case where D = ∅. Then (D × ω, Vπ ) = D∅, and then the claim
is true since ∇B

M (∅) = ∇B
M (∅, ∅

−
B ) and D∅ |� ∇B

M (
) iff 
 = ∅.
In the remainder of the proof we focus on the case where D �= ∅.
⇒ Let (D × ω, Vπ ) |� ϕ. As ϕ is continuous in B there is a valuation U ≤ω

B Vπ

satisfying (D×ω,U ) |� ϕ. This means that (D×ω,U ) |� ∇B
M (
) for some disjunct

∇B
M (
) of ϕ. Below we will use the following fact (which can easily be verified):

(D × ω),U |� τ B
S (d, k) iff U �(d, k) \ B = S \ B and U �(d, k) ⊆ S ∩ B. (10)

Our claim is now that (D × ω,U ) |� ∇B
M (
,
−B ).

The existential part of ∇B
M (
,
−B ) is trivially true. To cover the universal part, it

remains to show that every element of (D × ω,U ) realizes a B-positive type in 
−B .
Take an arbitrary pair (d, k) ∈ D × ω and let T be the (full) type of (d, k), that is,
let T :=U �(d, k). If B ∩ T = ∅ then trivially T ∈ 
−B and we are done. So suppose
B ∩ T �= ∅. Observe that in D×ω we have infinitely many copies of d ∈ D. Hence,
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as U (b) is finite for every b ∈ B, there must be some (d, k′) with type U �(d, k′) =
V �

π (d, k′) \ B = V �
π (d, k) \ B = T \ B. It follows from (D × ω,U ) |� ∇B

M (
)

and (10) that there is some S ∈ 
 such that S \ B = U �(d, k′) \ B = U �(d, k′)
and S ∩ B ⊆ U �(d, k′) ∩ B = ∅. From this we easily derive that S = U �(d, k′)
and S ∈ 
−B . Finally, we observe that S \ B = U �(d, k′) \ B = U �(d, k) \ B and
S ∩ B = ∅ ⊆ U �(d, k), so that by (10) we find that D × ω,U ) |� τ B

S (d, k) indeed.
Finally, by monotonicity it directly follows from (D × ω,U ) |� ∇B

M (
,
−B ) that
(D × ω, Vπ ) |� ∇B

M (
,
−B ), and from this it is immediate that (D × ω, Vπ ) |� ϕ�.
⇐ Let (D × ω, Vπ ) |� ∇B

M (
,
−B ). To show that (D × ω, Vπ ) |� ∇B
M (
), the

existential part is trivial. For the universal part just observe that 
−B ⊆ 
. ��
A careful analysis of the translation provides us with normal forms for the contin-

uous fragment of M. We also formulate a version of this result which holds when we
restrict to the positive fragment of M; this version, which can be proved in the same
manner as the main result, will be needed in our companion paper.

Corollary 4 For any sentence ϕ ∈ M(A), the following hold.

1. The formula ϕ is continuous in B ⊆ A iff it is equivalent to a formula∨∇B
M (
,
−B ) for some types 
 ⊆ ℘(A), where 
−B :={S ∈ 
 | B ∩ S = ∅}.

2. Ifϕ positive in A (i.e.,ϕ ∈ M+(A)) thenϕ is continuous in B ⊆ A iff it is equivalent
to a formula in the basic form

∨∇+M (
,
−B ) for some types 
 ⊆ ℘(A), where

−B :={S ∈ 
 | B ∩ S = ∅}.

5.2 Continuous fragment of ME∞

As for the previous case, the ME∞-variant of Proposition 13 is an immediate conse-
quence of Theorem 3 and the following proposition.

Proposition 15 There is an effective translation (−)� : PosB(ME∞(A)) →
ConB(ME∞(A)) such that a sentence ϕ ∈ PosB(ME∞(A)) is continuous in B if
and only if ϕ ≡ ϕ�.

Proof By Corollary 3, we may assume that ϕ is in basic normal form, i.e., ϕ =
∨∇B

ME∞(T,�,
), with 
 ⊆ � ⊆ T. For the translation let
( ∨∇B

ME∞(T,�,
)
)�

:=∨∇B
ME∞(T,�,
)� where

∇B
ME∞(T,�,
)�:=

{
∇B
ME∞(T,�,
) if B ∩⋃


 = ∅

⊥ if B ∩⋃

 �= ∅.

