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Abstract. This paper details a new object-oriented methodology that permits a unified modelling language (UML)
behavioural representation of analogue circuits at system level. The proposed method demonstrates a novel
approach to the problem of behavioural representation of an analogue topology, by constructing a consistent set
of rules for automated mapping of the UML model to a VHDL-AMS specification. The VHDL-AMS specifi-
cation enables behavioural simulation of the UML model and the methodology is validated using an analogue
subsystem level application.
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1. Introduction

The current state of the art in electronic and computer systems design prohibits complete high level modelling
of a comprehensive system involving software and both analogue and digital hardware. Typically, high level
systems contain several subsystems as illustrated in Fig. 1. This system consists of a software partition, a digital
partition and an analogue partition, typically with complex interdependencies. The software partition can be
successfully modelled using existing unified modelling language (UML) techniques and thereafter implemented
using a high level language [Mel99]. The digital partition can be successfully mapped from UML to a language
such as VHDL [Axe01, Mcu99, Bad98]. The design of digital circuits and associated systems is well supported
by sophisticated computer aided design (CAD) tools. However, analogue CAD tools are significantly less well
developed. Many of the tools proposed by research into automated analogue design have never been prototyped
at full system level, and certainly not commercially in industry. Most of these systems require a high level of
knowledge of the analogue domain in order to use them efficiently, and this factor has led to under-utilisation of
such systems. However, more recently VHDL-AMS (which is an extension to VHDL [Vhd99]), has emerged as a
popular language for modelling analogue subsystems at a high level. An alternative is Verilog-AMS, an extension
of Verilog. However VHDL-AMS or Verilog-AMS do not permit complete system modelling, i.e. they cannot
model software elements. Currently therefore the analogue partition of Fig. 1 cannot be modelled at the same
level of abstraction as the software or digital hardware partitions.

High level system modelling would benefit from a tool that could represent all the components of an electronic
computational system and model their interactions. It has already been demonstrated that UML can be used to
represent both digital and software subsystems and provide a mapping to the appropriate language for imple-
mentation [Mcu99, Jig00]. If a similar methodology existed to map analogue subsystems from UML to either

Correspondence and offprint requests to: C. T. Carr, Intelligent Systems Engineering Laboratory, University of Ulster, Magee Campus,
Northland Rd, Derry, Northern Ireland, BT48 7JL, UK. Email: c.carr@ulst.ac.uk



Integration of UML and VHDL-AMS for analogue system modelling 81

Analogue
Hardware | Hardware
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VHDL-AMS or Verilog-A, then an overall description of mixed signal systems could be realised. Also if UML
could represent analogue systems, then it is possible that this high level model would be capable of representing
a tight integration between hardware and software in embedded systems.

The authors will illustrate in this paper how UML can effectively represent a high level analogue topology
and will further illustrate a procedure for mapping from UML to VHDL-AMS. VHDL-AMS has been selected
instead of Verilog-AMS because VHDL-AMS is consistent with VHDL, which has already been used with UML
in system modelling [Mcu99]. Previous work [Axe01] illustrated the principle of using UML as a modelling tool
for complete systems, including analogue systems. However, this work presented only a UML representation and
did not provide a technique for mapping to support simulation and analysis. There is clearly a requirement for a
self-contained, high level system modelling technique to accommodate all three partitions in a unified represen-
tation, provide simulation capability and provide automatic code generation in the appropriate language. It is
therefore plausible to attempt to represent an analogue subsystem in UML, with the objective of automatically
generating VHDL-AMS from the UML model. This is the missing link for complete system modelling using
UML. The work in this paper details an approach for modelling the analogue subsystem in UML and auto-
matically generates VHDL-AMS from the models. This approach is currently being extended to mixed signal
capabilities, which will realise the requirement for a unified representation for system modelling.

