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On modelling recursive calls and
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Abstract. An important use of the Unified Modelling Language (UML) is modelling synchronous object-
oriented software systems. State diagrams are used to model interesting object behaviour, including method
invocation. However, almost all previous work formalising state diagrams has assumed asynchronous com-
munication. We show that UML’s “run to completion” semantics leads to anomalous behaviour in the
synchronous case, and in particular that it is not possible to model recursive calls, in which an object re-
ceives a second synchronous message whilst still in the process of reacting to the first. We propose a solution
using state diagrams in two complementary ways.

Keywords: UML, object-oriented modelling, protocol state machines, state machines, recursion, callbacks

1. Introduction

The Unified Modelling Language [OMGO03, OMGO04] has been widely adopted as a standard language for
modelling the design of (software) systems. One diagram type within UML is the state diagram, an object-
oriented adaptation of Harel statecharts.

The use to which state diagrams are put varies with the type of project and the modeller’s preferences,
but a typical use is as follows. The modeller decides that some or all of the classes which are to appear in the
system should be modelled with state diagrams; typically, classes which are perceived to have “interesting”
state change behaviour will be so modelled, whereas those which are considered to be stateless or almost
so will not be. For a given class, the modeller identifies the abstract states, which will be represented as
states in the state diagram. This involves deciding which aspects of state are interesting, in that they may
affect behaviour; it can be seen as choosing an equivalence relation on the set of (concrete, fully-detailed)
possible states of objects of the class. In parallel, s/he considers which events may happen to an object of this
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Fig. 1. Simple problem situation

class, and what effect those events have on the abstract state of the object. In the sequential single-threaded
systems which are the concern of this paper, a typical event is the receipt of a message which requests
the synchronous invocation of an operation. The modeller may record that certain state transitions happen
only in particular circumstances; that is, s/he may add guards to the transitions. Finally, s/he may record
how an object reacts to a given event happening in a given state by showing actions on the transitions
(and/or within the states, but for simplicity we omit that possibility here). Typically, the modeller will not
record every detail of the object’s reaction, since that might involve placing the whole of an eventual method
implementation as annotation on a transition in a diagram. A common compromise is to show only the
messages which the object may send as part of its reaction to an event such as receiving a message, but
not to show internal computation such as variable assignments. (Messages which an object sends directly to
itself may or may not be regarded as internal computation.)

Details vary, but essentially this process is recommended in many reputable sources, including for example
Booch et al.’s UML User Guide [BRJ98] and the second author’s own Using UML[wRPon]. We emphasise
that although a state diagram represents “all behaviours” of an object, in some appropriate sense, this does
not mean that it represents all behaviour of the object in the sense of including all the information that will
be represented in its code.

Now, much of the pre-UML expertise in using state machines was acquired in the context of event-based
systems, where typical messages are asynchronous, and almost all work formalising UML state diagrams has
built on this foundation and assumed asynchronous communication. In mainstream software development,
however, synchronous communication is more common. In this paper we demonstrate that this leads to a
problem with the UML semantics, and we propose a solution which is compatible with the intentions of the
UML language designers.

Let us give a small example in which following the UML semantics. The single state diagram is shown
in Figure 1. Suppose an object represented by this diagram is in state S1 and receives message f(), which
causes the object to send itself the message g().! What should the resulting state of the object be?

According to the UML semantics, there is no answer to this question: the machine deadlocks. If we
consider the diagram as a complete machine specification, this is reasonable. However, this does not accord
with intuition, or with the standardly suggested way of using state diagrams described above. If the designer’s
idea is that the implementation of f() will involve the invocation of g() (recorded in the diagram) and also
some other computation, such as assignments to attributes (not recorded in the diagram, again following
standard practice), the diagram above is exactly what will be produced, and the designer will expect the
resulting state of the object to be S2. This is shown by the fact that the head of the sole arrow labelled
f is pointing at state S2. It is possible that the object’s state, beginning in S1, is changed to S2 by some
unmodelled computation (perhaps an assignment to one of the object’s attributes, whose value determines
which state of the state diagram the object is in), then to S4 by the execution of g, then (back) to S2 by

1 More precisely, f() is a call event and g() a call action in the transition from S1 to S2. Call events are caused by call actions
and are distinct from them [OMGO03] (2-142). In our example g() on the transitions from S1 to S3 and S2 to S4 is a call event
which is caused by the corresponding call action. Both call events and call actions are associated with an operation in UML,
i.e. call events and actions together model invocations of the operation of the object. In UML2.0, the metamodel representing
this situation is slightly different, but the differences do not affect our point.
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further unmodelled computation (such as a second assignment to the same attribute). Alternatively, it may
be the other g transition which is used, or which one is used may depend on the execution context. This
underspecification is normal. Crucially, the designer does not intend the state diagram to be a complete
machine: it constitutes a loose specification of the system the designer has in mind.

The fundamental problem seems to be that UML - like the UML community — is ambivalent about
whether its state diagrams are intended to be machines, capable of being executed, or loose specifications,
constraining a later implementation.?2 The UML semantics strongly suggests the former, but this does not
always accord with how UML is used. In particular, when state diagrams are used to model synchronous
message passing between objects in a sequential single-threaded system UML’s run-to-completion semantics
causes anomalies. Situations as shown above can be modelled by UML sequence diagrams and implemented
in an object oriented programming language although the execution of corresponding UML state machines
would result in a deadlock according to the default UML run-to-completion semantics (see example in Section
2.1). It is interesting to notice that Harel and Gery [HG97] were aware that recursive operation calls are
problematic but apparently considered them unimportant. They wrote:

...when the client’s statechart invokes another object’s operation, its execution freezes in midtransition, and the thread of control
is passed to the called object. Clearly, this might continue, with the called object calling others, and so on. However, a cycle of
invocations leading back to the same object instance is illegal, and an attempt to execute it will abort.

In the context of synchronous object oriented systems, we do not consider that the problem can be so
easily dismissed. In object oriented design recursive calls occur frequently: for example, whenever any method
is recursive, or when the Visitor or Observer pattern is used. Moreover, it is not trivial for the designer to
avoid cases where this problem will arise. Several state diagrams may be involved, perhaps developed by
different people at different times. If a tool, adhering strictly to the UML standard, refused to accept or
process such a collection of state diagrams, the result could be serious confusion and loss of confidence in
the tool and/or in UML itself.

In this paper we discuss the problem and propose a solution, drawing on both the draft UML2.0 standard
and relevant theoretical work [AEY01, GLS*01].

A preliminary, much shorter report of this work was made in [TS03]. The main additions here are:
consideration of how the adaptations of UML proposed fit into the UML1.5 metamodel; the addition of
postconditions on protocol transitions; allowing new objects to be created; an informal discussion of incom-
plete method descriptions and how they fit into the approach; and the use of an example which is drawn
from a real-world application. We also include further discussion of the impact of the move to UML2.0.

1.1. Note on standards and terminology

This paper is based on UML1.5, the current formally approved standard at the time of writing (March
2005). It also, as mentioned above, draws on the new UML2.0 standard, currently proceeding through OMG
approval. In Section 7 we discuss the impact of the adoption of UML2.0. The reader is assumed to be familiar
with UML; it is important to note that the definition of UML is the OMG standard [OMGO3], not what is
contained in any UML book.

In sequence diagrams, we show expressions on return arrows to indicate the value returned — this is
common, harmless and permitted in UML2.0, but not actually described in [OMGO3].

We make several simplifying assumptions. We only consider sequential systems, so our state diagrams
are assumed not to make use of concurrent substates. We treat rolenames identically with attributes; for
example, our attribute environments include rolenames. Such an attribute has a class type, and its value
will be an object identifier. For convenience, we adopt the convention that the set of attributes of a class
includes all attributes that can be derived from attributes of associated objects.