First we prove the right-to-left direction of the proposition. By Proposition 12 it is
enough to show that ϕ� ∈ ConB(ME∞(A)). We focus on the disjuncts of ϕ�. The
interesting case is where B ∩⋃


 = ∅. Define the formulas ϕ′(x, z) and ψ(z) as
follows:

ϕ′(x, z) := ¬diff(x, z) ∨∨
S∈�\
 τ B

S (z)
ψ(z) := ∨

S∈
 τ B
S (y).
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Then we may rearrange the internal structure of the formula ∇B
ME∞(T,�,
) some-

what, arriving at the following:

∃x.
(
diff(x) ∧

∧

i

τ B
Ti (xi ) ∧ ∀z.(¬diff(x, z) ∨

∨

S∈�\

τ B
S (z)

︸ ︷︷ ︸
ϕ′(x,z)

∨
∨

S∈


τ B
S (z)

︸ ︷︷ ︸
ψ(z)

)

∧∀∞y.
∨

S∈


τ B
S (y)

︸ ︷︷ ︸
ψ(y)

)
∧

∧

S∈


∃∞y.τ B
S (y),

so that we find

∇B
ME∞(T,�,
) ≡ ∃x.

(
diff(x) ∧

∧

i

τ B
Ti (xi ) ∧Wz.(ϕ′(x, z), ψ(z))

)
∧

∧

S∈


∃∞y.τ B
S (y),

which belongs to the required fragment because B ∩⋃

 = ∅.

For the left-to-right direction of the proposition, we have to prove that ϕ ≡ ϕ�.
⇒ Let (D, V ) |� ϕ. Because ϕ is continuous in B we may assume that V (b) is
finite, for all b ∈ B. Let ∇B

ME∞(T,�,
) be a disjunct of ϕ such that (D, V ) |�
∇B
ME∞(T,�,
). If D = ∅, then T = � = 
 = ∅, and ∇B

ME∞(T,�,
) =
(∇B

ME∞(T,�,
))�. Hence, let D �= ∅. Suppose for contradiction that B∩⋃

 �= ∅,

then there must be some S ∈ 
 with B ∩ S �= ∅. Because (D, V ) |� ∇B
ME∞(T,�,
)

we have, in particular, that (D, V ) |� ∃∞x .τ B
S (x) and hence V (b) must be infinite,

for any b ∈ B∩ S, which is absurd. It follows that B∩⋃

 = ∅, but then we trivially

conclude that (D, V ) |� ϕ� because the disjunct remains unchanged.
⇐ Let (D, V ) |� ϕ�. This direction is trivial, because the only difference between

ϕ and ϕ� is that some disjuncts may have been replaced by ⊥. ��

We conclude the section by stating the following corollary, providing normal forms
for the continuous fragment of ME∞. As in the case of M we formulate, for future
reference, a variation of this result which applies to the positive fragment of ME∞.

Corollary 5 For any sentence ϕ ∈ ME∞(A), the following hold.

1. The formula ϕ is continuous in B ⊆ A iff ϕ is equivalent to a formula, effec-
tively obtainable from ϕ, which is a disjunction of formulas∇B

ME∞(T,�,
)where

,� ⊆ ℘(A) and T ∈ ℘(A)k are such that 
 ⊆ � ⊆ T and B ∩⋃


 = ∅.
2. If ϕ is positive (i.e., ϕ ∈ ME∞+(A)) then ϕ is continuous in B ⊆ A iff it is

equivalent to a formula, effectively obtainable from ϕ, which is a disjunction of
formulas

∨∇+ME∞(T,�,
), where 
,� ⊆ ℘(A) and T ∈ ℘(A)k are such that

 ⊆ � ⊆ T and B ∩⋃


 = ∅.
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6 Submodels and quotients

There are various natural notions of morphism between monadic models; the one that
we will be interested here is that of a (strong) homomorphism.

Definition 25 Let D = (D, V ) and D
′ = (D′, V ′) be two monadic models. A map

f : D → D′ is a homomorphism from D to D
′, notation: f : D → D

′, if we have
d ∈ V (a) iff f (d) ∈ V ′(a), for all a ∈ A and d ∈ D.

In this section we will be interested in the sentences of M,ME and ME∞ that are
preserved under taking submodels and the ones that are invariant under quotients.

