
DOI 10.1007/s00165-004-0055-4
BCS © 2005
Formal Aspects of Computing (2005) 17: 260–276

Formal Aspects
of Computing

Security analysis of efficient (Un-) fair
non-repudiation protocols∗

S. Gürgens and C. Rudolph
Fraunhofer – Institute for Secure Telecooperation SIT, Rheinstrasse 75, D-64295 Darmstadt, Germany
Email: guergens@sit.fraunhofer.de, rudolphc@sit.fraunhofer.de

Abstract. An approach to protocol analysis using asynchronous product automata (APA) and the simple homo-
morphism verification tool (SHVT) is demonstrated on several variants of the well known Zhou–Gollmann fair
non-repudiation protocol and on two more recent optimistic fair non-repudiation protocols. Attacks on all these
protocols are presented and an improved version of the Zhou–Gollmann protocol is proposed.
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1. Introduction

Non-repudiation is an essential security requirement for many protocols in electronic business and other binding
tele-cooperations where disputes of transactions can occur. Especially the undeniable transfer of data can be
crucial for commercial transactions. While non-repudiation can be provided by standard cryptographic mecha-
nisms like digital signatures, fairness is more difficult to achieve. A variety of protocols has been proposed in the
literature to solve the problem of fair message transfer with non-repudiation. One possible solution comprises
protocols based on a trusted third party (TTP) with varying degree of involvement. In protocols published at first,
the messages are forwarded by the TTP. A more efficient solution was proposed by Zhou and Gollmann [ZG96].
Here, the TTP acts as a light-weighted notary. Instead of passing the complete message through the TTP and
thus creating a possible bottleneck, only a short term key is forwarded by the TTP and the encrypted message
is directly transferred to the recipient. Based on this approach, several protocols and improvements have been
proposed [ZDB99, KPB99]. More recent protocols achieve further optimisation by reducing TTP involvement to
cases with incorrect or erroneous behaviour. Such optimised fair non-repudiation protocols have been proposed
by Asokan et al. [ASW97], Zhou et al. [ZDB99], and Markowitch and Kremer [KM00].

Cryptographic protocols are error prone and the need for formal verification of cryptographic protocols is
widely accepted. However, non-repudiation protocols are being developed only for a comparatively short time
period, thus only very few of these protocols have been subject to a formal security analysis. Only a few existing
protocol analysis methods have been extended and applied to non-repudiation protocols [BP01, Sch98, ZG98].
Recently, a new approach modelling non-repudiation protocols as games has been proposed by Kremer and
Raskin [KR01]. Nevertheless, a variety of attacks and weaknesses have been found on fair non-repudiation
protocols.

The development of formal methods for protocol analysis has mainly concentrated on authentication and
key-establishment protocols. These methods cannot be directly applied to the security analysis of fair non-repu-
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diation protocols. Obviously, formalisations for non-repudiation and fairness are required. Furthermore, the
attack scenario for the analysis of fair non-repudiation protocols is different. Many models for protocol analysis
consider an attacker to have control over the network, while protocol participants trust each other. In the case of
the establishment of a new session key, the requirement of mutual trust results from the security requirement of
confidentiality for the new session key. A malicious protocol agent could simply publish a newly established key
and therefore no protocol would achieve secure key-establishment in this scenario. In contrast, fair non-repudi-
ation is explicitly designed for scenarios where protocol participants may act maliciously, since no participant
(except a trusted third party) is assumed to behave in accordance with the protocol specification. This has to be
reflected in the model for protocol analysis as well as in the formalisation of security properties.

Remarkably, one protocol proposed by Zhou and Gollmann in [ZG96] (which is also discussed in [ZDB99]
and [ZG97]) that has been analysed using three different methods [BP01, Sch98, ZG98] does not provide fair
non-repudiation under reasonable assumptions. We show possible attacks on this protocol and on two of its
various versions in Sects. 4.3, 5.1 and 5.2. Furthermore, in Sect. 7 we present a straightforward improvement for
all three versions of the protocol. In Sect. 6 we review two optimistic non-repudiation protocols with resolve and
abort sub-protocols and show several attacks on these protocols.

The next section defines the security goals of fair non-repudiation. Section 3 explains the protocol proposed by
Zhou and Gollmann and Sect. 4.1 explains our approach to automated protocol analysis. The remaining sections
describe possible attacks on three protocol variants. Finally several attacks on two optimistic non-repudiation
protocols are presented and improvements are discussed.

This paper is an extended version of [GR03] and relates it to more recent results firstly presented in [GRH03].

2. Requirements for fair non-repudiation

This paper concentrates on message transfer protocols with certain security properties: agent A sends message
m to agent B, such that A can prove that B has received m (non-repudiation of receipt) and B can prove that A
has sent m (non-repudiation of origin). Furthermore, the protocol should not give the originator A an advantage
over the recipient B, or vice versa (fairness).

Non-repudiation of origin and non-repudiation of receipt require evidence of receipt (EOR) and evidence of
origin (EOO). All agents participating in the protocol have to agree that these constitute valid proofs that the
particular receive or send event has happened. In case of a dispute an arbitrator or judge has to verify EOO and
EOR. Therefore, for every non-repudiation protocol one has to specify what exactly constitutes valid EOO and
EOR. This can be done by specifying the verification algorithm the judge has to execute in order to verify the
evidence for dispute resolution.

Even in fair non-repudiation protocols there are intermediate states where one agent seems to have an advan-
tage, for example, if a TTP has transmitted evidence first to one agent and the other agent is still waiting for the
next step of the TTP. We say a protocol is fair if at the end of the protocol execution no agent has an advantage
over the other agent. This means that if there is an unfair intermediate situation for one agent this agent must
be able to reach a fair situation without the help of other untrusted agents. For any agent P we say a protocol
execution is finished for P if either P has executed all protocol steps or any remaining protocol step depends on
the execution of protocol steps by other untrusted agents.

In this paper we consider a refined version of the definition of fair non-repudiation by Zhou and Gollmann
[ZG96]. We specify the security goals relative to the role in the protocol. The security goal of the originator of a
message has to be satisfied in all scenarios where the originator acts in accordance with the protocol specification
while the recipient may act maliciously. In contrast, the security goal of the recipient has to be satisfied in scenarios
where the originator can act maliciously.

Definition 1 A message transfer protocol for originator A and recipient B provides fair non-repudiation if the
following security goals are satisfied for all possible messages m:

Security goal for A: Fair non-repudiation of receipt At any possible end of the protocol execution in A’s point of
view either A owns a valid EOR by B for message m or B has not received m and B has no valid EOO by A
for m.

Security goal for B: Fair non-repudiation of origin At any possible end of the protocol execution in B’s point of
view either B has received m and owns a valid EOO by A for m or A has no valid EOR by B for m.
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Optimistic non-repudiation protocols shown in Section 6 are designed to provide the following stronger prop-
erty. This definition below is similar to the definition of fair non-repudiation with strong fairness and timeliness
by Kremer, Markowitch and Zhou [KMZ02].

