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Abstract. We compare two semantic models of dataflow programs: a synchronous version of the classical Kahn
semantics, and a new semantics in a category of synchronous processes. We consider the Kahn semantics to
be extensional, as it describes the functions computed by dataflow nodes, and the categorical semantics to be
intensional, as it describes the step-by-step production of output tokens from input tokens. Assuming that pro-
grams satisfy Wadge’s cycle sum condition and are therefore deadlock-free, we prove that the two semantics are
equivalent. This equivalence result amounts to a proof that function composition in the extensional semantics
is faithfully modelled by the detailed interactions of the intensional semantics, and provides further insight into
the nature of dataflow computation.
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1. Introduction

Dataflow is a simple model of parallel computing in which a program consists of a collection of nodes, each with
a number of inputs and outputs, connected into a fixed network. Abstractly, the nodes can be viewed as inde-
pendent parallel processes, communicating via data channels; a range of concrete implementations are possible,
with varying degrees of parallelism.

Small dataflow programs can usefully be presented graphically, but to cater for larger programs dataflow
languages typically use an equational syntax. Figure 1 illustrates the two styles. The correspondence between the
graphical and equational presentations is not usually formalised.

1.1. Synchronous and Asynchronous Execution

Dataflow programs can be executed either synchronously or asynchronously. We take synchronous execution to
mean that tokens are produced in step with a global clock; at each time step, every node consumes one token
from each of its inputs and adds one token to its output. The connections between nodes transmit tokens instan-
taneously. Asynchronous execution means that the connections are unbounded buffers and each node produces
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y � x + z y � x + z
z � 1 + w or z � 1 + pre0(z)
w � pre0(z)

Fig. 1. A dataflow network: graphical and equational descriptions.

more output whenever it has received sufficient input to do so. The difference between the synchronous and
asynchronous models is highlighted by the interpretation of the pre0 node, which outputs 0 followed by a copy
of its input stream. Asynchronously, the node is fully specified by the equation pre0(x) � 0x and the rate of pro-
duction of tokens is not determined. Synchronously, the node outputs 0 at the first step and at each subsequent
step outputs the token received at the previous step. This paper is concerned with dataflow programs using the
synchronous execution model we have described.

1.2. Synchronous Execution of the Example

The synchronous execution of the example network is shown in the table, with time proceeding downwards. The
calculation is driven by the 0 initially produced by the pre0 node.

w � pre0(z) z � 1 + w x y � x + z

0 1 x1 x1 + 1
1 2 x2 x2 + 2
2 3 x3 x3 + 3
...

...
...

...

1.3. Kahn Semantics

The standard semantics of dataflow programs was defined by Kahn [Kah74]. The outputs of a node, as streams
of tokens, are continuous functions of the input streams. The equational description of a network is interpreted
as a set of simultaneous equations and solved by taking the least fixed point of an appropriate stream function.
The solution yields the streams produced by the entire network from given inputs. The Kahn semantics describes
asynchronous execution, but if nodes are modelled by synchronous functions (which we will define in Section 3)
then the least fixed point solution describes synchronous execution.

1.4. Categorical Semantics

We define a new semantics of dataflow programs, which interprets nodes and networks as morphisms in SProc,
a category of synchronous processes. At each instant, a node imposes a certain relation on its input and output
tokens. The behaviour of a network emerges, from composition of these relations at each instant, as a collection
of streams which satisfy all the constraints imposed by the nodes and connections.

1.5. Semantic Equivalence

We prove that the categorical semantics is equivalent to the synchronous Kahn semantics, by defining what it
means for a synchronous process to compute a function on streams, and showing that the categorical
semantics of a dataflow program is a process which computes the stream function given by the Kahn semantics.
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This equivalence is subject to the assumption that networks satisfy Wadge’s cycle sum condition, guaranteeing
deadlock freedom. The result provides alternative ways of understanding the behaviour of a network: abstractly,
by composition of stream functions; or more operationally, in terms of step-by-step interactions between pro-
cesses.

1.6. Contribution

The main contribution of this paper is the definition of the categorical semantics of dataflow and the proof of
its equivalence with the Kahn semantics. Identifying the notion of a synchronous stream function and formulat-
ing the synchronous Kahn semantics is a secondary contribution, as we are not aware that this has been done
explicitly before.

1.7. Applications and Limitations

Dataflow has been used as the basis of at least two industrial-strength programming languages: Signal [BeL91,
LGL91] and Lustre [HCR91]. These languages are well suited to real-time applications, and can be compiled
directly to hardware. One of their key features, which goes beyond the pure model of dataflow programming
considered in the present paper, is the introduction of multiple clocks. Rather than synchronising directly with
the global clock, each stream has its own clock specifying that tokens are produced at some but not all instants
of the global clock. Clocks are streams which in turn have their own clocks, in a hierarchical structure. The
categorical semantics of dataflow presented in this paper has been extended to a model of the clock structure of
Signal [GaN93, Nag98] and Lustre [Gay95]. However, we are not aware of an extension of the Kahn semantics
to clocks, and so our semantic equivalence results only apply to pure dataflow.

1.8. Outline of the Paper

In Section 2 we define an idealised dataflow language D in which programs are expressions rather than sets of
equations. In Section 3 we define the Kahn semantics of D, and prove that the synchronous Kahn semantics is
well defined. In Section 4 we define SProc, the category of synchronous processes, and in Section 5 we define the
semantics of D in SProc. Section 6 contains the main technical contribution of the paper, and proves a series of
results leading to the equivalence of the Kahn and SProc semantics. Section 7 concludes.

2. The Idealised Dataflow Language D

When formalising the semantics of dataflow programs, it is convenient for networks to be described by expres-
sions rather than systems of equations. This requires the introduction of an explicit feedback or cycle operator,
to replace internal variables (such as z in Fig. 1). We define the idealised dataflow language D, which is a subset
of Ştefanescu’s [Ste00] calculus of flownomials.

Definition 2.1 Given a collection of ground types T � {A, B, . . . }, the types of D consist of n-fold tensor products
of ground types, A1 ⊗ · · · ⊗ An, and I , the 0-fold tensor product. Tensor product of n-fold tensor products is
defined in the natural way. We sometimes refer to types as general types to emphasise that they need not be ground
types.

Definition 2.2 The basic nodes of D are typed symbols of the form f : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn, where
the Ai and Bj are ground types.

Definition 2.3 The expressions of D are the typed expressions which can be built from basic nodes, the identity
symbols Im, the transposition symbols mXn, the fork symbols ∧m, the sink symbols ⊥m, the composition operator
;, the parallel operator ⊗, and the feedback operator ↑m, by the following typing rules.

• Identities (the Ai are ground types):

Im : A1 ⊗ · · · ⊗ Am → A1 ⊗ · · · ⊗ Am

• Transpositions (the Ai and Bj are ground types):
mXn : A1 ⊗ · · · ⊗ Am ⊗ B1 ⊗ · · · ⊗ Bn → B1 ⊗ · · · ⊗ Bn ⊗ A1 ⊗ · · · ⊗ Am
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f (basic node) Im mXn

p

q

∧m ⊥m p ⊗ q

p q
p

p ; q p ↑m

Fig. 2. The correspondence between D expressions and networks.

• Forks (the Ai are ground types):

∧m : A1 ⊗ · · · ⊗ Am → A1 ⊗ · · · ⊗ Am ⊗ A1 ⊗ · · · ⊗ Am

• Sinks (the Ai are ground types):

⊥m : A1 ⊗ · · · ⊗ Am → I

• Composition (X, Y , Z are general types):

p : X → Y q : Y → Z

p ; q : X → Z

• Parallel (X, Y , Z, W are general types):

p : X → Y q : Z → W

p ⊗ q : X ⊗ Z → Y ⊗ W

• Feedback (A and C are general types; the Bi are ground types):

p : A ⊗ B1 ⊗ · · · ⊗ Bm → C ⊗ B1 ⊗ · · · ⊗ Bm

p ↑m : A → C

A D expression p : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn corresponds to a network with m inputs and n outputs, as
illustrated by Fig. 2.