For method and object names we use sans serif style in this paper. Class names always start with a capital
letter and are shown in normal style.

2 Even the terminology in the standard shows this tension: the terms state diagram, statechart diagram, statechart and state
machine are not always used consistently (compare for example [OMGO03] (3-136) and (3-140)). In this paper we use “state
diagram” as a general term, reserving “state machine” for an executable version.
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1.2. Structure of the paper

The paper is structured as follows. In Section 2 we explain the problem with the UML’s current understanding
of state diagrams. In Section 3 we introduce our solution, making use of two kinds of state diagrams. An
embedding of these diagrams into the UML1.5 metamodel is presented in Section 4; this section is included
for the reader who is familiar with the UML metamodel, and may safely be omitted by other readers.
Section 5 formalises these diagrams and defines a suitable notion of consistency. Section 6 discusses work
in progress on incomplete method descriptions with respect to one of our new diagram types. Section 7
discusses the impact of the move to UML2. In Section 8 we revisit the example introduced above; Section 9
discusses related work, and Section 10 concludes.

2. State diagrams with recursive calls in UML

According to run-to-completion semantics, the action on a transition must have been completed before the
transition is finished. If the action involves an object o of the class modelled by the state diagram making
a call to another object p (and perhaps using the result of that call in some calculation), the action, and
therefore the transition, does not complete until the call has been received by p, processed, and the result
returned to o.

However, as soon as we consider the case that o and p might be the same object (recursion) or that part
of p’s reaction to the message from o might be to send o a new message (callback), it becomes clear that
we cannot model situations with recursion or callbacks with UML state diagrams in which call events and
actions involving calls are recorded on transitions.

In the context of software components the problem that a component A performs a callback on a compo-
nent B while B is in an unexpected inconsistent state is known as the component re-entrance problem. The
definition of contracts for components which are usually developed completely independently of each other
becomes more difficult in this case. The component re-entrance problem is described in detail in [Szy98] and
some recommendations for the usage of pre- and postconditions for situations with callbacks are provided.
A more formal treatment of this problem can be found in [MSL99]. As we shall see, protocol state machines
(PSMs) with pre- and postconditions can be used as a technique for modelling reentrance on a component
level.

The next subsection demonstrates this using an example which we will use throughout the paper.

2.1. An example of callbacks with UML

The following example is used in different versions to illustrate several problems with callbacks in UML. It is
a variation of the Observer pattern [Gra98], [GHJV95] and models parts of the UML tool ArgoUML [Arg].

The class diagram in Figure 2 specifies that there are two different classes extending the abstract class
Observer: ClassDiagramEditor and NavPane, both components of the tool’s GUI as shown in Figure 3. They
present a graphic view on the Model, which is the UML model created by the user. The Model is the subject
under observation and contains model elements such as classes, associations and generalization relations
which can be added, changed and removed by particular methods. In this example we concentrate on the
removal of model elements and only consider methods which are relevant in this context.

The Observers possess methods which enforce an update when the Model has been changed. There are
separate update-methods for the deletion of each kind of model element that is considered here. All of these
methods take the element that has been removed from the Model as parameter. That means the Observers
get some information about what changes have occurred and do not have to process the complete Model.*

In addition to these update-methods ClassDiagramEditor also provides methods for requesting changes

3 The example has been simplified and adapted to be more suitable for our purpose but the basic concepts are very close to
the actual implementation of ArgoUML.

4 This is sometimes referred to as the push-approach, where some information is pushed to the Observers, in contrast to the
pull-approach where the Observers have to query the Model to get the full state.
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Observer Model

observers model

*

updateClassDeleted(c:Class) deleteClass(c:Class)

updateAssoDeleted(a:Association) deleteAsso(a:Association)
updatelnhDeleted(i:InhRel) deletelnh(i:InhRel)
updateClassAdded(c:Class) getAssos(c:Class):Vector
updateAssoAdded(a:Association) getinhRels(c:Class):Vector

updatelnhAdded(i:InhRel)

i

classes /« assos | * inhRels \ *
ClassDiagramEditor Association
NavPane Class InhRel
requestDeleteClass(c:Class) isSourceOrTarget(c:Class):boolean
requestDeleteAsso(a:Association) -

requestDeletelnh(i:InhRel)
requestAddClass(c:Class)
requestAddAsso(a:Association)
requestAddInh(i:InhRel)

Fig. 2. Callback example — class diagram

of the Model. For example the method requestDeleteClass is invoked if there is a class selected in the editor
and the user asks for its deletion via clicking on a menu item.

The interaction between a Model m and two Observers cde and np in response to this request by the
user is shown in Figure 4: cde invokes deleteClass on m which then calls a method on itself that yields all
associations in which the class that is to be removed participates. These associations are deleted one by one
in a loop and in each iteration the Observers are informed about these changes. This procedure ensures that
the UML model remains valid and does not contain any “dangling associations”.

The ClassDiagramEditor cde which has invoked deleteClass is still waiting for the completion of this
method when it receives notifications about deleted associations from m, i.e. m performs a callback on cde.
A similar interaction takes place for the removal of all relevant generalization relations. Finally the Observers
receive an update that the requested deletion of a class has been completed. For Observer cde this final update
is again a callback interaction.

An interaction like that can be implemented in Java without problems. The parts of a possible implemen-
tation® for Model which are relevant for the callback are shown in Figure 5. The implementation of method
deletelnh has been omitted because it is very similar to deleteAsso. If a call of model.deleteClass is part of
method requestClassDeleted and the ClassDiagramEditor cde is registered as an Observer of m, a callback as
shown in the sequence diagram occurs.

The internal behaviour of objects of classes Model and ClassDiagramEditor can be modelled by UML
state machines. We first consider the state machine for Model as shown in Figure 6.

A Model object just has one default state with a loop arrow that shows which methods can be called
and what effect they have. Normally a designer would not draw such a state machine because it does not
contain any interesting state changes. However, it is certainly a valid UML state machine and we use it here

5 TFor simplicity the Java event mechanisms which are essential in the real implementation of ArgoUML are not used here.
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Fig. 3. Parts of the ArgoUML GUI

to demonstrate that the UML state machine semantics generally does not make sense for callbacks, even in
such simple cases.

When a call of deleteClass arrives at a Model object m, the loop transition with the corresponding label
is triggered. That leads to a call of getAssos on the same object m which has not yet finished the execution
of the first transition. The UML run-to-completion semantics prescribes that m can only process the call
of getAssos after the loop transition triggered by deleteClass has been completed, which will never happen.
Notice that this problem occurs independently of whether the callback method changes the state of an object
or not.

For a more complicated example consider the state machine for ClassDiagramEditor, given in Figure 7.
For readability, an arrow may represent more than one transition with the same source and target states.
The different transition labels are separated by commas. For instance the arrow from state “addInh disabled”
to itself represents three transitions. We assume that all methods of ClassDiagramEditor can be invoked on
one of its objects when the object is in state “all buttons enabled”, but only show those transition labels
here that are of interest for the example.

Depending on the associated Model some of the editor’s buttons may be disabled®. This is useful to
prevent the user from drawing a UML class diagram that is invalid. The editor is initially in a state where
the buttons for adding associations and generalization relations to the class diagram are disabled. These
buttons, which are called “addAsso” and “addInh” in this example, are shown and labelled in Figure 3.
The user first has to create a class before s/he can define any relationships. Similarly drawing generalization
relationships is only possible after the user has added two classes to the diagram. This prevents the creation
of a model containing one class with circular generalization, which is forbidden in UML.