Definition 26 LetD = (D, V ) andD
′ = (D′, V ′) be twomonadicmodels.We callD a

submodel ofD
′ if D ⊆ D′ and the inclusionmap ιDD′ : D ↪→ D′ is a homomorphism,

andwe say thatD′ is aquotient ofD if there is a surjective homomorphism f : D → D
′.

Now let ϕ be an L-sentence, where L ∈ {M,ME,ME∞}. We say that ϕ is preserved
under taking submodels if D |� ϕ implies D

′ |� ϕ, whenever D
′ is a submodel of

D. Similarly, ϕ is invariant under taking quotients if we have D |� ϕ iff D
′ |� ϕ,

whenever D
′ is a quotient of D.

The first of these properties (preservation under taking submodels) is well known
from classical model theory—it is for instance the topic of the Łos-Tarski Theorem.
When it comes to quotients, in model theory one is usually more interested in the
formulas that are preserved under surjective homomorphisms (and the definition of
homomorphism may also differ from ours). For instance, this is the topic of Lyndon’s
Theorem [23] which characterises the formulas that are preserved under a weaker
notion of homomorphism as the ones that are positive in all predicates occurring in the
formula. Our preference for the notion of invariance under quotients stems from the
fact that the property of invariance under quotients plays a key role in characterising
the bisimulation-invariant fragments of various monadic second-order logics, as is
explained in our companion paper [10].

6.1 Preservation under submodels

In this subsection we characterise the fragments of our predicate logics consisting of
the sentences that are preserved under taking submodels. That is, the main result of
this subsection is a Łos-Tarksi Theorem for ME∞.

Definition 27 The universal fragment of the set ME∞(A) is the collection
Univ(ME∞(A)) of formulas given by the following grammar:

ϕ ::= 
 | ⊥ | a(x) | ¬a(x) | x ≈ y | x �≈ y | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∀x .ϕ | ∀∞x .ϕ

where x, y ∈ iVar and a ∈ A. The universal fragment Univ(ME(A)) is obtained by
deleting the clause for ∀∞ from this grammar, and we obtain the universal fragment
Univ(M(A)) by further deleting both clauses involving the equality symbol.
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Theorem 5 Let ϕ be a sentence of the monadic logic L(A), where L ∈ {M,ME,ME∞}.
Thenϕ is preserved under taking submodels if and only if there is an equivalent formula
ϕ⊗ ∈ Univ(L(A)). Furthermore, it is decidable whether a sentence ϕ ∈ L(A) has
this property or not.

We start by verifying that universal formulas satisfy the property.

Proposition 16 Let ϕ ∈ Univ(L(A)) be a universal sentence of the monadic logic
L(A), where L ∈ {M,ME,ME∞}. Then ϕ is preserved under taking submodels.

Proof It is enough to directly consider the case L = ME∞. Let (D′, V ′) be a submodel
of the monadic model (D, V ). The case for D = ∅ being immediate, let us assume
D �= ∅. By induction on the complexity of a formula ϕ ∈ Univ(ME∞(A)) we will
show that for any assignment g : iVar→ D′ we have

(D, V ), g′ |� ϕ implies (D′, V ′), g |� ϕ,

where g′ := g ◦ ιD′D . We will only consider the inductive step of the proof where
ϕ is of the form ∀∞x .ψ . Define XD,V :={d ∈ D | (D, V ), g′[x �→ d] |� ψ}, and
similarly, XD′,V ′ :={d ∈ D′ | (D′, V ′), g[x �→ d] |� ψ}. By the inductive hypothesis
we have that XD,V ∩ D′ ⊆ XD′,V ′ , implying that D′ \ XD′,V ′ ⊆ D \ XD,V . But from
this we immediately obtain that

|D \ XD,V | < ω implies |D′ \ XD′,V ′ | < ω,

which means that (D, V ), g′ |� ϕ implies (D′, V ′), g |� ϕ, as required. ��

Turning to the much harder verification of the opposite implication of the theorem,
we first define the appropriate translations from each monadic logic into its universal
fragment.