Definition 2 A message transfer protocol for originator A and recipient B provides fair non-repudiation with time-
liness if it provides fair non-repudiation and the following security goal is satisfied for all possible messages m:

Security goal for A and B: Timeliness At any possible state in the protocol execution each party can complete
the protocol without any action of other untrusted parties.

3. The basic version of the Zhou–Gollmann protocol

We first discuss three versions of a non-repudiation protocol introduced by Zhou and Gollmann in [ZG96, ZG97,
ZDB99]. The purpose of all protocols is to transmit a message from agent A to agent B and to provide evidence
for B that the message originated with A while conversely providing evidence for A that B received the message.
Thus the protocols shall provide fair non-repudiation as defined above. An online trusted third party TTP is
involved in all three protocols. Attacks on optimistic variants of the protocols designed to provide timeliness are
discussed in Sect. 6.

The main idea of all protocols is to split the transmission of the message m into two parts. The first part
consists of A sending a commitment C � eK(m) (message m encrypted with key K ) and B acknowledging its
receipt. Then, A submits the key K and signature sub K to an on-line trusted third party TTP which makes a
signature con K available that serves both as the second part of the evidence of origin for B and as the second
part of evidence of receipt for A. Consequently, evidence of origin EOO and evidence of receipt EOR consists of
two parts:

• EOO is composed of EOO C (A’s signature on the commitment C) and con K (the confirmation of key K
by the trusted third party).
• EOR is composed of EOR C (B’s signature on the commitment C) and con K (the confirmation of key K

by the trusted third party).

We adopt the notation from Zhou and Gollmann:

• m, n: concatenation of two messages m and n.
• H (m): a one-way hash function applied to message m.
• eK(m) and dK(m): encryption and decryption of message m with key K.
• C � eK(m): commitment (ciphertext) for message m.
• L: a unique label to link all protocol messages.
• fEOO, fEOR, fSUB, fCON : message flags to indicate the purpose of the respective message.
• sSA(m): principal A’s digital signature on message m with A’s private signature key SA. Note that the plaintext

is not recoverable from the signature, i.e. for signature verification the plaintext needs to be made available.
• EOO C � sSA(fEOO, B, L, C)
• EOR C � sSB(fEOR, A, L, C)
• sub K � sSA(fSUB, B, L, K)
• con K � sST T P (fCON, A, B, L, K)
• A→ B : m: agent A sends message m with agent B being the intended recipient.
• A ↔ B : m: agent A fetches message m from agent B using the “ftp get” operation (or by some analogous

means).

We first concentrate on the basic version of the protocols which is as follows:

1. A → B : fEOO, B, L, C, EOO C
2. B → A : fEOR, A, L, C, EOR C
3. A → T T P : fSUB, B, L, K, sub K
4. A ↔ T T P : fCON, A, B, L, K, con K
5. B ↔ T T P : fCON, A, B, L, K, con K
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A protocol without a TTP puts the agent which is the first to provide all information in a disadvantageous
position, since the second agent can just refrain from sending the acknowledgement message. This is avoided by
involving TTP: once A made the key available to TTP, A will always be able to retrieve the remaining evidence
con K.

The authors use the following assumptions:

• All agents are equipped with their own private signature key and the relevant public verification keys.
• B cannot block the message identified by fSUB permanently, thus A will eventually be able to obtain the

evidence of receipt.
• The ftp communication channel is eventually available, thus also B will eventually be able to obtain K and

therefore m and con K.
• TTP checks that A does not send two different keys K and K ′ with the same label L and the same agents’

names. This is necessary because L serves as identifier for con K, i.e. TTP will overwrite con K with con K ′
which causes a problem if either A or B have not yet retrieved con K.

Additionally, A is required to choose a new label and a new key for each protocol run, but except the
above check by TTP no means are provided to guarantee this.

In [ZG96] it is not specified whether or not the TTP stores con K forever. Since from TTP’s point of view
the transaction is terminated once both A and B have retrieved con K and after that there is no need to keep
this message, we assume that TTP gets to know when this happens (for example by receiving acknowledgement
messages by A and B) and may then delete con K. Thus we use the following assumption:
• TTP stores message keys at least until A and B have received con K.

Our analysis shows that this point is crucial for the security of the protocol.

Dispute resolution A dispute can occur if B claims to have received m from A while A denies having sent m,
or if A claims having sent m to B while B denies having received m. To resolve such a dispute, the evidence of
origin and receipt, respectively, has to be sent to a judge who then checks

• that con K is TTP’s signature on (fCON, A, B, L, K), which means that TTP has indeed made the respec-
tive entry because of A’s message fSUB ,
• that EOO C is A’s signature on (fEOO, B, L, C) (that EOR is B’s signature on (fEOR, A, L, C), respec-

tively)
• that m � dK(C)

The authors conclude that the above protocol provides non-repudiation of origin and receipt and fairness
for both agents A and B. However, in Sect. 4.3 we will show that the protocol is unfair for B since it allows A to
retrieve evidence of receipt for a message m while B is neither able to retrieve m nor the respective evidence of
origin. The scenario in which the attack can occur satisfies all assumptions stated above.

4. Protocol analysis using APA and the SHVT

In this section we introduce our approach for security analysis of cryptographic protocols. We model a system of
protocol agents using asynchronous product automata (APA). APA are a universal and very flexible operational
description concept for cooperating systems [ORRN99]. It “naturally” emerges from formal language theory
[ORR00]. APA are supported by the SH-verification tool (SHVT) that provides components for the complete
cycle from formal specification to exhaustive analysis and verification [ORRN99].

4.1. Specification of cryptographic protocols with APA

An APA can be seen as a family of elementary automata. The set of all possible states of the whole APA is
structured as a product set; each state is divided into state components. In the following the set of all possible
states is called state set. The state sets of elementary automata consist of components of the state set of the APA.
Different elementary automata are “glued” by shared components of their state sets. Elementary automata can
“communicate” by changing the content of shared state components.
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Fig. 1. Structure of the APA model for agents A, B and TTP

Protocols can be regarded as cooperating systems, thus APA provide adequate means for protocol formalisa-
tion. Figure 1 shows the structure of an asynchronous product automaton modeling a system of three protocol
agents A, B and TTP. The boxes are elementary automata and the circles represent their state components.

Each agent P taking part in the protocol is modeled by one elementary automaton P that performs the
agent’s actions, accompanied by four state components SymkeysP, AsymkeysP, StateP, and GoalsP to store the
symmetric and asymmetric keys of P, P’s local state and the security goals P should reach within the protocol,
respectively. The only state component shared between all agents (all elementary automata) is the component
Network, which is used for communication. A message is sent by adding it to the content of Network and received
by removing it from Network. The neighbourhood relation N (graphically represented by an arc) indicates which
state components are included in the state of an elementary automaton and may be changed by a state transition
of this automaton. For example, automaton A may change StateA and Network but cannot read or change the
state of StateB. The figure shows the structure of the APA. The full specification of the APA includes the state sets
(the data types), the transition relations of the elementary automata and the initial state, which we will explain
in the following paragraphs.