The remainder of this paper is organised as follows. Section 2 presents an overview of VHDL-AMS and dis-
cusses its relevance to the analogue domain. Section 3 gives an overview of the current status of UML. Section 4
describes the proposed methodology for modelling analogue system in UML; Section 5 applies this methodology
to a simple example and shows how a UML model can be mapped to VHDL-AMS, and illustrates simulation
results to justify the approach. Section 6 concludes the paper and discusses future extensions to the work.

2. VHDL-AMS
2.1. Hardware description languages

VHDL-AMS [Vhd99, Chr99] has emerged as the most popular hardware descriptive language for analogue
behavioural modelling and has been accepted as an IEEE standard VHDL 1076.1-1 1999 [Vhd99]. These hard-
ware descriptive languages (HDL) can be divided into digital, analogue and mixed signal HDLs, depending on
the available language constructs. VHDL [Vhd02] is a digital HDL and is based on event driven techniques and
a discrete model of time. Verilog [Ver95] is also a hardware description language used to design and document
electronic systems. VHDL and Verilog both support the modelling of digital hardware at any abstraction level.
Verilog-AMS [Vams03] is also a standard in mixed signal modelling and was standardised by Accellera for mixed
signal behaviour in Verilog. Both VHDL-AMS and Verilog-AMS accommodate analogue and mixed signal
modelling capabilities.

The main difference between these two HDLs is that VHDL-AMS is capable of automatically converting
transient models (constructed of non-linear differential equations) into small-signal ac models while Verilog-
AMS requires separately designed and implemented small-signal ac models to provide better compatibility with
SPICE-based simulators. For simple models, this separate implementation of small-signal ac models is easily
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accomplished. However for complex models, the implementation of separate ac models becomes very difficult.
Such ac models are particularly difficult to design for power bipolar models where the internal operating state
depends upon the presence of charge injected. Thus, VHDL-AMS is preferred over Verilog-AMS, particularly
for more complex models.

2.2. Capabilities of VHDL-AMS

VHDL-AMS supports the description of a system of differential and algebraic equations (DAEs) where the
solution varies continuously with time and, in addition, supports both structural composition and behaviour-
al descriptions of analogue systems. VDHL-AMS can be used to model mixed signal systems, which means
both event driven techniques and differential/algebraic equations are supported. Systems to be modelled using
VHDL-AMS are lumped systems, that can be described by differential and algebraic equations; the solution
of the equations describing the behaviour of the system may include discontinuities. Interactions between the
discrete part of a model and its continuous part are supported in an adaptable and efficient way.

2.3. Modelling analogue systems

An analogue system in VHDL-AMS typically consists of many analogue components, which are described using
an entity/architecture structure. The model consists of an entity and one or more architectures. The entity specifies
the interface of the model to the outside world, including the description of the ports of the model, i.e. the points
that are connected to other models and the definition of the generic parameters. The architecture contains the
implementation of the model and may be coded using a structural style of description, a behavioural style, or
a style combining both structural and behavioural elements. A structural description is a netlist representing a
hierarchical decomposition of the model into appropriately connected instances of other models. A behavioural
description consists of concurrent statements to describe event-driven behaviour and simultaneous statements
to describe continuous behaviour. Concurrent statements include the concurrent signal assignment for data flow
modelling and the process statement for more general event driven modelling. In VHDL-AMS, modelling can be
either top—down or bottom—up. However, the work in this paper focuses on a top—down behavioural description
for analogue subsystems, where the connectivity of the model is subsequently defined in a testbench. However
subsequent work will focus on bottom—up modelling using the structural method which makes use of library
models. The analogue aspects of a mixed signal system are more difficult to model than the digital aspects due to
the continuous nature of analogue signal behaviour. Therefore there it necessary to be able to describe continuous
systems in the time and frequency domain. The following are key extensions to VHDL to allow modelling of
mixed-signal systems.

e Support for interface quantities (for modeling of signal flows) as abstract objects representing analogue wave-
forms and terminals (as connection points) for network connectivity.

e Support for simultaneous equations for description of explicit and implicit differential equations and quantity
for the capture of physical variables to model analogue behaviour.

e Support for break statements to model discontinuities in analogue waveforms.