Definition 28 Westart by defining the translations for sentences in basic normal forms.
Let 
,� ⊆ ℘(A) be some types and T ∈ ℘(A)k some list of types. For M-sentences
in basic form we first set

(
∇M(
)

)⊗:=∀z
∨

S∈


τS(z),

in the case of ME we define

(
∇ME(T,�)

)⊗:=∀z
∨

S∈T∪�

τS(z),
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while for basic formulas of ME∞, the translation (−)⊗ is given as follows:

(∇ME∞(T,�,
))⊗:=∀z
∨

S∈T∪�

τS(z) ∧ ∀∞z
∨

S∈


τS(z).

Second, in each case we define (
∨

i ϕi )
⊗:=∨

ϕ⊗i .
Finally, for eachL ∈ {M,ME,ME∞}, we extend the translation (−)⊗ to the collection

of all sentences by defining ϕ⊗:=(ϕ∗)⊗, where ϕ∗ is the basic normal form of ϕ as
given by Fact 2 (in the case of M), by Theorem 1 (in the case of ME), and by Theorem 2
(in the case of ME∞).

The missing part in the proof of the theorem is covered by the following result.

Proposition 17 For any monadic logic L ∈ {M,ME,ME∞} there is an effective transla-
tion (−)⊗ : L(A)→ Univ(L(A)) such that a sentence ϕ ∈ L(A) is preserved under
taking submodels if and only if ϕ ≡ ϕ⊗.

Proof Weonly consider the casewhereL = ME∞, leaving the other cases to the reader.
It is easy to see that ϕ⊗ ∈ Univ(ME∞(A)), for every sentence ϕ ∈ ME∞(A); but

then it is immediate by Proposition 16 that ϕ is preserved under taking submodels if
ϕ ≡ ϕ⊗.

For the left-to-right direction, assume that ϕ is preserved under taking submodels.
It is easy to see that ϕ implies ϕ⊗, so we focus on proving the opposite. That is, we
suppose that (D, V ) |� ϕ⊗, and aim to show that (D, V ) |� ϕ.

By Theorem 2 we may assume without loss of generality that ϕ is a disjunction of
sentences of the form ∇ME∞(T,�,
), where 
 ⊆ � ⊆ T. It follows that (D, V )

satisfies some disjunct ∀z ∨
S∈T∪� τS(z)∧ ∀∞z

∨
S∈
 τS(z) of

(
∇ME∞(T,�,
)

)⊗
.

Expand D with finitely many elements d, in one-one correspondence with T, and
ensure that the type of each di is Ti . In addition, add, for each S ∈ 
, infinitely many
elements {eSn | n ∈ ω}, each of type S. Call the resultingmonadicmodelD′ = (D′, V ′).

This construction is tailored to ensure that (D′, V ′) |� ∇ME∞(T,�,
), and so
we obtain (D′, V ′) |� ϕ. But obviously, D is a submodel of D

′. This implies that
(D, V ) |� ϕ, by our assumption on ϕ. ��
Proof of Theorem 5 The first part of the theorem is an immediate consequence of
Proposition 17. By applying Fact 1 to Proposition 17 we finally obtain that for the
three concerned formalisms the problem of deciding whether a sentence is preserved
under taking submodels is decidable. ��

As an immediate consequence of the proof of the previous Proposition 17, we get
effective normal forms for the universal fragments.

Corollary 6 The following hold:

1. A sentence ϕ ∈ ME(A) is preserved under taking submodels iff it is equivalent to
a formula

∨ (∀z ∨
S∈
 τS(z)

)
, for types 
 ⊆ ℘(A).
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2. A sentence ϕ ∈ ME(A) is preserved under taking submodels iff it is equivalent to
a formula

∨ (∀z ∨
S∈T∪� τS(z)

)
, for types � ⊆ ℘(A) and T ∈ ℘(A)k for some

k.
3. A sentence ϕ ∈ ME∞(A) is preserved under taking submodels iff it is equivalent

to a formula
∨ (∀z ∨

S∈T∪� τS(z)∧∀∞z
∨

S∈
 τS(z)
)
for types 
 ⊆ � ⊆ ℘(A)

and T ∈ ℘(A)k for some k.

In all three cases, normal forms are effective.

6.2 Invariance under quotients

The following theorem states that monadic first-order logic without equality (M) pro-
vides the quotient-invariant fragment of both monadic first-order logic with equality
(ME), and of infinite-monadic predicate logic (ME∞). Recall that a formula ϕ is invari-
ant under taking quotients if it satisfies the condition that D |� ϕ iff D

′ |� ϕ, for any
monadic model D and any quotient D

′ of D.