The network of Fig. 1 corresponds to the D expression

(I1 ⊗ ((one ⊗ pre0) ; plus ; ∧1) ↑1) ; plus : N → N

where N is the ground type of integers and the basic nodes have been typed as follows:

plus : N ⊗ N → N one : I → N pre0 : N → N.
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p ⊗ (q ⊗ r) � (p ⊗ q) ⊗ r (1)
I0 ⊗ p � p (2)
p ⊗ I0 � p (3)

p ; (q ; r) � (p ; q) ; r (4)
Im ; p � p (5)
p ; In � p (6)

(p ⊗ p′) ; (q ⊗ q ′) � (p ; q) ⊗ (p′ ; q ′) (7)
Im ⊗ In � Im+n (8)

mXn ; nXm � Im+n (9)
mXn+p � (mXn ⊗ Ip) ; (In ⊗ mXp) (10)

(p ⊗ q) ; pXq � mXn ; (q ⊗ p) (11)
p ; (q ↑n) ; r � ((p ⊗ In) ; q ; (r ⊗ In)) ↑n (12)
p ⊗ (q ↑n) � (p ⊗ q) ↑n (13)

(p ; (In ⊗ q)) ↑p � ((Im ⊗ q) ; p) ↑q (14)

p ↑0 � p (15)
(p ↑n) ↑m � p ↑m+n (16)

In ↑n � I0 (17)
nXn ↑n � In (18)

∧n ; (∧n ⊗ In) � ∧n ; (In ⊗ ∧n) (19)
∧n ; (⊥n ⊗In) � In (20)

∧n ; nXn � ∧n (21)
⊥m+n � ⊥m ⊗ ⊥n (22)
∧m+n � (∧m ⊗ ∧n) ; (Im ⊗ mXn ⊗ In) (23)

⊥0 � I0 (24)

∧0 � I0 (25)
p ; ⊥n � ⊥m (26)
p ; ∧n � ∧m ; (p ⊗ p) (27)

Fig. 3. Axioms for D.

In general the representation of a network as a D expression is not unique. An alternative representation of our
example network is

(I1 ⊗ ((one ⊗ pre0) ; plus ; ∧1) ; (plus ⊗ I1)) ↑1

in which the feedback operator is applied at the top level rather than at the innermost possible level. Even a
simple connection such as

one ; pre0 : I → N

can be formed by means of the feedback operator and represented by

((one ⊗ pre0) ; 1X1) ↑1

To restore the exact correspondence between D expressions and networks, we consider D expressions up to prov-
able equality in the equational theory generated by the axioms in Fig. 3. These are Ştefanescu’s axioms for the
calculus of flownomials [Ste00]. We do not make use of the axioms in the present paper, except to note that they
are validated by the semantic model which we define in Section 5. Axioms (1)–(18) are the axioms for a symmetric
strict monoidal category [Mac71] with a trace [JSV96] (the cycle operator). Together, these axioms are sound and
complete for graph isomorphism. For axioms (19)–(27) to be satisfied, it is sufficient but not necessary that the
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monoidal product is also a Cartesian product; our category SProc satisfies these axioms but is not Cartesian.
The additional axioms are sound for graph isomorphism, with the exception of (19) (non-isomorphic branching
structures), (26) and (27) (duplication of deletion of p). Jeffrey [Jef97] considers soundness and completeness
with respect to a notion of bisimulation on graphs, by adding the following axiom:

if s is any D expression containing no basic nodes and (I ⊗ s) ; f � g ; (I ⊗ s) then f ↑� g ↑
Jeffrey refers to this axiom as Plotkin uniformity and Ştefanescu [Ste00] calls it the enzymatic axiom. It is also

necessary to consider the relationship between feedback and branching. Ştefanescu adds the axiom

∧n ↑n� �n

where �n is a source symbol whose axiomatisation also requires the introduction of joins ∨n. We do not consider
sources or joins in this paper, instead eliminating ∧n ↑n by our deadlock-freedom condition.

An equational description of a network can be translated straightforwardly into a D expression. We will not
define the translation here; a similar translation has been formalised elsewhere [Nag98] by the second author.
Multiple occurrences of variables must be converted into either compositions or feedbacks, which can be done
in various provably equivalent ways.

3. The Kahn Semantics of D

3.1. Notation

If A is a set then we write Aω for the set of finite and infinite sequences of elements of A, and A∗ for the set of finite
sequences. If f : A → B then f ∗ : A∗ → B∗ and f ω : Aω → Bω are the extensions of f to sequences. We write
πi for the ith projection function from a Cartesian product. If f : Aω → Bω then we write fix(f ) for the least
fixed point of f in the prefix ordering on Aω, obtained by iteration from the empty trace: fix(f ) � ⊔

r [f r (ε)].

3.2. Basic Definitions

In the Kahn semantics [Kah74] of dataflow networks, a network computes a collection of continuous (with respect
to the prefix order) functions of the streams of data forming its inputs. Feedback is interpreted by the least fixed
point operator. We now define the Kahn semantics [[·]]K of D expressions, which corresponds to Ştefanescu’s
SPF (stream processing function) model [Ste00] of the calculus of flownomials. The definitions apply to both the
synchronous and asynchronous execution models; the difference is in the nature of the functions which represent
the basic nodes, as we will see later.

Each ground type is interpreted by a set. An expression

p : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn

is interpreted by a function

[[p]]K : Aω
1 × · · · × Aω

m → Bω
1 × · · · × Bω

n .

For each basic node, an interpreting function must be specified. For other expressions, the semantics is defined
compositionally as follows:

• Identities: [[Im]]K (x1, . . . , xm) � (x1, . . . , xm).

• Transpositions: [[mXn]]K (x1, . . . , xm+n) � (xm+1, . . . , xm+n, x1, . . . , xm).

• Forks: [[∧m]]K (x1, . . . , xm) � (x1, . . . , xm, x1, . . . , xm).

• Sinks: [[⊥m]]K (x1, . . . , xm) � ().

• Composition: [[p ; q]]K (x1, . . . , xm) � [[q]]K ([[p]]K (x1, . . . , xm)).

• Parallel: [[p ⊗ q]]K (x1, . . . , xm+n) � (y1, . . . , yr+s) where
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yi �
{

πi([[p]]K (x1, . . . , xm)) if 1 � i � r
πi−r ([[q]]K (xm+1, . . . , xm+n)) if r < i � r + s

• Feedback: [[p ↑1]]K (x1, . . . , xm) � (y1, . . . , yn) where

yi � πi([[p]]K (x1, . . . , xm, z))
z � fix(λy.(πn+1([[p]]K (x1, . . . , xm, y)))).

Inductively, [[p ↑r ]]K � [[(p ↑r−1) ↑1]]K . It is also possible to define [[p ↑r ]]K directly as a simultaneous fixed
point, and it is standard in fixed point theory that the two definitions are equivalent. For the remainder of
the paper we will work with single feedbacks.

The semantics of network and basic nodes have the same form. This supports the encapsulation constructs of
real dataflow languages, which allow an arbitrary network to be packaged as a new basic node.

3.3. Synchronous Execution, Deadlock Freedom and the Cycle Sum Condition

If a network can be executed synchronously, then the Kahn functions of the basic nodes must be synchronous:
they cannot consume input without producing output. We now define the notion of synchronous function and
the related notion that certain output traces of a network are always longer than certain input traces.