State sets, messages and cryptography In the present paper we restrict our model to basic data types, and the
model of cryptography to those algorithms needed to specify the non-repudiation protocols considered here. For
the definition of the domains of the state components as well as for the definition of the set of messages, we need
the following basic sets:

IN set of natural numbers
Agents set of agents’ names
Nonce set of nonces (numbers that have never been used before)
Constants set of constants to determine the agents’ states and thus to define state transition relations
Keynames set of constants to name keys, Agents ⊆ Keynames
Symf lags {sym, . . .}
Asymf lags {pub, priv, . . .}
Keys {(w, f, n) | w ∈ Keynames, f ∈ Symf lags ∪Asymf lags, n ∈ IN}
Predicates set of predicates on global states

It is helpful to include the agents’ names in the set Keynames in order to be able to formalise for example
the public key of agent P by (P, pub, n) (n ∈ IN). The second component of a key indicates its type. In order
to distinguish between different types of keys, more flags (like pubcipher, privcipher, etc.) can be added to the
respective set. The third key component allows to use more than one key with the same name and type. The key
K for example in the first run of the Zhou–Gollmann protocol can be formalised by (K, sym, 1), the key of the
next run by (K, sym, 2), and so on.

The union of the sets Agents, Nonce, Constants, Keys, and IN represents the set of atomic messages, based
on which we define a set M of messages in the following way:

1. Every atomic message is element of M.
2. If m1, . . . , mr ∈M, then (m1, . . . , mr ) ∈M.
3. If k, m ∈M, then encrypt(k, m) ∈M, decrypt(k, m) ∈M, sign(k, m) ∈M and hash(m) ∈M.

We define the standard functions elem(k, . . .) and length on tuples (m1, . . . , mr ) which return the kth com-
ponent (or, if k � r, the rth component) and the number of components of a tuple, respectively.
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We model properties of cryptographic algorithms by defining properties of the symbolic functions listed above
and by defining predicates. For the analysis of the Zhou–Gollmann protocol we need in particular

1. decrypt(k, encrypt(k, m)) � m

2. inverse((w, sym, n)) � (w, sym, n)
3. inverse((P, pub, n)) � (P, priv, n)
4. verify((P, pub, n), m, sign((P, priv, n), m)) � true

(where k, m ∈M, P, w ∈ Keynames, n ∈ IN)
Our general model provides additional symbolic functions for the specification of other cryptographic pro-

tocols.
The above properties define for each m ∈M a unique shortest normal form. The set Messages is the set of

all these normal forms of elements m ∈M.
Now elements of Messages constitute the content of State components, while Network contains tuples of

Agents × Agents ×Messages, where the first component names the sender of the message and the second
component the intended message recipient. In the analysis of a protocol which includes all necessary information
(such as to whom to respond) in the messages itself, the first component of the tuple in Network is not evaluated.
However, some protocols like the Zhou–Gollmann protocol assume that this information can be retrieved from
some lower level transport layer, thus the information has to be provided in addition to the content of the message.
An asymmetric key key is stored in AsymkeysP using a tuple (Q, f, key), where Q is the name of the agent that
P’s automaton will use to find the key and f � pub or f � priv is the flag specifying the type of the key. For the
formal definition of the data structure of the state components, see [GORO2b].

The symbolic functions encrypt , decrypt , sign and hash together with the above listed properties model
the cryptographic algorithms used in the various versions of the Zhou–Gollmann protocol. For this paper, we
assume “perfect encryption”, i.e. we assume that keys cannot be guessed, that for generating encrypt(k, m) or
sign(k, m), both k and m need to be known, that encrypt(k, m) � encrypt(k′, m′) and sign(k, m) � sign(k′, m′)
imply k � k′ and m � m′, and that hash(m) � hash(m′) implies m � m′.

State transition relation. To specify the agents’ actions we use so-called state transition patterns describing state
transitions of the corresponding elementary automaton. Step 2 of the original Zhou-Gollmann protocol where
B receives the message fEOO and sends fEOR can be specified as shown in Table 1.

The lines above
B→ indicate the necessary conditions for automaton B to transform a state transition, the lines

behind specify the changes of the state. ↪→ and←↩ denote that some data is added to and removed from a state
component, respectively. B does not perform any other changes within this state transition.

The syntax and semantics of state transition patterns for APA as well as the formal definitions of the state
sets is explained in more detail in [GORO2a].

A complete specification in the APA framework additionally contains security relevant information. Most
important are the security goals the protocol shall reach. The following paragraph explains the formalisation of
the security goals defined in Sect. 2. For more details on a complete protocol specification, we refer the reader to
[GORO2b].

Security goals. In our model, the state components Goals are used to specify security goals. Whenever an agent
P performs a state transition after which a specific security goal shall hold from the agent’s view, a predicate
representing the goal is added to the state of GoalsP. Note that the content of GoalsP has no influence on the
occurence of state transitions.

A protocol is secure (within the scope of our model) if a predicate is true whenever it is element of a Goals
component.

In the Zhou–Gollmann protocol, the security goals defined in Definition 1 in Sect. 2 can now be concretised.
The first goal for example states that at the end of a protocol execution by A, either A owns EOR (i.e. EOR C
and con K) or B does not own EOO (i.e. EOO C and con K). The case that B has an advantage by just owning
m need not be considered as owning m implies that B owns con K as well, hence EOO. Thus any state in which B
owns EOO must allow A to continue the protocol execution and receive EOR without the help of an untrusted
agent. This gives rise to the following definitions:

• For originator A the predicate NRR(B) is true if for any message m the following holds:
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Table 1. Detailed specification of step 2 of the Zhou-Gollmann non-repudiation protocol

step 2 Name of the transition pattern

(A, M, message, plain, L, C,

EOO C, PKA, SKB) Local variables used in the pattern

M ∈ Network Variable M is assigned a message in Network.
A :� elem(1, M) The variable A is assigned the assumed sender of the message.
B � elem(2, M) B checks that he is the intended recipient.
(respond, A) ∈ StateB B can respond to A.
(A, pub, PKA) ∈ AsymkeysB B owns A’s public key, the variable PKA is assigned the respective value.
(B, priv, SKB) ∈ AsymkeysB B owns his own private key, the variable SKB is assigned the respective value.
message :� elem(3, M) The variable message is assigned the data part of M.
elem(1, message) � fEOO B checks that the message contains the fEOO flag.
elem(2, message) � B B checks that he is named in the message.
L :� elem(3, message) The variable L is assigned the third message element.
C :� elem(4, message) The variable C is assigned the fourth message element.
plain :� (fEOO, B, L, C) The variable plain is assigned what B assumes to be the plaintext of EOO C.
EOO C :� elem(5, message) The variable EOO C is assigned the signature.
verify(PKA, plain, EOO C) � true B verifies EOO C.
B→ state transition is performed by B.
M ←↩ Network The message tuple is removed from Network.
(fEOO, L, C, expects CON,

(C, EOO C)) ↪→ StateB B stores all relevant data.
(B, A, (fEOR, A, L, C,

sign(SKB, (fEOR, A, L, C)))) ↪→ Network B sends message 2.