Theorem 6 Let ϕ be a sentence of the monadic logic L(A), where L ∈ {ME,ME∞}.
Then ϕ is invariant under taking quotients if and only if there is an equivalent sentence
in M. Furthermore, it is decidable whether a sentence ϕ ∈ L(A) has this property or
not.

We first state the ‘easy’ part of the first claim of the theorem. Note that in fact, we
have already been using this observation in earlier parts of the paper.

Proposition 18 Every sentence in M is invariant under taking quotients.

Proof Let f : D → D′ provide a surjective homomorphism between the models
(D, V ) and (D′, V ′), and observe that for any assignment g : iVar → D on D, the
composition f ◦ g : iVar→ D′ is an assignment on D′.

In order to prove the proposition one may show that, for an arbitrary M-formula ϕ

and an arbitrary assignment g : iVar→ D, we have

(D, V ), g |� ϕ iff (D′, V ′), f ◦ g |� ϕ. (11)

We leave the proof of (11), which proceeds by a straightforward induction on the
complexity of ϕ, as an exercise to the reader. ��

To prove the remaining part of Theorem 6, we start with providing translations from
ME and from ME∞, respectively, to M.

Definition 29 For ME-sentences in basic form we first define
(
∇ME(T,�)

)◦:=
∧

i

∃xi .τTi (xi ) ∧ ∀x .
∨

S∈�

τS(x),

whereas for ME∞-sentences in basic form we start with defining

(
∇ME∞(T,�,
)

)•:=
∧

i

∃xi .τTi (xi ) ∧ ∀x .
∨

S∈


τS(x).
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In both cases, the translation is then extended to the full language as in Definition 28.

Note that the two maps may give different translations for ME-sentences. Also
observe that the � ‘disappears’ in the translation of the formula ∇ME∞(T,�,
).

The key property of these translations is the following.

Proposition 19 1. For every monadic model (D, V ) and every ϕ ∈ ME(A) we have

(D, V ) |� ϕ◦ iff (D × ω, Vπ ) |� ϕ. (12)

2. For every monadic model (D, V ) and every ϕ ∈ ME∞(A) we have

(D, V ) |� ϕ• iff (D × ω, Vπ ) |� ϕ. (13)

Here Vπ is the induced valuation given by Vπ (a):={(d, k) | d ∈ V (a), k ∈ ω}.
Proof We only prove the claim for ME∞ (i.e., the second part of the proposition), the
case for ME being similar. Clearly it suffices to prove (13) for formulas of the form
ϕ = ∇ME∞(T,�,
).

First of all, if D is the empty model, we find T = � = 
 = ∅, (D, V ) =
(D × ω, Vπ ), and ∇ME∞(T,�,
) = (∇ME∞(T,�,
))•. In other words, in this case
there is nothing to prove.

In the sequel we assume that D �= ∅.
⇒ Assume (D, V ) |� ϕ•, we will show that (D×ω, Vπ ) |� ∇ME∞(T,�,
). Let di
be such that V �(di ) = Ti in (D, V ). It is clear that the (di , i) provide distinct elements,
with each (di , i) satisfying τTi in (D×ω, Vπ ). Thus, the first-order existential part of
ϕ is satisfied. With a similar argument it is straightforward to verify that the ∃∞-part
of ϕ is also satisfied—here we critically use the observation that 
 ⊆ T, so that every
type in
 is witnessed in the model (D, V ), and hence witnessed infinitely many times
in (D × ω, Vπ ).

For the universal parts of ∇ME∞(T,�,
) it is enough to observe that, because of
the universal part of ϕ•, every d ∈ D realizes a type in 
. By construction, the same
applies to (D × ω, Vπ ). This takes care of both universal quantifiers.
⇐ Assuming that (D×ω, Vπ ) |� ∇ME∞(T,�,
), we will show that (D, V ) |� ϕ•.
The existential part of ϕ• is trivial. For the universal part we have to show that every
element of D realizes a type in 
. Suppose not, and let d ∈ D be such that ¬τS(d)

for all S ∈ 
. Then we have (D × ω, Vπ ) �|� τS(d, k) for all k. That is, there are
infinitely many elements not realising any type in 
. Hence we have (D ×ω, Vπ ) �|�
∀∞y.