6 This behaviour is not part of ArgoUML but fits well with its aim of guiding the user in the production of valid UML models
and serves as an example of callbacks that change an object’s state.
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% cde: ClassDiagramEditor m:Model np:NavPane
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|
requestDeleteClass(c) _:_

deleteClass(c)

av = getAssos(c)

*1..Jav]]
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o
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~_ updateAssoDeleted(a)

HE

updateAssoDeleted(a)
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r=-—- 1
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updateClassDeleted(c)

updateClassDeleted(c)

Fig. 4. Callback example — sequence diagram
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public void deleteClass(Class c) {

Vector av=getAssos(c);

for (int j=0; j<av.size(); j++) {
Association a=(Association)av.get(j);
deleteAsso(a);

}

Vector iv=getInhRels(c);

for (int j=0; j<iv.size(); j++) {
InhRel i=(InhRel)iv.get(j);
deleteInh(i);

}

// remove c from classes

classes.removeElement (c) ;

// update observers

for (int j=0; j<observers.size(); j++) {
((Observer)observers.get(j)) .updateClassDeleted(c) ;

}

}

public void deleteAsso(Association a) {
// remove a from assos
assos.removeElement (a) ;
// update observers
for (int j=0; j<observers.size(); j++) {
((Observer)observers.get(j)) .updateAssoDeleted(a);
}

Fig. 5. Parts of a Java implementation for class Model

getAssos(c)

getinhRels(c)

()

deleteClass(c)/ av=getAssos(c);
forall a in av deleteAsso(a);
iv=getinhRels(c);
forall i in iv deletelnh(i);
updateClassDeleted(c)

deleteAsso(a)/updateAssoDeleted(a)

deletelnh(i)/updatelnhDeleted(i)

Fig. 6. State machine for Model

If a ClassDiagramEditor is in state “all buttons enabled” arbitrarily many classes can be added without
changing the state. In this case a call of updateClassDeleted can either leave all buttons enabled or result in
a state change to “addInh disabled”, i.e. our state machine is non-deterministic at this point.

Now consider a ClassDiagramEditor cde in state “all buttons enabled” which observes Model m. When
requestDeleteClass is called, the corresponding loop transition in the state machine for cde is triggered. During
the transition cde calls deleteClass on the associated Model m. From the sequence diagram (and from the
state machine for Model) we see that m calls back and invokes updateClassDeleted on cde. Note that this
callback always takes place while invocations of updateAssoDeleted and updatelnhDeleted only occur if the
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requestDeleteClass(c)/model.deleteClass(c),

requestAddAsso(a),
I requestAddClass(c) requestAddClass(c)

J

updateClassDeleted(c)

~

addAsso and
addInh disabled

addinh disabled j
~/ updateClassAdded(c) -

updateClassDeleted(c) updateClassAdded(c)

requestDeleteClass(c)/model.deleteClass(c),

updateClassDeleted(c), C[ all buttons enabled j

Fig. 7. State machine for ClassDiagramEditor

class that is deleted participates in any relations of these kinds. According to the UML semantics cde cannot
react to the call of updatedClassDeleted because it is not in a stable state when the call arrives. This is deeply
counterintuitive. The state diagrams shown are intuitively correctly implemented by the Java code shown;
the Java code works correctly, without deadlock problems or anything of the kind; and yet, the collection
of UML state diagrams has emergent behaviour which fails to capture the correct behaviour of the Java
code. A designer working with the UML state diagrams in a tool which enforced the UML semantics might
be told that there was a fatal problem with the design, when in fact there is not. The semantics of the
collection of UML state diagrams is inconsistent with the semantics of the collection of Java code, even
though individually the state diagrams are correctly implemented by the Java code fragments. We do not
believe that it is possible to argue that this situation is acceptable. It defeats the purpose of modelling, which
is to allow the detection of genuine problems with a design prior to implementation. The UML semantics is
broken.

3. Two kinds of state diagrams

We suggest handling the problem of callbacks (including recursion) by using two different kinds of state
diagrams, one to model the overall effect of a method on the state of an object and the other (when the
modeller considers it appropriate) to model the execution of actions of which this method consists. Thus
we resolve the issue of whether state diagrams are loose specifications or executable machines by providing
both, for use in clearly defined different contexts.

3.1. Protocol state machines (PSMs)

In UMLL.5 [OMGO3] (2-165) PSMs are introduced as a state diagram variant, defined in the context of a
classifier. We keep UML’s terminology (PSM), but in our opinion these diagrams are best thought of as
loose specifications, not as executable machines. They specify the permissible sequences of method calls on
an object (the protocol), but not how the object will react to each method call. Their transitions (protocol
transitions) are allowed, but not expected, to have action expressions. Here we only consider PSMs for classes
and in order to enforce the separation between the diagram types, we follow UML2.0, in which actions at
protocol transitions are explicitly forbidden. The definition given below is a formalisation of a simplification
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r = [c!=null]lgetAssos(c) / [r.size() <= assos.size()],

r = [c!=null]getinhRels(c) / [r.size() <= inhRels.size()],
deleteClass(c),

deleteAsso(a),

deletelnh(i)

Fig. 8. PSM for Model

of PSMs as presented in [OMGO4]. In its simplest form a PSM is a state diagram in standard UML notation
whose transitions are triggered by call events and do not have actions: e.g., removing all actions from Figure
7 yields a PSM for ClassDiagramEditor.

In the context of a PSM the guards which can be attached to transitions may represent a part of
the method’s precondition. (Alternatively, they may demonstrate that state resulting from a method call
depends, for example, on the value of the arguments to the method.) Normally the guard will express a
restriction on the parameter of the method. Requirements concerning the state of the object, which can be
regarded as another part of the precondition, are captured by the protocol states in the PSM.

Similarly we also allow part of an operation’s postcondition to be attached to a protocol transition. Such a
condition will usually be a restriction on the result of a method. Using an extension of the standard notation
transition labels are of the form r = [pre]m/[post], where r is the result of m, m is the method which the
transition refers to, pre is the condition that has to hold when the call of m occurs for this transition to
fire, and post is a condition that has to be valid after m has been executed. We refer to pre and post as the
pre- and postcondition of a protocol transition. Notice that the actual execution of m is not modelled by a
PSM but by a another diagram type which is introduced later. Figure 8 shows a PSM for class Model which
contains protocol transitions with pre- and postconditions.

Protocol states and conditions on the protocol transitions of a PSM can be combined to one constraint
by logic connectives, equivalent to writing pre- and postconditions of the corresponding methods in the
traditional way (see [OMGO04] for details). In practice it might sometimes be useful to factor out pre- and
postconditions of protocol transitions, especially those which are common for all protocol transitions labelled
by the same method or which are not of particular interest in the context of the PSM.

The designer would develop a PSM only for classes that s/he considers to have interesting state change
behaviour, as in current practice. Instead of recording actions on the transitions, s/he will choose when it is
worthwhile to record how reactions to events are implemented using another diagram type, as follows.

3.2. Method state machines (MSMs)

Both UML1.5 [OMGO3] and the forthcoming UML2.0 [OMGO04] allow the definition of a state diagram in the
context of an operation, but do not provide detail about the particular features and behaviour of this kind
of state diagram. We propose MSMs which are a simplified variant of sequential class machines as presented
in [GLS*01], which in turn are a variant of recursive state machines as introduced in [AEYO01]; they allow
recursion.

Figure 9 shows an MSM for getAsso, represented by a box with rounded edges and labelled by the class
which owns the method, the method name, and its parameters. The MSM consists of an entry state E1, an
object creation box, four invocation bozes, two internal states S1 and S2, and a return state R1.