Table 2. The initial state

StateA := {(B, agent), (TTP, server), (start, B), (m1, m2, message)}
AsymkeysA := {(A, priv, (A, priv, 1)), (B, pub, (B, pub, 1)), (TTP, pub, (TTP, pub, 1))}
GoalsA := {NRR(B)}

StateB := {(A, agent), (TTP, server), (respond, A)}
AsymkeysB := {(B, priv, (B, priv, 1)), (A, pub, (A, pub, 1)), (TTP, pub, (TTP, pub, 1))}
GoalsB := {NRO(A)}

StateTTP := {(A, agent), (B, agent)}
AsymkeysTTP := {(TTP, priv, (TTP, priv, 1)), (A, pub, (A, pub, 1)), (B, pub, (B, pub, 1))}

If EOO C for m signed by A and also a matching con K are elements of StateB, then EOR C for m signed
by B is element of StateA and either a matching con K is in StateA, or con K is made available by TTP and
not yet retrieved by A.
• For a recipient B the predicate NRO(A) is true if for any message m the following holds:

If EOR C for m signed by B and a matching con K are elements of StateA, then EOO C for m signed by A
is element of StateB and either a matching con K is in StateB, or con K is made available by TTP and not yet
retrieved by B.

The predicates NRR(B) and NRO(A) have to be satisfied in all possible states in all protocol runs. They can
therefore be included in the initial state of GoalsA and GoalsB, respectively.

Initial state The initial state for the Zhou–Gollmann protocol can now be specified as shown in Table 2.
The tuple (m1, m2, message) represents a reservoir of messages that A can send, the agents’ Symkey compo-

nents as well as Network are empty in the initial state.

4.2. APA framework for protocol analysis

The APA specification of a protocol as described above specifies the behaviour of roles in the protocol. This
specification can be used to analyse the correctness of the protocol without any malicious behaviour or interfer-
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ence between protocol runs. For security analysis, the role specification has to be transferred to specific analysis
scenarios. The APA framework provides various means to specify concrete analysis scenarios which are then
automatically generated from the role specification by the SHVT. The scenarios include the specification of the
number and nature of runs that shall be validated (only finitely many runs can be checked), the concrete agents
taking part in these runs and their roles (we may want to analyse a scenario with Alice and Bob both acting as
A and Bob acting as B), which of the agents may act dishonestly, and other details.

Interpretation of roles Since in the APA specification, A,B, etc. represent roles rather than agents, (B, agent) in
A’s State component in the initial state does not mean that an agent in role A only knows one single agent in role
B. Rather, (B, agent) represents a subset of Agents×{agent} which contains one element for each agent that can
act in role B. Thus, (B, agent) can be viewed as a characteristic element for the possible interpretations. If, for
example, Alice and Bob can act in role B, then (B, agent) represents the set {(Alice,agent), (Bob,agent)}.

To derive a concrete scenario for the analysis, the characteristic elements of the role specification are replaced
by the respective sets. The initial state for a state component is then the result of the union of all these sets.

The analysis APA Every concrete agent P acting honestly (i.e. according to the protocol specification) is modeled
by one elementary automaton P and the state components StateP, SymkeysP, AsymkeysP, GoalsP and Network
in its neighbourhood relation. The elementary automaton P performs state transitions according to the patterns
given in the protocol specification. Additional to Network, an analysis APA can contain global state components
that can be accessed by all elementary automata. These state components can be used for the generation of
random numbers, for the storage of data that can be used to interrupt a protocol run, etc.

The resulting APA together with a specification of analysis details (which are the agents acting, how many
runs, etc.) can be used to check that the protocol specification without malicious behaviour results in the desired
state transition sequence and that in particular the expected final states of the agents are reached.

For more details on the analysis APA, see [GOR01].

Including dishonest behaviour In order to perform a security analysis, our model includes the explicit specifica-
tion of dishonest behaviour. For each type of dishonest behaviour, the APA includes one elementary automaton
with the respective state components and state transition relations for specifying the concrete actions. (For the
protocols discussed in this paper, we consider only two types of dishonest behaviour, namely the actions of a
dishonest agent acting either in role A or in role B. However, other protocols may require to differentiate between
actions of different dishonest agents.)

The elementary automaton of a dishonest agent can remove all tuples from Network independently from
being named as the intended recipient. It can extract the first and second component of the tuples and add them
as possible sender and recipient of messages to be sent by itself. (Note that it can use the name of any agent it
knows as the sender of its own messages.) Furthermore, it can extract new knowledge from the messages and add
this knowledge to the respective state components. A dishonest agent’s knowledge can be defined recursively in
the following way:

1. A dishonest agent knows all data being part of its initial state (for example the names of other protocol agents,
the keys it owns, etc.) and can generate random numbers and new keys.

2. It knows all messages and parts of messages, the names of sender and the intended recipient of messages it
receives or maliciously removes from Network.

3. It can generate new messages by applying concatenation or the symbolic functions encrypt , sign and hash
to messages it knows. (Note that it can use any message in its knowledge base as a key.)

4. It knows all plaintexts it can generate by deciphering a ciphertext it knows, provided it knows the necessary
key as well.

With new messages generated according to the above rules, in every state of the system, the dishonest agent’s
elementary automaton can add new tuples (sender,recipient,message) to Network, sender and recipient being
one of the agents’ names it has stored in its State component.

4.3. An attack on the Zhou–Gollmann protocol

We now introduce a concrete scenario for the Zhou–Gollmann protocol. Using the SH verification tool we want
to automatically analyse a scenario where Alice (in role A) starts a protocol run with Bob (in role B), and Server
acts in role TTP. Furthermore we assume that Alice may act dishonestly.
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The following details of the analysis scenario are of particular interest:

1. In order to model the assumptions made by Zhou and Gollmann that B cannot block the sub K message
permanently and that A and B are eventually able to retrieve the con K message, we first observe that Bob,
acting honestly, will not block messages for Alice nor for Server. On the other hand, the only message that
Alice might block is Server’s message con K for Bob. Thus, by not allowing Alice to remove messages from
Network containing an intended recipient other than herself, we enable Bob to always retrieve its sub K
message.