Definition 3.1 A function f : Aω
1 × · · · × Aω

m → Bω
1 × · · · × Bω

n is synchronous if and only if

(∀i.length(xi) � r) ⇒ ∀i.length(πi(f (x1, . . . , xm))) � r

Definition 3.2 Let J ⊆ {1, . . . , m}, I ⊆ {1, . . . , n}. A synchronous function f : Aω
1 × · · · × Aω

m → Bω
1 × · · · × Bω

n

has outputs I longer than inputs J if and only if

∀a. (∀i ∈ J.length(xi) � a)&(∀i �∈ J.length(xi) � a + 1) ⇒
∀i ∈ I.length(πi(f (x1, . . . , xn))) � a + 1

Wadge [Wad81] identified a sufficient condition for dataflow networks to be deadlock-free, in the sense that their
Kahn semantics always produces infinite outputs from infinite inputs. The idea is to calculate a delay for each
(input, output) pair of each basic node, and specify that the sum of the delays around every cycle in a network
must be strictly positive. A formal definition of this cycle sum condition allows us to prove that the Kahn semantics
can be consistently restricted to synchronous functions. From now on we assume that for every basic node f the
corresponding semantic function [[f ]]K is synchronous.

We define, for each D expression p : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn, a delay matrix (δp
i,j )1�i�m,1�j�n whose

entries are taken from N ∪ {∞}. The token received on input i at time t cannot affect output j until time t + δ
p
i,j .

An entry of ∞ indicates that there is no path between a particular (input, output) pair.

Definition 3.3 Let f : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn be a basic node and assume that [[f ]]K is synchronous.
The entries of δf are maximal such that if

[[f ]]K (x1, . . . , xm) � (y1, . . . , yn)

then ∀j.length(yj ) � mini(δ
f
i,j + length(xi)).

The delay matrix constructions for the constructors of D are as follows:

• Identities: δ
Im
i,j �

{
0 if i � j
∞ otherwise.

• Transpositions: δ
mXn

i,j �
{

0 if 1 � i � m and j � i + n
0 if m + 1 � i � m + n and j � i − m
∞ otherwise.

• Forks: δ∧m

i,j �
{

0 if j � i or j � i + m
∞ otherwise.

• Sinks: δ⊥m

has no entries.
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• Composition: δ
p;q
i,j � mink(δp

i,k + δ
q
k,j ).

• Parallel: δp⊗q �
(

δp ∞
∞ δq

)

• Feedback: δ
p↑1

i,j � min(δp
i,j , δ

p

i,n+1 + δ
p

m+1,j )) where p : A1 ⊗ · · · ⊗ Am ⊗ C → B1 ⊗ · · · ⊗ Bn ⊗ C.

Note that δ⊥m

, and δf for any basic node f with no inputs, must be interpreted as trivial matrices with either no
rows or no columns and hence no entries. Calculations involving these matrices give the correct results.

With these definitions, the cycle sum condition becomes an additional condition on the typing rule for feed-
back (here the Ai and Bj are ground types):

p : A1 ⊗ · · · ⊗ Am ⊗ C1 ⊗ · · · ⊗ Cn → B1 ⊗ · · · ⊗ Br ⊗ C1 ⊗ · · · ⊗ Cn ∀k ∈ {1, . . . , n}.δp
m+k,r+k > 0

p ↑n : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Br

Wadge’s original statement of the cycle sum condition was that the sum of the delays around every cycle must
be strictly positive. In practical dataflow languages, most basic nodes (for example, those which operate as time-
independent functions, such as addition) have delays of 0. Non-trivial (i.e. neither 0 nor ∞) delays are restricted to
a few basic nodes, the typical example being pre, which has a delay of 1. If cyclic networks are to be constructed,
it is essential that there be at least one basic node with a positive delay. In general, negative delays are allowed;
for example, the language Lucid [AsW85] has a node called next, whose first output token is the second input
token, and this node has a delay of −1. However, in the case of synchronous execution, only positive delays make
sense. For synchronous languages the cycle sum condition reduces to the requirement that every cycle contains
a node with a non-zero delay.

3.4. Example

For the network of Fig. 1, the delay matrices for the basic nodes are

plus :
(

0
0

)

one : () pre0 : (1).

The following derivation shows the calculation of the delay matrix for the network as a whole. Note that the cycle
sum condition is satisfied.

I1 : (0)

one : () pre0 : (1)

one ⊗ pre0 : (∞ 1) plus :
(

0
0

)

(one ⊗ pre0) ; plus : (1) ∧1 : (0 0)

(one ⊗ pre0) ; plus ; ∧1 : (1 1)

((one ⊗ pre0) ; plus ; ∧1) ↑1: ()

I1 ⊗ ((one ⊗ pre0) ; plus ; ∧1) ↑1: (0 ∞) plus :
(

0
0

)

(I1 ⊗ ((one ⊗ pre0) ; plus ; ∧1) ↑1) ; plus : (0)

3.5. Properties of the Synchronous Semantics

The first proposition extends the property of Definition 3.3 from basic nodes to all expressions.

Proposition 3.4 Suppose that every basic node is interpreted by a synchronous function, and that the cycle sum
condition is observed. Let p : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn be a D expression. If

[[p]]K (x1, . . . , xm) � (y1, . . . , yn)

then ∀j.length(yj ) � mini(δ
p
i,j + length(xi)).
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Proof. By induction on the structure of p, with a case for each constructor of D. For basic nodes the desired
property holds by definition. The cases of identities, transpositions, and forks are straightforward, because the
delays are either 0 or ∞ and the semantic functions simply copy inputs to outputs in the positions indicated by
the 0 delays. The case of a sink is vacuous. The case of parallel is straightforward because the two parts of the
expression operate independently and this fact is mirrored by the definition of the delay matrix.

For the case of composition, consider p : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn and q : B1 ⊗ · · · ⊗ Bn →
C1 ⊗ · · · ⊗ Cr with

[[p]]K (x1, . . . , xm) � (y1, . . . , yn)
[[q]]K (y1, . . . , yn) � (z1, . . . , zr )

[[p ; q]]K (x1, . . . , xm) � (z1, . . . , zr ).

Given, by the induction hypothesis, ∀j.length(yj ) � mini(δ
p
i,j + length(xi)) and ∀j.length(zj ) � mini(δ

q
i,j +

length(yi)) we have, for any j ,

length(zj ) � mini(δ
q
i,j + mink(δp

k,i + length(xk)))

� mini,k(δq
i,j + δ

p
k,i + length(xk))

� mink(mini(δ
p
k,i + δ

q
i,j ) + length(xk))

� mink(δp;q
k,j + length(xk))

as required.
For the case of feedback, consider p : A1 ⊗ · · · ⊗ Am ⊗ C → B1 ⊗ · · · ⊗ Bn ⊗ C with

z � fix(λy.(πn+1([[p]]K (x1, . . . , xm, y))))
[[p]]K (x1, . . . , xm, z) � (y1, . . . , yn, z)

[[p ↑1]]K (x1, . . . , xm) � (y1, . . . , yn).

The induction hypothesis gives length(z) � min(min1�i�m(δp

i,n+1 + length(xi)), δ
p

m+1,n+1 + length(z)). The cycle
sum condition means that δ

p

m+1,n+1 > 0, and so length(z) � δ
p

m+1,n+1 + length(z) would be contradictory. Therefore
length(z) � min1�i�m(δp

i,n+1 + length(xi)).
The induction hypothesis also gives, for any j ,

length(yj ) � min(min1�i�m(δp
i,j + length(xi)), δ

p

m+1,j + length(z))

so we have

length(yj ) � min(min1�i�m(δp
i,j + length(xi)), δ

p

m+1,j + min1�i�m(δp

i,n+1 + length(xi)))

� min(min1�i�m(δp
i,j + length(xi)), min1�i�m(δp

m+1,j + δ
p

i,n+1 + length(xi)))

� min1�i�m(min(δp
i,j , δ

p

i,n+1 + δ
p

m+1,j ) + length(xi))

� min1�i�m(δp↑1

i,j + length(xi))

as required. �
Well-definedness of the synchronous semantics is an easy consequence.

