
DOI 10.1007/s00165-007-0044-5
BCS © 2007
Formal Aspects of Computing

Formal Aspects
of Computing

Unifying theories in ProofPower-Z
Marcel Oliveira1, Ana Cavalcanti2 and Jim Woodcock2

1Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Campus Universitário,
Natal, 59072-970, Brazil. E-mail: marcel@dimap.ufrn.br
2Department of Computer Science, University of York, York, UK

Abstract. The increasing interest in the combination of different computational paradigms is well represented by
Hoare and He in the Unifying Theories of Programming (UTP). In this paper, we present a mechanisation of part
of that work in a theorem prover, ProofPower-Z; the theories of alphabetised relations, designs, reactive and CSP
processes are in the scope of this paper. Furthermore, the mechanisation of Circus, a language that combines Z,
CSP, specification statements and Dijkstra’s guarded command language, is also presented here. We also present
an account of how this mechanisation is achieved, and more interestingly, of what issues were raised, and of our
decisions. We aim at providing tool support not only for CSP and Circus, but also for further explorations of
Hoare and He’s unification, and for the mechanisation of languages whose semantics is based on the UTP.

Keywords: Relational semantics; Theorem proving; Circus.

1. Introduction

Researchers have recently shown a lot of interest in the combination of programming paradigms, with the design
of several languages to describe and reason about different aspects and artifacts of software development. Hoare
and He gave one of the most significant contribution towards unification [HJ98]. In the Unifying Theories of Pro-
gramming (UTP), they use Tarski’s relational calculus to give a denotational semantics to constructs from several
programming paradigms. Relations between an initial and a subsequent observation of computer devices are
used to give meaning to specifications, designs, and programs. Observational variables and associated healthiness
conditions characterise theories for imperative, communicating, or reactive processes and their designs.

The relations are defined as predicates over observational variables that record information relevant to the
characterisation of the program behaviour; examples are the global variables of the program themselves, and a
variable to record whether the program has finished or not. The initial observations of the value of each variable
are represented in the predicates using references to the undecorated names of these variables, and subsequent
observations are represented using the names of the variables decorated with a dash. This follows the style of
languages like Z, for example. Precisely, every predicate is a pair (αP, P), where αP is the alphabet: the set of
observational variables that can be free in the formula P.

There are several theories in the UTP, which model different (combinations of) programming paradigms.
Many theories share common ideas; sequential composition, conditional, nondeterminism, and parallelism are
some of them. Refinement is interpreted as inclusion of relations: reverse implication. Healthiness conditions are
used to characterise the relations that belong to a theory. They are often expressed in terms of an idempotent
function φ that makes a program healthy. Every healthy program P is a fixed point of φ.

Correspondence and offprint requests to: M. Oliveira, E-mail: marcel@dimap.ufrn.br

(2013) 25: 133–158

M. Oliveira et al.

Fig. 1. Theories in the UTP

Figure 1 describes how some UTP theories are related. Relations are predicates whose alphabet includes
undashed and dashed variables. Designs are models for specifications written in terms of pre and postconditions.
Reactive processes are programs whose behaviour may depend on interactions with an environment. Finally, the
theory of CSP processes is a failures-divergences model for CSP, enriched with state; they can be characterised
as relations that result from applying R to designs [CW06]. This healthiness condition characterises the reac-
tive processes; it is defined as the composition of three other healthiness conditions, R1, R2 and R3, which are
described in Sect. 3.4.

The mechanisation of these theories enables a further exploration of the UTP. Our work brings to light
some important aspects of the definitions of alphabets and the healthiness conditions. Further work is bound to
encourage precision in the definition of new theories, and in the characterisation and proofs of laws.

Following the trend of language integration, Circus [CSW03] combines a model-based language, Z [WD96], a
process algebra, CSP [Hoa85], Dijkstra’s language of commands [Dij76], and specification statements in the style
of Morgan [Mor94]. It differs from other combinations [TA97, RWW94, Fis97, TS99] in that it has an associated
refinement theory [CSW03, OCW05].

The early Circus semantics [WC01] did not allow us to prove the refinement laws. For this reason, we redefined
the Circus semantics as a deep embedding of Circus in Z [Oli05b]. In this approach, the syntax and the semantics
of Circus were formalised in Z. Based on this new semantics, we proved over 90% of the 146 proposed refinement
laws. The mechanical proof of these laws requires the mechanisation of the Circus semantics, and is the basis for
the development of its theorem prover.

In subsequent work [OCW06b], we presented the first step towards automating the Circus semantics and
the proof of its refinement laws: the mechanisation of the UTP in the theorem prover ProofPower-Z [PPW]. The
definitions of the theories of relations, designs, reactive processes, and CSP, and more than five hundred theorems,
is the result of our work. In this paper we take a step further. First, we present the mechanisation of the theories
presented earlier [OCW06b] in more detail. Specifically, the theory of CSP is shown in much more detail here.
Moreover, we present the mechanisation of the semantics of the Circus actions in ProofPower-Z based on the
theories presented previously [OCW06b].

In early work [SJ02], Sherif and He present a timed extension of Circus whose semantics is based on a
UTP theory for CSP processes with a notion of time. Qin et al. used the UTP to formalise the semantics of
TCOZ [QDC03]; this is a combination of CSP and Object-Z. This semantics is being used as a reference docu-
ment in the development of tools for TCOZ and as a semantic foundation for proving soundness of these tools. We
have used the UTP model [WH02] in order to give a formal semantics to a programming language that contains
shared variables. The work that we present here provides mechanical support not only to Circus, but also to any
language that has the UTP as its theoretical basis.

The choice of the theorem prover for mechanising Circus and its refinement calculus was a major concern.
ProofPower-Z is a higher-order tactic-based theorem prover implemented using New Jersey SML [Pau91]; it
supports specifications and proofs in Z. It extends ProofPower-HOL [Art], which builds on ideas arising from
research at the Universities of Cambridge [GM93] and Edinburgh [GMW79]. Some of the extensions provided
by the New Jersey SML were used in ProofPower-Z, in order to achieve features such as a theory hierarchy,
extension of the character set accepted by the metalanguage ML, and facilities for quotation of object language
(Z or HOL) expressions, and for automatic pretty-printing of such expressions. Since it supports a powerful logic,
ProofPower-Z has a lower level of automation than other theorem provers that support, for example, first-order
logic. On the other hand, it has been successfully used in industry [KAW96, CCO05].

134

Unifying theories in ProofPower-Z

As it is an extension of ProofPower-HOL, definitions can be made using Z, HOL, and even SML, which
is the input command language. ProofPower-Z also offers the possibility of defining proof tactics, which can
be used to reduce and modularise proofs. Among other analysis support, it provides syntax and type checking,
schema expansion, precondition calculation, domain checking, and general theorem proving. Using the subgoal
package, goals can be split in simpler subgoals. The Z notation used into ProofPower-Z is almost the same as
that of the Z standard [ISO02]; we explain the specificities of ProofPower-Z’s notation as needed.

ProofPower-Z also provides a theory hierarchy, in which each theory is fully populated with appropriate defi-
nitions and theorems. For instance, the theory z sets contains information about Z sets and the theory z relations
inherits from z sets and adds operators over sets which are specific to sets of ordered pairs, such as dom and ran.
In ProofPower-Z, the theory z library is recommended as the parent of any theory that the user creates to work
on Z; hence, it is used as the parent of all theories presented in this paper.

The large number of formally verified theories, including algebra, set theory, and many Z related theories,
was one of the reasons for the choice of ProofPower-Z as the theorem prover used in the mechanisation of the
Circus refinement calculus. Furthermore, by providing features like theory hierarchy and proof tactics, Proof-
Power-Z fosters the reuse of our results. The development of new theories in other theorem provers based on an
axiomatisation of our results is yet another possibility of reuse.

In Sect. 2, we discuss design issues and describe the hierarchy of theories that we created. Section 3 describes
the mechanisation of the UTP relations, designs, reactive processes, and CSP. The proof of a theorem illustrates
our approach. Circus and its mechanisation is presented in Sect. 4. Finally, in Sect. 5, we draw our conclusions
and describe future work.

2. Design issues

In the automation of the UTP, the first difficulty that we faced was that the name of a variable is used to refer
both to the name itself and to its value. For instance, in the relation ({x}, x � 0), the left-most x indicates the
name x, while the right-most x stands for the value of x. We explicitly differentiate between variable names and
values.

One of the options to give semantics to relations is axiomatically: the behaviour of relations is defined using
axioms. We discarded this option because we would not be able to use most of the theorems that are built-in in
ProofPower-Z to reason about sets and other models. We decided to give a set-based model for relations: for us,
they are pairs of sets.

Since we want to prove refinement laws, our mechanisation must offer the possibility of expressing and
proving meta-theorems. By way of illustration, we must be able to express and prove the left-unit law for
Skip: (∀ a : ALPHABET ; A : CIRCUS ACTION • Skipa; A � A). A shallow embedding, in which the
mapping from language constructs to their semantic representation is part of the meta-language, would not
allow us to express such theorems. We use a deep embedding, where the syntax and the semantics of the alp-
habetised relations is formalised inside the host language [BG95]. This is one of the differences between our
embedding and that of [BG95], where Bowen and Gordon present a shallow embedding of Z into HOL.

The syntax of relations and designs could be expressed as a data type (Z free types), say PRED, for the
relations. In this case, the semantics would be given by a partial (�→) function f : PRED �→ PRED. For instance,
the syntax of relations could be defined as follows.

PRED ::� True(ALPHABET) | ... | And(PRED × PRED) | ...

The semantic function would have type PRED → S, where S would be some structure in the semantic model.
If we took this approach, most of the proofs would be by induction over PRED. Any extension to the language
would require proving most of the laws again. Instead, we express the language constructors as functions; this is
a standard approach in functional languages [SS99]. For instance, the function ∧R: (PRED × PRED) → PRED
can be used to define conjunction. Extensions require only the definition of the new constructors, and that they
preserve any healthiness conditions; no proofs need to be redone.

Using SML as a meta-language would not give us a deep embedding. In ProofPower-Z, we were left with
the choice of Z or HOL. If we used HOL as meta-language, reusing the definitions of Z constructs would not
be possible, because they are written in SML. Because of our knowledge of Z, and the expressiveness of its tool-
kit, we have used Z to express the syntax and the semantics of alphabetised relations. This approach gave us a
deep embedding, which, besides allowing us to prove meta-theorems like our refinement laws, has the additional
advantage of providing the possibility of introducing new predicate combinators.

135135

M. Oliveira et al.

Fig. 2. Theories in the UTP

Figure 2 presents our hierarchy of theories. The theory utp-z-library extends the ProofPower-Z theory z-library
and provides a more elaborate library of theorems about Z sequences. The theory utp-rel is that of general UTP
relations. It includes basic alphabetised operators like conjunction and existential quantification; relational oper-
ators like alphabet extension, sequential composition, and skip; and refinement. Like all our theories, it includes
the operators’ definitions and their laws. Our proofs of the laws of a theory do not expand definitions of its parent
theory; it uses the parent’s laws. This provides modularisation and encapsulation.