Architectures with quantity declarations and simultaneous equations lead to descriptions of continuous or dis-
continuous non-linear dynamic systems to allow true analogue or mixed-signal descriptions.

3. UML
3.1. Choice of UML as the system modelling tool

UML [Rum99, Bez99] is a general-purpose modelling language that is used to design a system graphically and
textually and allows precise modelling of systems using different views and representations. It also enables auto-
matic source code generation by mapping the UML models to high level languages, such as Java or C++. The
language has emerged by common agreement among much of the computing community and was designed to
include the concepts of the leading methods, so that it can be used as a universal modelling language. It was
intended to supersede the models of OMT, Booch, and Objectory [bo099, Boo97]. The notation used in OMT,
Booch, and Objectory, and other leading methods is similar to the UML notation. The UML consolidates a
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set of core modelling concepts that are generally accepted across many current methods and modelling tools.
Therefore, as a distillation of previous best modelling practices, and as the most widely used modelling language
in the computing industry, UML is the obvious choice for the current work.

3.2. Capabilities of UML

The UML captures information about the static structure and dynamic behavior of a system. A system is modelled
as a collection of discrete objects that interact to perform work that benefits an outside user. The static structure
defines the kinds of objects important to a system and its implementation, as well as the relationships among
objects. The dynamic behaviour defines the history of objects over time and the communications among objects
to accomplish tasks; therefore UML allows a system to be modelled from several viewpoints, which allows it to be
understood for many different purposes. The UML also contains organisational constructs for arranging mod-
els into packages, that allow software teams to partition large systems into workable pieces, to understand and
control dependencies among the packages, and to manage the description of models in a complex development
environment. UML is a very general notation, used primarily for software development but also in many fields
and for many purposes. UML serves only as the abstract description of a system — it must be complemented using
other languages. For most software systems these languages are usually traditional low-level languages, such as
C/C++ or Java. UML has already been extended to cope with modelling real time systems [Dou99a, Dou99b]
and work by McUmber [Mcu99] examines how object orientated modelling (specifically UML), can be used
for embedded systems by developing a framework for generating VHDL specifications from a subset of UML
models. The main objective was to enable developers to continue to use widely accepted development techniques
and tools, both in terms of a modelling language (UML) and a target specification language (VHDL). McUmber
has developed a set of formalisation rules that enable automated techniques to generate specifications from the
individual UML notations. This latter work highlights how the digital domain is represented in UML, thus
making is feasible to attempt extending the application of UML analogue domain.

3.3. Notation employed

UML is an extensive language with an emphasis on graphical notation, and contains a large number of concepts
and diagrams to convey different aspects of a system. Many reviews of the language are available [Rum99].
Therefore, the following description is restricted to those aspects of the language pertinent to the concepts used
in the remainder of this paper.

e Class or object model diagrams

Class diagrams describe the static structure of a system. The fundamental concept of object-oriented methods is
the object. An object or class consists of a set of attributes, or variables, which describe its internal state, and a
set of operations that the object can perform, e.g. to update or query the state, or perform calculations. An object
is an instance of a class, which can be thought of as a set of objects with similar properties, i.e. the same attribute
and operation names, and the information about the properties is normally provided at the class level. At a given
time, there may be several instances of a given class, and the instances may have different attribute values. Classes
are shown as boxes with the name inside it. Alternatively, the box may be divided into three compartments,
containing the class name, the attributes, and the operations, respectively.