∨
S∈
 τS(y). Absurd, because this formula is a conjunct of ∇ME∞(T,�,
). ��

We will now show how the theorem follows from this. First of all we verify that in
both cases M is expressively complete for the property of being invariant under taking
quotients.

Proposition 20 For anymonadic logicL ∈ {ME,ME∞} there is an effective translation
(−)� : L(A)→ M such that a sentence ϕ ∈ L(A) is invariant under taking quotients
if and only if ϕ ≡ ϕ�.
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Proof Let ϕ be a sentence of ME∞, and let ϕ�:=ϕ• (we only cover the case of L =
ME∞, the case for L = ME is similar, just take ϕ�:=ϕ◦) We will show that

ϕ ≡ ϕ� iff ϕis invariant under taking quotients. (14)

The direction from right to left is immediate by Proposition 18. For the other direction
it suffices to observe that anymodel (D, V ) is a quotient of its ‘ω-product’ (D×ω, Vπ ),
and to reason as follows:

(D, V ) |� ϕ iff (D × ω, Vπ ) |� ϕ (assumption on ϕ)

iff (D, V ) |� ϕ• (Proposition 19)

��
Hence we can conclude.

Proof of Theorem 6 The theorem is an immediate consequence of Proposition 20.
Finally, the effectiveness of translation (·)•, decidability of ME∞ (Fact 1) and (14)
yield that it is decidable whether a given ME∞-sentence ϕ is invariant under taking
quotients or not. ��

As a corollary, we obtain:

Corollary 7 Let ϕ be a sentence of the monadic logic L(A), where L ∈ {ME,ME∞}.
Then ϕ is invariant under taking quotients if and only if there is an equivalent sentence
∇M(
) for types 
 ⊆ ℘(A). Moreover, such a normal form is effective.

In our companion paper [10] on automata, we need versions of these results for the
monotone and the continuous fragment. For this purpose we define some slight mod-
ifications of the translations (·)◦ and (·)• which restricts to positive and syntactically
continuous sentences.

Theorem 7 There are effective translations (·)◦ : ME+ → M+ and (·)• : ME∞+ → M+
such that ϕ ≡ ϕ◦ (respectively, ϕ ≡ ϕ•) iff ϕ is invariant under quotients. Moreover,
we may assume that (·)• : ConB(ME∞(A)) ∩ ME∞+ → ConB(M(A)) ∩ M+, for any
B ⊆ A.

Proof We define translations (·)◦ : ME+ → M+ and (·)• : ME∞+ → M+ as follows.
For ME+,ME∞+-sentences in simple basic form we define

(
∇+ME(T,�)

)◦ := ∧
i ∃xi .τ+Ti (xi ) ∧ ∀x .

∨
S∈� τ+S (x),

(
∇+ME∞(T,�,
)

)• := ∧
i ∃xi .τ+Ti (xi ) ∧ ∀x .

∨
S∈
 τ+S (x),

and then we use, respectively, the Corollaries 2 and 3 to extend these translations to
the full positive fragments ME+ and ME∞+, as we did in Definition 29 for the full
language.
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We leave it as an exercise for the reader to prove the analogue of Proposition 19 for
these translations, and to show how the first statements of the theorem follows from
this.

Finally, to see why wemay assume that (·)• restricts to a map from the syntactically
B-continuous fragment of ME∞+(A) to the syntactically B-continuous fragment of
M+(A), assume that ϕ ∈ ME∞(A) is continuous in B ⊆ A. By Corollary 5 we
may assume that ϕ is a disjunction of formulas of the form ∇+ME∞(T,�,
), where
B ∩⋃


 = ∅. This implies that in the formula ϕ• no predicate symbol b ∈ B occurs
in the scope of a universal quantifier, and so ϕ• is syntactically continuous in B indeed.

��

7 Conclusions

In this paper we established some model-theoretic results about the logic ME∞, a vari-
ation ofmonadic first-order logic that features the generalised quantifier ∃∞ (‘there are
infinitelymany’), and about its classical fragmentsME andM consisting of, respectively,
monadid first-order logic with and without equality. For each logic L ∈ {M,ME,ME∞}
we used the method of Ehrenfeucht–Fraïssé games to show that arbitrary sentences
can be effectively rewritten into some normal form. We subsequently used these nor-
mal forms to prove a number of characterisation theorems, covering some well-known
semantic properties, viz., monotonicity and preservation under submodels, but also
some properties of more specific interest, viz., continuity and invariance under quo-
tients. In all cases we actually proved a stronger result than a mere characterisation
theorem: we provided a map, effectively translating arbitrary sentences into sentences
of the required syntactic shape, and we showed that an arbitrary sentence in L has the
semantic property under scrutiny iff it is equivalent to its translation. As a consequence
of this result and the fact that each L ∈ {M,ME,ME∞} has a decidable satisfiability
problem, we showed that each of the mentioned properties is decidable for monadic
first-order sentences.