Much of the notation is standard UML, but with additions as follows. The entry state contains variable
declarations and the return state includes a return expression which is compatible with the method’s return
type. An MSM can have several return states with different return expressions. Object creation boxes have
a double borderline and contain the string <<create>> and a class name. Each box has an entry and exit
point, represented as shown in Figure 9. The exit point is labelled by a return variable which must be declared
in the MSM’s entry state and whose type must be the class specified in the box. In our example the object
creation box contains class name Vector and its exit point is labelled by r, which is of type Vector. Invocation
boxes are very similar to object creation boxes but include a method call. The type of the return variable
attached to an invocation box’s exit point corresponds to the return type of the method given in the box.
States and boxes of the MSM are connected by transitions which are labelled by guards and actions, but not
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Model:getAssos(c:Class):Vector

B )
El

this:Model
c:Class

. f ) r
r:Vector - <<create>>

—=
jrint I Vector '
a:Association
k:int

b:boolean

[i<k]

Fig. 9. Method state machine for getAssos

by events. The actions in an MSM can only manipulate local variables or the object on which the method
represented by the MSM was called. All method calls have to be included in invocation boxes (as opposed,
for example, to being included in actions on transitions, or in any return expression). The MSM for getAssos
will be considered in more detail in Section 5.

The basic idea for the execution of MSMs is that they can invoke each other via invocation boxes. When
an invocation box is reached during the execution of an MSM, the MSM for the method in this box is
invoked. The first MSM only continues its execution after the execution of the second MSM is finished.
Figure 10 shows an MSM fragment for each of the three methods that are relevant for our callback example.
The execution order is indicated by bold arrows. We will discuss the execution of MSMs more formally in
Section 5.1.

In terms of the UML metamodel implicit completion events are relevant for MSMs. They cause normal
transitions (as commonly used in UML activity diagrams) and also permit the MSM to move on from a
method invocation box when the execution of the MSM for the call in the box is finished. Since an MSM
models how an activity is performed, it is bound to have similarities with an activity diagram. We add a
precise semantics for MSMs in Section 5, especially, semantics for invocation of methods represented by other
diagrams, which is not defined in UML activity diagrams. In the next section we will discuss how PSMs and
MSMs sit inside the UML Metamodel.

4. Embedding into the UML Metamodel

Figure 11 shows an extension of the UML1.5 metamodel by protocol state machines.” Attributes and opera-
tions are only shown where they are of importance for our work. Three new metaclasses have been defined:
ProtocolStateMachine as subclass of StateMachine, Protocol Transition as subclass of Transition, and Post-
Condition. Between ProtocolTransition and PostCondition an association has been added which allows a

7 Note that our extension has the effect of bringing the metamodel closer to that of UMLZ2.0: see discussion later.
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call of ClassDiagramEditor:requestDeleteClass(c:Class)
requestDeleteClass

@ % model.deleteClass(c) k 9@»@

call of deleteClass on model

Model:deleteClass(c:Class)

o.updateClassDeleted(c
o (i =~ L G - (-

call of updateClassDeleted on o

ClassDiagramEditorupdateClassDeleted(c:Class)

Fig. 10. Execution order of MSMs for callback example

postcondition to be attached to a ProtocolTransition. Notice that we have not introduced a similar construc-
tion for preconditions. Instead we reuse the metaclass Guard which is part of the original metamodel and
can be associated with any transition for defining a precondition. However, a guard in the context of the
original metamodel prevents transitions from being fired under certain conditions. This does not apply to
preconditions in PSMs, which cannot be executed and where therefore the idea of transitions being triggered
and fired does not make sense. A precondition is just a part of the method’s specification.

In Section 4.1 constraints for protocol state machines are given as well-formedness rules. These rules
capture for instance which vertices are valid in a PSM. This is necessary because we did not add a class Pro-
tocolVertex to the metamodel and only a subset of StateVertex instances is valid in PSMs. Well-formedness
rules have been used here because they are simpler to define than a new metaclass ProtocolVertex in the
context of the current UML model which contains a complicated generalization hierarchy below StateVertex.

The well-formedness rules also specify other constraints on PSMs such as, for example, that each Proto-
colTransition has a trigger of type CallEvent. Since each call event is connected to an operation, an association
from ProtocolTransition to Operation can be derived as shown in Figure 11. Note that operations and meth-
ods are distinguished in UML in order to allow for inheritance: classes in an inheritance hierarchy may all
have the same operation, inherited from a base class, which they implement using different methods. We
have taken this into account for the embedding into the metamodel, but do not consider inheritance in our
examples and formalisation.

For method state machines the UML Metamodel has been extended in similar fashion as shown in Figure
12. Again new subclasses of StateMachine and Transition have been introduced. Additionally the original
metamodel is extended by classes BoxEntryState, BoxExitState and ReturnState which are all subclasses of
State, and a new class InvocationBox which is a special StateVertex.

As mentioned in Section 3.2 an InvocationBox has a BoxEntryState and BoxExitState attached to it
which is represented by the associations between these classes in Figure 12. Furthermore the extended
metamodel contains associations modelling that a set of local variables is defined for an MSM, an MSM
always refers to an Operation, a BoxExitState may have a variable attached to it, and a ReturnState may
contain a return expression.

As for PSMs well-formedness rules in Section 4.1 specify which vertices are valid in an MSM and which
other conditions have to be fulfilled by a well-formed MSM.
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MSMs and PSMs are connected via their relations to Operation in the metamodel. Protocol transitions
in a PSM may refer to an operation which is realised by an MSM.

4.1. Well-formedness rules

The well-formedness rules for MSMs and PSMs together with additional operations needed for their speci-
fication are given in the Object Constraint Language (OCL) [OMGO3](Chapter 6), [WK99]. Some of these
rules were taken from UML2.0[OMGO04] and the earlier U2P proposal [Par03] and slightly modified. There
are some points that have to be noticed with respect to the usage of OCL in this section:

o the difference between operators oc1IsKind0f and oclIsTypeOf is that the former refers to the direct
type and indirect supertypes of an object, while the latter refers to the direct type. That means for an
object o of type C with C a subtype of D, o.0c1IsType0f (D) evaluates to false but for o.oc1IsKindQf (D)
the result is true.

e some rules do not impose further restrictions on PSMs and MSMs but were added because they express
important properties of model elements which are guaranteed by other rules.

e there is no special notation for upcasting. OclAsType is used for casting an object down to a specific
subtype.®

ProtocolTransition

1. A ProtocolTransition always belongs to a ProtocolStateMachine.
self.stateMachine.oclIsTypeOf(ProtocolStateMachine)

2. A ProtocolTransition never has a procedure associated as effect.
self.effect — isEmpty()

3. The trigger associated with a ProtocolTransition is never empty and is a call event.
self.trigger — notEmpty() and
self.trigger.oclIsTypeOf(CallEvent)

4. A ProtocolTransition refers to an operation, reachable via its trigger.

self.referred =
self.trigger.oclAsType(CallEvent).operation

5. The referred operation of a ProtocolTransition is owned by the Classifier that is the context of the
ProtocolStateMachine the ProtocolTransition belongs to.

self.referred.owner=
self.stateMachine.context.oclAsType(Classifier)

6. The source and target of a ProtocolTransition are PSM vertices.
self.source.isValidPSMVertex() and self.target.isValidPSMVertex()
This is guaranteed by rule 3 for ProtocolStateMachine.