Two theories inherit from utp-rel: utp-okay is concerned with the observational variable okay, and utp-wtr
with wait, trace, and ref . These are the main observational variables of the theory of reactive processes. The
theory utp-okay is the parent of utp-des, the theory for designs. Along with utp-wtr, utp-okay is also one of the
parents of the reactive processes theory, utp-rea, which redefines part of utp-rel. The theory for CSP processes,
utp-csp, inherits from both utp-rea and utp-des. The theory for Circus, utp-circus, inherits from utp-csp. Besides
CSP, Circus also includes Z, specification statements, and guarded commands. Nevertheless, in Circus they are
given a reactive semantics. For this reason, we have not created a separate theory for each one of them.

In the next section we describe in detail our theories. For the sake of presentation, we do not present the Z as
generated by the ProofPower-Z document preparation tool, which has an awkward indentation for expressions.
Instead, we present a better indented copy of the pretty-printed ProofPower-Z expressions.

3. Encoding the UTP

The ProofPower-Z theory z library provides the Z toolkit. We enriched this theory with definitions of operations
on sequences like prefix and subtraction, and with theorems on sequences and relations; for that, we created a
separate theory utp-z-library.

3.1. Relations

The first substantial theory in our work is utp-rel. It provides a set-based model for alphabetised relations. In this
theory, we define alphabets, relations, and basic programming constructs as we describe in the sequel.

Alphabets. A name is an element of the basic type (given set) [NAME]. Each relation has an alphabet of type
ALPHABET �̂ P NAME. The Z abbreviation N �� A is provided as N �̂ A in ProofPower-Z; it gives a
name N to the mathematical object A. Every alphabet a contains an input alphabet of undashed names, and an
output alphabet of dashed names. Instead of using free types, which would lead to more complicated proofs in
ProofPower-Z, we use the injective (�) function dash : NAME � NAME to model name decoration. The set
of dashed names is defined as the range of dash. The complement of this set is the set of undashed names; hence,
names are either dashed or undashed , but multiple dashes is allowed. For the sake of conciseness, we omit the
definitions of the functions in a and out a, which define the input (undashed) names and the output (dashed)

136

Unifying theories in ProofPower-Z

names of a given alphabet. All the definitions and proof scripts for the theories that we present here can be found
elsewhere [Oli05a].

An alphabet a in which n ∈ a ⇔ n′ ∈ a, for all undashed names n, is called homogeneous. For us, n′ is encoded
as dash(n). Similarly, a pair of alphabets (a1, a2) is composable if n ∈ a2 ⇔ n′ ∈ a1, for every undashed name n;
this notion is used in the definition of relational sequence.

Values and types. A value is an element of the free-type VAL, which can be an integer, a boolean, a set of values,
a sequence of values, a pair of values, a communication channel, or a special synchronisation value.

VAL ::� Int(Z) | Bool(B) | Set(F VAL) | Seq(seq VAL) | Pair(VAL × VAL) | Channel(NAME) | Sync

This definition introduces the set of values VAL, which has the constant Sync as one of its elements. In Proof-
Power-Z, Bool(B) stands for the Z constructor Bool〈〈B〉〉, which introduces a collection of different constants in
VAL, one for each element of the set B, ProofPower-Z’s boolean type.

We have chosen not to take the same approach as for the relational predicates because we are not particularly
interested in the semantics of values. Furthermore, the type VAL can be extended without any impact on the
proofs of our theories.

Although we are defining an untyped theory, some observational variables have types; for instance, the
variable okay used in the theory of designs and in the theory of reactive processes is a boolean. For this rea-
son, we specify some types in our theory. For example, Booleans are in the set BOOL VAL that is defined as
{Bool(true), Bool(false)}, and channels are in the set CHAN VAL �̂ {n : NAME • Channel(n)}.

In Z, a set comprehension {x : s | p • e} denotes the set of all expressions e such that x is taken from s and satis-
fies the condition p. Usually, p and e contains one or more free occurrences of x; a true condition may be omitted.

Events are pairs: the first element is a communication channel and the second element is a communicated
value. They are elements of EVENT VAL �̂ {c : CHAN VAL; v : VAL • Pair(c, v)}. In Z, a set-comprehension
may declare more than one variable.

Expressions. A couple of definitions allow us to abstract from the syntax of expressions. The set of relations (↔)
between values is REL �̂ VAL ↔ VAL. The set of unary functions is UN F �̂ VAL �→ VAL; similarly, for
binary functions we have the set BIN F that is defined as the set of partial functions from pairs of values to values.
For example, the sum function can be represented as {(Int(0), Int(0)) �→ Int(0), (Int(0), Int(1)) �→ Int(1), . . .}. An
expression can be a value, a name, a relation, or a unary or binary function application.

EXP ::� Val(VAL) | Var(NAME) | Rel(REL × EXP × EXP)
| Fun1(UN F × EXP) | Fun2(BIN F × EXP × EXP)

The definitions for unary functions, binary functions, and relations deal only with values; Fun1(f , e) can only be
evaluated once e is evaluated to some VAL.

A binding is a partial function from NAME to VAL, and therefore we define the set of all bindings, BINDING,
as NAME �→ VAL. The type BINDINGS represents sets of bindings, P BINDING. Given a binding b and an
expression e with free variables in the domain (dom) of b, Eval(b, e) gives the value of e in b (beta-reduction).

Relations. Alphabetised relations are modelled by the type REL PRED defined below. Basically, a relation is a
pair: the first element is its alphabet, and the second element is a set of bindings, which gives us all bindings that
satisfy the UTP predicate modelled by the relation. The domain of the bindings must be equal to the alphabet.
Alternative models which relax this restriction are possible; however, they would lead to more complex definitions
as we discuss in Sect. 5.

REL PRED �̂ {a : ALPHABET ; bs : BINDINGS | (∀ b : bs • dom(b) � a)}
In Z, the omission of a constructor expression in a set-comprehension {x0 : s0; . . . ; xn : sn | p} denotes a
set-comprehension {x0 : s0; . . . ; xn : sn | p • (x0, . . . , xn)}.

Here, we use Z axiomatic definitions, which introduce constrained objects, to define our constructs. For
example, the axiomatic definition below introduces a symbol x, an element of s, satisfying the predicate p.

x : s

p

Our first construct represents the boolean true. For a given alphabet a, TrueR(a) is defined as the pair with
alphabet a, and with all the bindings with domain a.

137

M. Oliveira et al.

TrueR : ALPHABET → REL PRED

∀ a : ALPHABET • TrueR(a) � (a, {b : BINDING | dom(b) � a})
We subscript the constructs in order to make it easier to identify which theory they belong to; we use R for the
theory of relations.

Nothing satisfies false: the second element of FalseR(a) is the empty set.

FalseR : ALPHABET → REL PRED

∀ a : ALPHABET • FalseR(a) � (a, ∅)

This operator is the main motivation for representing relations as pairs. If we had defined relations just as sets
of bindings with the same domain a, which would be considered as the alphabet, we would not be able to tell
the difference between FalseR(a1) and FalseR(a2), since both sets would be empty. These predicates have different
alphabets; hence, they are indeed different and must be differentiated. It is also important to distinguish between
TrueR(∅) and FalseR(∅): the second element of the former is the set containing the empty binding, while the
second element of the latter is the empty set.

An equality compares the value of a variable with the value of an expression. It can only be applied to triples
(a, n, e) where the name n is a member of the alphabet a and the set of free variables of the expression e is a subset
of a. If we defined equality as a partial function, domain checks would be required during proofs. Instead, we
define a total function on the set of tuples (a, n, e) that satisfy these conditions (WF EqualsR).

�R: WF EqualsR → REL PRED

∀ a n e : WF EqualsR •
�R (a n e) � (a n e.1, {b : BINDING | dom(b) � a n e.1 ∧ b(a n e.2) � Eval(b, a n e.3)})

The alphabet of an equality is simply the alphabet given as argument. For a given alphabet a, name n, and
expression e, such that n ∈ a and the free variables of e are in a, the function �R (a, n, e) returns a relational
predicate (a, bs), in which for every binding b in bs, dom(b) � a and b(n) � Eval(b, e).

In Z, t.n refers to the n-th element of a tuple t. For instance, a n e.1 represents the first element of a n e,
which corresponds to the alphabet.

A similar equality encoded in this theory compares the values of two expressions. It is encoded as a function
from WF ALPHABET EXPRESSION to UTP relations. The type WF ALPHABET EXPRESSION is the
set of triples (a, e1, e2) where the free variables of both expressions e1 and e2 are in the alphabet a.

�+R: WF ALPHABET EXPRESSION → REL PRED

∀ a e e : WF ALPHABET EXPRESSION •
�+R (a e e) � (a e e.1, {b : BINDING

| dom(b) � a e e.1 ∧ Eval(b, a e e.2) � Eval(b, a e e.3)})
The alphabet of this equality is also the alphabet given as argument. For a given alphabet a, and expressions
e1 an e2, such that the free variables of both e1 and e2 are in a, the function �+R (a, e1, e2) returns a relational
predicate (a, bs), in which for every binding b in bs, dom(b) � a and Eval(b, e1) � Eval(b, e2).

As we are working directly with the semantics of predicates, we are not able to give a syntactic characterisation
of free variables. Instead, we have the concept of an unrestricted variable, which is actually not equivalent to that
of a free variable.

UnrestVar : REL PRED → P NAME

∀ u : REL PRED • UnrestVar(u) � {n : u.1 | ∀ b : u.2; v : VAL • b ⊕ {n �→ v} ∈ u.2}
For a relation u, a name n from its alphabet is unrestricted if, for every binding b of u, all the bindings obtained
by changing the value of n in b are in u. In Z, f ⊕ g stands for the relational overriding of f with g. If a variable
is not a free variable of a predicate, then it is unrestricted, but the converse does not hold. For instance, x is
unrestricted in x � x, but it is a free variable.

Unrestricted variables are necessarily untyped, as they can assume any value in VAL. As previously discussed,
however, the observational variables are typed. As a consequence, we need a weaker concept to express that some
variables are unrestricted within their types. The function UnrestTypedVar returns a boolean that states if a given
variable n is unrestricted within its given type T in a given predicate u.

138

Unifying theories in ProofPower-Z

UnrestTypedVar : REL PRED × NAME × P VAL → B

∀ u : REL PRED; n : NAME; T : P VAL •
UnrestTypesVar(u, n, t) ⇔ (∀ b : u.2; v : T • b ⊕ {n �→ v} ∈ u.2)

The predicate that checks if a variable is unrestricted within its type is similar to the one used for UnrestVar;
however, it does not check all possible values v in VAL, but only values v in T , which is a set of VALues.

Operators. All usual predicate combinators are defined. Conjunctions and disjunctions extend the alphabet of
each relation to the alphabet of the other. The function ⊕R is alphabet extension; the values of the new variables
are left unconstrained. In the following definition we make use of the Z domain restriction operator A � R: it
restricts the domain of a relation R : X ↔ Y to a set A, which must be a subset of X , ignoring any member of
R whose first element is not a member of A.