Our main interest concerned the language ME∞ with the infinity quantifer. Since
this operator does not make sense in finite models, we did not explicitly investigate
which of our results on the other languages, M and ME, hold as well in the setting of
finite model theory. We claim, however, that all of our results on normal forms, and
on characterisations of monotonicity, preservation under submodels, and invariance
under quotients, hold in this setting as well, with only minor adaptations of the proofs.
(The remaining property of continuity is obviously not of interest in the setting of finite
models.) For instance, some of our proofs use a model-theoretic copying construction
that turns an arbitrary monadic model (D, V ) into its ω-fold copy (D × ω, Vπ ). In
the setting of finite model theory, this construction needs to be replaced with a more
fine-grained k-fold copying construction, with k a finite number depending on the
sentence under investigation.

We finish with mentioning some suggestions for further research. First, given that
many semantic properties of monadic predicate logics turn out to be decidable, a
natural follow-up question would be to investigate the computational complexity of
these problems. Second, by van Benthem’s result (cf. Proposition 11), a sentence
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ϕ ∈ ME(A) is continuous in a set B ⊆ A if and only if it is equivalent to some ϕ�
in the syntactic fragment ConB(L(A)). Intrigueingly we did not manage to prove
this result using the normal form method; we conjecture, however, that the obvious
analogues of Proposition 13 and Theorem 4 do hold for L = ME.

Finally, one perspective on our work is that it bears further witness to the fact
that failure of compactness is in itself not an obstacle for the development of model
theory—as is well known, of course, from the area of finite model theory that we just
mentioned. It would be interesting to seewhich of our characterisation results still hold
if we drop the restriction to monadic predicate logic, and investigate the full language
FOE∞ of first-order logic (with equality) extended with the infinity quantifier ∃∞, or
fragments of FOE∞ that are more expressive than ME∞. A first step in this direction
was taken by Ignacio Bellas Acosta, who wrote, under the supervision of the third
author, an MSc thesis [3] on the modal fragment of FOE∞ establishing, among other
things, a van Benthem-style bisimulation invariance result.

Acknowledgements Weare very grateful to the anonymous referee formany useful suggestions for improv-
ing the paper.

Funding Open Access funding provided by SUPSI - University of Applied Sciences and Arts of Southern
Switzerland.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.)
Handbook of Logic in Computer Science, vol. 3, pp. 2–168. Oxford University Press (1994)

2. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Publishing Company, Ams-
terdam (1954)

3. Acosta, I.B.: Studies in the extension of standard modal logic with an infinite modality. Master’s thesis,
Institute for Logic, Language and Computation, Universiteit van Amsterdam (2020)

4. Behmann, H.: Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem. Mathema-
tische Annalen (1922)

5. van Benthem, J.: Dynamic bits and pieces. ILLC preprint LP-1997-01 (1997)
6. vanBenthem, J.,Westerståhl, D.: Directions in generalized quantifier theory. Stud. Log. 55(3), 389–419

(1995)
7. Caicedo, X.: On extensions of Lωω(Q1). Notre Dame J. Form. Log. 22(1), 85–93 (1981)
8. Carreiro, F.: Fragments of fixpoint logics. Ph.D. thesis, Institute for Logic, Language and Computation,

Universiteit van Amsterdam (2015)
9. Carreiro, F., Facchini, A., Venema, Y., Zanasi, F.: Weak MSO: Automata and expressiveness modulo

bisimilarity. In: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), p. 1–27. ACM (2014)

10. Carreiro, F., Facchini, A., Venema, Y., Zanasi, F.: The power of the weak. ACM Trans. Comput. Log.
21(2), (2020). https://doi.org/10.1145/3372392

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3372392


502 F. Carreiro et al.

11. D’Agostino, G., Hollenberg, M.: Logical questions concerning the μ-calculus: interpolation, Lyndon
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