ProtocolStateMachine

1. A ProtocolStateMachine must have a classifier context.
self.context.oclIsKind0f(Classifier)
2. All transitions in a ProtocolStateMachine must be ProtocolTransitions.

self.transitions
— forAll(t|t.oclIsTypeOf(ProtocolTransition))

3. All vertices in a ProtocolStateMachine must be valid PSM vertices.

self.top.oclAsType(CompositeState).getAllSubvertices
— forAll(v|v.isValidPSMVertex())

8 Note that some versions of the OCL specification used OclAsType inconsistently for both up- and down-casting.
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MethodTransition

1. A MethodTransition always belongs to a MethodStateMachine.
self.stateMachine.oclIsTypeOf (MethodStateMachine)

2. If a MethodTransition has an associated effect then the effect does not contain any method calls®.

3. The trigger associated with a MethodTransition is empty!°.
self.trigger — isEmpty()

4. The source and target of a MethodTransition are MSM vertices.
self.source.isValidMSMVertex() and self.target.isValidMSMVertex()
This is guaranteed by rule 4 for MethodStateMachine.

MethodStateMachine

1. A MethodStateMachine must have a method context.
self.context.oclIsTypeOf(Method)
2. A MethodStateMachine is specified by an operation, reachable via its context.

self.specification=
self.context.oclAsType(Method).specification

3. All transitions in a MethodStateMachine must be MethodTransitions.

self.transitions
— forAll(t|t.oclIsTypeOf(MethodTransition))

4. All vertices in a MethodStateMachine must be valid MSM vertices.
self.top.oclAsType(CompositeState).getAllSubvertices
— forAll(v]|v.isValidMSMVertex())

ReturnState

1. The return expression associated with a return state does not contain any method calls.!!

InvocationBox
1. The call procedure associated with an invocation box is a single action which is an invocation action.

self.callProc.action.oclIsKindOf (PrimitiveAction) and
(self.callProc.action.oclIsKindOf (ExplicitInvocationAction) or
self.callProc.action.oclIsKindOf (InvocationAction))

BoxExitState

1. The return variable of a box exit state is in the set of local variables defined for the MSM the box exit
state belongs to.

self.stateMachine.oclAsType(MethodStateMachine).localVars
— includes(self.returnVariable)
Additional operations

1. An operation that collects all vertices contained in a CompositeState recursively.

9 A more precise definition in OCL is omitted because due to the nature of the UML Action semantics it would be a fairly
complicated constraint which does not bring further clarification.
10 Well-formedness rule 5 for StateMachine in the current UML specification [OMGO03](2-152) which applies to state machines
describing a behavioural feature is similar to this but tries to specify an exceptional case where transitions emerging from an
initial pseudostate may have a trigger and refers only to call events. Unfortunately this rule and rules 5 and 6 for Transition
[OMGO03](2-154) do not seem to be consistent in the standard.

1 Since in accordance with UML1.5’s Expression metaclass we do not specify the expression language, we cannot express this
formally in OCL.
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context CompositeState::getAllVertices():Set(StateVertex)
result = self.subvertex — union (
(self.subvertex — select(oclIsTypeOf(CompositeState)))
— iterate(
c:CompositeState;
sv:Set(StateVertex)=Set{}
| sv — union(c.getAllSubVertices())

)
2. A StateVertex is valid in a PSM if it is either a valid PSM state or a valid PSM PseudoState.

context StateVertex::isValidPSMVertex() :Boolean
result = if self.oclIsKind0f(State) then
self.oclAsType(State).isValidPSMState ()
else if self.oclIsKindOf (PseudoState) then
self.oclAsType(PseudoState) .isValidPSMPseudoState()
else false

3. A State is valid in a PSM if its entry, exit, do-activity and internal transition are empty.

context State::isValidPSMState():Boolean
result = self.entry — isEmpty() and
self.exit — isEmpty() and
self.doActivity — isEmpty() and
self.internalTransition — isEmpty()

4. A PseudoState is valid in a PSM if it is not a history state.

context State::isValidPSMPseudoState():Boolean
result = self.kind <> #deepHistory and
self.kind <> #shallowHistory

5. A StateVertex is valid in an MSM if it is either a valid MSM state or a valid MSM PseudoState.

context StateVertex::isValidMSMVertex() :Boolean
result = if self.oclIsKind0f(State) then
self.oclAsType(State).isValidMSMState ()
else if self.oclIsKindOf (PseudoState) then
self.oclAsType(PseudoState) isValidMSMPseudoState()
else false

6. A State is valid in an MSM if its entry, exit, do-activity and internal transition are empty. A FinalState
is only a valid State if it is of type ReturnState.

context State::isValidMSMState():Boolean
result = self.entry — isEmpty() and
self.exit — isEmpty() and
self.doActivity — isEmpty() and
self.internalTransition — isEmpty() and
(self.oclIsKindOf (FinalState) implies
self.oclIsTypeOf (ReturnState))

NB: Notationally, we distinguish ReturnStates from other states by attaching the “bull’s eye” symbol
normally used for FinalStates. Notice that the state and the bull’s eye together form the graphical
representation (the concrete syntax) for the single abstract syntax element which is a ReturnState. As in
Figure 13, we may attach the same bull’s eye to several state boxes; this should be seen in the obvious way
as concrete syntactic sugar for the diagram variant which would include several bull’s eyes, one attached
to each state box, the abstract syntax being unaffected.

7. A PseudoState is valid in an MSM if it is not a history state.
context State::isValidMSMPseudoState():Boolean

result = self.kind <> #deepHistory and
self.kind <> #shallowHistory
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Fig. 13. Extended MSM fragment for updateClassDeleted

5. Formal definitions and consistency

Clearly, the designer will need to satisfy him/herself that the state diagrams, both PSMs and MSMs, con-
tained in a given model are consistent: that is, that it is possible to implement methods according to the
MSMs and have the resulting classes act in accordance with the PSMs. In this section we specify what this
consistency means.

First we consider some informal examples:

e The MSM for getAssos in Figure 9 is intuitively consistent with the PSM for Model as shown in Figure
8. Assume that the MSM is invoked with parameter ¢ and the precondition c!=null at the corresponding
loop transition in the PSM holds. During the execution of the MSM a Vector r is created and filled with
all associations which have c as source or target. We assume that isSourceOrTarget can be used to check
this property. The loop in which elements are added to r is executed k times where k=assos.size(). That
means the size of r can be at most assos.size(), i.e. the postcondition of the protocol transition is fulfilled.
The protocol transition has the same protocol state as source and target and thereby reflects that the
MSM does not change the protocol state of the Model object it is invoked on.

o If the MSM for getAssos added additional elements to r after looping through assos, the postcondition
would not hold in all cases and the consistency between MSM and PSM would be violated.

e Figure 13 shows an extension of the MSM fragment for updateClassDeleted which has been considered
before. Without going into details we assume that the following case distinction takes place in the MSM:
if the model associated with the ClassDiagramEditor on which updateClassDeleted is invoked contains
no classes, then the MSM performs actions such that the ClassDiagramEditor is in state “addAsso and
addInh disabled” after the execution of the MSM is finished. In the case that the number of classes in the
model is 1, the ClassDiagramEditor is in state “addInh disabled” after updateClassDeleted. Finally, if the
model contains more than one class, then the actions of the MSM cause a state change to “all buttons
enabled”.

On first sight the behaviour sketched here seems to fit well with the protocol specified by the PSM, but
in fact MSM and PSM are not consistent with each other in this case. The problem here is that the
execution of the MSM depends on the size of classes which belongs to another object. So far we have not
formally specified any connection between the state of the ClassDiagramEditor and the number of classes
in its associated Model. For instance, a call of updateClassDeleted could arrive at a ClassDiagramEditor
in state “all buttons enabled” when the number of classes in the associated model is zero. The MSM
will change the state of the ClassDiagramEditor to “addAsso and addInh disabled” in this case. Since
there is no corresponding protocol transition from “all buttons enabled” leading to this state in the PSM,
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consistency is violated. Similar problems arise for other combinations of ClassDiagramEditor state and
number of classes in the model. The informal description of our example in Section 2.1 implies that none
of these erroneous combinations should occur in the system.