⊕R : REL PRED × ALPHABET → REL PRED

∀ u : REL PRED; a : ALPHABET
• u ⊕R a � (u.1 ∪ a, {b : BINDING | (u.1 � b) ∈ u.2 ∧ dom(b) � u.1 ∪ a})

Conjunction is the union of the alphabets and the intersection of the extended set of bindings of each relation.

∧R : REL PRED × REL PRED → REL PRED

∀ u1, u2 : REL PRED • u1 ∧R u2 � (u1.1 ∪ u2.1, (u1 ⊕R u2.1).2 ∩ (u2 ⊕R u1.1).2)

The definition of disjunction is similar, but the second element of the result is the union of the extended set
of bindings. We have proved that these definitions are idempotent, commutative, and associative, and that they
distribute over each other [Oli05a]. We have also proved that TrueR is the zero for disjunction and the unit for
conjunction; similar laws were also proved for FalseR. However, restrictions on the alphabets must be taken into
account. As an example, we present below the unit law for conjunction. The ProofPower-Z notation n � t gives
name n to a theorem t. In Z, the quantification ∀ x : a | p • q is equivalent to the predicate ∀ x : a • p ⇒ q.

REL True ∧R id thm1 � ∀ a : ALPHABET ; u : REL PRED | a ⊆ u.1 • u ∧R TrueR(a) � u

The value of the conjunction u ∧ true is u, but the alphabet of the truth must be a subset of the alphabet of u.
Otherwise, the conjunction may have a larger alphabet and the theorem does not hold.

The negation of a relation r does not change its alphabet. Only those bindings b that do not satisfy r (b �∈ r.2)
are included in the resulting bindings. For conciseness, we omit the trivial definitions of implication (⇒R),
equivalence (⇔R), and conditional expressions (�R �R) in terms of the operators above.

The function −R removes variables from the alphabet of a relation using domain anti-restriction to remove
names from the set of bindings. It is defined as u −R a � (u.1 \ a, {b : u.2 • a −� b}). Complementary to domain
restriction, the domain anti-restriction operator A−�R, ignores any member of R, whose first element is a member
of A. Existential quantification ∃−R simply removes the quantified variables from the alphabet and changes the
bindings accordingly.

∃−R : ALPHABET × REL PRED → REL PRED

∀ a : ALPHABET ; u : REL PRED • ∃−R(a, u) � u −R a

Universal quantification ∀−R(a, u) is defined as ¬ R ∃−R(a, ¬ Ru).
The UTP uses another existential quantification in the CSP theory; it does not remove the quantified vari-

ables from the alphabet. This alternative quantifier ∃R(a, u) is defined as (∃−R(a, u))⊕a: it removes the quantified
names from the alphabet and re-includes them with unrestricted values.

Sequential composition is not defined as in the UTP, using an existential quantification on the intermediary
state; the motivation is to simplify our proofs. In the UTP, the existential quantification is described using new
0-subscripted names to represent the intermediate state. Its encoding requires two functions: one for creating
new names, and one for expressing substitution of names. Any proof on sequential composition would require
induction on both functions. Instead, we give an equivalent model-based definition.

139

M. Oliveira et al.

Relations can only be combined in sequence if their alphabets are composable. The type WF SemiR is the set
of pairs of relations, which have composable alphabets.

;R : WF SemiR → REL PRED

∀ u1 u2 : WF SemiR • u1 u2.1 ;R u1 u2.2 � (in a(u1 u2.1.1) ∪ out a(u1 u2.2.1),
{b1 : u1 u2.1.2; b2 : u1 u2.2.2
| (∀ n : dom(b2) | n ∈ undashed • b2(n) � b1(dash(n)))
• (undashed � b1) ∪ (dashed � b2)})

The alphabet of a sequential composition is composed of the input alphabet of the first relation u1 and the
output alphabet of the second relation u2. For each pair of bindings (b1,b2) from u1 and u2, respectively, we make
a combination of all input values in b1 (undashed names) with output values in b2(dashed names). However, only
those pairs of bindings in which the final values of all names in b1 are equal to their initial values in b2 are included
in this combination.

The UTP defines an alphabet extension that enables sequential composition to be applied to operands with
non-composable alphabets. The function +R encodes the UTP’s alphabet extension P+a; it differs from ⊕R in that
it restricts the value of the new name to be left unchanged. For a given predicate P and alphabet a of undashed
names, it returns the encoding of the predicate P ∧ II a∪a′ , where II is the relational skip that is described in the
sequel.

Although useless for practical purposes, II is very useful for reasoning about programs. In our work it is
encoded as the function shown below. Given a well-formed alphabet a, it does not change the alphabet and
returns all the bindings b with domain a, in which for every undashed name n in a, b(n) � b(n′). The type
WF SkipR is the set of all homogeneous alphabets.

�R : WF SkipR → REL PRED

∀ a : WF SkipR •
�R(a) � (a, {b : BINDING | dom(b) � a ∧ (∀ n : a | n ∈ undashed • b(n) � b(dash(n)))})

Variable blocks are also part of utp-rel. We present the definitions of variable declaration and undeclaration.

varR, endR : WF Var EndR → REL PRED

∀ a n : WF Var EndR • varR a n � ∃−R({a n.2}, �R(a n.1))
∧ endR a n � ∃−R({dash(a n.2)}, �R(a n.1))

The type WF Var EndR is the set of pairs (a, n), such that a is a homogeneous alphabet that contains both n,
which must be an undashed name, and n′. The operator varR begins the scope of a name: it uses the existential
quantification to hide this name from programs that precede the variable block. Similarly, endR finishes the scope
of a name using the existential quantification to hide the dashed counterpart of the given name from programs
that follow the variable block.

In the UTP, assignments are alphabetised: each variable in the left-hand side receives the value of the corre-
sponding expression in the right-hand side and all the variables that are in the alphabet but not mentioned in the
left-hand side remain unchanged. For instance, the meaning of the assignment x :�A 0, where A is the alphabet
{x, x′, y, y′}, is x′ � 0 ∧ y′ � y.

The relational assignment receives a homogeneous alphabet a, a sequence ns of names and a sequence exps of
expressions. All the names in ns and free variables in exps must be undashed and belong to a; both lists ns and exps
have the same strictly positive length. The set of tuples (a, ns, exps) that satisfy these conditions is WF AssignR.

AssignR : WF AssignR → REL PRED

∀ a ns exps : WF AssignR •
∃ n : NAME; e : EXP; a : ALPHABET ; ns : seq NAME; exps : seq EXP
| a � a ns exps.1 ∧ ns � a ns exps.2 ∧ exps � a ns exps.3
∧ n � head(ns) ∧ e � head(exps)

• (#ns � 1 ∧ AssignR(a ns exps) � (�R (a, dash(n), e) ∧R �R(a \ {n, dash(n)})))
∨ (#ns > 1 ∧ AssignR(a ns exps) �

(�R (a, dash(n), e) ∧R AssignR(a \ {n, dash(n)}, tail(ns),
tail(exps))))

140

Unifying theories in ProofPower-Z

Fig. 3. Proof script for the weakest fixed point theorem

The function AssignR presented above is recursive. In its definition, we take n and e as the first elements (head) of
the given lists of names ns and expressions exps, respectively, and a to be the given alphabet. If ns is a singleton,
AssignR returns the predicate n′ � e ∧ II a\{n,n′}; this corresponds to the original definition of assignment since
it states, using the relational skip II , that the values of the remaining variables are unchanged. If, however, ns
is not a singleton, AssignR returns the conjunction of the predicate n′ � e with the evaluation of AssignR with
argument (a \ {n, n′}, tail(ns), tail(exps)).

We could have used universal quantification to define assignments. Nevertheless, this would lead to an ex-
tremely more complicated definition. For this reason, we used Z’s recursion.

Further programming constructs are also included in this theory, but are omitted here for conciseness.

Refinement. We now turn to the definition of refinement, which, in the UTP, is the universal implication of
relations. The universal closure used in the UTP is defined as follows.

〈R 〉R : REL PRED → REL PRED

∀ u : REL PRED • 〈R u 〉R � ∀−R(u.1, u)

We have used angled brackets, instead of the square brackets of [HJ98], because of problems with the LATEX
automatically generated by the ProofPower’s document preparation tool.

For a pair of relations (u1,u2), such that (u1, u2) ∈ WF REL PRED PAIR (both have the same alphabet),
we have that u1 is refined by u2, if, and only if, for all names in their alphabets, u2 ⇒ u1. This is expressed by the
definition below.

�R : WF REL PRED PAIR → REL PRED

∀ u1 u2 : WF REL PRED PAIR • u1 u2.1 �R u1 u2.2 � 〈R (u1 u2.2 ⇒R u1 u2.1) 〉R

We have proved that our interpretation of refinement is, as expected, a partial order. Moreover, the set of relations
with alphabet a is a complete lattice.

Only functions f : REL PRED �→ REL PRED whose domain is a set of relations with the same alphabet
are considered in the theory of fixed points. We call the set of such functions REL FUNCTION . The definition
of the weakest fixed point of such functions is standard. The greatest fixed point is defined as the least upper
bound of the set {X | X � f (x)}. This is different from Hoare and He’s definition [HJ98], which is not convenient
for proofs. However, it is trivial to prove that we have an equivalent definition.

The proof of theorems is the subject of the next section, where we present an example of a proof of a fixed
point law.

3.2. Proving theorems

We have built a theory with more than five-hundred laws on alphabets, bindings, relational predicates, and laws
from the predicate calculus. In what follows, we illustrate our approach in their proofs.

The proof script for one of our laws, the weakest fixed point law (∀ F , Y • F (Y) � Y ⇒ µ F � Y), is shown
in Fig. 3. We set our goal to be the law we want to prove using the SML command set goal. It receives a list of

141

M. Oliveira et al.

assumptions and the proof goal. In our case, since we are not dealing with standard predicates, we must explicitly
say that relations are TrueR.

We start our proof by rewriting the Z empty set definition (rewrite tac) and stripping the left-hand side of the
implication into the assumptions (z strip tac). The SML command a applies a tactic to the current goal; the tac-
tical REPEAT applies the given tactic as many times as possible. The next step is to rewrite the definition of least
fixed point in the conclusion: we use forward chaining in the assumptions (all asm fc tac), giving our Z definition
of least fixed point as argument, and use the new assumption to rewrite the conclusion (asm rewrite tac).

The application of a previously proved theorem, REL lower bound thm, concludes our proof. However,
it requires some assumptions, before being applied. We introduce them in the assumption list using the tactic
lemma tac. The first condition is that Y is an element of the set of relations u, with an alphabet a, such that
F (u) �R u. We use the tactical PC T1 to stop ProofPower-Z from rewriting our expression by using the proof
context initial, which is the most basic proof context. In order to avoid a new subgoal, we use the tactical THEN1
that applies the tactic in the right-hand side to the first subgoal generated by the tactic in the left-hand side.
Here, this proves that the assumption we are introducing is valid. The validity of the introduction of the first
assumption is proved using the tactic asm prove tac, a powerful tactic that uses the assumptions in an automatic
proof procedure. Next, after introducing the first condition shown above in the list of assumptions, we use forward
chaining again to state the fact that the alphabet of Y is a.