e Relations or associations

It is possible to define /inks between objects i.e. classes, that allow objects communicate to each other. The links
between objects are instances of relations between the corresponding classes. The relations can be a general
association, shown by a line between the classes or aassociations represent static relationships between classes.
Association names can be placed above, on, or below the association line. The relationship can be characterized
by aggregations, indicating that an object is part of another object shown by a line with a diamond attached to the
end connected to the ‘owning’ class. Finally the relations can be generalizations, which describe the relationship
between classes similar to the subset relationship between sets; generalization are shown by a hollow arrow head
attached to the end near the more general class. The class that is a specialization can be thought of as inheriting
the features of the more general class, thus allowing information to be reused. Roles represent the way classes
see each other and it is possible to add a role name to the association, indicating by what name an object refers



84 C.T. Carret al.

Association Line Aggregation Line

&

Directed Association Line Dependency Line

> e >

Fig. 2. Relations between classes

name

attributes

operations

Fig. 3. A single class: used to represent one or more instances of the same component

to the other object in the relation i.e. the attribute x of the class related by the role r is referred by the name r.x.
Figure 2 shows some of the different types of relations between classes.

e Multiplicity

For each class involved in a relationship there will always be a multiplicity for it, indicating the number of instances
of one class linked to one instance of the other class. For example, one company will have one or more employees,
but each employee works for one company only. Also a class can have many instances; it will have the same
attributes and operations and can be used many times in the same system.

4. Methodology for modelling analogue systems in UML
4.1. Criteria for UML representation

In order to model an analogue subsystem, class diagrams were selected because they have the potential to represent
the types of objects (i.e. components) found in such systems and the nature of the relationships that exists between
components. Each component in the system has its own function in relation to the complete system; object classes
can be used to represent different components in a system. Therefore, each object class in a system has different
attributes and is capable of performing different operations. A collection of object classes are connected together
to make up a class diagram. Consequently, class diagrams can be equated to analogue subsystems, due to the
presence of many component classes within a system. If each component or analogue building block is treated
as a class within a subsystem, then class diagrams within UML may be considered as adequate to represent a
multi-component analogue subsystem and the associated connectivity.

The diagram in Fig. 3 shows a single typical class in UML with three sections. The first holds the name of
the class, the second holds the attributes and the operations are described in the third section. In this work, the
name of the analogue component is placed in the name section, the inputs and output ports and generic values
are described in the attributes section and finally the behavioural description, represented as a transfer function,
is placed in the operations section. This representation is limited to behavioural modelling of components, which
can be modelled using mathematical relationships.

4.2. Mapping rules between UML and VHDL-AMS

Having selected which UML diagrams are used to model analogue system in UML, a comparison is now made
between the constructs used in VHDL-AMS and the UML class. This is done to facilitate a mapping between the
two representations. The graphical comparisons between class and the entity/architecture structures are shown
in Fig. 4 and discussed in the points below.

e Structure: The structure of the UML class can be equated with the entity/architecture structure in VHDL-
AMS and the name of the class corresponds to the name of the entity in VHDL-AMS.
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/ entity name is
name

port (quantity inl, in2; in REAL;
| ——> quantity sum: out REAL);

attributes / end entity name;

operations architecture behav of name is
\ begin
equation to describe operation

end behav;

Fig. 4. Mapping from a UML class to an entity/architecture structure in VHDL-AMS
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Fig. 5. A general system in UML with global inputs and outputs

e Attributes: The attributes section of the class (i.e. the input and output ports and generic values) are the same
values that are entered in the port section in the VHDL-AMS entity structure.

e Operations: The operations section of the class, where the mathematical transfer function of the component
is entered, holds the same information as the architecture section of the VHDL-AMS.

e Testbench: A testbench in VHDL-AMS is used to model test stimuli, in order to assess system performance
and functionality. Subsequently local terminals of each component are mapped to new global terminal values
so that the physical quantities being carried by the terminals define the connectivity of the overall system. The
information used in the system class in UML can be equated with the information entered in the testbench
in VHDL-AMS. In UML the overall system is defined in an overall class called ‘system’, as shown in Fig. 5
and the connections between classes show the global inputs and output ports of the system. These ports
define the overall system connectivity, and are mapped from the local inputs/outputs of each component in
the system. A new attribute is created in the system class for each component in the system and the local port
and generic values are mapped to the global values in the system attribute for each component (an example
of this is shown later in Fig. 9). The testbench is used to define system connectivity and test stimuli in this
work; however a testbench is normally used solely as test stimuli and a structural architecture is used for
connectivity. For simplicity the testbench is used for both in this work.

