
DOI 10.1007/s00165-005-0059-8
BCS © 2005
Formal Aspects of Computing (2005) 17: 201–221

Formal Aspects
of Computing

Model checking, testing and verification
working together∗

Elsa Gunter1, 3 and Doron Peled2, 4

1Department of Computer Science, University of Illinois at Urbana–Champaign, Urbana, IL 61801-2302, USA
2Dept. of Computer Science, The University of Warwick, Coventry, CV4 7AL, UK

Abstract. We present a symbolic model checking approach that allows verifying a unit of code, e.g., a single
procedure or a collection of procedures that interact with each other. We allow temporal specifications that assert
over both the program counters and the program variables. We decompose the verification into two parts: (1) a
search that is based on the temporal behavior of the program counters, and (2) the formulation and refutation of
a path condition, which inherits conditions constraining the program variables from the temporal specification.
This verification approach is modular, as we do not require that all the involved procedures are provided. Fur-
thermore, we do not request that the code is based on a finite domain. The presented approach can also be used
for automating the generation of test cases for unit testing.
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1. Introduction

Software errors are very hard to trace. The effort of tracing errors may sometimes surpass the effort of program-
ming. The traditional bug-hunting technique is testing [Mye79]. It is based on exercising the code in an attempt
to manifest some errors. The testing process is usually performed by a veteran programmer, based on his/her
experience. Testing is often targeted towards finding some common programming errors, such as division by zero
or array reference being out of range.

There are two main principles that guide testers in generating test cases. The first principle is coverage [RP85],
where the tester attempts to exercise the code in a way that reveals maximal errors with minimal effort. The second
principle is to use the tester’s intuition in order to inspect the code in pursuit of suspicious executions. In order to
reaffirm or alleviate a suspicion, the tester attempts to exercise the code through these executions.

In unit testing, only a small piece of the code, e.g., a single procedure or a collection of related procedures, is
tested. It is useful to obtain some automated help in generating a test harness that will exercise the appropriate
executions. If we want to test a software unit separately, we may code a driver that will activate the checked
code with some possible values, and stubs, which imitate the effect of missing procedures that are called by the
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tested unit. Generating a test condition can be done by calculating the path condition [GP02]. Coverage can be
obtained by using various search algorithms through the flow chart of the code. It is usually infeasible to obtain
a completely comprehensive coverage.

Model checking [CGP00] is a newer technique than testing, allowing the automatic and systematic coverage of
the code. It can be used to find some fixed properties such as deadlock in concurrent systems, or to systematically
check for a given property. Model checking attempts to perform a comprehensive search, but it is limited by the
size of the state space it can handle. Common restrictions of model checking that we address in this paper are
that (1) it is usually applied to a fully initialized program, (2) it assumes that all the procedures used are available,
and (3) it usually handles systems with finite state spaces.

In this paper, we describe a technique we call unit checking that allows the symbolic verification of a unit
of code and the generation of test cases. The method we propose is based on a combination of model checking
and theorem proving principles. The user gives a specification for paths along which a trouble seems to occur.
Unit checking automatically searches the paths of the flow chart of a program for possible executions that satisfy
the specification. It symbolically calculates the path conditions and suggests instantiations that can derive the
execution through these paths.

We allow a temporal specification based on both program counters and program variables. Our method
separates the specification in such a way that a finite component of both the checked code and the temporal
specification is intersected, as in state-based model checking. We apply on-the-fly (i.e., while performing the
model checking) a symbolic calculation of the conditions to execute the paths in the intersection. We also apply
automated simplification of the path condition, using various heuristics and decision procedures from a theorem
prover. If the condition to execute the current path is simplified to false, the current path cannot be executed, and
we refute it, backtracking our search.

A unit of code needs to work in the presence of other parts of code: the program that calls it, and the proce-
dures that are called from it. In order to check a unit of code, we need to provide some representation for these
other parts. Testing prescribes replacing the calling procedure by some simplified abstract code, called a driver
and similarly, the called procedures by stubs. A driver is replaced in our approach by providing an assertion on
the relation between the variables at the start of executing the unit. Stubs are replaced by further assertions, which
relate the values of the variables at the beginning of the execution of the procedure with their values at the end. This
allows us to check parts of the code, rather than a complete system at once. The advantages of our approach are:

• Combating state space explosion. Checking how some parts of the code behave with respect to multiple val-
ues simultaneously. A reported path is represented in a parametric way in the sense that it is given with an
initial condition and a sequence of program counters. This can correspond to multiple (even infinitely many)
executions.

• Modularity. Being able to check part of the code in isolation, rather than all of it at once.
• Parametric and infinite state space verification. In some cases, we can show correctness with respect to some

unbounded parameters, e.g., unbounded initial values to the program variables. Of course, some inherent
undecidability affects the method, rendering it semiautomatic in ways that will be explained.

• The automatic generation of test cases from generated path conditions.

Related work includes [BGP99], which suggests model checking infinite state spaces by using symbolic exe-
cutions. Since the specification is given there using the logic CTL, the model checking is done there through a
fixpoint calculation. That paper also suggests heuristics for attacking the inherent undecidability of the model
checking problem. The use of LTL over infinite state spaces is studied in [MP91a, MP91b], where a manual
proof rule in the Manna-Pnueli style is suggested. The work of [KPV01] proposes a method that uses finitary
abstraction to convert the infinite state space problem (when possible) into a finite instance of model checking.
A recent paper [GLSU02] suggests to use temporal specification to obtain a desired coverage of extended finite
state machines for testing. However, this paper does not deal with the generation of path conditions, and the
temporal formulas used are based on static information in the nodes, rather than on program variables values.

The closest work to ours that we are aware of is the ESC/Java tool [FLLN02], where the code of a Java program
is annotated with correctness assertions. The tool is used to automatically check these assertions. This is done
by propagating the conditions backwards. Like in our approach, ESC/Java also allows replacing a procedure by
its correctness assertion, in order to obtain modularity in the verification, in the style of [GL80]. However, that
tool deals with static and fixed properties, rather than with verification of temporal specification. Our approach
looks at the selection of paths driven by a temporal formula, rather that trying to verify some safety properties
of the code.
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2. Interactive unit checking

A state of a program is a function assigning values to every program variable according to their defined domains
(e.g., integers, strings, fixpoint). Augmented states also include assignments of values to the program counters.
We denote the fact that a state g satisfies a first order assertion ϕ by the standard notation g |� ϕ.

A flow chart of a program or a procedure is a graph, with nodes corresponding to assignments and tests taken,
and edges reflecting the flow of control between the nodes. A flow chart can be obtained by automatic compilation
of the code. There are several kinds of nodes, where the most common are a box containing an assignment, a
diamond containing a condition, and an oval denoting the beginning or end of the program (procedure). Edges
exiting from a diamond node are marked with either ‘yes’ or ‘no’ to denote the success or failure of the condition,
respectively. We assume that each node has a unique program counter value. This value can be a label that is
provided with the code, or automatically generated by a translation tool. Passing an edge out of one node and
into another entails a corresponding change of the program counter value. A path of a program is a consecutive
sequence of nodes in the flow chart.

An execution is a sequence of states g1 g2 . . . gn, where each state gi+1 is obtained from its predecessor gi by
executing a transition associated with a flow chart node, as described below. This means that the condition for
the transition to execute holds in gi , and the transformation associated with the transition is applied to it. We call
an execution that contains augmented states an augmented execution. The projection of an augmented execution
on the program counter values results in program counter values (labels) along a path in the flow chart. Thus, in
general, a path may correspond to multiple executions, with the same sequence of program counter values.