The next step introduces the fact that the set to which Y belongs is in fact a set of REL PRED. The proof
script for the validity of this assumption uses ProofPower-Z’s proof context z sets ext, an aggressive complete
proof context for manipulating Z set expressions. The last assumption that is needed is the fact that the pair
composed by the alphabet a and the set to which Y belongs, is indeed of type WF GlbR LubR, which contains
all set of pairs (a, bs), in which every binding in the set bs has a as its alphabet. Its proof rewrites the conclusion
using the Z definition of WF GlbR LubR, and then uses the tactic asm prove tac in the z sets ext proof context.
Finally, we use a tactic defined by us, apply def , to instantiate the theorem REL lower bound thm with the given
values. The tactic apply def instantiates the given theorem with the values given as arguments, and tries to rewrite
the conclusion, using this instantiation.

ProofPower-Z has provided us with facilities that resulted in a rather short proof, for a quite complex theorem.
First, by using proof contexts, we can control the context in which we want the proofs to be carried out. Secondly,
tacticals, such as REPEAT and THEN 1 shorten the proof script considerably. Finally, the use of user-defined
tactics, such as apply def , and automated proof tactics, such as asm rewrite tac and all asm fc tac, shortens
considerably the proofs, saving time and effort.

3.3. Okay and designs

The UTP theory of pre and postcondition pairs (designs) introduces two extra observational boolean
variables: okay indicates that a program has started, and okay′ indicates that the program has terminated. In the
theory utp-okay, we define okay as an undashed name ranging over the booleans.

okay : name

okay ∈ undashed

We restrict the type BINDING by determining that okay and okay′ are only associated with boolean values.

∀ b : BINDING | okay ∈ dom(b) • b(okay) ∈ BOOL VAL
∧ ∀ b : BINDING | dash(okay) ∈ dom(b) • b(dash(okay)) ∈ BOOL VAL

This could have been introduced when we first defined BINDING, but as we intend to have modular theories, we
postponed the restriction on observational variables used by specific theories.

As expected, okay and okay′ are not totally unrestricted. They can, however, be unrestricted within BOOL VAL.
The functions below indicate whether okay and okay′ are unrestricted in a given predicate.

unrestOKAY , unrestOKAY ′ : REL PRED → B

∀ u : REL PRED • unrestOKAY (u) � unrestTypeVar(u, okay, BOOL VAL)
∧ unrestOKAY ′(u) � unrestTypeVar(u, dash(okay), BOOL VAL)

Designs are defined in the theory utp-des. The set ALPHABET DES is the set of all alphabets that contain
okay and okay′. First we define DES PRED, the set of relations u, such that u.1 ∈ ALPHABET DES. Designs

142

Unifying theories in ProofPower-Z

with precondition p and postcondition q are written p � q and defined as okay ∧ p ⇒ okay′ ∧ q. The expression
okay is the equality okay �a true, which we encode as �R (a, okay, Val(Bool(true))). Designs are defined as
follows.

�D : WF DES PRED PAIR → REL PRED

∀ d : WF DES PRED PAIR • d .1 �D d .2 � (�R (d .1.1, okay, Val(Bool(true))) ∧R d .1) ⇒R
(�R (d .1.1, dash(okay), Val(Bool(true))) ∧R d .2)

The members of WF DES PRED PAIR are pairs of relations (r1, r2) from DES PRED with the same alphabet.
The turnstile is used by both ProofPower-Z and the UTP. The former uses it to give names to theorems, and the
latter uses it to define designs. We have kept both of them, but we subscript the UTP design turnstile with a D.
The most important result for designs, which is the motivation for their definition, has also been proved in our
mechanisation: the left-zero law for TrueR.

In this new setting, new definitions for �R and assignment are needed. The skip for designs �D is defined in
terms of the relational skip �R as follows.

�D : WF SkipD → REL PRED

∀ a : WF SkipD • �D(a) � TrueR(a) �D (�R(a))

The type WF SkipD is formed by all the homogeneous alphabets that contain okay and okay′. The new definition
of assignment uses the relation assignment in a very similar way.

Designs are also characterised as the set of relations that satisfy two healthiness conditions. The first, H1,
guarantees that observations cannot be made before the program starts. We define H1(d) � okay ⇒ d as
H1(d) � (�R ({okay}, okay, Val(Bool(true)))) ⇒R d . The set of relations that satisfy a healthiness condi-
tion h is the set of relations r such that h(r) � r. By way of illustration, the set of H1-healthy relations is
H1 healthy � {d : REL PRED | H1(d) � d}.

H2-healthy relations do not require non-termination. In previous research [CW06], we presented a way of
expressing H2 in terms of an idempotent function: H2(P) � P; J , where J �̂ (okay ∧ okay′ ⇒ v′ � v). We
express v′ � v as the relational skip �R on the alphabet containing the names in the lists v and v′. We define J
as a function that takes an alphabet a′ containing only dashed variables, and yields the relation presented below,
where A � a ∪ a′, and a is obtained by undashing all the names in a′.

(okay �A true ⇒R okay′ �A true) ∧R �R(A \ {okay, okay′})
Our definition of the function H2 is as follows.

H2 : REL PRED �→ REL PRED

∀ d : REL PRED | dash(okay) ∈ d .1 • H2(d) � (d ;R (J (out a(d .1))))

The function H2 is partial because J defines a relation that includes okay and okay′ in its alphabet, and hence,
the alphabet of a relation d that can be made H2 healthy must contain okay′ in order to be composable with
J (out a(d .1)). In order to reuse our previous results [CW06], we use this definition for H2.

More than 30 laws from previous works [HJ98, CW06], involving designs and their healthiness conditions,
have been included in our theory of designs. Their proofs do not expand any definitions in the relations theory;
only laws of that theory are used. Many laws were included in the relations theory in order to support proofs in
the designs and in the other theories. Our work provides a base of laws that are useful to support mechanised
proof in the UTP in practice.

3.4. WTR and reactive processes

The behaviour of reactive processes cannot be expressed only in terms of their final states; interactions with the
environment (events) need to be considered. Besides okay, in the theory of reactive processes we have the obser-
vational variables tr,wait, and ref . The definitions of these variables are in the theory utp-wtr. The variable wait
records whether the process has terminated or is waiting for interaction with the environment in an intermediate
state. Since it is a boolean, the definition of wait is similar to that of okay. The variable tr records the sequence
of events in which the process has engaged; it has type SEQ EVENT VAL. The variable ref is a set of events in
which the process may refuse to engage; its type is SET EVENT VAL.

143

M. Oliveira et al.

In the theory utp-rea, we define REA PRED as the set of relations whose alphabet is in ALPHABET REA,
the set of reactive alphabets. These are the alphabets that contain at least okay, tr, wait, ref , and their dashed
counterparts.

Healthiness conditions characterise the reactive processes. For instance, R1 states that the history of events
of a process cannot be changed, therefore, the value of tr can only get longer. Our definition uses a function �R,
which is the Z sequence-prefixing relation lifted to VALues.

�R : VAL ↔ VAL

(�R) � {s1, s2 : SEQ VAL | ((Seq∼)(s1)) prefixZ ((Seq∼)(s2))}
The type SEQ VAL is defined as {s : seq VAL | Seq(s)}, and the Z sequence-prefixing operator prefixZ is defined
in utp-z-library. Furthermore, in Z, ∼ stands for the relational inverse operator.

The definition of R1 below encodes the UTP function R1(P) � P ∧ tr � tr′.

R1 : REL PRED → REL PRED

∀ r : REL PRED • R1(r) � r ∧R (�+R (ALPHABET OWTR,
Rel((�R), Var(tr), Var(dash(tr))), Val(Bool(true))))

The set ALPHABET OWTR contains only okay, tr, wait, ref , and their dashed counterparts. In order to
transform tr � tr′ into a relational predicate that can be used in a conjunction, we assert that Rel((�R),
Var(tr), Var(dash(tr))) is equal to Val(Bool(true)). We may adopt this strategy to transform any Z relation (for
example, ∈,�∈,⊆) and function (using Fun1 and Fun2) into relational predicates.

The second healthiness condition establishes that a reactive process P(tr, tr′) should not rely on events that
happened before it started; it is defined in the UTP as �s(P(s, s � (tr′ − tr))). We encode our previous simpler
formulation R2(P(tr, tr′)) � P(〈〉, tr′ − tr) [CW06]; this requires that P is not changed if tr is taken to be the
empty sequence, and tr′ is taken to be tr′ − tr, the sequence obtained from tr′ by removing its prefix tr. The
notation P(〈〉, tr′ − tr) is encoded using substitution; R2 is encoded as R2(P) � P[〈〉/tr][tr′ − tr/tr′].

The final healthiness condition R3 defines the behaviour of a process that is still waiting for another process
to finish: it should not start. It is defined as R3(P) � IIREA � wait � P, and is encoded as follows:

R3 : REA PRED �→ REA PRED

∀ r : REA PRED | r.1 ∈ WF SkipREA •
R3(r) � (�REA(r.1))�R �R ({wait}, wait, Val(Bool(true))) �R r

This definition uses a conditional expression and the reactive skip. Conditional expressions are defined only for
branches with the same alphabet, and �REA is defined only for homogeneous reactive alphabets (WF SkipREA).
For this reason, our work reveals that R3 is not total: it can only be applied to homogeneous reactive rela-
tions (members of REA PRED).

A reactive process (REA PROCESS) is a relation with a reactive alphabet a, which is R healthy; the func-
tion R is defined as R(r) � R1(R2(R3(r))). Based on these definitions, more than sixty laws, including some we
presented previously [CW06], are part of our theory of reactive processes. Among other properties, they prove
that the healthiness conditions for reactive processes are idempotent and commutative, and the closure of some
of the programming operators with respect to the healthiness conditions. They also explore relations between
healthiness conditions for reactive processes and designs.

3.5. CSP processes

The theory of CSP processes includes the predicates of the theory of reactive processes that satisfy two additional
healthiness conditions. The first one states that the only guarantee in the case of divergence (¬ okay) is that the
trace can only be extended. Its encoding is as follows.

CSP1 : REL PRED �→ REL PRED

∀ r : REL PRED • CSP1(r) � r ∨R (�R (ALPHABET OWTR, okay, Val(Bool(false)))
∧R (�+R (ALPHABET OWTR,

Rel((�R), Var(tr), Var(dash(tr))),
Val(Bool(true)))))

144

Unifying theories in ProofPower-Z

This is a direct translation of the function CSP1(r) �̂ r ∨ (¬ okay ∧ tr � tr′).
The second healthiness condition is a recast of H2, presented in Sect. 3.3, with an extended reactive alpha-

bet. The encoding of CSP2 in ProofPower-Z reveals, as it does for H2, that this function is not total: it is only
applicable to relational predicates which contain okay′, tr′, wait′, and ref ′ in their alphabet.

CSP2 : REL PRED �→ REL PRED

∀ r : REL PRED | {dash(okay), dash(tr), dash(wait), dash(ref)} ⊆ r.1
• CSP2(r) � r ;R J (out a(r.1))

A CSP PROCESS is a CSP1 healthy and CSP2 healthy reactive process.
The process STOP is incapable of engaging in any events and is always waiting.

