Skip to main content
Log in

Complexity of \(\Sigma ^0_n\)-classifications for definable subsets

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

For a non-zero natural number n, we work with finitary \(\Sigma ^0_n\)-formulas \(\psi (x)\) without parameters. We consider computable structures \({\mathcal {S}}\) such that the domain of \({\mathcal {S}}\) has infinitely many \(\Sigma ^0_n\)-definable subsets. Following Goncharov and Kogabaev, we say that an infinite list of \(\Sigma ^0_n\)-formulas is a \(\Sigma ^0_n\)-classification for \({\mathcal {S}}\) if the list enumerates all \(\Sigma ^0_n\)-definable subsets of \({\mathcal {S}}\) without repetitions. We show that an arbitrary computable \({\mathcal {S}}\) always has a \({{\mathbf {0}}}^{(n)}\)-computable \(\Sigma ^0_n\)-classification. On the other hand, we prove that this bound is sharp: we build a computable structure with no \({{\mathbf {0}}}^{(n-1)}\)-computable \(\Sigma ^0_n\)-classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goncharov, S.S., Kogabaev, N.T.: On \(\Sigma ^0_1\)-classification of relations on computable structures. Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 8(4), 23–32 (2008). (In Russian)

    MATH  Google Scholar 

  2. Goncharov, S.S., Sorbi, A.: Generalized computable numerations and nontrivial Rogers semilattices. Algebra Logic 36(6), 359–369 (1997). https://doi.org/10.1007/BF02671553

    Article  MATH  Google Scholar 

  3. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (In Russian)

  4. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory. Stud. Logic Found. Math., vol. 140, pp. 473–503. North-Holland, Amsterdam (1999). https://doi.org/10.1016/S0049-237X(99)80030-5

    Chapter  Google Scholar 

  5. Badaev, S.A., Goncharov, S.S.: The theory of numberings: open problems. In: Cholak, P., Lempp, S., Lerman, M., Shore, R. (eds.) Computability Theory and Its Applications. Contemp. Math., vol. 257, pp. 23–38. American Mathematical Society, Providence (2000). https://doi.org/10.1090/conm/257/04025

    Chapter  MATH  Google Scholar 

  6. Friedberg, R.M.: Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. J. Symb. Log. 23(3), 309–316 (1958). https://doi.org/10.2307/2964290

    Article  MATH  Google Scholar 

  7. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  8. Boyadzhiyska, S., Lange, K., Raz, A., Scanlon, R., Wallbaum, J., Zhang, X.: Classifications of definable subsets. Algebra Logic 58(5), 383–404 (2019). https://doi.org/10.1007/s10469-019-09559-7

    Article  MATH  Google Scholar 

  9. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum Publishers, New York (2000)

    Book  MATH  Google Scholar 

  10. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Stud. Logic Found. Math., vol. 144. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  11. Rosenstein, J.G.: Linear Orderings. Pure Appl. Math., vol. 98. Academic Press, New York (1982)

    Google Scholar 

  12. Ash, C.J.: A construction for recursive linear orderings. J. Symb. Log. 56(2), 673–683 (1991). https://doi.org/10.2307/2274709

    Article  MATH  Google Scholar 

  13. Downey, R., Knight, J.F.: Orderings with \(\alpha \)-th jump degrees \(0^{(\alpha )}\). Proc. Amer. Math. Soc. 114(2), 545–552 (1992). https://doi.org/10.1090/S0002-9939-1992-1065942-0

    Article  MATH  Google Scholar 

  14. Mwesigye, F., Truss, J.K.: Ehrenfeucht-Fraïssé games on ordinals. Ann. Pure Appl. Logic 169(7), 616–636 (2018). https://doi.org/10.1016/j.apal.2018.03.001

    Article  MATH  Google Scholar 

  15. Moses, M.: \(n\)-Recursive linear orders without \((n+1)\)-recursive copies. In: Crossley, J.N., Remmel, J.B., Shore, R.A., Sweedler, M.E. (eds.) Logical Methods. Progress in Computer Science and Applied Logic, vol. 12, pp. 572–592. Birkhauser, Boston, MA (1993)

    Google Scholar 

  16. Harrison-Trainor, M.: There is no classification of the decidably presentable structures. J. Math. Log. 18(2), 1850010 (2018). https://doi.org/10.1142/S0219061318500101

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work of S. Aleksandrova was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0011). The work of N. Bazhenov was supported by the Russian Science Foundation (project no. 18-11-00028). The work of M. Zubkov was supported by the Russian Science Foundation (project no. 18-11-00028) and performed under the development program of the Volga Region Mathematical Center (agreement no. 075-02-2020-1478). The authors are grateful to the referee for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Bazhenov.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, S., Bazhenov, N. & Zubkov, M. Complexity of \(\Sigma ^0_n\)-classifications for definable subsets. Arch. Math. Logic 62, 239–256 (2023). https://doi.org/10.1007/s00153-022-00842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-022-00842-6

Keywords

Mathematics Subject Classification

Navigation