e Multiplicity: If the same component is instanced more than once in the same system then this must be accom-
modated for in the system attribute and multiple port and generic values need to be mapped according to the
number of times the component is used.

4.3. Adapting UML for analogue modelling

The typical notation used to describe objects in a software system is not sufficient for modelling mixed signal
systems and UML as a standard is not capable of representing the behaviour of analogue systems. Consequently
to generate VHDL-AMS code, additional notation is required. It was therefore necessary for the authors to
define a comprehensive set of keywords for UML, which will represent analogue subsystems at a high level of
abstraction. The keywords are derived such that a general framework can be constructed.
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Table 1. List of keywords

Keyword Use
In(1... N) Each analogue component has input and output ports and generic values. The keywords are used to differentiate
Out(1... N) between different types of entity values
Generic(1... N)
Rq Rq and Et denotes real quantities and electrical terminals respectively, these define the types of terminal which
Et exist in analogue components with respect to VHDL-AMS representation
Quantity Defines the direction of current flow between terminals of a component
Across
Through
Equation Refers to the behavioural representation of the component using a transfer function
Genericvalues= Used for overall system specification
Noofinputs=
Noofoutputs=
Generic_map Used to define mappings between local and global values of components
Port_map
Multiplicity Refers to the number of instances of any class in a system

e Keywords and how they are used in UML.:

An analogue system is comprised of many interconnected components where each component has inputs, out-
puts, generic values, constants and a specific function within the complete system. The specific function of the
component is equivalent to class ‘operation’ and can be described using a transfer function, i.e. equation. This
generic composition of any component, has to be represented in UML. The following keywords have been defined
to facilitate, and to enable a mapping to VHDL-AMS (Table 1).

e How each keyword is used in UML
For the purpose of this work, the Rhapsody tool [Rap97] was used; other UML tools are equally applicable.

1. In(1... N): The inputs to components are defined using the word ‘in’ followed by an integer from 1 to N, to
allow representation of multiple inputs. The keyword “in” is only used if the port is of type “Rq”, as electrical
terminals do not have direction. Each class as shown in Fig. 2 can be selected, and a new attributed added for
each input as shown in Fig. 6. The name of the input is entered in the name field. The keyword ‘in’ is placed
in the description field to differentiate between the different types of attributes.

2. Out(1... N): The outputs have a predefined keyword ‘out’ followed by an integer from 1 to N, which again
allows N outputs to be defined. The outputs are also entered as a new attribute, each time one is declared.
Outputs are entered in exactly the same way as the inputs except that the word ‘out’ is entered in the descrip-
tion field (Fig. 6) to specify that it is an output. Again the keyword ‘Out’ is only required for ports of type
“Rq” as electrical terminals (Et) have no direction.

3. Generic(1... N): The generic values (variables in the equation) are also entered in the attributes section of
the class, and as before a new attribute is required for each new generic value. The name of the generic value
is entered in the name section and in the description field in the dialog box in Fig. 6. It is specified as being a
generic value by entering the keyword ‘generic’ followed by an integer.

4. Et and Rq: The keywords et and rq represent electrical terminals and real quantity respectively. These are
the two types of ports that are used to represent the connectivity of electrical subsystems. When real quantities
are used the direction is also specified using the keywords ‘In’ and ‘Out’.

5. Quantity, Across and Through: These are the keywords reserved for defining an electrical terminal. ACROSS
(e.g. voltage) and THROUGH (e.g. current) quantities are defined between terminals. Therefore, when enter-
ing information about electrical terminals these quantities must be specified. This information can be entered
in the description box shown in Fig. 7.