STOP : CSP PROCESS

STOP � R(AssignR (ALPHABET OWTR, 〈dash(wait)〉, 〈Val(Bool(true))〉))
By assigning true to dash(wait), we guarantee that wait′ is true and hence, the process is always waiting.

In earlier work [CW06], we presented an introduction to CSP in the UTP. Our definitions correspond to
those presented by Hoare and He [HJ98], but with a different style of specification: every CSP process is defined
as a reactive design of the form R(pre � post). Using this style, we use a design to define the behaviour of a
process when its predecessor has terminated and not diverged; the process behaviour in the other situations is
defined by the healthiness condition R. The structural uniformity of the semantics (and its encoding) given to the
Circus operators is reflected in the proofs of the refinement laws, which use the strategy discussed in our earlier
work [OCW06a]. This uniformity also facilitates mechanisation since it allows the modularisation of proofs, and
the construction and application of more general and effective proof tactics.

The correspondences between Hoare and He’s definitions [HJ98] and ours [CW06] are presented in our theory
as theorems. For instance, the theorem below states this correspondence for STOP.

CSP STOP design thm
� STOP � R(TrueR(ALPHABET OWTR)

�D �R (ALPHABET OWTR, dash(tr), Var(tr))
∧R �R (ALPHABET OWTR, dash(wait), Val(Bool(true))))

It suggests that STOP never diverges since it has a true precondition; furthermore, it is always in a waiting state,
but never changes the trace.

The SKIP process terminates immediately. The value of ref is irrelevant; it is quantified in the definition
below.

SKIP : CSP PROCESS

SKIP � R(∃R ({ref }, �REA ALPHABET OWTR))

The existential quantification does not remove ref from the alphabet, as opposed to that used in the definition,
for instance, of variable blocks. The theorem CSP SKIP design thm, which is part of our theory, states the
equivalence between this definition and a reactive design similar to that presented for STOP, but with the value
false for wait′.

The external choice of processes P and Q with a common alphabet behaves like the conjunction of P and Q
if no progress has been made, that is, no event has been observed and termination has not occurred. Otherwise,
it behaves like their disjunction. It is encoded as follows.

�CSP : WF CSP PROCESS PAIR → CSP PROCESS

∀ pp : WF CSP PROCESS PAIR •
pp.1 �CSP pp.2 � CSP2((pp.1 ∧R pp.2) �R STOP �R (pp.1 ∨R pp.2))

The members of WF CSP PROCESS PAIR are pairs of CSP processes with the same alphabet.
In our earlier work [CW06], we proved that there is indeed a reactive design that corresponds to the UTP’s

definition of external choice. When its predecessor has terminated without diverging, an external choice P1 � P2
does not diverge if neither P nor Q do. We capture this behaviour in the precondition of the following definition
of external choice. The postcondition of this reactive design establishes that if the trace has not changed and the
choice has not terminated, the behaviour of an external choice is given by the conjunction of the effects of both
processes; otherwise, the choice has been made and the behaviour is either that of P or Q.

145

M. Oliveira et al.

P � Q �̂ R((¬ Pf
f ∧ ¬ Qf

f) � ((Pt
f ∧ Qt

f) � tr′ � tr ∧ wait′ � (Pt
f ∨ Qt

f)))

The notation Pb
c denotes P[b/okay′][c/wait]. Basically, P f

f is the condition in which P diverges when it is not
waiting for its predecessor to finish, and Pt

f defines the result of P on termination without divergence.

Four auxiliary functions encode the substitutions Pb
c ; in order to make it more like the textual notation, we

use a postfix notation for them. For instance, P σf ωf encodes the predicate P f
f .

ωf , ωt, σf , σt : CSP PROCESS → CSP PROCESS

∀ c : CSP PROCESS • c σf � /R(c, Val(Bool(false)), dash(okay))
∧ c σt � /R(c, Val(Bool(true)), dash(okay))
∧ c ωf � /R(c, Val(Bool(false)), wait)
∧ c ωt � /R(c, Val(Bool(true)), wait)

The expression /R(p, e, n) encodes the substitution of a variable n by an expression e in a predicate p (p[e/n]).
Its definition belongs to the theory of relations and has been omitted here for the sake of conciseness. For the
same reason as that discussed for free variables, it is not a syntactic definition, but a transformation on the set of
bindings of c.

Using these auxiliary functions, we have included the following theorem in our theory to relate the original
UTP definition of external choice to the reactive design presented above.

CSP �CSP design thm
� ∀ P, Q : CSP PROCESS | (P, Q) ∈ WF CSP PROCESS PAIR

• P �CSP Q � R(((¬ RP σf ωf) ∧R (¬ RQ σf ωf))
�D
(((¬ RP σt ωf) ∧R (¬ RQ σt ωf))
�R�R (P.1, dash(tr), Var(tr))

∧R�R (P.1, dash(wait), Val(Bool(true)))�R
((¬ RP σt ωf) ∨R (¬ RQ σt ωf))))

Although long, the right-hand side of this theorem is a direct encoding of the previously presented reactive design
representation of external choice.

Besides the definition for prefixing given by the UTP, we encode a simpler definition which was proven equiv-
alent: e →CSP SKIP � R(true � doC (e)). The function below is a simplified version of the function doA presented
in the UTP to characterise the occurrence of an event. The simplification is possible because we express prefixing
as a reactive design.

doC (e) �̂ tr′ � tr ∧ e �∈ ref ′ � wait′ � tr′ � tr � 〈e〉
An event has either not happened, and the trace has not changed and the process is willing to engage in e, or it
has happened and the trace has been extended.

The encoding of doC is not straightforward. We have already discussed the encoding of the conditional expres-
sions and its condition wait′, and the equality tr′ � tr. The encoding of e �∈ ref ′ and tr′ � tr � 〈e〉 are a little
more complex, as we explain now.

In CSP, one might write n.e → SKIP, where e is actually an expression. For this reason, our encoding of
doC presented below receives two arguments: the name n of the channel and the communicated expression e. We
assume that the observational variables cannot be used in an expression that specifies a communicated value. The
type VAR NAME contains all names that are not observational variables.

We need to express an event itself as an expression; for this purpose, we define a function MkPair that receives
a pair of VALues (v1, v2) and returns the VALue Pair(v1, v2). The expression that defines the event e as an expres-
sion is Fun2(MkPair, Val(Channel(n)), e); its evaluation will give us a pair where the first element is Channel(n)
and the second element is the evaluation of e. In the left-hand side of the conditional expression, we lift the set
non-membership relation �∈R to VALues in the same way we did for �R. In the right-hand side though, we use
yet another function, MkSingleton, which receives a value v and returns the singleton sequence value Seq(〈v〉).
The expression Fun1(MkSingleton, Fun2(MkPair, Val(Channel(n)), e)) corresponds to the expression 〈ev〉, where
e is itself an event expression. Finally, the same strategy to lift Z relations is applied to lift the Z concatenation

146

Unifying theories in ProofPower-Z

Fig. 4. A ticket office

function; however, we do not need to assert that the expression is equal to true because we are dealing with
functions, not relations.

do C : VAR NAME × EXP → CSPPROCESS

∀ n : VAR NAME; e : EXP •
do C(n, e) �

�R (ALPHABET OWTR, dash(tr), Var(tr))
∧R (�+R (ALPHABET OWTR,

Rel((�∈R), Fun2(MkPair, Val(Channel(n)), e), Var(dash(ref))),
Val(Bool(true))))

�R �R (ALPHABET OWTR, dash(wait), Val(Bool(true))) �R
�R (ALPHABET OWTR,

dash(tr), Fun2((�
R), Var(tr),

Fun1(MkSingleton, Fun2(MkPair, Val(Channel(n)), e))))

This function is used in the definition of CSP prefix as a reactive design.

CSP →CSP design thm
� ∀ ev : VAR NAME × EXP • ev →CSP SKIP � R(TrueR(ALPHABET OWTR) �D do C(ev))

All of our CSP theorems [CW06] and Hoare and He’s UTP theorems [HJ98] are part of our utp-csp theory, which
is the basis of the Circus theory presented in the next section.

4. Circus

A Circus program is a sequence of paragraphs: channel declarations, channel set definitions, Z paragraphs, or
process definitions. A process encapsulates its state and communicates through channels. An example is given in
Fig. 4; it specifies a ticket office that uses a counter to store the number of sold tickets.

Our example has three processes: the process Counter counts the number of tickets, the process Tickets sells
the tickets, and the process TicketOffice represents the whole system. Furthermore, six channels are used in the
system: count, reset and result are used to request the Counter to increment, reset, or return its value, respectively;
tickets can be bought via channel ticket; channel sold communicates the number of sold tickets; finally, channel
close is used to close the ticket office.

In the next section, we give an overview of the language and explain the details of our example, before
discussing the encoding of Circus actions in Sect. 4.2.

4.1. The language

In Circus, a channel declaration gives its name and type; if the channel is used purely for synchronisation, then no
type is needed. A channel declaration may declare more than one channel of the same type. In this case, instead

147

M. Oliveira et al.

of a single channel name, we have a comma-separated list of channel names. This is illustrated in Fig. 4 by the
declaration of channels count, reset, ticket, and close. We introduce sets of channels in a chanset paragraph. In
our example, we declare the channel set Sync, which groups the channels used in the communication between
processes Tickets and Counter.

Processes may be defined explicitly or in terms of other processes (compound processes). An explicit process
definition is delimited by the keywords begin and end: it is formed by a state definition (identified by the keyword
state), a sequence of paragraphs, and a nameless main action. Process Counter in Fig. 4 is defined in this way. The
schema CState describes the internal state of the process Counter: it contains a natural number c that stores the
value of the counter. The behaviour of Counter is described by the unnamed action after the •; it is recursive: after
an initialisation, it behaves like Run, and then recurses. The state component c can be initialised and incremented
using the Z operations CInit and Inc, respectively. The process Tickets does not have a state; it also has a recursive
behaviour but does not invoke any initialisation.

Compound processes are defined using the CSP operators for sequence, external and internal choice, par-
allelism and interleaving, or their corresponding iterated operators, or event hiding. The parallelism follows
the alphabetised approach adopted by Roscoe [Ros98], instead of that adopted by Hoare [Hoa85]. The process
TicketOffice in Fig. 4 receives an indication that a ticket has been sold via channel ticket and interacts with a
Counter through channel count. It is a parallel composition of processes Counter and Tickets; they synchronise
on the set of events Sync. Furthermore, process TicketOffice encapsulates the interaction between these two
processes; the only ways to interact with TicketOffice are via the channels ticket, close and sold .

An action can be a schema expression, a guarded command, an invocation of any action, or a combination of
these constructs using CSP operators. Three primitive actions are available: Skip, Stop, and Chaos. The prefixing
operator is standard, but a guard construction may be associated with it. For instance, if the condition p is true,
the action p & c?x → A inputs a value through channel c and assigns it to the variable x, and then behaves
like A, which has the variable x in scope. If, however, the condition p is false, the same action blocks. Enabling
conditions like p may be associated with any action.