Proposition 3.5 Suppose that every basic node of D is interpreted by a synchronous function, and that the cycle
sum condition is observed. Then for every expression p, [[p]]K is a synchronous function.

Proof. Let p : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn with

[[p]]K (x1, . . . , xm) � (y1, . . . , yn)

and suppose that ∀i.length(xi) � r. By Proposition 3.4 we have

∀j.length(yj ) � mini(δ
p
i,j + length(xi)).

Because each length(xi) � r and each δ
p
i,j � 0 we conclude that ∀i.length(yi) � r as required. �

We can now give a semantic counterpart of the cycle sum condition.
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Proposition 3.6 If p : A1 ⊗ · · · ⊗ Am ⊗ C → B1 ⊗ · · · ⊗ Bn ⊗ C and δ
p

m+1,n+1 > 0 then [[p]]K has output n + 1
longer than input m + 1.

Proof. Let [[p]]K (x1, . . . , xm+1) � (y1, . . . , yn+1) and assume length(xm+1) � a and ∀(1 � i � m).length(xi) �
a + 1. We need to prove ∀(1 � j � n + 1).length(yj ) � a + 1.

By Proposition 3.4 we have, for any j , length(yj ) � mini(δ
p
i,j +length(xi)). For 1 � i � m we have length(xi) �

a + 1 and δ
p
i,j � 0. Also length(xm+1) � a and δ

p

m+1,n+1 > 0. Therefore length(yj ) � a + 1. �
The next two results illustrate the way in which non-trivial delays, indicated semantically by outputs longer than
inputs, are propagated and preserved by network constructions. A similar result holds for parallel composition.

Proposition 3.7 Let f : A1 ⊗ · · · ⊗ An → A and g : B1 ⊗ · · · ⊗ Bm → Ai be synchronous and let

h : A1 ⊗ · · · ⊗ Ai−1 ⊗ B1 ⊗ · · · ⊗ Bm ⊗ Ai+1 ⊗ · · · ⊗ An → A

be defined by

h(x1, . . . , xi−1, y1, . . . , ym, xi+1, . . . , xn) �
f (x1, . . . , xi−1, g(y1, . . . , ym), xi+1, . . . , xn).

If f has output longer than inputs J then h has output longer than inputs J ′, where

J ′ � {j | j ∈ J, j < i} ∪ {j + m − 1 | j ∈ J, j > i} ∪ K

K �
{ {i, i + 1, . . . , i + m − 1} if i ∈ J

∅ if i �∈ J

If g has output longer than inputs J then h has output longer than inputs J ′ � {j + i − 1 | j ∈ J }.
Proof. Straightforward, by considering the lengths of the arguments of h, the relationship of the argument posi-
tions to J ′, and the properties of f and g. �
Proposition 3.8 If p : A1 ⊗ · · · ⊗ Am ⊗ C → B1 ⊗ · · · ⊗ Bn ⊗ C and [[p]]K has output n + 1 longer than input
m + 1 and output i (i � m) longer than inputs J ⊆ {1, . . . , m}, then [[p ↑1]]K has output i longer than inputs J .

Proof. [[p ↑1]]K (x1, . . . , xm) � (y1, . . . , yn) where

yi � πi([[p]]K (x1, . . . , xm, z))
z � fix(λy.(πn+1([[p]]K (x1, . . . , xm, y))))

�
⊔

r

[(λy.(πn+1([[p]]K (x1, . . . , xm, y))))r (ε)]

We need to show that

∀r.((∀i ∈ J.length(xi) � r)&(∀i �∈ J.length(xi) � r + 1) ⇒ length(yi) � r + 1)

Because [[p]]K has output i longer than inputs J , it is sufficient to show that

∀r.((∀i ∈ J.length(xi) � r)&(∀i �∈ J.length(xi) � r + 1) ⇒ length(z) � r)

In turn, it is sufficient to prove

∀r.((∀i ∈ J.length(xi) � r)&(∀i �∈ J.length(xi) � r + 1) ⇒
length((λy.(πn+1([[p]]K (x1, . . . , xm, y)))r (ε))) � r)

which we prove by induction on r.
The base case is trivial. For the inductive step, assume

∀r.((∀i ∈ J.length(xi) � r)&(∀i �∈ J.length(xi) � r + 1) ⇒
length((λy.(πn+1([[p]]K (x1, . . . , xm, y)))r (ε))) � r)

∀i ∈ J.length(xi) � r + 1
∀i �∈ J.length(xi) � r + 2

and consider

(λy.(πn+1([[p]]K (x1, . . . , xm, y))))r+1(ε) �
πn+1([[p]]K (x1, . . . , xm, (λy.(πn+1([[p]]K (x1, . . . , xm, y)))))r (ε))
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Because [[p]]K has output n + 1 longer than input m + 1, the induction hypothesis and the assumption that
∀i.length(xi) � r + 1 imply that length((λy.(πn+1([[p]]K (x1, . . . , xm, y))))r+1(ε)) � r + 1). �

4. The Category SProc of Synchronous Processes

SProc is an example of an interaction category [AGN95, AGN96, Abr93, AGN99, Gay95, Nag98], a class of
categories in which the morphisms are concurrent processes and the objects combine interface descriptions and
behavioural specifications. Interaction categories have been used as a semantic framework for the specification
and verification of safety and deadlock-freedom properties of concurrent systems. Their ∗-autonomous or com-
pact closed structure means that they are well suited to describing concurrent systems with a fixed communication
topology, such as dataflow networks. In the version of SProc which we use in the present paper, the morphisms
are synchronous processes and the objects specify alphabets of actions. The definitions rely on the notions of
labelled transition system, bisimulation, and transition rules [Mil89].

Definition 4.1 The set STL of synchronisation trees with label-set L is defined by the recursive equation STL
∼�

℘(L × STL).

The simplest way of solving the recursive equation in Definition 4.1 is to use Aczel’s theory [Acz88] of non-well-
founded sets. In this theory, STL is the final co-algebra of the functor X �→ ℘(L×X). The final co-algebra property
supports non-well-founded recursive definitions of elements of STL, and provides a principle of co-induction. We
work with a labelled transition system whose states are the elements of STL, and whose transitions are defined by
the interpretation of a synchronisation tree as the set of transitions to its descendants: P � {(a, Q) | P

a� Q}.
Equality of synchronisation trees corresponds to bisimulation. We refer to an element of STL as a process with
alphabet L.

Definition 4.2 The functions traces : STA → A∗, inftraces : STA → Aω and alltraces : STA → Aω are defined
as follows. Note that the first definition must be interpreted co-inductively so that the infinite traces are included.

alltraces(P ) def� {ε} ∪ {aσ | P
a� Q, σ ∈ alltraces(Q)}

traces(P ) def� {σ ∈ alltraces(P ) | σ is finite}
inftraces(P ) def� {σ ∈ alltraces(P ) | σ is infinite}

We now define SProc, the category of synchronous processes.

Definition 4.3 The objects of SProc are sets, thought of as alphabets of actions for processes. If A is an object of
SProc, a process of type A is an element of STA. If p is a process of type A we write p : A. Given objects A and
B, the object A⊗B is defined by A⊗B � A×B. A morphism p : A → B of SProc is a process p of type A⊗B.

In the usual definition of SProc, objects incorporate safety specifications which morphisms are required to sat-
isfy. In the present paper we do not make use of safety specifications and therefore we simplify the definitions by
omitting them.