A simple solution to this problem is, for example, to add a loop transition labelled by updateClassDeleted
to each state of the PSM which does not have such a transition yet. The MSM has to be changed such
that it includes a test whether a combination of ClassDiagramEditor state and number of classes in its
model is valid. If it is illegal, an error message is printed and the MSM does not change the object’s
protocol state. If the combination is valid, the execution should proceed as shown in Figure 13. A more
realistic alternative would be to throw exceptions in the MSM and to define an explicit error state in the
PSM.

The dependency between ClassDiagramEditor and Model could also be made explicit by an invariant,
for instance in OCL. However, we do not consider the effect of invariants on PSMs and MSMs in this
paper, but may do so in future work.

In order to formalise these intuitions of consistency we introduce formal definitions of both kinds of state
diagrams. For purposes of exposition we do not cover all of the UML notation and use simplified forms of the
diagrams. For instance, we do not explicitly consider hierarchical state machines, because each hierarchical
state machine can be “flattened”, i.e. transformed into an equivalent state machine without nested states. We
believe that most of the features which are missing and do not have a semantic equivalent in our simplified
version of state machines could be added without serious problems. Our definitions of MSMs and their
execution are adapted from definitions in [GLS*01] and [AEYO01].

We assume that there is a class diagram which defines a set of classes C. Each ¢ € C' is associated with a
finite set A, = {a1 : T1,...,a, : T} of typed attributes and a finite set M, of methods, where each method
m € M, has a type T, = T, X 7Ty, defining the call and return type of the method?. We allow a special
empty type void as call and return type for methods. Constructors of a class ¢ are typed as ordinary methods
with return type c. We only consider a default constructor which does not take any parameters.

Remember that we do not consider inheritance in our formalisation, since this raises many interesting
questions about the appropriate inheritance of behaviour, and so the distinction between operation and
method is unimportant here. One possibility to explore would be that the protocol state machine would be
written in terms of operations, and that the PSM defined for a base class would be inherited by subclasses.
Then when a subclass provided its own method implementing an inherited operation, the designer could
draw a new MSM for that method. This would open the door to considerations of behavioural subtyping:
we could ask to what extent the MSMs for different methods implementing an operation were compatible.

A PSM is unsurprisingly simply a labelled transition system with pre- and postconditions:

Definition 5.1. A protocol state machine (PSM) for a class ¢ consists of

e aset S, of states

e a labelled transition relation v C S. X L x S, where each label [ € L is of the form r = [pre]jm(z)/[post]
where

— r is a return parameter of type rTep,,

— m € M, is a method name,

— z is a formal parameter of type cT,,,,

— pre is a Boolean expression over A, U {z} specifying the condition under which the transition may be
taken,

— post is a Boolean expression over A.U{r, 2} specifying a condition which must hold after the execution
of m has been completed.

We do not prescribe the expression language used for pre and post but we assume that an expression can
be evaluated to true or false given values for A. U {z} and A. U {r, z}, respectively.

We will now define MSMs more formally. For a set X = {z1 : T1,...,z, : T} of typed variables, a
variable environment o over X is a function [z1 — ay,...,Z, — ap] where a; € T; U L1, for all i. The set of
all variable environments over X is denoted by X x. Attributes and attribute environments are treated in a

12 For simplicity we allow only one parameter and return value
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similar way. For the creation of new objects we assume that there exists a default attribute environment 7,
over A, for each class c.

Moreover let A = |J . Ac be the set of all attributes and O the set of all object identifiers. An object
environment is defined as a partial function w : C' = (O — X 4) and the set of all object environments is
denoted by 2.

We do not prescribe an action language: we only specify that, given an object environment w and variable
environment ¢ over X, an action is syntactically an expression over X, suitably extended with attribute
selectors, for which an evaluation function [ ]y, exists. We will later assume that the same evaluation
function can be used to evaluate the pre- and postconditions used in PSMs. An action may not involve the
invocation of methods or the creation or deletion of objects. Semantically an action « is a partial function
a: (Bx x Q) - (Bx x N) expressing the effect the action has on the variable environment and object
environment.

Definition 5.2. A method state machine (MSM) for a method m € M, consists of

e a set of local variables X, = {1 : T1,...,2n : T}, including those mentioned below
e a set B, of boxes as defined below
e a set of states S.,, partitioned into

— a set I, of internal states
— an entry state e.,, with formal parameters z : ¢T,,, and this : ¢ in X,

— A set of return states R., where each state r € R.,, has attached a return expression re over X,
of type rTep,

a set of box entry points Entry,,, and a set of box exit points Exit.p,

e a transition relation 6., C F x Act x T where F = {ec } U Loy U Exitem, T = Rem U I, U Entry,,,, and
Act is a set of actions a : (Xx_,, X Q) = (Zx_,, X Q)

Notice the “incompleteness” of the transition relation of an individual MSM: if the MSM reaches a box
entry point, it cannot go further based on the definition of this MSM alone. This makes sense because we
cannot know what the effect of the call on the environments should be. Later we will show how several MSMs
interact to “complete” the transition relation.

Definition 5.3. A box b € B., is not itself considered to be a state in the MSM: instead it has two
associated states:

e an entry point ¢, € Entry,,,
e an exit point r, € Exiten,.

A return variable y from X, is defined to hold the value returned from a box. There are two different
types of boxes which are defined as follows.

Definition 5.4. An object creation box cb € By, specifies a class identifier d € C' determining the class of
which a new object is to be created. The return variable of ¢b is of type d.

Definition 5.5. A method invocation box mb € B, specifies

e an object expression oe, determining the target object
e a class identifier d € C' determining the class'® of oe

e a method identifier [ € My

e an argument expression ae : ¢TIy

The return variable for box mb is of type r7Ty;.

Notice that any MSM is by definition well-typed, and that all method invocations occur in boxes.

13 As mentioned, we do not consider inheritance in this work, so polymorphism is not allowed: the class of the target object
must be given statically.
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5.1. Execution of MSMs

Suppose that we have a closed set MSM of MSMs: that is, each method invoked in an invocation box of an
MSM in MSM is itself defined by an MSM in MSM. We can then define the execution of MSMs in terms
of a global state machine.

Let the sets of states and of boxes for each MSM be pairwise disjoint and let IV be the set of all states,
X the set of all variables, and B the set of all boxes. Before we specify a global state machine, we give
definitions of a call stack and a global environment.

Definition 5.6 (Call stack). A call stack cs € B*N specifies the current position in each active MSM.
It is a stack by : ... : by : n of boxes b; and a state n on top. It must satisfy a coherence condition as
follows. Suppose that box b; contains method identifier mp, and class identifier cp,. Then box b;y1 if j <k
(respectively the state n if j = k), must belong to the MSM for method my, in class cp; This MSM must
exist, by the assumption that we have a closed set of MSMs.

Definition 5.7 (Global environment). Given a call stack ¢s = by : ... : bg : n, a global environment
ge=o0¢:...: 0, € X% associated with cs is a stack of variable environments. It must satisfy a coherence
condition as follows. For each j < k, o; is the local variable environment of the MSM containing box b;;1 if
j < k, or of the MSM containing n otherwise.

Definition 5.8 (Global state machine). A state of a global state machine (GSM) consists of a call stack
¢cs € B*N, a global environment ge associated with c¢s, and an object environment w.

There are four kinds of transitions: as in a pushdown system, the applicable transitions are always
determined by the state at the head of the stack. Suppose ¢s = by : ... : by : n where n is a state in
M € MSM, and let the global environment be ge = og : ... : o and the object environment be w.