The action Closing in the process Tickets (Fig. 4) exemplifies the input and output prefix operators. It syn-
chronises with Counter on result, receiving the total number x of sold tickets, which is sent to the environment
using channel sold , and requests the Counter to reset.

Like the Circus processes, Circus actions can be composed using the CSP operators of sequence, external
and internal choice, parallelism, interleaving, their corresponding iterated operators, and hiding. Furthermore,
recursive definitions are also available. Our Counter, as previously described, has a recursive behaviour. Its cycle,
the action Run, is an external choice: its current value may be incremented, using channel count; the result may
be requested using channel result; finally, the counter may be reset through channel reset.

To avoid conflicts in access to the variables in scope, parallelism and interleaving of actions declare a syn-
chronisation channel set and two sets that partition all the variables. In the parallelism A1 |[ns1 | cs | ns2]| A2,
the actions A1 and A2 synchronise on the channels in the set cs. Both A1 and A2 have access to the initial values
of all variables in both ns1 and ns2, but A1 and A2 may modify only the values of the variables in ns1 and ns2,
respectively. The changes made by A1 in the variables in ns1 are not seen by A2, and vice-versa.

It is important to distinguish the parallel composition of processes and the parallel composition of actions.
In the former, we do not need any state partition because each process encapsulates its own state; in the latter,
however, we need to partition the state.

Finally, an action may be a variable block, specification statement, assumption, coercion, alternation, or
assignment. The semantics of Circus is an enriched failures-divergences model expressed in the UTP. It caters
for communication and reaction, like the model of CSP, but also for data and data operations. The details of this
theory are presented elsewhere [Oli05b]; its encoding in ProofPower-Z is the subject of the next section.

4.2. Encoding the Circus semantics

Although the constructors of CSP do not contain state variables, the set of processes described by the UTP theory
of CSP contains processes that might have state components. By definition, a CSP PROCESS is a CSP1 healthy
and CSP2 healthy reactive process; the only restriction on the alphabet is that it must contain the observational
variables and their dashed counterparts, but there may be more variables. Therefore, for us, Circus actions are
modelled by predicates that are in the set CSP PROCESS; we do not define a new set of predicates. Later in this
section, we discuss the Circus healthiness conditions.

148

Unifying theories in ProofPower-Z

The definitions of the ProofPower-Z theory of Circus, utp-circus, follow directly from Oliveira’s seman-
tics [Oli05b]. In what follows, we present some of the more interesting definitions and discuss important aspects
that were raised during this mechanisation.

The Circus operators that are inherited from CSP have very similar definitions to their CSP counterparts;
however, the state components of the Circus processes must be taken into account in these new definitions.

Stop, Skip, and Chaos. We start with the definition of Stop. For a given homogeneous alphabet a that contains
ALPHABET OWTR (WF hom alphaC), Stop is the reactive design with a true precondition, which we encode
using the relational TrueR, and with the conjunction tr′ �a tr ∧R wait′ as its postcondition.

Stop : WF hom alphaC → CSP PROCESS

∀ a : WF hom alphaC •
Stop(a) � R(TrueR(a) �D (�R (a, dash(tr), Var(tr)) ∧R �R (a, dash(wait), Val(Bool(true)))))

In the postcondition of the reactive design above, state components are not mentioned; this means that state
changes do not decide the choice and, hence, Stop leaves the values of the state components unconstrained.

The encoding of Skip is similar; however, besides leaving the trace unchanged, its postcondition requires
termination (¬ wait′) and leaves the state unchanged as we present below.

Skip : WF hom alphaC → CSP PROCESS

∀ a : WF hom alphaC • Skip(a) � R(TrueR(a) �D �R (a, dash(tr), Var(tr))
∧R �R (a, dash(wait), Val(Bool(false)))
∧R �R(a \ ALPHABET OWTR))

By giving the expression a \ ALPHABET OWTR as the argument to the relational skip, we keep all the variables
in a that are not in ALPHABET OWTR unchanged. Chaos is encoded as R(FalseR(a) �D TrueR(a)).

Guards. An important definition is that of predicates that can be used in the syntax of Circus specifications,
which cannot mention any of the UTP observational variables. In our model, they are represented by the type
CIRCUS PRED, which contains all the predicates in which the observational variables are in the alphabet, but
left unrestricted within their types. On the other hand, in the syntax of Circus, conditions are predicates that
contain no dashed variables. The type CIRCUS COND contains all the relational predicates whose alphabet
contains the UTP observational variables, but in which their values are unrestricted within their types, and the
values of the remaining dashed variables are unrestricted.

A guarded action is defined in terms of a condition and an action.

&C : CIRCUS COND × CSP PROCESS → CSP PROCESS

∀ g : CIRCUS COND; a : CSP PROCESS •
g &C a � R((g ⇒R ¬ R(a σf ωf))

�D
((g ∧R (a σt ωf)) ∨R (¬ R g ∧R �R (a.1, dash(tr), Var(tr))

∧R �R (a.1, dash(wait), Val(Bool(true))))))

This definition derives directly from Oliveira’s semantics [Oli05b], but uses the new notation used in the encoding
for substitution. If the guard g is false, this definition can be reduced to Stop. However, if the guard g is true, we
are left with the reactive design R(¬ Af

f � At
f). In [HJ98], Hoare and He show that this reactive design is exactly

A itself.

Prefixing. Simple prefix has a very similar definition to that in the CSP theory; however, since Circus processes
have state, the postcondition must guarantee that it is left unchanged. Also, instead of defining two different
functions, one for simple prefix followed by Skip, and another for simple prefix followed by any other action, we
define a single function as presented below. This is motivated by the convenience of proofs in ProofPower-Z and
by our wish to keep the theory utp-csp as faithful as possible to the UTP.

→C : (VAR NAME × EXPR) × CSP PROCESS → CSP PROCESS

∀ c : VAR NAME; e : EXPR; A : CSP PROCESS •
(c, e) →C A � R(TrueR(A.1) �D do C(c, e) ∧R �R(A.1 \ ALPHABET OWTR));A

149

M. Oliveira et al.

This function receives a pair that contains a channel name c and an expression e, and an action A; it gives the
pair (c, e) to the function doC . We use the relational skip to state that the state components are left unchanged. If
no value is being communicated, we have yet another function →CSync , which receives only a channel name
c as its first argument and is trivially defined as (c, Val(Sync)) →C A.

The encoding of variable blocks is done in terms of the relational operations that can be used to introduce
and remove a variable from scope. Variable declaration is used in the expected way in the encoding of the input
prefix.

Parallelism. The parallel composition A1 |[ns1 | cs | ns2]| A2 models interaction between the two concurrent
actions A1 and A2. We assume that references to channel sets have already been expanded using their corre-
sponding definitions. We present the encoding of the parallel composition as a reactive design in two parts: first
we discuss its precondition, and then, we discuss its postcondition. In both parts, we first discuss its original
semantics and then we present its encoding.

Divergence can only happen if it is possible for either of the actions to reach divergence. This is characterised
by a trace that leads one of the actions to divergence and on which both actions agree regarding cs. For instance,
the predicate below characterises the possibility of divergence for A1.

∃ 1.tr′, 2.tr′ • (A1
f
f ; (1.tr′ � tr)) ∧ (A2f ; (2.tr′ � tr)) ∧ 1.tr′ � cs � 2.tr′ � cs

Basically, if there exist two traces 1.tr′ and 2.tr′, that are equal to the final traces of A1 after divergence and of
A2, respectively, and if these two traces are equal modulo cs, then it is possible for A1 to reach divergence. First,
the relation A1

f
f ; (1.tr′ � tr) assigns to 1.tr′ the trace on which A1 diverges. The first predicate of the sequence

A1
f
f give us the conditions under which A1 diverges; we record the final trace in 1.tr′ in the second predicate of

the sequence 1.tr′ � tr, which does not restrict the values of the other variables. In this case, we are not interested
in the divergence of A2 because A1 is already divergent; hence, we do not replace okay′ by any particular value.
Similarly, we define 2.tr′ for A2 as A2f ; (2.tr′ � tr). Finally, we compare these traces after removing all the events
that are not communications on the channels in cs. These can occur independently, but for the communications
that require synchronisation, 1.tr′ and 2.tr′ have to agree: they have to be equal modulo cs. We use the sequence
filtering function �.

Given two processes a1 and a2 and a channel set cs, the function DivPar defines the predicate that describes
the condition on which a1 may diverge.

DivPar : CSP PROCESS × CSP PROCESS × SET EVENT VAL → REL PRED

∀ a1, a2 : CSP PROCESS; cs : SET EVENT VAL •
DivPar(a1, a2, cs) � ∃R({dash(one(tr)), dash(two(tr))},

((a1 σf ωf);C (�R (a1.1, dash(one(tr)), Var(tr))))
∧R ((a2 ωf);C (�R (a2.1, dash(two(tr)), Var(tr)))) ∧R (MSync(cs)))

We encode the expression 1.tr and 2.tr as the application of two functions one, two : NAME � NAME which
have disjoint ranges. The expression 1.tr � cs � 2.tr � cs is encoded as MSync(cs). This encoding and some
others that follow have been omitted here, for conciseness; they have been informally describe and can be found
in [Oli05a].

In a very similar way as we presented above for A1, we can also express the possibility of divergence for A2.
The parallel composition diverges if either of these two conditions is true; hence, the precondition of the reactive
design for the parallel composition is the conjunction of the negations of both conditions:

¬ R(DivPar(a1, a2, cs)) ∧R ¬ R(DivPar(a2, a1, cs))

The postcondition uses Hoare and He’s parallel by merge [HJ98]. Conceptually, it runs both actions indepen-
dently and merges their results afterwards:

((A1
t
f ; U1(outα A1)) ∧ (A2

t
f ; U2(outα A2)))+{v,tr}; M‖cs

(1)

Their independent executions are expressed using a relabelling function Ul: the result of applying Ul to an alpha-
bet {v′

1, . . . , v′
n} is the predicate l.v′

1 � v1 ∧ · · · ∧ l.v′
n � vn. Before the merge, however, we extend the alphabet

of the predicate that expresses the independent execution of both actions with v′ and tr′; this records the initial
values of the trace tr and of the state components and local variables v in tr′ and v′, respectively. As explained

150

Unifying theories in ProofPower-Z

in Sect. 3.1, for a predicate P and an alphabet a of undashed names, P+a (encoded as P +R a) is equivalent to
P ∧ II a∪a′ . The initial values of tr and v are used by the merge function M‖cs

, as we explain later in this section.
The relabelling is done by the function U .

U : (NAME � NAME) × ALPHABET �→ REL PRED

∀ f : (NAME � NAME); a′ : ALPHABET | a′ ⊆ dashed
• (∃ a : ALPHABET | a ⊆ undashed ∧ a′ � dash (| a |)

• U (f , a′) � ({n : NAME | n ∈ a • dash(f (n))} ∪ a,
{b : BINDING | dom(b) � {n : NAME | n ∈ a • dash(f (n))} ∪ a

∧ (∀ n : NAME | n ∈ a • b(dash(f (n))) � b(n))}))
It receives a renaming function f (for instance, one) and an alphabet a′ containing only dashed names, and returns
a relational predicate whose alphabet is the union of a′ with the corresponding undashed alphabet a. We use the
Z relational image (| |) to retrieve the undashed version of a′; for a given relation D : X ↔ Y , and a subset A
of X , D (| A |) returns the set of all elements in Y to which some element of A is related via D. The bindings of
the resulting relational predicate are those whose domain is the same as the relation’s alphabet, and in which
the values of the final (dashed) values of the relabelled names b(dash(f (n))) are the same as the values of their
corresponding undashed original names.