6. Equation: Once all the information about the ports has been entered the operation of the component must
be defined. This information is entered in terms of a mathematical equation. The equations are entered in
the operations section of the features of each class, as shown in Fig. 7. The keyword ‘equation’ is used to
indicate that a behavioural description of the component as a mathematical function has been entered. The
mathematical function is entered in a system compatible with the standard VHDL-AMS mathematical library.
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7. Genericvalues=, Noofinputs=, Noofoutputs=: These keywords are used to give an overview of the class and
are entered in the overall class description field as shown in Fig. 8.

8. Generic_map and Port_map: The generic and port values entered in each class for each individual compo-
nent are local to the component in order to describe its behaviour. When these components are connected
together, as part of an analogue subsystem, the port names need to be globally defined within that system and
the generic values need to be set a specific value; the system class handles this information. A new attribute
is created for each class in the system, with the same name as the local class. This also contains the global
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information about each class. Each new attribute contains the generic values and port mappings entered in
the description field following the keywords generic_map and port_map respectively. This is shown in Fig. 9.
9. Multiplicity: Multiplicity refers to the number of instances of any class in one system, Moreover, systems
could contain a number of identical components with different parameters and thus the class’s behaviour
only needs to be modelled once in the local class. However, in the system class the different parameters need
to be entered for each instance of the class. This information is entered in the system class in the description
field of each attribute, for each component as shown in Fig. 9.

4.4. Mapping methodology

In order to generate VHDL-AMS code from UML models, a set of rules for modelling analogue components in
UML was defined. These rules were devised so that existing constructs in UML, specifically class diagrams, are
utilised. Initally C++ code is automatically produced from the UML diagrams. For each class modelled in UML
there is a “.cpp’ and a ‘.h’ file generated. The methodology adopted is to use these files to collect information
about the system that is modelled in UML. The following algorithm in Fig. 10 shows how this was achieved.

The first step in the algorithm is to read in the system file, which is generated from the system class in the
UML representation. This file contains details about the system such as how many classes are in the system,
the overall structure of the system and the names of the ports to each class. This information is obtained by
searching the system file using the predefined keywords previously discussed.

Information obtained from the system file is saved so that it can be mapped to the testbench filein VHDL-AMS
and also to determine the number of entity/architecture structures required in VHDL-AMS.

The next step involves reading in a template class file, which can be used as a model file to search for details
on each class. The template file has general names, which are replaced with class names for each component.
A new file is created for each class in the system; a search is then made for all the available information on
each component.

The number of classes found in the system is recorded from the system class file. A loop is entered at this
point and each class file is the system is searched. The information obtained about the classes such as port
and operation details are recorded, and repeated for each class in the system. A template VHDL-AMS file
containing a general entity/architecture structure, in which the component details can be placed, is then read
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in and populated with the specific data. Finally a new VHDL-AMS file is then outputted for each component
with specific details about each class using the information previously obtained for each.

5. Example problem
5.1. Analogue subsystem

In this section a simple example system is used in order to illustrate the capability of this approach. Figure 11
shows a block diagram of an analogue subsystem containing four different components: a multiplier, a low pass
filter and a summer. Sine waves are used as inputs. If this system is to be modelled in UML, three classes are
required in the class diagram, one for each component. In addition there is a requirement to model the sinewave
generator. The methodology discussed in the previous section is used to model this system.

The class diagram in UML, which represents the system in Fig. 11, is shown in Fig. 12. Figure 12 includes
sinesources which are the stimulus for the system, which are required in order to generate a testbench for the
system. Each component in the system is represented by a class within the class diagram. The sinesources, which
are the stimuli are also represented using a class. The representation of component terminals and the constant
values are defined in the attributes section, as shown. A transfer function, which defines the operation of each
component, is declared in the operations section of each class and is equivalent to the architecture construct in
VHDL-AMS. The mapping previously described is then used to automatically generate VHDL-AMS code from
the class diagram. Using this technique, the VHDL-AMS code in Fig. 13 was automatically generated to describe
the system in Fig. 11.