Let τ � t1, t2, . . . tn be a path in a flow chart. Let ρ � g1, g2, . . . , gn be a sequence of non augmented
program states (i.e., not including the program counter values). The Sequence ρ is an execution of τ if for each
1 � i < n we have:

1. ti is a diamond node, with condition c and the edge from ti to ti+1 is marked with “yes”. Then we must have
gi |� c and gi+1 � gi .

2. ti is a diamond node, with condition c and the edge from ti to ti+1 is marked with “no”. Then we must have
gi |� ¬c and gi+1 � gi .

3. ti is an assignment node labeled x :� e. Then gi+1 � gi [x/e[gi ]], which denotes that gi+1 is the same as gi ,
except for the variable x, which has the value of e, interpreted according to the state gi .

We denote the executions of τ by exec(τ ). Note that tn is used only for the choice of the edge out of tn−1. This is
only important if the latter node is a condition, hence the choice of outgoing edge affects whether the condition
holds or does not hold.

A path condition is a first order predicate that expresses the condition to execute the path, when starting from
a given node (a path condition does not refer to the program counter values). Denote the path condition for a
path τ by �τ . Formally, this means that when starting executing from the first node t1 of τ , every execution ρ of
τ must begin with a state g1 (not necessarily a unique state for all the executions) such that g1 |� �τ . Moreover,
when starting the execution at node t1 with a state satisfying �τ , we can extend g1 to an execution ρ of τ . In
deterministic code, there is at most one way of extending a state into an execution sequence. Hence, in this case,
all the executions that start with a state satisfying �τ are executions of the path τ or paths with prefix τ . In this
paper we mainly concentrate on sequential and deterministic code, although our implementation also supports
concurrency. In concurrent or nondeterministic code this is not guaranteed; this is further discussed in Sect. 6.

2.1. Architecture

Our proposed technique combines ideas from testing [Mye79], verification [Dij75] and model checking [CGP00].
The architecture is shown in Fig. 1. We first compile the program into a flow chart. We keep separately the
structure of the flow chart, abstracting away all the variables. We also collect information about the contents of
the nodes of the flow chart, to be used in calculating path conditions.

We specify the program paths that are suspected of having some problem (thus, the specification is given ‘in
the negative’). The specification corresponds to the tester’s intuition about the location of an error. For exam-
ple, a tester that observes the code may suspect that if the program progresses through a particular sequence
of instructions, it may cause a division by zero. The tester can use a temporal specification to express paths.
The specification can include assertions on both the program counter values (program location labels), and the
program variables.
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Fig. 1. Automatic test case generation

Our model checker generates paths that fit the temporal restrictions on the program counters appearing in
the specification. Given a path, it uses the transitions obtained by translation from the code in order to generate
the path condition. The assertions on the program variables that appear in the specification are integrated into
the generated path condition, as will be explained below. The path condition prescribes values for the program
variables that will guarantee (in the sequential case, or allow, in the nondeterministic case, e.g., due to concur-
rency) passing through the path. We can then instantiate a path condition with actual values so that they will
form a test case.

Passing the control between the different units that participate in our design, we employ the model checker
as a coroutine. We pass control to the model checker to continue the search from where it has stopped in the
following cases: (1) the current path may be extended, (2) the path condition can be simplified to false, and thus
backtracking is required, or (3) the user wants to obtain an alternative path (and test case). For each prefix of
a path generated, we calculate and simplify the path condition. If the path condition is simplified to false, we
reject it ‘on-the-fly’, i.e., we do not continue the search from this state, as this path cannot correspond to any
legal execution. If it does not simplify to false, we can report it. Note that in some domains, e.g., the integers with
multiplication, simplifying a path condition to false is semidecidable [Mat93]. Therefore, we may report some
paths that cannot be executed.

Let τ be a path of the flow chart, σ an execution of τ , and ϕτ the path condition. Then the following can be
proved by simple induction on the length of the path/execution (see e.g., [Pel02]): given that control is just before
the first node, then the path τ will be executed. If nondeterminism is allowed, then τ will be executed provided
that nondeterministic choices are resolved in a way that follows that path.

2.2. Calculating the path conditions

There are two main possibilities in calculating path conditions: forward [King96] and backward [Dij75]. We will
explain both and describe their advantages and disadvantages.

Forward calculation

The forward calculation of the path condition is based on assigning symbolic values to the program variables,
initially the same as the variable names. A point is an edge of the flow chart. The symbolic value of a variable at
a certain point in a path reflects its current value expressed with respect to the value of variables at the beginning
of the path. Thus, if the current symbolic value of a variable x is y + z, it means that currently the value of x is
the sum of the values that y and z had at the beginning of the path. Progressing forward in the path, we need
to change the symbolic values when we perform an assignment of the form x :� e. We look up the table of
symbolic values, and replace each variable in e by its symbolic value. We then replace the symbolic value of x by
the expression obtained. For example, consider the assignment x :� x ∗ z. If the current symbolic value of x is
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Fig. 2. A path

y + 5 and of z is t + 2, we obtain from x ∗ z the expression (y + 5) ∗ (t + 2) (the parentheses are added in order to
keep the order of calculation correct). This becomes the new value of x in the symbol table.

We keep an accumulated path condition. This is the condition to pass from the beginning of the path to the
current point in the path. Like the symbolic values, the accumulated path condition is also expressed with respect
to the values of the variables at the beginning of the path. It can change when we pass from one node to the
subsequent one. Initially this path condition is set to true. When we pass a diamond node, we replace the variables
in the condition with their current symbolic expression and add that as a conjunct, or as a negated conjunct,
depending on whether we exit the condition node with the yes or with the no edge, respectively. For example, under
the above symbolic assignment, where x is y + 5 and z is t + 2, if we pass a condition node labeled with condition
x > z, and we exit the condition with the no edge, we add to the path condition the conjunct ¬((y + 5) > (t + 2)).
That is, for ¬(x > z) to hold at this point means that ¬((y + 5) > (t + 2)) holds at the beginning of the path.
When the entire path is traversed, we report the accumulated path condition.

Consider the path in Fig. 2, which starts at point (edge) A and ends at point D. When we calculate the path
condition in the forward direction, we start at point A with variable x having the symbolic value x, and y having
the symbolic value y. The condition to pass the empty path so far is true. We progress now to point B in the path.
Passing the assignment x :� x + 1 results in the symbolic value of x being replaced with the value x + 1. Passing
the condition node to point C, we replace the occurrence of x in x > y with its current symbolic value x + 1,
obtaining x + 1 > y. Since we took the exit edge labeled with no, i.e., the condition does not hold, we conjoin the
negation of this predicate, obtaining (after simplification, removing the redundant true conjunct) ¬(x + 1 > y).
This is the accumulated path condition to execute the path from point A to point C. The next assignment we
pass, from C to D, causes replacing the current symbolic value of y with y ∗ 2. The accumulated path condition
remains the same.

Backwards calculation

We can also calculate the path condition backwards. We do not need to keep the symbolic values of the variables
when propagating backwards. The accumulated path condition in this case represents the condition to move from
the current point in the calculation to the end of the path. The current point moves at each step in the calculation
of the path condition backwards, over one node to the previous point (edge). We start here too with the condition
true, at the end of the path (i.e., after the last node). When we pass over a diamond node (on our way back),
we either conjoin it as is, or conjoin its negation, depending on whether we exited this node with a yes or no
edge, respectively. When we pass an assignment, we “relativize” the path condition ϕ with respect to it; if the
assignment is of the form x :� e, where x is a variable and e is an expression, we substitute e instead of each free
occurrence of x in the path condition. This is denoted by ϕ[e/x].