The predicate M‖cs
is responsible for merging the traces of both actions, the state components, local variables,

and the UTP observational variables.

M‖cs
�̂ tr′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr) ∧ 1.tr � cs � 2.tr � cs

∧
(

((1.wait ∨ 2.wait) ∧ ref ′ ⊆ ((1.ref ∪ 2.ref) ∩ cs) ∪ ((1.ref ∩ 2.ref) \ cs))
�wait′�
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

)

The trace is extended with the merge of the new events that happened in both actions. The function ‖cs takes the
individual traces and gives a set containing all the possible combinations of these two traces taking cs into consid-
eration. The expression that antecedes the merge M‖cs

in (1) gives us all the possible behaviours of running A1 and
A2 independently; however, only those combinations that are feasible regarding the synchronisation on cs should
be considered (1.tr � cs � 2.tr � cs). The definition of ‖cs is omitted here but can be found elsewhere [Oli05b];
it is similar to that presented by Roscoe [Ros98] for CSP. Finally, the parallel composition has not terminated if
any of the actions have not terminated. In this case, the parallel composition refuses all events in cs that are being
refused by any of the actions and all the events not in cs which are being refused by both actions. We merge the
states (MSt) when both actions terminate: for every local variable and state component v, if it is declared in ns1,
its final value is that of A1; if, however, it is declared in ns2, its final value is that of A2; finally, if it is declared in
neither ns1 nor ns2, its value is left unchanged.

The function MTrPar (parallel trace merge) presented below encodes the function ‖cs. It receives a pair of
traces Pair(tr1, tr2) and a set of events Set(cs) and returns a set Set(s) containing all the possible sequences of
events Seq(e) in which e is in the set of combinations of tr1 and tr2 according to cs, that is, e is a possible syn-
chronisation sequence of events. It uses a similar function |[Z]|Z that is defined for Z sequences, rather than
pairs of traces; it is defined in the theory utp-z-library.

MTrPar : PAIR SEQ EVENT VAL × SET EVENT VAL → SET SEQ EVENT VAL

∀ ps : PAIR SEQ EVENT VAL; cs : SET EVENT VAL •
MTrPar(ps, cs) �

Set({ e : ((Seq∼)((Pair∼) ps).1) |[Z ((Set∼)cs)]|Z ((Seq∼)((Pair∼) ps).2) • Seq(e) })
Another function, MTrParPred , has a rather long, but trivial, encoding. It receives a set of events cs and returns
the encoding of the predicate tr′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr).

Two other predicates BranchesWaiting and BranchesNotWaiting are defined in order to make the final def-
inition of the merge function more readable: the former encodes the predicate 1.wait ∨ 2.wait and the latter
encodes the predicate ¬ 1.wait ∧ ¬ 2.wait. Yet another function, which has a rather long but simple definition,
is MRefPar: it receives a set of events cs and returns the encoding of the following predicate:

tr′ − tr ∈ (1.tr − tr)parallelcs2.tr − tr

Finally, the recursive function MSt returns a predicate that corresponds to the state merge. It receives three
sets of names: the set st corresponds to the state components, and the sets ns1 and ns2 correspond to the

151

M. Oliveira et al.

names in the left side and right side partitions of the parallel composition, respectively. By way of illustra-
tion, given a state st � {x, y, z} and partitions ns1 � {x} and ns2 � {y}, the predicate MSt(st, ns1, ns2) is
x′ � 1.x ∧ y′ � 2.y ∧ z′ � z. In summary, the conditional expression presented in the merge function M‖cs

is
encoded as follows.

MWtRefStPar : SET EVENT VAL × ALPHABET × ALPHABET × ALPHABET
→ REL PRED

∀ ns1, ns2, st : ALPHABET ; cs : SET EVENT VAL •
MWtRefStPar(cs, st, ns1, ns2) � BranchesWaiting ∧R MRef Par(cs)

�R �R ({dash(wait)}, dash(wait), Val(Bool(true)))�R
BranchesNotWaiting ∧R MSt(st, ns1, ns2)

It receives the synchronisation channel set cs, the set of names st of the state components, and the sets of names
that correspond to the partitions ns1 and ns2. If the parallel combination is still waiting, then at least one of the
branches is still waiting (BranchesWaiting), and the refusal set is defined by the function MRefPar; otherwise,
both branches have terminated (BranchesNotWaiting) and the state is merged accordingly (MSt).

The merge function M‖cs
is encoded as follows.

MPar : SET EVENT VAL × ALPHABET × ALPHABET × ALPHABET → REL PRED

∀ ns1, ns2, st : ALPHABET ; cs : SET EVENT VAL •
MPar(cs, st, ns1, ns2) � MTrParPred(cs) ∧R MSync(cs) ∧R MWtRefStPar(cs, st, ns1, ns2)

It receives the same arguments as the function MWtRefStPar and returns the conjunction of the trace merge
(MTrParPred), the predicate MSync(cs), and the conditional expression described above.

We present below the whole of the semantics of parallel composition.

A1 |[ns1 | cs | ns2]| A2 �̂

R

⎛

⎜

⎜

⎝

¬ ∃ 1.tr′, 2.tr′ • (A1
f
f ; 1.tr′ � tr) ∧ (A2f ; 2.tr′ � tr) ∧ 1.tr′ � cs � 2.tr′ � cs

∧ ¬ ∃ 1.tr′, 2.tr′ • (A1f ; 1.tr′ � tr) ∧ (A2
f
f ; 2.tr′ � tr) ∧ 1.tr′ � cs � 2.tr′ � cs

�
((A1

t
f ; U1(outα A1)) ∧ (A2

t
f ; U2(outα A2)))+{v,tr}; M‖cs

⎞

⎟

⎟

⎠

The function that encodes the parallel composition receives two processes a1 and a2 with the same alphabet,
the two partitions ns1 and ns2, which must be disjoint and contain only undashed names, and the synchronisa-
tion channel set cs. The parallel composition diverges if it is possible for either of the actions to diverge; this is
expressed in the precondition of the resulting reactive design by using DivPar as follows.

|[C]|C : CSP PROCESS × (ALPHABET × SET EVENT VAL × ALPHABET) ×
CSP PROCESS → CSP PROCESS

∀ a1, a2 : CSP PROCESS; cs : SET EVENT VAL; ns1, ns2 : ALPHABET •
a1 |[C (ns1, cs, ns2)]|C a2 �

R((¬ R(DivPar(a1, a2, cs)) ∧R ¬ R(DivPar(a2, a1, cs)))
�D
(((((a1 σt ωf);CU (one, out a(a1.1))) ∧R ((a2 σt ωf);CU (two, out a(a2.1))))

+R({tr} ∪ (a1.1 \ (ALPHABET OWTR ∪ dashed)))) ;C
(MPar(cs, a1.1 \ (ALPHABET OWTR ∪ dashed), ns1, ns2))))

We use the function U to relabel the final values of the execution of actions a1 and a2; the relabelling functions
one and two, respectively, are used as argument. Furthermore, we extend the alphabet of the resulting predicate
with tr and the state components; these are all the names that are in the alphabet of a1 which are neither a UTP
observational variable nor dashed . Finally, we sequentially compose the parallel execution of both actions with
the merge function MPar.

Although rather long, the encoding of the parallel composition has a direct correspondence to its semantics.
What we needed to do was to clarify and make explicit the alphabet restrictions on the components.

Assignments. The Circus assignment is reactive, and hence, it needs a new definition different from that of the
relational assignment or that given purely as a design. The Circus assignment also receives a homogeneous alpha-

152

Unifying theories in ProofPower-Z

bet a that contains at least all the UTP observational variables and their dashed counterparts, a sequence ns
of names and a sequence exps of expressions. All the names in ns and free variables in exps must be undashed ,
belong to a, but cannot be an observational variable; both lists ns and exps have the same length. The set of tuples
(a, ns, exps) that satisfy these conditions is WF AssignC .

The reactive design that is returned in the definition below has TrueR(a) as its precondition; its postcondition
states that the trace is left unchanged and that the final value of wait is false. Furthermore, we use the relational
assignment to express the change of the state components.

AssignC : WF AssignC → CSP PROCESS

∀ a : ALPHABET ; ns : seq VAR NAME; exps : seq EXP | (a, ns, exps) ∈ WF AssignC
• AssignC (a, ns, exps) � R(TrueR(a) �D �R (a, dash(tr), Var(tr))

∧R�R (a, dash(wait), Val(Bool(false)))
∧R AssignR(a, ns, exps))

Assignments could change the trace, if the observational variables were allowed in assignments, which is not the
case. This also applies to specification statements and schema expressions as we explain in the sequel.

Specification statements. The function that encodes the specification statement f : [preC, postC] receives a
homogeneous alphabet a that contains, among other variables, all the UTP observational variables and their
dashed counterparts, a finite set f of names, the precondition preC, and the postcondition postC. The set
WF SpecStatementC is the set of all quadruples (a, f , preC, postC) such that: every name in f is undashed ,
different from all of the UTP observational variables, and belongs to a; and the alphabets of preC and postC are
equal to a.

SpecStatementC : WF SpecStatementC → CSP PROCESS

∀ a : ALPHABET ; f : F VAR NAME; preC : CIRCUS COND; postC : CIRCUS PRED
| (a, f , preC, postC) ∈ WF SpecStatementC
• SpecStatementC (a, f , preC, postC) �

R(preC �D �R (a, dash(tr), Var(tr))
∧R�R (a, dash(wait), Val(Bool(false))) ∧R postC
∧R �R(a \ ((f ∪ {n : f • dash(n)}) ∪ ALPHABET OWTR)))

The reactive design that is returned has preC as its precondition; on termination, the specification statement
does not change the trace. Furthermore, it also establishes the postcondition postC. Finally, the specification
statement cannot change any variable that is not in the frame f ; we encode this property using the relational skip
on the alphabet that does not contain any observational variable or any variable that is in the frame (and their
dashed counterparts).

Schema expressions. In Circus, we can also describe operations using schema expressions; they can be used in the
same context as specification statements. The reason for offering both is that specification statements are impor-
tant for the refinement calculus and schema expressions gives us the advantages inherent to using Z. As a matter
of fact, the semantics of schema expressions is given by normalisation and transformation into a specification
statement [Oli05b].

We assume that schema expressions have already been normalised. Furthermore, a very important aspect is
implicitly considered by Oliveira’s original semantics [Oli05b] and must be made explicit in the automation: the
typing of the declared variables. The function Typing receives a list of variable declarations and an alphabet, and
returns the encoding of a conjunction of predicates: for each variable declaration n : T , it contains the encoding
of a predicate n ∈ T . The first argument of the function Typing, the variable declaration, is a pair of lists: the
first element is the list of variable names, which must be elements of the alphabet a, and the second element is the
list of types; both lists must have the same size. These restrictions are captured by the type VAR DECLS, whose
cartesian product with ALPHABET is the domain of Typing.