Definition 4.4 If p : A → B and q : B → C then the composite p ; q : A → C is defined by the following
transition rule:

p
(a,b)� p′ q

(b,c)� q ′

p ; q
(a,c)� p′ ; q ′

During each transition, the actions being performed in the common type B are required to match. The processes
being composed constrain each other’s behaviour, selecting the possibilities which agree in B. Composition thus
involves ongoing interaction or communication. The operation of composition corresponds, in standard process
calculi, to a combination of parallel composition and restriction or hiding.

If the processes in the definition terminated after a single step, so that each could be considered simply as
a set of pairs, then the transition rule would reduce to precisely the definition of relational composition. SProc
processes can be viewed as relations extended in time.
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Definition 4.5 The identity morphism 1A : A → A is defined by the following transition rule:
a ∈ A

1A
(a,a)� 1A

Identity morphisms are synchronous buffers: whatever is received by 1A : A → A in the left copy of A is
instantaneously transmitted to the right copy (and vice versa – there is no real directionality).

Proposition 4.6 SProc is a category.

Proof. The necessary equations can be verified by bisimulation arguments. Full details can be found elsewhere
[AGN95, AGN96, AGN99, Gay95, Nag98]. �

With a few additional definitions, SProc can be given the structure of a ∗-autonomous category [Bar79].

Definition 4.7 If p : A → C and q : B → D then the morphism p ⊗ q : A ⊗ B → C ⊗ D is defined by the
following transition rule.

p
(a,c)� p′ q

(b,d)� q ′

p ⊗ q
((a,b),(c,d))� p′ ⊗ q ′

The tensor unit object I is defined by I � {∗}.
The contravariant functor (−)⊥ is trivial on objects: A⊥ def� A. If p : A → B then p⊥ : B⊥ → A⊥ is defined

by the following transition rule.

p
(a,c)� q

p⊥ (c,a)� q⊥

The operation is the de Morgan dual of ⊗: A B � (A⊥ ⊗ B⊥)⊥. The linear implication � is defined by
A � B � A⊥ B.

The operation ⊗ on processes is synchronous parallel composition. The following notation provides a useful way
of defining the rest of the ∗-autonomous structure.

Definition 4.8 If P is a process with alphabet �, and f : � ⇀ �′ is a partial function, then P [f ] is the process
with alphabet �′ defined by

P
a� Q a ∈ dom(f )

P [f ]
f (a)� Q[f ]

Definition 4.9 The canonical isomorphisms unitlA : I ⊗ A ∼� A, unitrA : A ⊗ I ∼� A, assocA,B,C : A ⊗ (B ⊗ C) ∼�
(A ⊗ B) ⊗ C and symmA,B : A ⊗ B → B ⊗ A are defined as follows, where we use pattern-matching notation to
define an appropriate partial function in each case.

unitlA � 1A[(a, a) �→ ((∗, a), a)]
unitrA � 1A[(a, a) �→ ((a, ∗), a)]

assocA,B,C � 1A⊗(B⊗C)[((a, (b, c)), (a, (b, c))) �→ ((a, (b, c)), ((a, b), c))]
symmA,B � 1A⊗B [((a, b), (a, b)) �→ ((a, b), (b, a))].

If f : A ⊗ B → C then 
(f ) : A → (B � C) is defined by


(f ) � f [((a, b), c) �→ (a, (b, c))].

The morphism ApA,B : (A � B) ⊗ A → B is defined by

ApA,B � 1A�B [((a, b), (a, b)) �→ (((a, b), a), b)].

Proposition 4.10 SProc is a ∗-autonomous category.
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Proof. Because (−)⊥ is trivial, it is only necessary to check that the structural isomorphisms (assoc, etc) satisfy
the required coherence conditions, and that 
 and Ap satisfy the conditions required for the adjunction between
⊗ and � to hold. This is straightforward because all the relevant morphisms are defined by relabelling identity
morphisms; essentially, the requirements reduce to facts about associativity of cartesian product on sets. �
For any permutation σ on {1, . . . , n} and any objects A1, . . . , An, there is a canonical isomorphism A1⊗. . .⊗An

∼�
Aσ (1) ⊗ . . . ⊗ Aσ (n).

A compact closed category is a ∗-autonomous category in which there are canonical isomorphisms A ⊗ B ∼�
A B. SProc is compact closed because (−)⊥ is defined to be the identity on objects and hence A ⊗ B and A B
are equal. Every compact closed category has a trace [JSV96], which means that given a morphism p : A ⊗ C →
B ⊗ C there is a morphism p ↑1 : A → B, such that the operation ↑1 satisfies the axioms of Section 2. The
generic definition of the trace is as follows. Given p : A ⊗ C → B ⊗ C we have 
(p) : A → C � (B ⊗ C). Using
the definition of � and the isomorphism between ⊗ and (twice), we obtain 
(p) ; α : A → (C � B) ⊗ C,
where α is a canonical isomorphism. Then p ↑1� 
(p) ; α ; ApC,B . In the case of SProc the generic definition
corresponds to:

Definition 4.11 If p : A ⊗ C → B ⊗ C in SProc then the morphism p ↑1 : A → B is defined by the following
transition rule:

p
(a,c,b,c)� q

p ↑1 (a,b)� q ↑1

We will use the specific definition later for proofs about ↑1, but it will be useful to bear in mind the generic
definition; it will emphasise the compositional nature of our semantic definitions.

For our later work, it is useful to define some morphisms which exist in SProc but are not part of the ∗-auton-
omous structure.

Definition 4.12 For each 1 � i � n and any A1, . . . , An the projection morphism πi : A1 ⊗ · · · ⊗ An → Ai is
defined by πi � 1A1⊗···⊗An

[πi ], where the πi in the relabelling operation is the set-theoretic projection function.
For any A and any n, the copying morphism fork(n)

A : A → A ⊗ · · · ⊗ A (with n copies of A on the right) is
defined by fork(n)

A � 1A[(a, a) �→ (a, (a, . . . , a))].
For any A the sink morphism sinkA : A → I is defined by sinkA � 1A[(a, a) �→ (a, ∗)].

The notions of functionality and determinism of processes are defined coinductively.

Definition 4.13 The set of functional processes of type A → B is the largest set F of processes of type A → B
such that for every p ∈ F the following conditions hold:

1. If p
(a,b)� q and p

(a,b′)� q ′ then b � b′.

2. For each a ∈ A there exists b ∈ B and q such that p
(a,b)� q (the receptivity condition).

3. If p
(a,b)� q then q ∈ F .

Definition 4.14 The set of deterministic processes of type A is the largest set D of processes of type A such that
for every p ∈ D the following conditions hold.

1. If p
a� q and p

a� q ′ then q � q ′.

2. If p
a� q then q ∈ D.

The notion of a process having certain outputs instantaneously independent of certain inputs is the SProc analogue
of the notion that a synchronous function has certain outputs longer than certain inputs. The output values are
independent of the input values received during the same step, but may depend on previous values of the inputs.
The definition is co-inductive.

Definition 4.15 Let I ⊆ {1, . . . , n} and J ⊆ {1, . . . , m}. The set of processes of type A1⊗· · ·⊗Am → B1⊗· · ·⊗Bn

with outputs I instantaneously independent of inputs J is the largest set S of processes of type A1 ⊗ · · · ⊗ Am →
B1 ⊗ · · · ⊗ Bn such that for every p ∈ S the following conditions hold.
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1. If p
(a1,... ,am,b1,... ,bn)� q and p

(a′
1,... ,a

′
m,b′

1,... ,b
′
n)� q and ∀j �∈ J.aj � a′

j then ∀i ∈ I.bi � b′
i .