1. If n is an entry state, an internal state or a box exit state, the only possible transitions are internal

transitions which are induced by transitions of M. Formally, suppose that n —= n/ is a transition in M.
Then

(by:...:bp:n,00:...:0p,w) = (by:...:bg:n's0o0 ... 0F,w)

is a transition in the global state machine, provided that a(o,w) = (0},,w’). Note that if (o4,w) is not
in the domain of the partial function «, there is no transition.

2. If n is a box entry state for an object creation box which we now call bg41, the only possible transition
is a creation transition, creating a new object and adding it to the object environment. If n = ¢, _,,
the entry state for byy1 and 7y, ., its exit state, let ¢ be the class specified in byy1. Then let w’ be the
object environment w updated by binding a fresh object identifier o of class ¢ to the default attribute
environment, i.e. w'(c)(0) = 7, and let o}, be the environment o} updated by binding the return variable
of box bg41 to o. Then

(br:...ibp:Coppy>00:... 1 0Ok,W)
= (b by Ty ,00 0. 0, W)

is a transition of the global state machine.

3. If n is a box entry state for a method invocation box which we now call b1, the only possible transition
is a call transition, pushing a new invocation onto the stack. If n = ¢, _,, the entry state for b1,
let the object expression, class, method and argument expression specified in bg41 be oe, ¢, m and ae
respectively. Then let ox41 be a new variable environment over X,,, in which the formal parameter of
m and this are bound to [a€]y,w, [0€]r,w respectively. (If either evaluation fails, there is no transition).
Let ec, be the entry state of the MSM for method m in class ¢. Then

(br:...:bp:Chypys00: ... OF,W)
= (b1 i . bp i bpy1 i €em, 00 .. Ok Okt1,W)
is a transition of the global state machine.

4. If n is a return state, the only possible transition is a return transition, popping the stack. If n = r € R,,,
let r4,_, be the exit state for box by_1, and o},_, the environment o;_; updated by binding the return
variable of box bi_1 to [re]s,w, where re is the return expression associated with r. (Again, if re fails to
evaluate, there is no transition). Then
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(br:...:bp:ry00:...: 01 :Of,Ww)
= (b1t bp—1 Ty 1,005 Of_q,W)

is a transition of the global state machine.

Note that the only non-determinacy in the global state machine is that arising from non-determinacy
inside individual MSMs: if they are deterministic, so is the GSM. Notice also that the behaviour of the GSM
respects the stack discipline. We will be most interested in how the GSM implements a particular method

call. We write s o s’ when for some class ¢ and method m, s = (by : ... : by : €cm,00 i .. : O, W),
s =01 :...:bp 100 :...: 0p,w') for some return state r € R, and there is some sequence of GSM
transitions s — ... s’, in which no intermediate state whose call stack contains at most k boxes has e.,, at the
head of the call stack. Without the restriction on intermediate states we might inadvertently “catch” more
than one invocation of m from within MSMs that have been activated earlier. Notice that if m is recursive
the call stack grows each time m is invoked so that e.,, is allowed to appear as head of the call stack in this
case.

5.2. Consistency between protocol and method state machines

So far MSMs and PSMs are only connected by method names which are used to label transitions in PSMs
and represent the context of an MSM. In this section we define what it means for an MSM to conform to a
protocol which is specified by a PSM.

There can be no formal connection unless the designer has specified the precise meanings of the states
in the PSM.' Accordingly, we assume that along with any PSM P we are given a function Ap which maps
an attribute environment to a state in P, which allows the following definition of an abstract state function.

Definition 5.9 (Abstract state function). Suppose we are given a PSM P for class ¢ with a function
hp: X4, — S. and a global state machine with a set of states S,. For a global state s = (¢s,o,w) in S, the

abstract state function h¥, : Sy — S. is defined by
h(s) = hp(w(c)(a(this)))
Notice that hgj is undefined for global states whose local variable this is not bound to an object of class c.

Definition 5.10 (Consistency). Let G be a GSM defined by a closed set MSM of MSMs, and let P be
a PSM for class c¢. G conforms to P with respect to a given initial global state s if and only if whenever

s —* g om s
that is, a method is executed from some global state which is reachable from the initial state) with s’ =
g

r=[pre]lm(z)/[post]  , .
yp'is a

(cs',0',w') and " = (cs”,0",w"), we have hga(s’) = p and hgg(s") = p’ where p
transition of P, [pre],. = true and [post] s = true

Note that because the PSM plays no role in the execution of the global state machine, but acts as an
independent specification of what it should achieve, it suffices to specify consistency with one PSM at a time.
Note also that we are not requiring that every transition in the PSM has some counterpart in the GSM.
This is deliberate: the PSM for a reusable class will specify all the capabilities of the class, not all of which
may be used in a particular system (GSM).

Since we are requiring that every method execution in the GSM is reflected in some PSM transition,
the reader can see that we are (as usual) following UML1.5 in expecting that any operation which may be
invoked when the object is in a given state is shown on a transition originating in that state in the PSM. If
the operation is permitted, but will not cause a state change in the PSM, it is still shown, on a transition
from that state to itself. In UML2.0 the rules are slightly different: any operation not causing a state change
is permitted in any state, without needing to be shown on the PSM. The best way to handle this seems
to be to regard the omission of the corresponding self-transitions as syntactic sugar: we could agree that a
UML2.0 PSM drawn by a designer is pre-processed by adding self-transitions before the PSM is formally

14 This is sometimes done in practice by adding constraints to the states of a state diagram.
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a N

this.oclinState("in addAsso and addInh disabled" ﬁ

ClassDiagramEditor:updateClassDeleted(c:Class)

[model.classes.size()==0]

[model.classes.size()==1

)
.

[model.classes.size()>1]

Fig. 14. Incomplete MSM for updateClassDeleted

interpreted. (This approach has the advantage of retaining the flexibility to adopt the earlier convention,
which is more expressive, since it permits the designer to show that certain operations may not be legal in
certain states. The UML2.0 rule cannot distinguish an operation which does not cause a state change from
one which is not permitted, which seems unfortunate.)

An obvious question to ask is whether consistency is decidable. The answer depends on the choice
of action language, but for any reasonable action language Turing Machines can be coded as MSMs, in
which case it is easy to reduce the Halting Problem to a consistency problem, which must therefore be
undecidable. Nevertheless, some tool support is possible. For example, a tool might construct representative
object configurations for the different combinations of abstract states in the PSMs, symbolically execute the
MSMs and check against the PSM transitions. Even if the tool’s checking was not exhaustive, it might find
useful counterexamples, helping the user to develop the design.

6. Incomplete method state machines

In our formalisation of the execution of MSMs we have assumed that a closed set of MSMs is given. However,
it is not realistic that a designer will define an MSM for each method, even if s/he is supported by a tool.
Therefore we will now briefly discuss work in progress concerning alternative ways of describing a method’s
behaviour.

We permit the description of a method on three levels of detail: in terms of traditional pre- and post-
conditions, as incomplete MSMs, or as executable complete MSMs which have been introduced in Section
5.

An incomplete MSM is an MSM fragment of which an example has already been considered above.
Here we give a more precise definition: an incomplete MSM can contain placeholder transitions, labelled
by *, and OCL constraints attached to its states. The incomplete MSM based on the MSM fragment for
updateClassDeleted using this notation is given in Figure 14. Note the use of placeholder transitions, and the
replacement of English constraints by OCL.

We expect that a designer will usually provide a set of method descriptions M D which consists of
a mixture of pre- and postconditions, incomplete and complete MSMs. The choice of which description
technique is used depends on how interesting (or difficult to design) a method appears to the designer. We
do not expect this set to contain complete MSMs for all methods that are invoked in invocation boxes.