2. We model our assumption that message con K is available at least until A and B each have retrieved their
message, and that the TTP then may delete it, by simply letting Server add these messages to Network. Since
messages can only be removed from Network from the agent named as the intended recipient (assumption
1), these messages stay in Network until Alice and Bob remove them. Therefore, Server can delete con K
immediately after sending.

3. Server’s check that the same label L may not be used together with two different keys can easily be modeled
by storing a tuple (A, B, L, K) in the Server’s State component for each protocol run. Thus messages fSUB

that contain L and K already being part of one tuple can be rejected.
4. We assume that all signatures are checked by the recipients. Thus messages with incorrect signatures will

be rejected. In consequence we restrict Alice’s behaviour further in allowing her only to send messages with
correct signatures. Other than that, Alice may send anything she knows as L, K and eK(m). (This is in fact
just an improvement of the analysis efficiency and does not rule out possible attacks.)

We then want to analyse whether there is a reachable state in which the security goal NRO(Alice) in GoalsBob
is not satisfied.

Indeed, the SHVT finds such a state. Starting with the initial state, the SHVT computes all reachable states
until it finds a state in which Alice owns EOR C and con K for a particular message, while Bob is not able to get
con K for this message. The SHVT outputs the state indicating a successful attack. Now one can let the SHVT
compute a path from the initial state to this attack state, showing how the attack works. In the following, these
steps are explained.

In the first step, Alice generates a new label L and key K, stores these data in her State component for later
use, and starts a first protocol run with message m1, i.e. sends sSAlice(fEOO, Bob, L, eK(m1)) to Bob. For the rest
of the protocol run, Alice acts honestly and the protocol run proceeds according to the protocol description. At
the end of the protocol run, Alice owns in her state component StateAlice both Bob’s EOR C for C � eK(m1)
and L and Server’s con K for L and K, respectively, thus we have the following state components:

StateAlice � {. . . , (m1, m2, messages), (. . . , K, L, . . .),
(. . . , sign((Bob, priv, 1), (fEOR, Alice, L, encrypt(K, m1))),
sign((Server, priv, 1), (fCON, Alice, Bob, L, K)))}

Alice can now start the next protocol run. Among the possibilities to do this is one state transition in which
she chooses m2 as the next message to send, but does not generate a new label and a new key. Instead, she uses
L and K she has stored to use in an attack and sends to Bob sSAlice(fEOO, Bob, L, eK(m2)). Thus the state
component Network contains the following data:

Network � {(Alice,Bob, (fEOO, Bob, L, encrypt(K, m2),
sign((Alice, priv, 1), (fEOO, Bob, L, encrypt(K, m2)))))}

Bob may still own an EOO tuple for L, K and m1 in StateBob and may therefore be able to decrypt the cipher-
text encrypt(K, m2). However, the protocol specification does not require him to check this and Bob has no reason
to try any old keys on the new message. In case all transactions regarding the first protocol run had been settled
in a way that further disputes can not occur, Bob will have deleted the particular key and EOO. Consequently,
Bob answers with the fEOR message including EOR C for m2 (i.e. sends sSBob(fEOR, Alice, L, eK(m2))), which
results in

Network � {(Bob,Alice, (fEOR, Alice, L, encrypt(K, m2),
sign((Bob, priv, 1), (fEOR, Alice, L, encrypt(K, m2))))}

Now, since Alice still owns con K for L and K, she owns a valid proof of Bob having received message m2
that will be accepted by a judge according to the dispute resolution described in Sect. 3, and stops the protocol
run. Bob on the other hand does neither own the key K nor the Server’s signature (or does not know that he
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owns these data). Thus, security goal NRO(Alice) is not satisfied and Bob in fact will never be able to retrieve
m2, i.e. fairness for B is violated. Our analysis shows that the question of when evidence may be deleted is crucial
for the security of the protocol.

4.4. Other analysis approaches

Although this protocol and in particular its fairness has been analysed with two different analysis methods
[Sch98, BP01], the problem described above was not discovered. Bella and Paulson have used the inductive
analysis approach based on the theorem prover Isabelle [Pau96] which had been developed for the analysis of
authentication and key establishment protocols. They cannot find the above attack, because in their model the
only malicious action of the protocol agents consists of abandoning protocol sessions before termination. This
is not a realistic attack scenario for non-repudiation protocols. In addition, in inductive protocol specifications
as proposed by Paulson et al., agents cannot “forget” data. Although agents can explicitly memorize data using
the notes event, there is no event type to remove this data from an agent’s memory. In principle it is possible to
extend inductive protocol specification in order to include deletion of data from an agent’s memory. However,
it is an open question whether security proofs remain feasible in this extended model. The major difficulty of
such an extension is that monotonic properties of inductive specifications are lost. Therefore, we expect security
proofs to be more difficult.

A different analysis by Schneider uses CSP [Sch98]. This approach has also been used to analyse authentica-
tion and key establishment protocols [Sch97, RRS+00]. The scenario in which the security proofs are carried out
is more realistic than the scenario of Bella and Paulson. The behaviour of the originator A and recipient B is not
restricted. They can execute all possible malicious actions. Similar to Paulson’s approach, Schneider restricts the
model to monotonic growth of the agents’ memory content. Consequently he assumes that evidence con K and
thus the keys remain available for download at the TTP forever, thus his analysis is not able to find the attack
which is possible when relaxing this assumption. Again, abandoning the restriction of monotonic growth of the
agents’ memory might complicate security proofs.

It remains as an interesting open question whether security proofs for non-repudiation protocols using a
theorem prover are feasible if realistic analysis scenarios are used.

The protocol analysis performed by Zhou and Gollmann themselves [ZG98] uses a modified version of the
authentication logic SVO [SvO94]. This logic (like all other authentication logics) cannot express the property of
fairness, as stated by the authors of [ZG98], consequently their analysis does not find the protocol weakness.

5. Variants of the Zhou-Gollmann protocol

5.1. Unique labels

Obviously, a critical point of the protocol is how to choose the label L. In a different version of the protocol,
Zhou and Gollmann suggest to use L � H (m, K) [ZG96, ZDB99]. This guarantees that whenever a new message
is sent, the message will be accompanied by a new label, even if the same key K is used. The actions performed
by the agents are essentially the same with the exception of label generation and that the label check performed
by TTP is now obsolete. In a dispute, the judge will additionally check that L � H (dK(C), K).