2. If p
(a1,... ,am,b1,... ,bn)� q then q ∈ S.

Proposition 4.16 Suppose that p, q : A → B1 ⊗ · · · ⊗ Bn are functional and deterministic, and that p ;πi � q ;πi

for each 1 � i � n. Then p � q.

Proof. We show that the set R � {(p, q) | satisfying the conditions } is a bisimulation. Let (p, q) ∈ R and
consider a transition p

(a,b1,... ,bn)� p′. For each i there is a corresponding transition p ; πi
(a,bi )� p′ ; πi . Hence

for each i there is a transition q ; πi
(a,bi )� q ′

i ; πi . These transitions of the q ; πi must be derived from a collec-

tion of transitions q
(a,bi1,... ,bin)� q ′

i where for each i, bii � bi . Because q is functional, the values of the tuples

(bi1, . . . , bin) must be independent of i, and therefore there is a collection of transitions q
(a,b1,... ,bn)� q ′

i . Because q

is deterministic, all the q ′
i are equal, to q ′ say. Furthermore, p′ ;πi � q ′ ;πi for each i, and p′ and q ′ are functional

and deterministic, so (p′, q ′) ∈ R. A symmetrical argument shows that p can match transitions of q, completing
the bisimulation proof. �

Proposition 4.17 If p : A → B and q : B → C are functional and deterministic, then p ; q is functional and
deterministic.

Proof. We show that the set

X � {p ; q | p : A → B and q : B → C are functional and deterministic}
satisfies the conditions of Definitions 4.13 and 4.14 and is therefore a subset of the set of functional and deter-
ministic processes.

Suppose p ; q
(a,c)� r and p ; q

(a,c′)� r ′. Then there are transitions p
(a,b)� p′, q

(b,c)� q ′, p
(a,b′)� p′′,

q
(b′,c′)� q ′′ with r � p′ ; q ′ and r ′ � p′′ ; q ′′.

Because p is functional and deterministic, b′ � b and p′′ � p′. Therefore, and because q is functional and
deterministic, c′ � c and q ′′ � q ′. Hence r ′ � r. Also, p′ and q ′ are functional and deterministic, so p′ ; q ′ ∈ X.
Receptivity of p ; q follows from receptivity of p and q. Hence, by co-induction, all processes in X are functional
and deterministic. �

Proposition 4.18 If p : A → B and q : C → D are functional and deterministic, then p ⊗ q is functional and
deterministic.

Proof. Similar to the proof of Proposition 4.17. �

Proposition 4.19 If p : A ⊗ C → B ⊗ C is functional and deterministic and has output C instantaneously
independent of input C, then p ↑1 is functional and deterministic.

Proof. We use a co-inductive argument similar to the proof of Proposition 4.17. Suppose p ↑1 (a,b)� q and

p ↑1 (a,b′)� q ′. These transitions are derived from transitions p
(a,c,b,c)� r and p

(a,c′,b′,c′)� r ′ for some c and c′, with

q � r ↑1 and q ′ � r ′ ↑1. Because p has output C instantaneously independent of input C, c′ � c. Because p is
functional and deterministic, b′ � b and r ′ � r. For receptivity, let a ∈ A, c ∈ C. Receptivity of p implies that
there exist b, c′, q with p

(a,c,b,c′)� q. By receptivity again, there exist b′, c′′, q ′ such that p
(a,c′,b′,c′′)� q ′. Because

p has output C instantaneously independent of input C, c′′ � c′ and therefore p
(a,c′,b′,c′)� q ′ which yields a

transition p ↑1 (a,b′)� q ′ ↑1. This completes the coinductive proof. �
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x

Fig. 4. A trivial network.

5. The SProc Semantics of D

We define the semantics [[·]]S of D in SProc. Each ground type is interpreted by an object. An expression p :
A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn is interpreted by a process

[[p]]S : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn.

Once interpretations have been specified for the basic nodes, the semantics is defined for other expressions as
follows:

• Identities: [[Im]]S is an appropriate identity morphism.
• Transpositions: [[mXn]]S is an appropriate permutation morphism.

• Forks: [[∧n]]S is an appropriate fork(2) morphism.
• Sinks: [[⊥n]]S is an appropriate sink morphism.
• Composition: [[p ; q]]S � [[p]]S ; [[q]]S .
• Parallel: [[p ⊗ q]]S � [[p]]S ⊗ [[q]]S .
• Feedback: [[p ↑1]]S � [[p]]S ↑1.

Proposition 5.1 If the interpretations of the basic nodes are functional and deterministic, then for every D expres-
sion p, [[p]]S is functional and deterministic.

Proof. Follows from Propositions 4.17, 4.18, 4.19 and the straightforward checks that identity, permutation,
copying and sink morphisms are functional and deterministic. �
Proposition 5.2 The SProc semantics validates the axioms of D, up to associativity and unit isomorphisms.

Proof. Because SProc is not strict monoidal, it is necessary to work up to associativity and unit isomorphisms.
The axioms are verified by straightforward bisimulation arguments. Note that (26) relies on receptivity (Defini-
tion 4.13) of f .

The difference between the Kahn semantics and the SProc semantics can be seen in their treatment of feedback
loops. The Kahn semantics constructs streams token by token, driven by nodes (if present) which produce output
independently of their input. The SProc semantics yields the maximal behaviour which is consistent with the
constraints imposed by the network connections. This difference can be illustrated by the D expression ∧1 ↑1,
corresponding to the network shown in Fig. 4. This is a feedback loop in which no data is generated; it does not
satisfy the cycle sum condition and is not a valid synchronous network. In the Kahn semantics, the only equation
determining the output x is x � x. Solving by least fixed points gives x � ε, i.e. no output is produced and the
network is deadlocked. In the SProc semantics the only constraint imposed by the connections is x � x, and as
a result its semantics non-deterministically generates all possible streams.

It is only in situations like this, which are under-constrained and as a result are deadlocked in the Kahn
semantics, that the two semantics differ. In the next section we show that, as long as the cycle sum condition is
satisfied, the two semantics are equivalent.

6. Equivalence of the Synchronous Kahn Semantics and the SProc Semantics

In principle the SProc semantics is more general than the synchronous Kahn semantics, because the processes
interpreting the basic nodes need not have functional behaviour. However, interpreting the basic nodes by non-
functional processes would yield a semantics in which the behaviour of networks would be radically different
from the behaviour specified by the standard Kahn semantics. In this section we define what it means for an
SProc process to compute a synchronous function, and prove that, given suitable interpretations of the basic
nodes, the process resulting from the SProc semantics of a network computes the function resulting from its
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Kahn semantics. Notation: we write π∗ and πω to denote the extensions of projection functions to finite and
infinite traces respectively.

Definition 6.1 A process p : A1 ⊗ · · · ⊗ Am → A computes the continuous function f : Aω
1 × · · · × Aω

m → Aω if
the following conditions hold:

1. Safety: ∀σ ∈ traces(p), π∗
m+1(σ ) � f (π∗

1 (σ ), . . . , π∗
m(σ ))

2. Liveness: ∀σ ∈ inftraces(p), πω
m+1(σ ) � f (πω

1 (σ ), . . . , πω
m(σ ))

3. Totality: ∀τ ∈ Aω
1 × · · · × Aω

m, ∃σ ∈ traces(p).〈πω
1 (σ ), . . . , πω

m(σ )〉 � τ .

In other words, a process computes a function if for any finite input it doesn’t output anything which could not
be produced by the function (safety); for any infinite input it outputs exactly the value which the function would
(liveness); and it can respond to all traces in the function’s domain (totality).

Definition 6.2 A process p : A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn computes the continuous function f : Aω
1 × · · · ×

Aω
m → Bω

1 × · · · × Bω
n if for each 1 � i � n, the process p ; πi computes the function f ; πi .