With reference to Fig. 12 (which is the UML class representation), the name of each sub system component
has been placed in the first section and the port, i.e. the input and output terminals and constant values are
entered in the second section. It is specified whether these are electrical terminals, real quantities or constant
generic values. This information is subsequently mapped to the VHDL-AMS entity section of each component.
These areas of code are marked ‘ENTITY” in Fig. 13. The transfer function, which defines the operation of each
component, is defined in the third section of each class in Fig. 12. In each class this function is called ‘equation’
and was entered in the operations form for each class. Equations maps to the architecture section of each com-
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Fig. 12. Class diagram for example system in Fig. 11

ponent in the VHDL-AMS code in Fig. 13. The equations for the behaviour of the low pass filter, multiplier,
summer are marked eql, eq2, eq3 and eq4 respectively in Fig. 13. The code representing the connectivity of
this system is shown separately in the testbench in Fig. 14. The connectivity of a system is usually shown in a
structural architecture, however in the simple system discussed here it is included in the testbench. This code has
been automatically generated from the connection details entered in the system class in the UML model.

5.2. Simulation results

When VHDL-AMS code is successfully mapped from a UML representation, the subsequent step is to simulate
and eventually synthesise the code. A VHDL-AMS simulation tool called Hamster was chosen for the simula-
tion [Www00]. The code in Figs. 13 and 14, which was generated from the UML representation of the example
subsystem in Fig. 11, was used as input for the code simulator and the results are labelled in Fig. 15. Graphs 1,
2 and 3 in Fig. 15 show the three inputs to the system I1, 12 and I3 which produce the resulting output of the
system. This output is the overall response from the system. In Fig. 16, the output from the VHDL simulator is
compared to the same system simulated in MATLAB. Clearly it can be seen from these graphs that the response
from the code simulator is almost identical to that generated by the MATLAB simulator. Any discrepancy in
the two outputs is due to limitations in specifying parameter values in the MATLAB models i.e. the MATLAB
models may be slightly different than the VHDL-AMS models. These graphs demonstrate that the mapping
from UML to VHDL-AMS generates code is correct, and hence confirms that it is totally feasible to model an
analogue system effectively using UML class diagrams.

6. Conclusions

In this paper a novel approach for the modelling of analogue subsystems at a high level using UML and a
subsequent mapping to VHDL-AMS was presented. Previous research has demonstrated that a mapping from
UML to VHDL in the digital domain is feasible. This work has extended these capabilities of UML further by
developing a methodology to allow a behavioural representation of an analogue system in UML and a subsequent
mapping from UML to VHDL-AMS. A specific rule-base is defined in order to enable an automatic generation
of VHDL-AMS code from a UML representation. Class diagrams are selected, because they have the potential
to represent the types of objects (i.e. components) in an analogue system and the nature of the relationship (i.e.
connectivity) that exists in these systems. Each class is represented as a VHDL-AMS entity and architecture pair.
An overall class defines system connectivity; and the parameters may also be entered in this class. The generated
VHDL-AMS source code may subsequently be used to synthesise the analogue subsystem represented by the
UML diagrams.
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LIBRARY DISCIPLINES;

LIBRARY IEEE;

USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;
USE IEEE.MATH_REAL.ALL;

ENTITY filter IS
GENERIC (
cutoff_freq : REAL;
gain : REAL;
q : REAL;
rout : REAL);
PORT (TERMINAL tin, tout, tref : ELECTRICAL);

END;
ARCHITECTURE behav OF filter IS
QUANTITY vin ACROSS tin TO tref;

QUANTITY vout ACROSS iout THROUGH tout TO tref;
QUANTITY v1: REAL;