Unfortunately the change of label generation does not avoid the unfairness of the protocol. We again model
a scenario with dishonest Alice acting in role A and Bob acting in role B. Since the hash values are checked by a
judge we model Alice by requiring to use the hash function for label generation, but we allow Alice to use anything
she knows as parameters. Thus, Alice initiates the protocol by sending sSAlice(fEOO, Bob, H (m2, K), eK(m1))
which results in

Network � {(Alice,Bob, (fEOO, Bob, H (m2, K), encrypt(K, m1),
sign((Alice, priv, 1), (fEOO, Bob, H (m2, K), encrypt(K, m1))))}

Bob removes the message tuple from Network and proceeds according to the description in Sect. 3. The pro-
tocol run ends with each Alice and Bob owning sSServer (fCON, Alice, Bob, H (m2, K), K). Additionally, Alice
owns sSBob(fEOR, Alice, H (m2, K), eK(m1)), and Bob owns Alice’s respective signature. However, these do not
present a valid proof for Bob that Alice has sent m1 nor a proof for Alice that Bob has received m1, as a judge
would find that the label used in the signatures is not equal to H (m1, K). Alice knows this (after all, she generated
the label), but Bob may not know it if he is not required to make the respective check after the last protocol step.
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Now Alice can start a second protocol run in which she uses the same label H (m2, K) and key K, but this
time indeed sends the enciphered message m2:

Network � {(Alice,Bob, (fEOO, Bob, H (m2, K), encrypt(K, m2),
sign((Alice, priv, 1), (fEOO, Bob, H (m2, K), encrypt(K, m2))))}

Bob answers by sending his fEOR message. Now, Alice owns a valid EOR C of Bob for m2 and, from the first
protocol run, con K for H (m2, K) and K. Hence Alice owns a valid proof that Bob received message m2, while
again Bob has no chance to ever retrieve m2 or the Server’s signature. Alice now stops the protocol run.

5.2. Time-stamping evidence

In [ZDB99] Zhou et al. propose to use time stamps generated by TTP in evidence con K to identify when the key
and thus the message was made available. The protocol remains the same except for the additional time stamp
Tcon in con K � sST T P (fCON, A, B, L, Tcon, K).

In addition to fair non-repudiation (Definition 1) this protocol shall satisfy another goal: The time stamp
Tcon is supposed to identify the time when the message is made available to B.

To model non-repudiation with time stamps we have introduced a discrete time model to our framework.
An additional elementary automaton T ime increases a natural number in a state component T . Assumptions
about the agents’ behaviour relative to time can be modelled by the behaviour of the automaton T ime. In the
non-repudiation protocol example, we assume that when B expects to retrieve con K and con K is already made
available by TTP then B retrieves con K within the actual time slot. In this case T is only increased by T ime after
B has retrieved con K.

In this scenario the security goal for B is that whenever B retrieves con K, the time stamp signed by the TTP
in con K must be the actual time contained in state component T .

In the scenario where Bob (in role B) acts honestly as described above, Alice (in role A) can execute protocol
steps 3 and 4 without previous execution of steps 1 or 2 and receive a time-stamped con K with a specific Tcon.
Alice can even collect several different time stamps for the same message. Later, Alice starts the protocol as usual
with step 1 at time T > Tcon. Bob responds with EOR C. As step 3 and 4 have already happened, Alice terminates
the protocol run after step 2 and owns a valid evidence of receipt for time Tcon < T , although the message was
not available for Bob before time T .

In [ZHo01b] where a more elaborated version of this protocol is introduced, Zhou has pointed out that by
sending sub K before receiving EOR C, Alice enables Bob to get the message and evidence of origin without
providing any evidence of receipt. However, as Bob cannot know that Alice has already submitted sub K to TTP
he has no reason to retrieve it from the TTP, and if he retrieves it, he only gets evidence of origin containing an
old time stamp.

6. Attacks on optimistic fair non-repudiation protocols

In this section we show different attacks on two optimistic non-repudiation protocols that are supposed to provide
fairness and respect timeliness in accordance with Definitions 1 and 2. These attacks have first been published
by the authors together with Holger Vogt [GRH03]. One protocol was proposed by Kremer and Markowitch
[KM00, KMZ02] and has been analyzed in [KR01]. Several other protocols [MK00, MK01, KM01] build on this
protocol. The second protocol is a very similar one proposed by Zhou, Deng and Bao [ZDB99, ZDB00], which
has already been analyzed and improved in [BK00]. Both protocols (which we will call KM protocol and ZDB
protocol, respectively, in the remainder of this paper) use an offline TTP, i.e. a TTP which is involved only in case
of incorrect behaviour of a malicious party or of a network error. The basic idea of the main protocol part not
involving the TTP stems from [ZG96]. The structure of the two protocols is very similar. However, small details in
the protocol design permit several different attacks. Both protocols are designed to provide fair non-repudiation
with timeliness as described in Definitions 1 and 2 and both realizations are based on the same ideas.
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6.1. The general Idea

• Party A generates a label L the purpose of which is to link all protocol messages.
• In the first step of the main protocol, message m is sent to B encrypted using a symmetric key K computed by

A: C � eK (m). Only after evidence of origin (EOO C) and receipt for C (EOR C) are exchanged, A sends
K and EOO K to B. B can then decrypt C resulting in m and returns evidence of receipt for K (EOR K).
• Two sub-protocols abort and resolve involving a trusted third party TTP shall provide fairness and timeliness.
• The abort sub-protocol can be invoked by A at any stage of the protocol. If no resolve has happened before,

the TTP confirms the abort and will answer any future resolve request of a principal for this combination of
A, B and label L with the abort message.
• Missing evidence of origin or receipt of key K and the missing key itself can be obtained by either party by

using the resolve sub-protocol. As the first message of the main protocol includes K encrypted with the public
key of the TTP (ET T P (K)), the TTP can extract this key and therefore produce a signature conK that serves
for B as evidence of origin of K, and for A as evidence of receipt of K. Furthermore, TTP can submit K to B.

6.2. The ZDB Protocol

For the description of the two protocols we use the same notation as in Sect. 3, and the following ones:

• f1, f2, . . . , f8: message flags to indicate the purpose of the respective message.
• ePT T P (K) encryption of key K with T T P ’s public key PT T P .
• EOO C � sSA(f1, B, L, C): evidence of origin of C.
• EOR C � sSB(f3, A, L, EOO C): evidence of receipt of C.
• EOO K � sSA(f3, B, L, K): evidence of origin of K.
• EOR K � sSB(f4, A, L, EOO K): evidence of receipt of K.
• sub K � sSA(f5, B, L, K, T T P, EOO C): evidence of submission of K to the T T P .
• con K � sST T P (f6, A, B, L, K): evidence of confirmation of K by the T T P .
• abort � sST T P (f8, A, B, L): evidence of abortion.