Both pre- and postconditions and incomplete MSMs are not executable but help in restricting the set of
valid GSMs for the system. The complete MSMs in M D provide a partial definition of what a valid GSM
looks like. The non-executable descriptions in M D provide some information about the missing parts.
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As mentioned before the pre- and postconditions for a method can be represented in the PSM for the
method’s class. That means for each method m that is described by a pre- and postcondition in M D a
GSM which is valid with respect to M D has to conform to the PSM for the class of m with this additional
information.

Furthermore a valid GSM has to respect the structure specified by the incomplete MSMs in M D and
fulfil their constraints. For each placeholder transition there has to be a sequence of transitions in the GSM
which may include calls of other methods or creation of objects, i.e. a placeholder transition may stand for
a transition sequence during which an object creation or invocation box is visited. The sequence of global
transitions has to fulfil the constraints attached to the source and target states of the placeholder transition
with respect to the corresponding PSM.

We do not go into more detail here, but hope to continue working on this idea in future work, especially
in the context of tool support.

7. Impact of the move to UML2.0

Since we write at a time (March 2005) when UML1.5 is still the OMG’s officially approved version of UML,
but UML2.0 is (finally) approaching the end of the OMG’s revision and adoption process, it is natural to
ask whether the work will be invalidated by the adoption of the new standard. Fortunately it is clear that
it will not; indeed we have been influenced by draft proposals available over the last several years.

The run-to-completion semantics of UML2.0 state diagrams has not been altered in any way which
affects our discussion of the problems of recursion and callbacks, or our proposed solution. The metamodel
for UML2.0 state diagrams is also not radically different from the UML1.5 metamodel used here. As here,
protocol state machines and their transitions are modelled as specialisations of the more general concepts.
One minor change is that in UML1.5, a Guard may be associated with each Transition, playing the role of
precondition; there is no similar metamodel class to play the role of postcondition. Accordingly in this work
we simply add a PostCondition metaclass to play the latter role. In UML2.0, Constraints are used for both
purposes; a simple change to our metamodel would be required. As remarked earlier, whilst UML1.5 permits
actions on the transitions of a protocol state machine, UML2.0 does not; we already impose the restriction,
which seems to be a natural consequence of the intended use of protocol state machines.

UML2.0 radically revises activity diagrams. We have been asked whether it would be appropriate to use
UML2.0 activity diagrams instead of the method state machines we propose here. Our reason for not choosing
to do so is that the semantics for UML2.0 activity diagrams, while sensibly based on Petri nets, is vague in
many important respects. In particular, significant work would be required to clarify how one behaviour is
invoked from another (the equivalent of our invocation boxes). On reflection, it seems undesirable to try to
impose the significant clarifications and restrictions on activity diagrams that would be required, because it
is unclear whether the decisions we would have to make would be compatible with other intended uses of
activity diagrams.

Our method state machines can be seen as a kind of UML2.0 behavioural state machines, used here
to model methods. Although it is suggested (at least in UMLL.5) that state machines be used to model
operations, it is not explained how this is to be done. In particular, to do so precisely requires some way to
specify how one operation invokes another, that permits semantically sensible use of recursion and callbacks.
Our extension of state machines explains how to do this with only a small amount of extra notation, and
avoids undesirable impacts on any other modelling practice.

8. Introductory example revisited

Finally we revisit the example discussed in the introduction, Figure 1. If the designer modelled with PSMs
and MSMs as introduced in this paper, the state diagram would be split into a PSM and MSMs for f and g.
The PSM specifies unequivocally that an object in state S1 is in state S2 after f has been executed, whatever
further invocations are performed during f.

Under the assumption that the set containing the MSMs for f and g is consistent with the PSM, an
object calls g during the execution of the MSM for f when it is in an appropriate state, i.e. either in S1 or
in S2. According to the specification of g in the PSM, the object is either in S3 or S4 after the execution of
the MSM for g has finished, depending on which state it was in at the time of g’s invocation. In either case
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the MSM for f has to perform further actions to guarantee that the object is in S2 after its completion, as
specified in the PSM.

Variants of the notation might be considered. For example, we might permit annotation of transitions
to show what callbacks were expected to happen. However, the designer of the class will not always be in a
position to know what callbacks might happen, if other classes in the system are designed by other people.
(This need not prevent the designer knowing what the state after the transition will be, given adequate
contracts for called methods.)

9. Related work

We have used work by others for our definitions of PSMs and MSMs. PSMs are mentioned in UML1.5
[OMGO3] and specified in more detail in UML2.0 [OMGO04]. Since the UML standard must concern itself
with inheritance, operations and methods are differentiated there. Further differences to our work are that
PSMs are less constrained and less formally defined than here. For example all kinds of events can be attached
to a ProtocolTransition in UML2.0, not only call events. The proposal also introduces additional features
such as, for instance, state invariants for PSMs.

We have given a more specific and simpler definition of PSMs which is easier to handle formally but
powerful enough for most practical purposes. Almost all of our well-formedness rules are described in OCL
and we did not change the UML metamodel but only extended its StateMachine package. The additional
features suggested in [OMGO04] could be added to our model but would result in further extensions of the
set, of well-formedness rules and the StateMachine metamodel.

The formalism for MSMs presented in this paper is based on recursive state machines, which have been
defined in [AEY01], and sequential class machines as introduced in [GLS'01]. Recursive state machines are
extensions of ordinary state machines where a state can correspond to a possibly recursive invocation of a
state machine. They can be used for modelling sequential imperative programs with recursive procedure calls.
Besides a definition [AEY01] also contains a complexity analysis of recursive state machines concentrating
on reachability and cycle detection. Similar results have been achieved independently in [BGRO1].

Class machines are an object oriented extension of recursive state machines. The semantic definition of
their sequential variant in [GLS*01] covers exceptions, inheritance and object creation in addition to what
we have presented as MSMs. Adding a mechanism for multi-threading leads to the definition of concurrent
class machines. In contrast to our work class machines are considered in isolation, not in conjunction with a
more abstract modelling technique, and are not embedded into UML.

There is much work on formalisation of UML state diagrams; we only present a small subset. All of
the approaches differ from ours in that they do not consider the problem of recursive calls. In [RACHO00]
a formalisation with labelled transition systems and algebraic specifications written in the specification
language CASL is presented. Labelled transition systems are also suggested as formalism in [vdB01], where
a structured operational semantics for UML state diagrams is introduced. Both in [GPP98] and in [Kus01]
graph transformations are used as basis for state diagram formalisation, but these works differ in detail;
[BCRO2] uses ASMs. In [LMM99] state diagrams are first mapped to extended hierarchical automata and
then a semantics for these specific automata is defined in terms of Kripke structures.

The application of the Observer pattern can be problematic when there are cyclic dependencies between
subjects and observers or when the order of updates is of importance. In [Gru02] these two problems and
their possible solutions in Java are discussed. Our approach allows a designer to model these problems and
their solutions.

10. Conclusions and further work

We have pointed out that the current UML semantics for state diagrams is not sensible for situations involving
recursive method calls. After showing this problem on an example we have presented an alternative approach
for modelling the internal behaviour of objects using UML. In contrast to the current version of UML we
differentiate between a loose specification of the effect of a method on an object and an executable machine
representing an implementation of a method. We have introduced PSMs and MSMs for these purposes
and defined what it means for a set of MSMs to be consistent with a PSM. Our work is fully compatible
with suggestions in UML2.0 concerning the use of protocol state machines and behavioural state machines
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modelling methods; it may be seen as explaining in practical detail how to do what is, in the UML2.0
standard, merely hinted at.

In future we would like to consider tool support; indeed we undertook this work because the recursive
call problem prevented us from making the progress we were aiming for with work on providing tool support
for the concurrent development of state and sequence diagrams. An interesting extension of MSMs would be
to add inheritance, which as briefly mentioned in Section 5 would raise both theoretical questions and issues
in practical modelling.
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