BEGIN
v1 == vout'DOT;
vin == v1’'DOT/(gain*math_2_pi*cutoff_freq*math_2_pi*cutoff_freq) +
v1/(gain*g*math_2_pi*cutoff_freq) + vout/gain; -eq1
END;

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY multiplier IS
GENERIC( K : REAL :=1000.0);
PORT (QUANTITY v1,v2 :IN REAL;
TERMINAL tout: ELECTRICAL);
END;

ARCHITECTURE behav OF multiplier IS
QUANTITY vout ACROSS iout THROUGH tout;

BEGIN
vout == K*(v1*v2); --eq2
END ;

LIBRARY IEEE;
USE IEEE.MATH_REAL.ALL;

ENTITY summer is
GENERIC (GAIN1 : REAL := 1.0;
GAIN2 : REAL :=1.0);
PORT ( QUANTITY IN2, OUTP :in REAL;
TERMINAL tin1, tref: ELECTRICAL);
END summer;
ARCHITECTURE behav OF summer IS

QUANTITY IN1 ACROSS tin1 TO tref;

BEGIN
OUTP == GAIN1*IN1 + GAIN2*IN2; --eq3

END;

USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;
USE IEEE.MATH_REAL.ALL;
LIBRARY DISCIPLINES;
LIBRARY IEEE;
ENTITY sineSource IS

GENERIC (ampl,freq : REAL);

PORT(QUANTITY insin :out REAL);

END;

ARCHITECTURE behav OF sineSource IS
BEGIN
insin==ampl * sin (2.0*3.14* freq * now);  --eq4

END;

Fig. 13. Automatically generated VHDL-AMS code for example
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LIBRARY DISCIPLINES;
LIBRARY IEEE;

USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;
USE IEEE.MATH_REAL.ALL;

ENTITY Test_bench IS
END Test_bench ;

ARCHITECTURE behav OF Test_bench IS

QUANTITY INPUT1,INPUT2,INPUT3,0UTPUT3 : REAL;
TERMINAL OUTPUT1, OUTPUT2, GROUND : ELECTRICAL;

BEGIN
C1: ENTITY multiplier (behav) GENERIC MAP (K => 5.0)

PORT MAP (v1 => INPUT1, v2 => INPUT2, tout => OUTPUT1);
C2: ENTITY filter (behav) GENERIC MAP (cutoff _freq =>300,gain => 0.99,q => 1.5, rout=> 1.0e4)
PORT MAP (tin => OUTPUT1, tout=>OUTPUT2, tref=>GROUND);
C3: ENTITY summer (behav) GENERIC MAP (GAIN1 => 1.0, GAIN2 => 1.0)
PORT MAP (tin1=>0UTPUT2, IN2=>INPUT3, OUTP=>0UTPUTS3, tref=> GROUND);
C4: ENTITY sineSource (behav) GENERIC MAP (50.0,5000.0) PORT MAP (insin =>INPUT1);

C5: ENTITY sineSource (behav) GENERIC MAP (25.0,1000.0) PORT MAP (insin => INPUT2);

C6: ENTITY sineSource (behav) GENERIC MAP (90.0,5000.0) PORT MAP (insin => INPUT3);

END ARCHITECTURE ;

Fig. 14. Automatically generated code for the connectivity of the system
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Fig. 15. Inputs to the system
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Fig. 16. Graph from MATLAB simulation and code simulation

An example analogue subsystem was modelled using class diagrams and subsequently mapped to VHDL-
AMS. The resultant VHDL-AMS code was simulated using a VHDL-AMS simulator and the results were found
to agree with those of a conventional circuit simulation. The results illustrate that this approach provides an
effective means for mapping analogue subsystems and therefore mixed-signal solutions from a UML represen-
tation to a VHDL-AMS specification. This technique provides a basis for mixed signal representation in UML,
which is the subject of a further publication.
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