206 E. Gunter and D. Peled

Calculating the path condition for the example in Fig. 2 backwards, we start at the end of the path, i.e., point
D, with a path condition true. Moving backwards through the assignment y :� y ∗ 2 to point C, we substitute
every occurrence of y with y∗2. However, there are no such occurrences in true, so the accumulated path condition
remains true. Progressing backwards to point B, we now conjoin the negation of the condition x > y (since point
C was on the no outgoing edge of the condition), obtaining ¬(x > y). This is now the condition to execute the
path from B to D. Passing further back to point A, we have to relativize the accumulated path condition ¬(x > y)
with respect to the assignment x :� x + 1, which means replacing the occurrence of x with x + 1, obtaining the
same path condition as in the forward calculation, ¬(x + 1 > y).

The choice of direction for calculating the path condition is affected by the direction in which the path is
obtained. Accordingly, we may want to calculate the path conditions incrementally for the prefixes of that path,
or the suffixes. The reason is that path condition calculation is rather expensive, and as mentioned in Sect. 2.1,
we may benefit from discarding a prefix (or a suffix, respectively) ‘on-the-fly’.

2.3. Translating the specification

We limit the search by imposing a property of the execution paths we are interested in. The property may men-
tion labels that such paths pass and some relationship between the program variables. It can be given in various
forms, e.g., a regular expression, an automaton or a temporal formula. We are only interested in properties of
finite sequences; this is because checking for cycles in the symbolic framework is, in general, impossible, since we
cannot identify repeated states.

The specification includes the following two kinds of basic formulas:

Program counter predicate, of the form at l, where l is a program counter label. If there are several processes,
we may need to disambiguate this kind of predicate by mentioning also the process name, e.g., P3 at l. Such a
predicate holds in a state if the program counter is at the location whose label is mentioned, i.e., on the edge
entering a node with the mentioned label.

Program variables assertion. A predicate that includes the program variables (and does not include further
Boolean operators). Such a predicate is interpreted over a state according to the usual first order semantics.

These formulas may be combined using Boolean and temporal operators. Our implementation uses the linear
temporal logic (LTL) syntax, as follows:

ϕ ::� (ϕ) | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | ©ϕ | �ϕ | �ϕ | ϕ U ϕ | ϕ V ϕ | p
where p ∈ P , with P a set of basic formulas. For a propositional sequence σ over 2P , we denote the ith state
(where the first state is numbered 0) by σ (i), and the suffix starting from the ith state by σ (i). Let |σ | be the length
of the sequence σ , which is a natural number. The semantic interpretation of LTL over finite sequences is as
follows:

• σ |� ©ϕ iff |σ | > 1 and σ (1) |� ϕ.
• σ |� ϕ U ψ iff σ (j ) |� ψ for some 0 � j < |σ | so that for each 0 � i < j , σ (i) |� ϕ.
• σ |� ¬ϕ iff it is not the case that σ |� ϕ.
• σ |� ϕ ∨ ψ iff either σ |� ϕ or σ |� ψ .
• σ |� p iff |σ | > 0 and σ (0) |� p.

The rest of the temporal operators can be defined using the above operators. In particular, ©ϕ � ¬ © ¬ϕ,
ϕ ∧ ψ � ¬((¬ϕ) ∨ (¬ψ)), ϕ V ψ � ¬((¬ϕ) U (¬ψ)), true � p ∨ ¬p, false � p ∧ ¬p, �ϕ � false V ϕ, and
�ϕ � true U ϕ. The operator © is a ‘weak’ version of the © operator. Whereas ©ϕ means that ϕ holds in the
suffix of the sequence starting from the next state, ©ϕ means that if the current state is not the last one in the
sequence, then the suffix starting from the next state satisfies ϕ. Notice that

(©ϕ) ∧ (©ψ) � ©(ϕ ∧ ψ)

since ©ϕ already requires that there will be a next state. Another interesting observation is that the formula
©false holds in a state that is in deadlock or termination.

The specification is translated into a finite state automaton. The algorithm we use is the one described
in [GPVW95], and adapted to deal with finite sequences, as in [GP02], with further optimizations to reduce the
number of nodes generated. Let (S,�, I, F, L) be a finite state automaton with nodes (states) S, a transition
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Fig. 3. Property automata

relation � ⊆ S × S, initial nodes I ⊆ S, accepting nodes F ⊆ S and a labeling function L from S to some set
of labels. A run of the automaton is a finite sequence of nodes s1s2 . . . sn, where s1 ∈ I , and for each 1 � i < n,
(si, si+1) ∈ �. An accepting run satisfies further that sn ∈ F .

The property automaton is A � (SA,�A, IA, FA,LA). Each property automaton node is labeled by a set of
negated or non-negated basic formulas. The flow chart can also be denoted as an automatonB � (SB,�B, IB, SB,
LB) (where all the nodes are accepting, hence FB � SB). Each node in SB is labeled by (1) a single program
counter value, (2) a node shape, e.g., box or a diamond, respectively), and (3) an assignment or a condition,
respectively.

The intersection between a property automaton A and a flow chart B is an automaton A × B � (SA×B,
�A×B, IA×B, FA×B, LA×B).

• The nodes SA×B ⊆ SA×SB have matching labels: if (a, b) ∈ SA×B then the program counter of the flow chart
node b must satisfy the program counter predicates labeling the property automaton node a.

• The transitions are {((a, b), (a′, b′))|(a, a′) ∈ �A ∧ (b, b′) ∈ �B} ∩ (SA×B × SA×B).
• The initial states are IA×B � (IA × IB) ∩ SA×B .
• The accepting states are FA×B � (FA × SB) ∩ SA×B . Thus, membership in FA×B depends only on the A

automaton component being accepting.
• The label on a matched pair (a, b) in the intersection contains the separate labels of a and b.

Note that acceptance of runs by the intersection automaton are independent of the program variable asser-
tions on the nodes SA and the assignments and conditions labeling the nodes SB . The right automaton in Fig.3
includes both program counter predicates and program variables assertions. When removing the program vari-
ables assertions, we obtain the automaton on the left of the same figure. The initial nodes are denoted with an
incoming edge without a source node. The accepting nodes are denoted with a double circle.

We assume that each node s ∈ SA of the property automaton is annotated by some set of program variables
assertions whose conjunction is ηs and some set of program counter predicates whose conjunction is µs . This
annotation is generated automatically when translating an LTL formula into an automaton.

Now consider an accepting sequence of the intersection of the property automaton A and the flow chart B
of the form τ � t1, t2, . . . , tn. Projecting τ over the components of the flow chart gives a path. Thus, we may
observe τ as a path with some assertions added to it.

We are interested in the set of execution sequences

S(τ ) � {ρ � g1, g2, . . . , gn|ρ ∈ exec(τ ) ∧ ∀i 1 � i � n, gi |� ηti ∧ µti }
That is, executions of the path τ that also satisfy the corresponding temporal property expressed using the
automaton A. (If A is constructed as a translation of an LTL property ψ then ρ |� ψ .)
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Fig. 4. Directing a search with an LTL property

We are interested in finding a condition for executing a path τ while satisfying a temporal property ψ . We
denote such a condition by �τ,ψ . Any member of S(τ ) starts with some state satisfying �τ,ψ . Conversely, every
state satisfying �τ,ψ can be extended to an execution of τ . Again, for deterministic code, every state can be
extended for at most one execution sequence. In this case, �τ,ψ is satisfied exactly by states that start sequences
in S(τ ).