The protocol consists of one main exchange protocol and two sub-protocols abort and resolve.
The exchange sub-protocol is as follows:

1. A → B : f1, f5, B, L, C, T T P, ePT T P (K), EOO C, sub K
2. IF B gives up THEN quit ELSE

B → A : f2, A, L, EOR C
3. IF A gives up THEN abort ELSE

A → B : f3, B, L, K, EOO K
4. IF B gives up THEN resolve ELSE

B → A : f4, A, L, EOR K
5. IF A gives up THEN resolve

The abort sub-protocol which can only be performed by A is as follows:

1. A → T T P : f7, B, L, sSA(f7, B, L)
2. IF resolved THEN

T T P → A : f2, f6, A, B, L, K, con K, EOR C
ELSE
T T P → A : f8, A, B, L, abort

The resolve sub-protocol is as follows, where the initiator U is either A or B:

1. U → T T P : f2, f5, A, B, L, T T P, ePT T P (K), sub K, EOO C, EOR C
2. IF aborted THEN

T T P → U : f8, A, B, L, abort
ELSE
T T P → U : f2, f6, A, B, L, K, con K, EOR C
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6.3. The KM-Protocol

• fEOO, fEOR, fSub, . . .: message flags to indicate the purpose of the respective message.
• EOO C � sSA(fEOO, B, T T P, L, H (C)): evidence of origin of C.
• EOR C � sSB(fEOR, A, T T P, L, H (C)): evidence of receipt of C.
• sub K � sSA(fSub, B, L, ePT T P (K)): evidence of submission of K to the T T P .
• EOO K � sSA(fEOOK

, B, L, K): evidence of origin of K.
• EOR K � sSB(fEORK

, A, L, K): evidence of receipt of K.
• RecX � sSX(fRecX

, Y, L): recovery request.
• con K � sST T P (fConK

, A, B, L, K): evidence of confirmation of K by the T T P .
• abort � sSA(fAbort , B, L): abort request.
• Cona � sST T P (fCona

, A, B, L): evidence of abort confirmation.

The protocol also consists of one main exchange protocol and two sub-protocols abort and resolve.
The exchange protocol is as follows:

1. A → B : fEOO, fSub, B, T T P, L, C, ePT T P (K), EOO C, sub K
2. IF B gives up THEN quit ELSE

B → A : fEOR, A, T T P, L, EOR C
3. IF A gives up THEN abort ELSE

A → B : fEOOK
, B, L, K, EOO K

4. IF B gives up THEN resolve ELSE
B → A : fEORK

, A, L, EOR K
5. IF A gives up THEN resolve

The abort sub-protocol also can only be performed by A, but involves B as well:

1. A → T T P : fAbort , L, B, Abort
2. IF resolved OR aborted THEN stop ELSE

T T P → A : fCona
, A, B, L, Cona

T T P → B : fCona
, A, B, L, Cona

The resolve sub-protocol is as follows, where X and Y are either A or B:

1. X → T T P : fRecX
, fSub, Y, L, H (C), ePT T P (K), RecX, sub K, EOR C, EOO C

2. IF aborted OR recovered THEN stop ELSE
T T P → A : fConK

, A, B, L, K, con K, EOR C
T T P → B : fConK

, A, B, L, K, con K

6.4. Attacks on the ZDB-protocol and the KM-protocol

In this section we explain the differences between the two protocols and possible attacks.

6.4.1. Reuse of ePT T P (K) in a different context

The first message of the main parts of both protocols essentially consists of L, C, the respective EOO C,
ePT T P (K), and a signature sub K by A which can be used by B in the resolve sub-protocol. This signature
is supposed to confirm to the TTP that A has submitted the key K in the particular context, identified by par-
ticipating parties and label L. A subtle difference in the content of sub K enables our attack against the KM
protocol which is not possible in the ZDB protocol. In the KM protocol, sub K contains only items sent as parts
of the first message, in particular it contains ePT T P (K), while in the ZDB protocol the key K itself is signed.
Thus in the KM protocol B can reuse ET T P (K) in a different protocol run with B ′ and produce a valid sub′ K
which consists of sigB(fsub, B

′, L′, ET T P (K)) where L′ is a new random label. By using this sub′ K together with
appropriate values EOO ′ C and EOR′ C in the resolve sub-protocol, B gains K and thus learns the message M.
A does not receive any evidence of receipt. Thus, the protocol is unfair for A. This attack is not possible in the
ZDB protocol because knowledge of K is necessary to generate a valid sub K.
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6.4.2. Sending wrong sub K or EK

On the other hand, signing the plaintext K has the drawback that B is not able to check the validity of sub K.
This enables a different attack on the ZDB protocol published by Boyd and Kearney [BK00] which is not possible
in the KM protocol. By sending an invalid sub K A can prevent the termination of B. Even the improved version
proposed in [BK00] where sub K is included in EOO C is susceptible to a similar attack where A sends a wrong
ePT T P (K). This again prevents B from terminating. In [Zho01a] Zhou proposed a variant that is designed to
prevent the original Boyd and Kearney attack, but it fails to do so. Instead this variant only works against our
new attack.

6.4.3. Reuse of labels and keys

Both protocols suffer from a new attack that is analogous to the one on the Zhou-Gollmann protocol presented
in Sect. 5. This leads to unfairness for B. We have found several variants of this attack using the analysis method
for cryptographic protocols based on the SH verification tool as described in Sect. 4. The attacks are based on
the following facts:

• The label L � H (m, K) that is supposed to uniquely define a protocol run and identify messages belonging
to this run cannot be verified by B before the last step. Furthermore, the label cannot be checked by the TTP
as well, because the TTP never receives message m.
Therefore, A can start a protocol run for some message m′ but use the wrong label L � H (m, K), and receive
evidence of receipt for K either from B (if B does not check the label at all) or from the TTP in a resolve
sub-protocol.
• Apart from the label (which is chosen by A and cannot be verified by the TTP) there is no link between the

evidence of receipt of K and message m′. Therefore, this evidence serves as evidence of receipt of K for a
second protocol run that A starts using the same label H (m, K) and this time the correct message m. B’s
response provides A with EOR C for m matching the evidence of receipt for K from the first protocol run.
• We may assume that B will not store evidence from past protocol runs. If the run was completed successfully,

B will delete all evidence once the transaction has been settled in a way that further disputes cannot occur.
On the other hand, B will not keep incomplete evidence for a run that failed because of a wrong label.
• In the second protocol run A can send wrong ePT T P (K) and sub K to prevent a successful resolve by B.

This attack may also be successful against related protocols proposed in [ZDB99, ZDB00, BK00, Zho01a].
Remark: The attack involves a risk for A. A has to reuse the key K which is already known to B. Therefore B

might be able to decrypt m after the first message of the second protocol run and A would not get any evidence
of receipt. However, assuming that A is the malicious party and B the honest party being attacked, there is no
reason to assume that B might try old keys to decrypt a new message.

7. Improving fair non-repudiation protocols

The attack on the Zhou–Gollmann protocol and its variants is very easy to prevent. We show one approach in
Sect. 7.1. Improving the ZDB- and KM-protocols is more complicated, as different attacks are based on diverse
protocol weaknesses and subtle differences between the protocols. Generic design principles have been presented
in [GRH03]. These design principles include recommendations on the construction of labels, on the context of
messages and on the details of specification of TTP behaviour. Based on these principles a new optimistic fair
non-repudiation protocol is presented in [GRH03] that is immune to all attacks shown in this paper.