Definition 6.3 For each synchronous function f : Aω
1 × · · · × Aω

m → Aω we define the process f : A1 ⊗ · · · ⊗
Am → B1 ⊗ · · · ⊗ Bn. The family of processes [[f ]]S for synchronous functions f of this type defined by the
transition rule

(a1, . . . , am) ∈ A1 × · · · × Am

[[f ]]S
(a1,... ,am,hd(f (a1,... ,am)))� [[λ(x1, . . . , xm).tail(f (a1x1, . . . , amxm))]]S

Because f is synchronous, f (a1, . . . , am) �� ε and so hd(f (a1, . . . , am)) is always defined; furthermore,
λ(x1, . . . , xm).tail(f (a1x1, . . . , amxm)) is also synchronous. We use the notation [[·]]S both for the SProc semantics
of D and for the processes defined here from synchronous functions.

Proposition 6.4 If f : Aω
1 × · · · × Aω

m → Aω is a synchronous function then [[f ]]S is functional and deterministic.

Proof. It is clear from the definition that the initial input to [[f ]]S determines both the initial output and the
subsequent state, and that [[f ]]S is receptive; as the subsequent state is [[g]]S for a particular g, a co-inductive
argument completes the proof. �

We now prove that [[f ]]S not only computes f but is uniquely defined by this property.

Lemma 6.5 Let f : Aω
1 × · · · × Aω

m → Aω be a synchronous function. If [[f ]]S performs the trace

(a11, . . . , a1m, b1)(a21, . . . , a2m, b2) . . . (an1, . . . , anm, bn)

then the resulting process is [[g]]S where for any x1, . . . , xm, g satisfies the equation

f (a11 . . . an1x1, . . . , a1m . . . anmxm) � b1 . . . bng(x1, . . . , xm)

Proof. By induction on n. The base case (n � 0) is trivial, taking g � f . For the inductive step, assume the result
for traces shorter than n (where n � 1) and all functions of the type of f . By the definition of [[f ]]S , the first
action (a11, . . . , a1m, b1) leads to the state [[g]]S where

g � λ(x1, . . . , xm).tail(f (a11x1, . . . , a1mxm))

and we have b1 � hd(f (a11, . . . , a1m)). By the induction hypothesis, the next n − 1 steps lead to the state [[h]]S
where

g(a21 . . . an1x1, . . . , a2m . . . anmxm) � b2 . . . bnh(x1, . . . , xm)

Using the definition of g we get

tail(f (a11 . . . an1x1, . . . , a1m . . . anmxm)) � b2 . . . bnh(x1, . . . , xm)

which, together with the fact that b1 � hd(f (a11, . . . , a1m)), yields the desired result. �

Proposition 6.6 Let f : Aω
1 × · · · × Aω

m → Aω be a synchronous function. Then [[f ]]S computes f .
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Proof. Consider the three conditions in turn:

1. Safety follows from Lemma 6.5 by taking x1 � . . . � xm � ε.
2. Liveness: let x be an infinite trace of [[f ]]S . For each 1 � i � m let xi � π∗

i (x), and let y � π∗
m+1(x). For each i, let

(xij ) be the chain of finite prefixes of xi , so that xi � ⊔
j xij . Similarly let (yj ) be the chain of finite prefixes of y.

By continuity f (x1, . . . , xm) � ⊔
j f (x1j , . . . , xmj ), and each f (x1j , . . . , xmj ) � y. So f (x1, . . . , xm) � y. By

safety, for each j , yj � f (x1j , . . . , xmj ), hence y � ⊔
j yj � ⊔

j f (x1j , . . . , xmj ) � f (x1, . . . , xm). Therefore
y � f (x1, . . . , xm).

3. Totality follows from the fact that in the definition of [[f ]]S , the input actions at the first step range over the
whole of A1 × · · · × Am. �

Proposition 6.7 Let f : Aω
1 × · · · × Aω

m → Aω be a synchronous function. Then [[f ]]S is the unique process which
computes f .

Proof. We prove that the set R � {(p, [[g]]S) | p computes g} is a bisimulation, where g ranges over all synchro-
nous functions with the same types as f , and p ranges over all processes with the corresponding SProc type. This
shows that any process which computes f is equal to [[f ]]S .

Let (p, [[g]]S) ∈ R and consider a transition p
(a1,... ,am,b)� p′. Because p computes g, safety implies that

b � hd(g(a1, . . . , am)). By the definition of [[g]]S there is a matching transition

[[g]]S
(a1,... ,am,b)� [[λ(x1, . . . , xm).tail(g(a1x1, . . . , amxm))]]S

Conversely, any transition by [[g]]S is of this form, and totality implies that there is a transition p
(a1,... ,am,c)� p′′

for some c; safety implies that c � b.
It remains to show that if p computes g and p

(a1,... ,am,b)� q then q computes

λ(x1, . . . , xm).tail(g(a1x1, . . . , amxm))

We consider the three conditions:

1. Safety: if x is a finite trace of q then (a1, . . . , am, b)x is a trace of p. By safety of p,

bπ∗
m+1(x) � g(a1π

∗
1 (x), . . . , amπ∗

m(x))
� btail(g(a1π

∗
1 (x), . . . , amπ∗

m(x)))

and so

π∗
m+1(x) � (λ(x1, . . . , xm).tail(g(a1x1, . . . , amxm)))(π∗

1 (x), . . . , π∗
m(x))

2. Liveness follows from the same argument applied to an infinite trace of p.
3. Totality follows from totality of p. �

We now extend Definition 6.3 and Proposition 6.7 to functions whose outputs have arbitrary product types. The
nullary case, ⊥, causes a complication. According to Definition 6.2 with n � 0, any process A1 ⊗ · · · ⊗ Am → I
computes ⊥m. To obtain a general uniqueness result, we must restrict attention to functional and deterministic
processes.

Definition 6.8 If f : Aω
1 × · · · × Aω

m → Bω
1 × · · · × Bω

n is a synchronous function, then the process [[f ]]S :
A1 ⊗ · · · ⊗ Am → B1 ⊗ · · · ⊗ Bn is defined by

[[f ]]S � fork(n)
A1⊗···⊗Am

; ([[f ; π1]]S ⊗ · · · ⊗ [[f ; πn]]S)

If n � 1, Definition 6.8 reduces to Definition 6.3.

Proposition 6.9 The process [[f ]]S is the unique functional and deterministic process computing the function
f : Aω

1 × · · · × Aω
m → Bω

1 × · · · × Bω
n .

Proof. If n � 0 then fork(0) � sink and [[f ; π1]]S ⊗ · · · ⊗ [[f ; πn]]S � 1I ; it is easy to see that sinkA1⊗···⊗Am
is the

unique functional and deterministic process of its type.
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Now assume that n > 0. By Definition 6.8, to show that [[f ]]S computes f we must show that for each i,
[[f ]]S ; πi computes f ; πi . The definitions of ⊗, fork(n) and πi in SProc imply that [[f ]]S ; πi � [[f ; πi ]]S , and by
Proposition 6.6, this process computes f ; πi .

Propositions 4.17 and 4.18, and the definitions of copying and projection morphisms, imply that [[f ]]S is
functional and deterministic.

For uniqueness, suppose that p is functional and deterministic and also computes f . By Proposition 4.16, to
show that p � [[f ]]S it is sufficient to show that p ; πi � [[f ]]S ; πi for each i. As above, [[f ]]S ; πi � [[f ; πi ]]S , which
computes f ; πi . By Definition 6.8, p ; πi also computes f ; πi . Hence by Proposition 6.7, p ; πi � [[f ]]S ; πi as
required. �
The next two lemmas lead to the proof of equivalence of the SProc and Kahn semantics of D. Lemma 6.10 is
straightforward, but Lemma 6.11 is the key to the equivalence result, as it relates the differing ways in which the
two semantics model feedback.