Using a temporal specification on program counters

The proposed use for a temporal formula is to assist a human tester in inspecting suspicion paths and executions.
For example, the executions of paths that passes through label l2 twice may be suspicious of leading to some
incorrect use of resources. The tester may express such paths in LTL as

(¬at l2)U(at l2 ∧ ©((¬at l2) ∧ ((¬at l2)Uat l2))). (1)

Recall that the interpretation of LTL formulas is over finite paths, and we are looking for finite prefixes that satisfy
the property. It is possible that such a path can be extended to pass through l2 more than twice. This formula can
be translated to the property automaton that appears on the left in Fig. 3.

Note that since the above temporal specification ψ involves only the program counters but not the program
variables, for each path ρ there can be only two cases:

• All the executions of exec(ρ) satisfy ψ , or
• None of the executions of exec(ρ) satisfy ψ .

In the former case, ©τ,ψ � ©τ and in the latter case ©τ,ψ � false. In this case, by taking the intersection of the
property automatonA forψ and the flow chart B, the paths that are the runs of the intersection are exactly those
that have all of their executions satisfying ψ .

In symbolic execution, we are often incapable of comparing states, consequently, we cannot check whether we
reach the same state again. We may not assume that two nodes in the flow chart with the same program counter
labels are the same, as they may differ because of the values of the program variables. We also may not assume
that they are different, since the values of the program variables may be the same. The flow chart and property
automaton in Fig. 5 demonstrate why this lack of ability to identify states is problematic. Suppose that after
passing the label l2 the search always gives priority to label l3, rather than to l1. Note that both l2 and l3 satisfy
¬at l1, hence match the top node of the property automaton, on the right in Fig. 5. If we consider each occurrence
of a flow chart node as visited with a different state, the search will only progress repeatedly through the loop
containing l2 and l3. It is also not a valid solution to assume that when flow chart nodes appear in the path
multiple number of times, they appear with the same state. If we make this assumption, the path l2l3l2l3l2l1, which
contains the nodes l2 and l3 more than once, and which might be the one with the error, will not be generated
during the search.

Our solution is to allow the user to specify a limit n on the number of repetitions that we allow each flow chart
node, i.e., a node from SB , to occur in a path. We keep and update for each state found an additional field that
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Fig. 5. A flow chart and a property automaton

counts the number of times this state has appeared on the DFS search stack so far. If this value is smaller than
n, we allow yet another copy. Since our specification is based on finite sequences, we do not loose information by
failing to identify cycles. Repeating the model checking while incrementing n, we eventually cover any length of
sequence. Hence, in the limit, we can cover every finite path.

By not identifying when states are the same, we may run into a combinatorial explosion. For example, consider
the state space in Fig. 6. Because we cannot identify when we reach the same node, we treat states that are reached
from different directions as different. Then, at worst, the number of paths that can be explored is exponential with
the number of diamonds. Such a graph can be automatically generated from a sequence of if-then-else statements,
such as

if x > y = then x :� x − y
else y :� y − x;

if z > w then z :� z− w
else w :� w − z;

if s > t then s :� s − t
else t :� t − s;

A practical remedy for this is to strengthen the LTL specification by mentioning more program counter predi-
cates, so that most of the multiple choices will not be present in the intersection due to mismatch between the
node labels and these predicates.

Taking into account the program variables assertions

The specification formula (1) is based only on the program counters. Suppose that we also want to express that
when we are at the label l2 for the first time, the value of x is greater or equal to the value of y, and that when we
are at the label l2 the second time, x is at least twice as big as y. We can write the specification as follows:

ψ � (¬at l2)U(at l2 ∧ x � y ∧ ©((¬at l2) ∧ ((¬at l2)U(at l2 ∧ x � 2 × y)))) (2)

An automaton obtained by the translation appears on the right in Fig. 3. The translation from a temporal
formula to an automaton results in the program variables assertions x � y and x � 2 × y labeling the second
and fourth nodes. They do not participate in the automata intersection, but we need to incorporate them when
calculating the path condition �τ,ψ . According to the (rather technical) definition of the automata intersection,
the conjunction of the program variables assertions labeling the property automaton nodes are assumed to hold
in the path condition before the effect of the matching flow chart node. Accordingly, if we add a condition η from
some property automaton node to an assignment node in the flow chart, the assignment will take effect right
after η has to hold.
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Fig. 6. An example with exponentially many sequences

When we intersect the property automaton in Fig. 3 with the flow chart on the left in Fig. 5, we may obtain
a path with flow chart nodes l2l3l2. Calculating the path condition for the original property (1) backwards starts
with initially setting the accumulated path condition ϕ to true. We progress backwards over nodes l2, l3 and then
l2 again. Because of the assignment in the node labeled l2 (which is the last node in the path), we relativize the
accumulated path condition with respect to this assignment. But since it does not contain any variables, ϕ remains
true. We now add now to the path condition as a conjunct the condition in l3, obtaining x < t . Again because
of the node labeled l2 (this time its first occurrence in the path), we relativize ϕ with respect to the assignment
x :� x + z, and obtain x + z < t .

In general, when calculating a path condition for a path τ obtained from the intersection of the property
automaton for a property ψ and a flow chart, we need to take into account program variables assertions that
appear on it (coming from the property automaton components). We can do that by transforming the path as
follows. Observe that each node in the intersection is a pair (a, b), where a is a property automaton node, and b is
a flow chart node in the current path. The label of b agrees with the program counter predicates in a. Otherwise,
the path is automatically rejected to be in the intersection during the search (and �τ,ψ � false). We transform
each such pair into two sequential nodes. First, b remains as it appears in the flow chart. We insert a new diamond
node to the current path, just before b. The inserted node contains as its condition the conjunction of the program
variables assertions labeling the node a (and true if there are no program variables assertions labeling a). The
edge between the new diamond and b is labeled with ‘yes’ corresponding to the case where the condition in a
holds. The edge that was formerly entering b now enters the new diamond. A standard induction on the length
of the path shows that the path condition �τ ′ for the path τ ′ obtained by the transformation is exactly �τ,ψ .

We return now to the property (2), whose corresponding property automaton appears on the right in
Fig. 3. Again, we can obtain a path containing the flow chart nodes l2l3l2 in that order. In fact, the path is
(s2, l2) (s3, l3) (s4, l2). We insert three new diamonds corresponding to the nodes s2, s3 and s4, as shown in Fig. 7.
Thus, the order according to which we pass through the nodes on the way backwards is l2, s4, l3, s3, l2 and finally
s2. According to the labeling on the property automaton components, the condition x � 2 × y labels s4, and
x � y labels s2 (due to lack of program variables assertions, the node s3 is labeled with true). Again, calculating
the path condition backwards, we start with true. Relativizing ϕ with respect to the assignment in l2 retains true.
At this point, we add the conjunct x � 2 × y due to s4, obtaining ϕ � x � 2 × y. We reach the node labeled
with l3, and add the conjunct x < t , obtaining x � 2 × y ∧ x < t . The node s3 does not contribute anything
to the path condition. We now reach node l2, relativizing again with respect to the assignment x :� x + z, we
obtain x + z � 2 × y ∧ x + z < t . At this point we also need to add the conjunct x � y, labeling s2, obtaining the
condition x + z � 2 × y ∧ x + z < t ∧ x � y.