7.1. Improving the Zhou–Gollmann protocol

Obviously, the problem with all three protocol variants of the Zhou–Gollmann protocol is that B cannot control
the connection between the different parts of the evidence. We suggest to improve the protocol by letting B intro-
duce its own label LB when receiving the first message of the protocol and including this label in all subsequent
messages. Thus, the new specification of EOR C, sub K and con K is as follows:
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• EOR C � sSB(fEOR, A, L, LB, C)
• sub K � sSA(fSUB, B, L, LB, K)
• con K � sST T P (fCON, A, B, L, LB, K)

All three attacks are prevented because A cannot reuse con K for a different message and A is not able to get
a valid con K before step 2 was executed as A cannot guess LB .

7.2. The new optimistic fair non-repudiation protocol

The main differences of the protocol presented in [GRH03] to the KM and ZDB protocol are as follows:

• The protocol uses a label L � H (A, B, T T P, H (C), H (K)) which is verifiable by all parties, as C and H (K)
are contained in the first message of the main protocol.
• All signatures include this label, thus linking all messages of one protocol execution.
• ePT T P (fK, L, K) instead of only ePT T P (K) is used, so the TTP can check that this is the key K used in the

protocol execution identified by L.

In consequence, the problems of the various protocols discussed in this paper are avoided.

8. Relevance of the attacks

One can easily construct scenarios in which the attacks described in this paper are not possible. However, the
requirements for these scenarios are not very intuitive. The following observations motivate the choice of our
analysis scenario:

1. After the protocol is finished there should be no need for the TTP to keep evidence available for retrieval by
protocol agents. Fairness of future protocol runs must not rely on evidence from past protocol runs stored at
the TTP, unless the protocol specification explicitly mentions respective actions.
It is obvious that the TTP cannot delete evidence con K before both Alice and Bob have retrieved it, as in this
case the protocols cannot be fair. On the other hand, apart from dispute resolution, no further protocol steps
are carried out after Alice and Bob have received their pieces of evidence. As the TTP does not participate in
the dispute resolution there is no obvious need to store any evidence after completion of the protocol.
Although any real-world TTP may store a permanent log of all transactions this log cannot prevent any of the
attacks. Data in the log is not available for further protocol executions, and subsequent investigation cannot
detect any misbehaviour of Alice because the TTP is not involved in the second (malicious) protocol run.

2. Any agent must keep evidence as long as necessary to resolve disputes about the particular protocol run.
However, at some point the agent will consider the respective transaction completed, thus from then on the
evidence is no longer relevant. Thus it is not reasonable to require that evidence has to be kept forever to be
used in future protocol runs.

The time attack in Sect. 5.2 does not require any of the assumptions above. The attack may occur even if
evidence is kept forever by the TTP.

9. Conclusions

In this paper we have demonstrated our method for security analysis of cryptographic protocols using three
variants of a non-repudiation protocol proposed by Zhou and Gollmann and two optimistic non-repudiation
protocols designed to provide timeliness. We have shown possible attacks on all these protocols. The attacks illus-
trate the need for more detailed protocol specifications as basis for security analysis and secure implementations.
A specification has in particular to address the life time of evidence.

The security analyses were carried out using the SH-verification tool [ORRN99]. No attack was found for
the improved version of the protocol proposed in Sect. 7. Although no attacks where found, other attacks may
exist in scenarios we have not checked.

Our methods do not provide proofs of security, but are similar to model checking analysis approaches where
a finite state space is searched for insecure states (see, for example, [Low96] or [RRS+00]). Compared to other
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approaches, our methods are both very flexible and minimal with respect to implicit assumptions (we use “per-
fect encryption” and assume that no unauthorised access to agents’ memory is possible). We use more detailed
protocol specifications which enables us to find problems in the analysed protocols that where not found using
other approaches. Yet we expect that the attacks can also be found using other formal analysis methods if the
specification of the protocol is not too abstract and if the attacks are not hidden by implicit assumptions.

The examples show that although a protocol has been carefully studied and proven to be secure there may
still be unknown attacks. Consequently, security proofs have to be treated with care. Such proofs could be based
on improper explicit or implicit assumptions.
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[ORRN99] Ochsenschläger P, Repp J, Rieke R, Nitsche U (1999) The SH-verification tool – abstraction-based verification of co-operating
systems. Formal aspects of comput Int J Formal Methods 11:1–24

[Pau96] Paulson LC (1996) Proving properties of security protocols by induction. Technical Report 409, Computer Laboratory, Uni-
versity of Cambridge, Cambridge

[RRS+00] Roscoe B, Ryan P, Scneider S, Goldsmith M, Lowe G (2000) The modelling and analysis of security protocols. Addison Wesley,
Reading

[Sch97] Schneider S (1997) Verifying authentication protocols with CSP. In: IEEE computer security foundations workshop. IEEE
[Sch98] Schneider S (1998) Formal analysis of a non-repudiation protocol. In: IEEE computer security foundations workshop. IEEE
[SvO94] Syverson PF, van Oorschot PC (1994) On unifying some cryptographic protocol logics. In: IEEE symposium on security and

privacy, pp 14–28
[ZDB99] Zhou J, Deng R, Bao F (1999) Evolution of fair non-repudiation with TTP. In: Proceedings of 1999 Australasian conference

on information security and privacy ACISP, vol 1587 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New
York, pp 258–269

[ZDB00] Zhou J, Deng R, Bao F (2000) Some remarks on a fair exchange protocol. In: Public key cryptography – PKC 2000, vol 1751
of Lecture Notes in Computer Science, Melbourne, Australia. Springer, Berlin Heidelberg New York, pp 46–57



276 S. Gürgens and C. Rudolph

[ZG96] Zhou J, Gollmann D (1996) A fair non-repudiation protocol. In: Proceedings of the 1996 IEEE symposium on research in
security and privacy, Oakland, IEEE Computer Society Press, pp 55–61

[ZG97] Zhou J, Gollmann D (1997) An efficient non-repudiation protocol. In: Proceedings of the 10th IEEE computer security foun-
dations workshop, pp 126–132

[ZG98] Zhou J, Gollmann D (1998) Towards verification of non-repudiation protocols. In: Proceedings of 1998 international refinement
workshop and formal methods Pacific, pp 370–380

[Zho01a] Zhou J (2001) Achieving fair non-repudiation in electronic transactions. J Organizational Comput Electron Commerce
11(4):253–267

[ZHo01b] Zhou J (2001) Non-repudiation in electronic commerce. Computer Security Series. Artech House

Received December 2003
Revised September 2004
Accepted November 2004 by A. E. Abdallah, P. Y. A. Ryan, S. A. Schneider and D. J. Cooke
Published online 22 March 2005