Lemma 6.10 Let f : Aω
1 × · · · × Aω

m → Bω
1 × · · · × Bω

n and g : Bω
1 × · · · × Bω

n → Cω
1 × · · · × Cω

r be synchronous
functions. Then [[f ; g]]S � [[f ]]S ; [[g]]S .

Proof. We prove by co-induction that the set

R � {([[f ]]S ; [[g]]S, [[f ; g]]S) | satisfying the conditions }
is a bisimulation. An initial action of [[f ]]S ; [[g]]S is of the form (a1, . . . , am, c1, . . . , cr ) where

ci � hd(πi(g(hd(π1(f (a1, . . . , am))), . . . , hd(πn(f (a1, . . . , am)))))).

An initial action of [[f ; g]]S is of the form (a1, . . . , am, c′
1, . . . , c′

r ) where

c′
i � hd(πi(g(f (a1, . . . , am))))

Given a1, . . . , am, continuity of g means that ci � c′
i for each i. Together with totality of the processes resulting

from [[·]]S , this means that [[f ]]S ; [[g]]S and [[f ; g]]S can match each other’s actions; from the definition of [[·]]S , the
pair of subsequent states is again in R. �
Lemma 6.11 Let p : A1 ⊗ · · · ⊗ Am ⊗ C → B1 ⊗ · · · ⊗ Bn ⊗ C be a D expression such that [[p]]K has output n+1
longer than input m + 1, and assume that [[p]]S � [[[[p]]K ]]S . Then [[p ↑1]]S � [[[[p ↑1]]K ]]S .

Proof. From the definition of [[·]]K , we have [[p ↑1]]K (x1, . . . , xm) � (y1, . . . , yn) where

yi � πi([[p]]K (x1, . . . , xm, z))
z � fix(λy.(πn+1([[p]]K (x1, . . . , xm, y))))

To show that [[p ↑1]]S � [[[[p ↑1]]K ]]S it is sufficient (by Proposition 6.9) to show that [[p ↑1]]S computes [[p ↑1]]K .
According to Definition 6.8, this means showing that for each i, [[p ↑1]]S ; πi computes [[p ↑1]]K ; πi .

Safety: let σ be a finite trace of [[p ↑1]]S ; πi with length(σ ) � r. The trace σ is derived from a trace τ of
[[p]]S , also of length r, such that π∗

m+1(τ ) � π∗
m+n+2(τ ) (i.e. the projections of τ onto the C input and the C output

are equal). Let γ � c1 . . . cr � π∗
m+1(τ ), let β � b1 . . . br � π∗

m+i+1 be the projection of τ onto the Bi output,
and for each j , let αj � aj1 . . . ajr � π∗

j (τ ) be the projection of τ onto the Aj input. We need to show that
β � πi([[p ↑1]]K (α1, . . . , αm)).

Given x1, . . . , xm, define the function s by

s(x) � πn+1([[p]]K (x1, . . . , xm, x))

so that [[p ↑1]]K (x1, . . . , xm) � [[p]]K (x1, . . . , xm, fix(s)). We prove that for t � r, c1 . . . ct � st (ε), by induction on
t . The base case is trivial. For the inductive step, we have

c1 . . . ct+1 � πn+1([[p]]K (a11 . . . a1(t+1), . . . , am1 . . . am(t+1), c1 . . . ct+1))

by the safety clause of the fact that [[p]]S ; πn+1 computes [[p]]K ; πn+1. Because [[p]]K has output n + 1 longer than
input m + 1, an output of length t + 1 in position n + 1 is generated by supplying only c1 . . . ct as input m + 1.
Hence

c1 . . . ct+1 � πn+1([[p]]K (a11 . . . a1(t+1), . . . , am1 . . . am(t+1), c1 . . . ct ))
� πn+1([[p]]K (α1, . . . , αm, c1 . . . ct )) by continuity
� πn+1([[p]]K (α1, . . . , αm, st (ε))) by the induction hypothesis
� st+1(ε).
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Therefore γ � fix(s). Hence

β � πi([[p]]K (α1, . . . , αm, γ )) by safety for [[p]]S ; πi

� πi([[p]]K (α1, . . . , αm, fix(s)) by continuity
� πi([[p ↑1]]K (α1, . . . , αm))

as required.
Liveness: consider traces and their projections as for safety, but now the traces are infinite. We need to show

that β � πi([[p ↑1]]K (α1, . . . , αm)). By liveness for [[p]]S ; πn+1 we have γ � πn+1([[p]]K (α1, . . . , αm, γ )) and so
fix(s) � γ . Because [[p]]K has output n + 1 longer than input m + 1, it is easy to show (by induction on r)
that for all r, length(sr ) � r. Hence fix(s) is infinite, and so fix(s) � γ . Liveness for [[p]]S ; πi then implies that
β � πi([[p]]K (α1, . . . , αm, γ )) � πi([[p ↑1]]K (α1, . . . , αm)).

Totality: let σ be an infinite trace in the type A1 ⊗ · · · ⊗ Am, with projections αj in the types Aj . Define the
infinite trace γ � c1c2 . . . in the type C: take ci to be the ith element of πn+1([[p]]K (α1, . . . , αm, c1 . . . ci−1)) (and
c1 � hd(πn+1([[p]]K (α1, . . . , αm, ε)))), which is well defined because [[p]]K has output n+1 longer than input m+1.
Let the infinite trace τ in the type A1 ⊗ · · · ⊗ Am ⊗ C have projections σ in A1 ⊗ · · · ⊗ Am and γ in C. By totality,
[[p]]S has a trace whose projection in the input types is τ and which has equal projections in the input and output
C types. This trace yields a trace of [[p ↑1]]S whose projection in the input types is σ . �
Theorem 6.12 Consider the synchronous Kahn semantics with a particular interpretation [[f ]]K of each basic
node f , and the SProc semantics with each basic node f interpreted by [[[[f ]]K ]]S . Then for every D expression p
which obeys the cycle condition, [[p]]S � [[[[p]]K ]]S .

Proof. By induction on the structure of p, the base case (basic nodes) follows directly from the hypothesis. The
inductive cases are as follows.

• Identities, transpositions, forks, sinks: straightforward from the definitions.
• Composition, parallel: straightforward, using Lemma 6.10 for composition.
• Feedback: follows from Lemma 6.11. �

7. Conclusions

We have defined two semantic models of an idealised synchronous dataflow language. The first semantics is a
synchronous version of the classical Kahn semantics. The second semantics, which is new, uses the category
SProc of synchronous processes. The essential difference between the two semantic models is the way in which
connections are treated. In the Kahn semantics, non-cyclic connections are modelled by functional composition,
and cyclic connections are modelled by a least fixed point construction. In the SProc semantics, all connections
are modelled by constructing the maximal behaviour which is consistent with the constraints represented by the
connections.

Our semantic models are based on two very different views of the meaning of network connections. To estab-
lish the relationship between these views, we have proved, for networks which obey Wadge’s cycle sum condition,
that the models yield equivalent network behaviours, in a sense which we make precise. The SProc semantics
therefore provides a new way of understanding the behaviour of dataflow programs, by describing the behaviour
of cyclic networks in a different way, but is consistent with the classical model.

Our model is related to but quite different from the synchronous dataflow model of Lee and Messerschmitt
[LeM87]. It would be interesting to see how the two models compare. The programming languages Signal and
Lustre are based on synchronous dataflow, but go beyond our idealised language in their use of complex clock
structures to describe the relative timing behaviour of different data streams. Although it is possible to define a
semantics in SProc of clocked dataflow languages, extending our semantic equivalence results to this case is a
topic for future work.
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