It is important to observe that the LTL to automata translation generates nodes that are labeled by a set
of basic formulas, either negated or non-negated. Our separation of the search depends on the fact that we do
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Fig. 7. A a combined path due to intersection

not allow any basic formula that includes both program variables and program counters, as in (at l3) × v. Such
formulas are used, e.g., in [MP91a, MP91b], and can usually be translated (unfortunately with some increase to
the size of the formula) into formulas that make the required separation.

We illustrate how the LTL property can direct the search in Fig. 4. The LTL formula is x � 4 U (x � 5∧© . . . ).
(This is an incomplete formula, we consider only the prefix of the specification, that has to start with some states
satisfying x � 4, then have x � 5 and ignore what happens further.) In this case, by incrementally calculating
the path conditions for prefixes of the search path, we can (in this case) rule out and immediately backtrack from
some directions in the search. An (incomplete) automaton for this property appears on the left hand side of the
figure. When this is intersected with the portion of code (again incomplete) on the left, the search can proceed in
the the following way:

• First, the automaton node marked x � 4 is matched with the condition flow chart node x < 5.

• The left edge marked with false cannot be used for this search since then the path condition to pass a condition
node with ¬x < 5 when x � 4 holds is contradictory, hence the path condition is false. Hence, an attempt
to extend the previous path by matching the node x � 4 (or x � 5) with the assignment node y :� 7 would
result an immediate backtrack, and the right edge, marked true, must be selected.

• We cannot extend the path by pairing up the node x � 5 with the node x :� x + 1. This is because x � 5
before x :� x + 1 and hence after the condition node x < 5, with x � 4 before that node and no assignment
in between, would result in again a false path condition.

• We pair up the node x � 4 with the node x :� x + 1.

• We now try to pair up x � 4 with a second occurrence of x < 5. The path condition calculates to false since
the node x :� x + 1 has x � 4 both before and after it. Thus, we need to pair the second occurrence of x < 5
with x � 5.

• Now we cannot take the right edge and match the second occurrence of x :� x + 1 with any node from the
property automaton. This is because the combination of x � 5 before the condition x < 5 and taking the
condition exit edge labeled true is contradictory would result in a false path condition. Thus, we continue with
the left exit edge labeled false and match the node y :� 7 with the next automaton node and so forth.
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2.4. Incorporating specifications for missing code

In unit testing, when we want to check a unit of code, we may need to provide drivers for calling the checked
procedure, and stubs simulating the procedures used by our checked code. Since our approach is logic based, we
use a specification for drivers and stubs, instead of using their code.

Instead of using a stub, our method prescribes replacing a procedure with an assertion that relates the pro-
gram variables before and after its execution. We call such assertions stub specifications. In a stub specification,
the original program variables, e.g., x, y, represent the values of the variables just before the execution of the
specified procedure. The primed version of the variables, e.g., x ′, y ′, represent the values after the execution. We
also allow the predicate same, with a list of variables as its arguments, to denote that the mentioned variables are
not changed. For example, our procedure call may be expressed using a single flow chart node that asserts that
same(x, y) ∧ z′ � z + 1. This means that the variables x and y retain their value between the procedure call and
its termination, while z is incremented. Variables that do not appear may obtain any value during the execution
of the procedure. The above use of the predicate same is a syntactic sugar for x ′ � x ∧ y ′ � y.

Note that we treat the missing procedures as atomic, where their code is replaced by a specification of their
input-output relation. The temporal specification should be given accordingly.

We can easily incorporate such a procedure call into our calculation of the path condition. We start with
the (simpler) backwards path calculation. Let ϕ(V ) be the property for the rest of the path after the proce-
dure call, where V is a list of program variables, and η(V, V ′) is the stub specification formula, expressing the
effect of the procedure, where V ′ is the list of variables V primed 5. The accumulated path condition, which
includes the effect of the procedure, becomes ∃V ′(ϕ[V ′/V ] ∧ η). (If V � {x, y}, this notation is a shorthand for
∃x ′∃y ′(ϕ[x ′/x][y ′/y] ∧ η).) That is, the formula obtained by conjoining η to a version of ϕ, in which each variable
is replaced by its primed version; then the primed variables are eliminated by existential quantification. Although
we introduce existential quantification, many of the these quantifications are easily eliminated.

The following considerations are needed for handling the annotations of the property automaton. Suppose
we have calculated the accumulated path condition ϕ(V ) so far, and now pass backwards over a matching pair of
nodes from the property automaton and the flow chart. We first handle the flow chart node, in the same way as
explained above. To handle the property automaton node, labeled with a set of basic formulas, let the conjunction
of the program variables assertions be µ(V ), and the current path condition be ϕ(V ). Then the path condition
becomes now µ ∧ ϕ.

The forward calculation of the path condition is more complicated when stub specifications are used. We
cannot keep the symbolic values of each variable since their change is given as a formula, i.e., a relation between
states, instead of an assignment, i.e., a function of the current state. Instead, we will keep a predicate ϕ(V, V ′),
which connects the values of the variables V before the beginning of the path with the variables V ′ at the current
point of the path. Recall that the variables V ′ are the primed version of the variables V . As we progress forward
in calculating the path condition, we update this predicate. When we traversed the entire path, the returned path
condition is ∃V ′ ϕ(V, V ′).

We start with ϕ(V, V ′) � (V � V ′). There are three kinds of nodes:

• A diamond node, with conditionη(V ). We transform the accumulated path conditionϕ(V, V ′) intoϕ∧η[V ′/V ].
• A stub node with a condition η(V, V ′). (We denote such a node with a double box.) The new path condition

is ∃U (ϕ[U/V ′] ∧ η[U/V ]), with new variables U . That is, we unify, by renaming, the variables V ′ of ϕ and the
variables V of η, and then eliminate them using existential quantification.

• Assignment (box) x :� e. This can be treated in the same way as a stub specification with an assertion x ′ � e,
using the same predicate with parameters that include all the program variables, except for x. Correspond-
ingly, the resulted condition, after eliminating some existential quantifiers, becomes ∃t (ϕ[t/x ′] ∧ x ′ � e[t/x]),
with a new variable t .

In addition, we have to handle the annotations of the property automaton. Again, suppose we have calculated
the path condition ϕ(V, V ′) of a prefix of the path, and now pass over a matching pair of nodes, one from the
property automaton and one from the flow chart. Let the property automaton node be labeled with a set of basic
formulas, where the conjunction of the program variables assertions is µ(V ). Then the path condition becomes

5 We use ϕ(V ) and ϕ interchangeably, with the former denoting that the free variables of the formula are among the list V , and the latter is
used when V is already clear from the context. A similar consideration applies to η(V, V ′) and η.
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now µ[V ′/V ] ∧ ϕ. That is, the variables in the condition µ are renamed to refer to the set of variables V ′, repre-
senting the values at the current point in the path, and the obtained condition is added to the accumulated path
condition.

The forward calculation, in the presence of stubs specifications involves introducing new existential quan-
tifiers. These quantifiers may considerably complicate the path condition, and we would like to eliminate them
whenever possible. As mentioned, the forward calculation is useful to eliminate some paths ‘on-the-fly’, i.e., when
the prefix of the path is reduced to false. A repeated backwards calculation of the prefixes of the paths can induce
a quadratic increase in complexity (the sum of the lengths of all prefixes of a path is proportional to the length of
the path squared). However, it is not clear that in this case the forward calculation of the path condition is more
efficient than repeating the backwards one for each prefix.

We replace a driver by an initial condition that expresses the relation between the program variables at the
beginning of the execution as a first order formula 	(V ). Accordingly, if the checked temporal condition is µ,
we check 	 ∧ µ. Effectively, this means that we conjoin each path condition with 	, i.e., restrict the executions
to those satisfying 	 initially.

3. An example

In this section we consider a larger example, whose code is given in an appendix, at the end of the paper. Con-
sider the Euclid greatest common divisor (gcd) algorithm in Fig. 8. The initial condition for this procedure
	 � a > 0 ∧ b > 0 ∧ at l0. The expression x rem y denotes the remainder of dividing x by y. At the end of the
execution, the value of x should be the gcd of a and b. The algorithm uses a procedure to calculate the remainder
of x divided by y into the variable z. The labels are generated automatically by compiling the program into a flow
chart, as done by the PET system [GP02]. An error is introduced into this presentation, as the nodes labeled by
l4 and l5 are reversed from the correct algorithm.

We suspect that we may end up with a wrong result: instead of the gcd, the value of x at the end is 0. We
use the specification �(at l7 ∧ x � 0) to check this suspicion. It is conjoined with the initial condition to form
a > 0 ∧ b > 0 ∧ at l0 ∧ �(at l7 ∧ x � 0). The property automaton appears in Fig. 9.

Now, suppose that we perform verification, setting n, the number of times we allow each state to iterate, to
1. The intersection of the property automaton and the flow chart graph, projected on the flow chart, is a path
l0l1l2l3l4l5l6l7. The intersection does not take yet into account the basic program variable properties a > 0, b > 0
and x � 0, and is based on matching the labels only.

Now, our system forms the path condition for the above path while adding for each node in the path the
program variables assertions from the matching property automaton node. This forces the path to satisfy at the
beginning the condition a > 0 ∧ b > 0 and at the end the condition x � 0. We obtain a condition that can be
simplified to a > 0 ∧b > 0 ∧a rem b � 0, i.e., within one iteration, we terminate with x � 0 if b divides a (we are
dealing with integer arithmetic). If we repeat this withn � 2, we obtain also another sequence, l0l1l2l3l4l5l6l3l4l5l6l7.
The path condition for this sequence, when simplified, is equivalent to a > 0 ∧ b > 0 ∧ a rem b �� 0. This means
that when b does not divide a we terminate with x � 0 after two traversals of the loop.

We can stop the search now, since a > 0 and b > 0 is part of the initial condition (and a and b never change),
and it is always the case that either a rem b � 0 or a rem b �� 0. Thus, we terminate with x � 0, either after
one or two executions of the loop. We obtained two generic paths that cover all the cases, corresponding to
infinitely many executions according to the different values of a and b. Note that if we did not observed that the
disjunction of these path conditions covers all the cases, we may continue with n � 3, n � 4, etc. Since we have
already covered all the possibilities, we will not find any more paths. There are paths in the intersection of the
flow chart graph and the property automaton. But these paths have a path condition false. Note however that in
general, we are not going to be warned that there are no more paths and that we have covered all the cases.

4. Implementation

Most features in this paper (with the exception of replacing stubs with assertions over the variables at the points
of call and return) have been implemented as an extension to an existing system for temporal debugging, PET
[GP02]. In that system, code for concurrent programs is translated into visual flow charts. The user may select
a potential execution path by selecting consecutive nodes in the flow charts of the processes that constitute the
concurrent program and the system will produce the path condition necessary for that path to be executed.
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l0 : begin

l1 : x :� a

l2 : y :� b

l4 : y :� z

l5 : x :� y

l6 : z�0

l7 : halt

yesno

∧same(x, y)

l3 : z′ � x rem y

Fig. 8. Euclid’s gcd algorithm with an error

x � 0
at l7∧

a > 0∧
b > 0

at l0∧

Fig. 9. A property automaton with two kinds of labels
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Alternatively, the user may specify a linear temporal logic property and request either a minimal or maximal
(acyclic) path satisfying the given property. The system searches the full state space of the concurrent program
and if there is one, returns a path satisfying the desired property together with the most general condition allowing
that path to execute (the path condition). The user has the option to ask the system to backtrack and look for
another solution, to discard the search and start again, or to extend the given path with another search beginning
where the previous search ended. In these searches we use the full state space consisting of all the states reachable
starting from a state where all variables are initialized to 0. In the original version of PET, path conditions were
calculated after the path was found, using the backward method described earlier in this paper.

The external manifestation of the extensions described in this paper is as an additional search option. One can
still specify a property to hold of a path, but this time one may choose for the search to take place symbolically,
using the product of the flow chart and property automaton instead of the full state space. The user is queried
for the maximum number of times that a node may recur in a successful path. The result returned is again a path
and a path condition.

The PET system comprises of two top-level pieces: a graphical user interface written in Tcl/Tk, and a back
end computing engine written in SML [MTHM97]. In more recent versions we have incorporated the graphical
user interface with the computing engine written as a single top-level program in SML, using the SML-Tk library
[Lue99]. In addition to the main back end computing engine, PET makes use of two external tools, namely DOT
[GN00] for calculating graphical layouts, and the theorem prover HOL [GM93] for additional simplification of
terms.

The extension to PET described in this paper required the addition of two new modules, one for the calculation
of symbolic environments and one for the creation of the finite state automaton corresponding to the product of
the flow charts of a concurrent program. Additional modules were altered with the addition of new functionality
and the alteration of existing ones.

5. A larger example

Consider the following problem: you wish to know, for a given initial complex valued value C, whether the
sequence C(i) � C(i − 1)2 − C(i − 2) diverges to infinity, where C(0) � 0 and C(1) � C, and if it diverges,
how fast. It is believed that any value whose real or imaginary parts are greater than 4 in absolute value diverge
rapidly, and will be classified as having already reached the diverging threshold. Values that are quite close to 0
will fail to diverge, so it is the moderate sized values that are of the most interest. Also, there is reason to believe
that values that are close together may have significantly different behavior. Therefore, it is desirable to maintain
a fairly high degree of accuracy for those moderate values. For this reason, it has been decided that we will use
an integer encoding of fixed-point reals, keeping the decimal point after the two highest bits for accuracy. During
intermediate computation we will want to keep overflow information, since intermediate values may exceed the
bounds for final values. We have implemented in the language of PET a procedure which, given a complex value
C entered as a pair of integers CReal and CIm representing the corresponding fixed-point real and imaginary
parts, returns the lowest number of iterations i such that the absolute value of either the real or imaginary part
of C(i) is greater than 4.

Although we consider the input to the procedure to be a pair of integers representing fixed-point reals, we
will internally use a pair of integers for holding each of the fixed-point reals. Our representation is designed to
keep 30 bits of accuracy with the decimal point after the first 28 bits. The lowest 15 bits of the number are kept
in a nonnegative number. The high 15 bits of a number, together with any overflow, are kept in a signed integer
of the same sign as the number. If (xh, xl) represents x then

x � xh ∗ 215 + xl.

The PET code for our implementation of this example may be found in the Appendix. The code has been aug-
mented by a numbering of the program statements. This numbering is not a part of the actual code. These numbers
are the node numbers in the flow chart generated by PET during the translation of the code. We do not include
the image of the flow chart as it is too long to be meaningfully presented in the limited space afford by the page
size of a paper publication. However, the flow chart is easily traversed using scroll bars on a computer, and in
that setting we found its size was no problem.

We begin by initializing a counter variable i, four variables CRealHigh, CRealLow, CImHigh and CImLow for
the high and low bits of C, and four more variables, OldCRealHigh, OldCRealLow, OldCImHigh and OldCImLow
all holding 0, for C(0) � 0. After this initial setup, the program is a while loop which terminates either when the
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overflow value of C is greater than 0 or less than −1, or when i exceeds a cutoff threshold of 1000. Inside the
while loop we calculate C2 − OldC, assigning the value of C to OldC and assigning this new value to C. There is a
collection of additional local variables used for carrying out this computation.

In an initial version of this program, we accidentally had the following condition for the while loop:

60: while (CRealHigh / power15 = 0 or CRealHigh / power15 = ~1) and
(CImHigh / power15 = 0 or CImHigh = ~1) and i < 1000 do

This code has an error, in that CImHigh is not divided by power15 before being compared to ~1. If we suspect
that the while loop is sometimes terminating too early, we can examine the path condition for the path from the
start node (node # 0) directly to the end node (node # 1). With the incorrect condition in the while loop, this
condition is calculated by PET as:

(CReal / 1073741824 =/= 0 and CReal / 1073741824 =/= ~1) or
(CIm / 1073741824 =/= 0 and CIm / 32768 =/= ~1)

>From this condition we can see that the lower bound for CIm is being handled differently than the other bounds.
Once we have corrected this problem, the while loop condition becomes:

60: while (CRealHigh / power15 = 0 or CRealHigh / power15 = ~1) and
(CImHigh / power15 = 0 or CImHigh / power15 = ~1) and i < 1000 do

and the path condition for the straight path from the start node to the end node (not going through the loop)
becomes

(CReal / 1073741824 =/= 0 and CReal / 1073741824 =/= ~1) or
(CIm / 1073741824 =/= 0 and CIm / 1073741824 =/= ~1)

and we see that the asymmetry has been resolved.
The calculations for C2 − OldC are fairly involved and are subject to error. Our tool can be used to gain

confidence in this part of the program. We would like to be able to know, for example, that CRealLow and CImLow
always are nonnegative but less than 215 at the intial entry of the while loop, and that

CReal � CRealHigh ∗ 215 + CRealLow

and

CIm � CImHigh ∗ 215 + CImLow.

This can be checked by searching for a path satisfying the LTL formula

(¬at lwhile)U(at lwhile∧
(CRealLow < 0 ∨ CRealLow � 215∨
CImLow < 0 ∨ CImLow � 215∨
(¬(CReal � CRealHigh ∗ 215 + CRealLow))∨
(¬(CIm � CImHigh ∗ 215 + CImLow))))

where lwhile is the label for the node at the start of the while loop (node 60). Note that this is a search in the negative,
that is a search for a counter-example and we wish to be told that no path satisfying this condition exists. In
practice, it would generally be best to break a conjunct such this (or larger) up into separate smaller formulae.
Splitting the fixed-point reals into the separate pieces involves using integer division (a built-in primitive in PET).
Prior to simplification, the path condition generated for these formulae involve expressions involving this division.
The ability to eliminate the existence of a path satisfying any of the LTL properties is heavily dependent on the
strength of the auxiliary simplification engine from HOL. In this case, HOL did have the strength to simplify
these expressions to false, but it falls outside the realm of Presburger arithmetic. The condition as returned from
PET using only its built-in simplifications without further assistance from HOL is

((CReal - ((CReal / 32768) * 32768) >= 32768 or
CIm - ((CIm / 32768) * 32768) >= 32768) or
CReal =/=
((CReal / 32768) * 32768) + (CReal - ((CReal / 32768) * 32768))) or
CIm =/= ((CIm / 32768) * 32768) + (CIm - ((CIm / 32768) * 32768))
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To further simplify this, HOL uses the conditional inequalities

y > 0 ⇒ x − ((x/y) ∗ y) � 0

and

y > 0 ⇒ x − ((x/y) ∗ y) < y

together with the rewrite

(a � b) � not(a < b).

In this case, because we are always dividing by constants, HOL can always decide that the divisor is strictly greater
than 0. Were we to have complex expressions in the divisor, we could easily generate expressions that HOL would
fail to simplify.

Once we have established that the values that are passed into the while loop the first time are correct, we would
still like at least some assurance that the later values are also plausible. For this we can use LTL formulae such as

�(at lwhile ∧ (¬CRealLow � 0))

and

�(at lwhile ∧ (¬CRealLow > 215))

to seek possible error cases. Since we have already verified that the initial input to the while loop is split correctly,
we also know that all possible legitimate values can be input. Therefore, to seek errors in the inner algorithm of
the while loop, it suffices to limit the number of times that the sought path can pass through the while loop to one.
Again, for each such condition, the simplification engine was able to reduce the path condition after a single pass
through the while loop to false. This increases our confidence in our code, at least with respect to these simple
cases. It should be noted that, while we have increased our confidence in the code, it is still possible that we have
swapped the roles of some variables or made other mistakes in the code.

The PET system is run in the interactive compiler SML of NJ. The Higher-Order Logic theorem prover
HOL90 is run in SML as a library accessed by PET. Within this system, the time to parse and construct internal
data structures for the PET program given in the Appendix was 11µ-seconds. The time to verify that no path
satisfied

(¬at lwhile)U(at lwhile∧
(CRealLow < 0 ∨ CRealLow � 215∨
CImLow < 0 ∨ CImLow � 215∨
(¬(CReal � CRealHigh ∗ 215 + CRealLow))∨
(¬(CIm � CImHigh ∗ 215 + CImLow))))

took 2.906 milliseconds, and the time to verify that no path (passing through the while node at most once) satisfies

�(at lwhile ∧ ((¬CRealLow � 0) ∨ (¬CRealLow > 215)∨
(¬CImLow � 0) ∨ (¬CImLow > 215)))

took 9.625 milliseconds. These times were taken using the Standard ML standard library Timer, using the func-
tions startRealTimer and checkRealTimer. These times do not include the time to parse the LTL formulae.
These measurements where made on an Apple PowerBook with a 1.33 GHz PowerPC G4 processor and 2 GB
DDR SDRAM memory, running Mac OS X version 10.3.8.

6. Discussion

We proposed and implemented a symbolic verification approach for a unit of code, which we call unit checking.
It allows verifying a piece of code in isolation (provided some specification of the other pieces is given), akin to
unit testing. It results in a collection of path conditions, which can be used to derive tests of the verified code.
Our approach was described so far for the verification of (linear) temporal properties, which reference both the
program counters and the program variables. The verification search includes two components: abstracting away
the program variables, while performing the search on the flow chart, and calculating and refuting (i.e., attempting
to simplify to false) path conditions, where assertions on the program variables are added to the path condition.
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These two parts work as coroutines. That is, a model checker is performing the search on the flow chart, and then
a path condition is calculated (incrementally). The control returns to the model checker after the calculation of
the path condition when either the path is not complete, or the path condition was refuted.

Our model checking approach is semiautomatic in two ways:

1. Refuting the path condition is, in general, undecidable [Mat93]. It is decidable for certain specific domain,
e.g., for finite domains and for Presburger Arithmetic. We apply various procedures for simplifying formulas,
and for refuting Presburger arithmetic assertions [Opp78] (we apply it repeatedly to subformulas). Because
of undecidability, the system may report a path condition that is equivalent to false.

2. As pointed out, we cannot compare states during the symbolic evaluation. We apply a strategy of putting a
constraint on the length of the admitted paths. We apply DFS (or, alternatively, BFS) with this constraint,
provided by the user. In the limit, we can cover any length of path. But there is no generic decision procedure
that provides, for a given verification problem (consisting of a unit of code and a temporal specification)
a limit to the size of the minimal length path in the intersection of the automata. Moreover, there can be
infinitely many paths in the intersection.

Our approach can be used for the temporal verification of sequential pieces of code. It can also be extended to
the verification of concurrent code. This requires adding programming constructs for concurrency for the trans-
lated code, and adapting the path condition calculation to these constructs. Instead of flow chart nodes, we deal
with tuples of such node, obtained through the Cartesian product of flow charts. Orthogonal work generalizes
the path condition analysis to handle also pointers and aliasing [VG02].

Our framework can also be used with concurrent code. In fact, our implementation supports concurrency.
In a concurrent program, there are several flow charts that interact with each other. A path in a concurrent
system is an interleaved sequence of nodes, whose projections on each flow chart for a process is a sequential
path. However, care should be taken, as the interaction between the variables of procedures represented by stub
specifications can cause additional behaviors that are not present in our analysis and invalidate the atomicity of
the stubs. Moreover, concurrency introduces nondeterminism. In the presence of nondeterminism, executing the
code from a state satisfying a path condition for a given concurrent (i.e., interleaved) path does not guarantee
repeating the execution according to the path condition, rather allows it [GP02]. That is, in the presence of a
nondeterministic choice, from each state satisfying the path condition, there exists an execution which follows
the path for which the condition was calculated. In case of concurrency, a different part of the system, which
transforms the code to force the execution of a selected test case, can be invoked [PQ04].

Our approach can be used for automating the unit testing process. Accordingly, a tester uses a formula to focus
on some suspicious executions. The algorithm given in this paper is used to generate these paths and calculate the
corresponding path conditions. These can be used to exercise the code in order to confirm or refute the suspicion.
Because of the decomposition of the search according to the program counters and according to the program
variables, our search is most efficient when the temporal specification is mainly (but not necessarily completely)
dependent on the path (i.e., the program counters values) traversed during the execution (e.g., visits some loop
three or four times).

The success of calculating the path condition and simplifying it into a form that is intuitive to the user
is essential in our work. We currently used our own heuristics, as well as a decision procedure for Presburg-
er arithmetic [Opp78] implemented within the theorem prover HOL. Another possibility is to use the Omega
library [PW95]. It is interesting to observe that theorem provers include a lot of knowledge about simplifying
arithmetical expressions. An open environment for a theorem prover, giving access to the part that deals with
simplification, is very useful. Two theorem provers that make heavy use of simplifications are ACL2 [KMM00]
and PVS [ROS98].
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Appendix The code for the example in Sect. 3

0: begin
1: power15 := 2 ^ 15;
2: power14 := 2 ^ 14;
3: power13 := 2 ^ 13;
4: power12 := 2 ^ 12;

5: i := 0;

6: CRealHigh := CReal / power15;
7: CRealLow := CReal - (CRealHigh * power15);

8: CImHigh := CIm / power15;
9: CImLow := CIm - (CImHigh * power15);

10: OldCRealHigh := 0;
11: OldCRealLow := 0;

12: OldCImHigh := 0;
13: OldCImLow := 0;

60: while
(CRealHigh / power15 = 0 or CRealHigh / power15 = ~1) and
(CImHigh / power15 = 0 or CImHigh / power15 = ~1) and
i < 1000
do
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begin
14: i := i + 1;

15: CImLowSquare := CImLow * CImLow;
16: CImLowSquareCarry := CImLowSquare / power15;
17: CImLowSquareBase :=

CImLowSquare - (CImLowSquareCarry * power15);

18: CRealLowSquare := (CRealLow * CRealLow) - CImLowSquareBase;

19: CLowSquareDiffCarry :=
(CRealLowSquare / power15) - CImLowSquareCarry;

20: CIm2HighLow := (CImHigh * CImLow);
21: CIm2HighLowCarry := CIm2HighLow / power14;
22: CIm2HighLowBase :=

(CIm2HighLow - (CIm2HighLowCarry * power14)) * 2;

23: MiddleCarry := CLowSquareDiffCarry - CIm2HighLowBase;
24: MiddleCarryHighBits := MiddleCarry / 2;
25: MiddleCarryLowBit := MiddleCarry - (MiddleCarryHighBits * 2);

26: CRealHighLow := (CRealHigh * CRealLow) + MiddleCarryHighBits;
27: CReal2HighLowCarry := CRealHighLow / power14;
28: C2HighLowDiffBase :=

(CRealHighLow - (CReal2HighLowCarry * power14)) * 2;

29: CImHighSquare := (CImHigh * CImHigh);
30: CImHighSquareCarry := CImHighSquare / power15;
31: CImHighSquareBase :=

CImHighSquare - (CImHighSquareCarry * power15);

32: CRealHighSquare :=
((CRealHigh * CRealHigh) +
CReal2HighLowCarry - CIm2HighLowCarry) - CImHighSquareBase;

33: CRealHighSquareCarry := CRealHighSquare / power15;
34: CHighSquareDiffBase :=

CRealHighSquare - (CRealHighSquareCarry * power15);

35: CHighSquareDiffCarry :=
CRealHighSquareCarry - CImHighSquareCarry;

36: CRealImLow := CRealLow * CImLow;
37: CRealImLowCarry := CRealImLow / power15;

38: CRealHighImLow := (CRealHigh * CImLow) + CRealImLowCarry;
39: CRealHighImLowCarry := CRealHighImLow / power15;
40: CRealHighImLowBase :=

CRealHighImLow - (CRealHighImLowCarry * power15);

41: CRealLowImHigh := (CRealLow * CImHigh) + CRealHighImLowBase;
42: CRealLowImHighCarry := CRealLowImHigh / power15;
43: CRealImMidBase :=

CRealLowImHigh - (CRealLowImHighCarry * power15);
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44: CRealHighImHigh :=
(CRealHigh * CImHigh) + CRealHighImLowCarry +
CRealLowImHighCarry;

45: CHighSquareDiffBaseTopBits := CHighSquareDiffBase / power13;

46: NewCRealLow :=
((CHighSquareDiffBase -
(CHighSquareDiffBaseTopBits * power13)) * 4) +
(C2HighLowDiffBase / power13) - OldCRealLow;

47: NewCRealLowCarry := NewCRealLow / power15;

48: NewCRealHigh :=
(CHighSquareDiffCarry * 4) + CHighSquareDiffBaseTopBits +
NewCRealLowCarry - OldCRealHigh;

49: NewCImLow := ((CRealHighImHigh - (CImHigh * power12)) * 8) +
(CRealImMidBase / power12) - OldCImLow;

50: NewCImLowCarry := NewCImLow / power15;

51: NewCImHigh :=
(CRealHighImHigh / power12) + NewCImLowCarry - OldCImHigh;

52: OldCRealLow := CRealLow;
53: CRealLow := NewCRealLow - (NewCRealLowCarry * power15);

54: OldCRealHigh := CRealHigh;
55: CRealHigh := NewCRealHigh;

56: OldCImLow := CImLow;
57: CImLow := NewCImLow - (NewCImLowCarry * power15);

58: OldCImHigh := CImHigh;
59: CImHigh := NewCImHigh

end

61: end.
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