Typing : VAR DECLS × ALPHABET �→ REL PRED

The set of well-formed schema expressions, WF SchemaExpC , contains all pairs (decls, p), where decls are well-
formed variable declarations, and p is a predicate, such that the set of variables that are declared in decls is
equal to the alphabet of p after removing the names in ALPHABET OWTR. A schema expression is defined

153

M. Oliveira et al.

using a specification statement: the alphabet contains all the declared variables and the observational variables,
the frame contains the undashed versions of all the dashed declared variables, the precondition is the existential
quantification of the dashed variables, where the predicate also includes the typing restrictions of the variables,
and the postcondition is the conjunction of the typing restrictions of the variables and p.

SchemaExpC : WF SchemaExpC → CSP PROCESS

∀ decls : VAR DECLS; p : REL PRED | (decls, p) ∈ WF SchemaExpC
• ∃ f : F VAR NAME | f ⊆ undashed ∧ ran(decls.1 � dashed) � dash(| f |)

• SchemaExpC (decls, p) � SpecStatement(ran(decls.1) ∪ ALPHABET OWTR, f ,
∃

R
(ran(decls.1) \ undashed, Typing(decls, p.1) ∧R p),

Typing(decls, p.1) ∧R p)

Alternation. Three auxiliary recursive functions are used in the encoding of the last command presented in this
section, the alternation. The three of them receive an element of the type G ACTIONS as argument. This type
contains all the pairs of finite lists with the same length, in which the first element is a list of Circus conditions
and the second element is a list of actions. For example, the guarded actions g1 → A1[] g2 → A2 is represented
in our mechanisation as the pair (〈g1, g2〉, 〈A1, A2〉). The first function, TrueGuards, encodes

∨

i • gi ; it returns
the disjunction of all guards in the first list. The function NonDivActions encodes

∧

i • gi ⇒ ¬ Ai
f
f . Finally,

ExecActions encodes
∨

i • gi ∧ Ai
t
f .

An alternation does not diverge if at least one of the guards is true and if every action guarded by a true guard
does not diverge (functions TrueGuards and NonDivActions, respectively). When it terminates, it establishes the
result of executing one of the actions that are guarded by a true guard (ExecActions).

ifC fiC : G ACTIONS → CSP PROCESS

∀ gactions : G ACTIONS • ifC gactions fiC � R(TrueGuards(gactions) ∧R NonDivActions(gactions)
�D ExecActions(gactions))

In order to simplify proofs, we also provide a simpler binary alternation.

Further constructs. The encoding of external and internal choice is trivial and derive directly from their corre-
sponding CSP operators presented in Sect. 3.5.

It is a direct and important consequence of our definition of external choice that a state change does not
resolve a choice. This would be expressed by including v′ � v in the condition of the postcondition. For example,
let us consider the choice (x :� 0; c1 → Skip) � (x :� 1; c2 → Skip). This choice is not resolved instantly; it
is only resolved when either c1 or c2 happens. The final value of x depends on which communication happens.
We have chosen state changes not to resolve an external choice because states are encapsulated within a Circus
process, and so their changes should not be noticed by the external environment.

The encoding of interleaving (|[|[C]|]|C), hiding (\C), and parameterised actions (paramC) have a direct
correspondence to their semantics. Furthermore, the encoding of recursion (µC) is trivially defined in terms of
the weakest fixed point described in Sect. 3.1.

The semantics of all Circus processes are given as syntactic transformations from the process definition to
some Circus action. As discussed in Sect. 3.1, we are working directly with the semantics of terms; hence, we may
not be able to express some of the syntactic transformations directly. Therefore, in order to encode the semantics
of Circus processes, it may be the case that new concepts like the unrestricted variables in Sect. 3.1 need to be
investigated and used to encode the semantics of processes; this is left as future work.

Healthiness conditions. Processes that can be defined using the notation of CSP satisfy other healthiness con-
ditions. One of them, CSP3, requires that the behaviour of a process does not depend on the initial value of
ref (¬ wait ⇒ P � ∃ ref • P); only the value of ref ′ is relevant to determine which events can be refused.
Intuitively, the set of events that were previously refused (ref) should not be of any concern to the current process.
Next, the value of ref ′ should have no relevance after termination of CSP4 processes. Finally, a deadlocked CSP5
process that refuses some events offered by its environment will still be deadlocked in an environment that offers
even fewer events.

154

Unifying theories in ProofPower-Z

Both, CSP4 and CSP5, are expressed in terms of CSP constructs that have a slightly different definition in
Circus1: CSP4 processes satisfy the right unit law (P; SKIP � P) and CSP5 processes satisfy the unit law of
interleaving (P ||| SKIP � P) [HJ98]. The healthiness conditions C1(P) �̂ P; Skip and C2(P) �̂ P ||[α(P) |
∅]|| Skip have a direct correspondence with them; they lift these two healthiness conditions to state-rich Circus
processes. For instance, we present below the encoding of C1.

C1 : CSP PROCESS → CSP PROCESS

∀ a : CSP PROCESS • C1(a) � a ;R Skip(a.1)

As for the other healthiness conditions, the set of relations that satisfy C1 is the set of relations a such that
a � C1(a), as we present below.

C1 healthy : P CSP PROCESS

C1 healthy � {a : CSP PROCESS | a � C1(a)}
The encoding of C2 and the set of C2-healthy processes follow a similar approach.

The encoding of the last of the Circus healthiness conditions, C3(A) �̂ R(¬ Af
f ; true � At

f), is presented
below. It guarantees that every Circus action, when expressed as a reactive design, has no dashed variables in the
precondition.

C3 : CSP PROCESS → CSP PROCESS

∀ a : CSP PROCESS • C3(a) � R((¬ a σf ωf) ;R TrueR(a.1) �D (a σt ωf))

Since Circus actions are CSP1-CSP2 healthy, we can transform them into reactive designs [HJ98]; if they are
originally already expressed so, this transformation has no effect whatsoever. The sequential composition of the
precondition with true guarantees that only those actions with no dashed variables in the precondition will be a
fixed point of the function C3.

5. Conclusions

In this paper we give a set-based model for UTP relations, and use it as a basis for the development of five
theories: relations, designs, reactive processes, CSP, and Circus. This is a basis for theorem provers for the UTP,
for Circus and its extensions, and for other languages whose semantics is based on the UTP. We have proved, in
total, over 500 theorems as part of the various theories. The theorem prover that we used, ProofPower-Z, has a
very expressive tactic language, an extensive library of tactics, and has been successfully used in industry.

For us, a relation is a pair, whose first element is a set of names (alphabet) and whose second element is a set
of functions from names to values. This is not the only possible model for relations. Our choice was based on
the fact that any restriction that applies to the relations has a direct impact on the complexity of the proofs. Our
model imposes a simple restriction that results in simpler definitions, and hence proofs.

In related work [CWD06], we defined a relation as a pair formed by an alphabet and a set of pairs of bind-
ings: for every pair (b1, b2) of bindings, the domain of b1 has only undashed names and that of b2 only dashed
names. Such a restriction has to be enforced by the definition of every operator. There is, however, an isomor-
phism between our current model and this earlier one [CWD06]. By joining and splitting the sets of bindings, we
can move from one model to another; our concern is only with the practicality of mechanical theorem proving.

We also could have used bindings whose domains could be different from the alphabet of the relation. How-
ever, the alphabet is the set of names about which the relation describes something. Hence, the alphabet a of a
relation would have to be either a subset or equal to the domain of each binding b. Values of names that were not
in the alphabet would have no meaning. We chose bindings whose domain is the alphabet because, by taking the
other approach, we have a more complex definition for alphabet extension: bindings for names that are not in the
alphabet need to be removed before being left unrestricted. Alphabet extension is at the heart of the definitions
of conjunction, disjunction, and parallelism.

If, in the hope of finding simplifications in other points, we accepted the more complex definition of alpha-
bet extension, then we would need to determine how to handle the names that are not in the alphabet of the

1 it is important to notice the difference between the CSP SKIP (capital letters) and the Circus Skip (capital S)

155

M. Oliveira et al.

Table 1. Theories mechanisation

Number of theorems Lines of proof script

utp-z-library 17 702
utp-rel 306 16,874
utp-okay 19 908
utp-des 46 2,397
utp-wtr 27 1,158
utp-rea 81 3,199
utp-csp 13 893
utp-circus 6 1,473
Total 515 27,604

relation: bindings could be total functions that map these names to an undefined value; or we could leave these
names unrestricted. These restrictions are more complex than ours and lead to more complex definitions and
proofs. We have an isomorphism between our model and each of these; by applying a domain restriction to the
bindings in these models and extending our model’s bindings, we can change the representations.

As an industrial theorem prover, ProofPower-Z proved to be powerful (and helpful). The support provided by
hundreds of built-in tactics and theories, such as libraries for Z constructs and set theory, made our work much
simpler. The axiomatisation of the theorems proved in our work in other theorem provers, like Z/Eves [Saa97],
and the development of new theories based on these axioms makes the use of our results in different theorem
provers possible. In ProofPower-Z, the tactics that can be created are more powerful than in Z/Eves; however,
the level of expertise needed for initial users of Z/Eves is not as high as for ProofPower-Z.

This discussion about alternative models is based on our experience with ProofPower-Z; some of them could
make proofs easier in another theorem prover. This investigation is a topic for future research.

In other work, Nuka and Woodcock [NW04] formalised the alphabetised relational calculus in the theorem
prover Z/EVES. They did not restrict the set of bindings in the same way that we do, but the restriction on the
domain of the bindings is satisfied by all the constructors. By including the restriction on the set of bindings, we
make this information available in all the proofs, and not only in those including some particular operators. Here,
we extend these previous definitions [NW04] by including many other operations, such as sequencing, assign-
ment, refinement, and recursion. The hierarchical mechanisation of the theories of designs, reactive processes,
CSP, and Circus is also a contribution of our work that provides a powerful tool for further investigations. In
another paper [NW06], Nuka and Woodcock [NW04] present the same mechanisation as in their previous work
but in ProofPower-Z. They also extend their previous work [NW04] by mechanising a specification language that
includes, among other operators, skip, abort, miracle, Hoare triples, assertions, coercions, weakest preconditions,
and iterations. However, their syntax is defined using Z free types; as briefly discussed in Sect. 2, this makes it
harder to extend their specification language.

Hoare and He [HJ98], although dealing with alphabetised predicates, often leave the alphabet quite implicit.
For example, true is often seen unalphabetised, while in fact, it is alphabetised. This abstraction simplifies things,
but is not suitable for theorem provers. With the obligation to deal with alphabets, our work gives more details
on how the alphabets are handled within the UTP.

The UTP’s alphabet extension constrains the values of the new variables: they cannot be changed. However,
our set-based model for relations needs a different alphabet extension that leaves their values unconstrained.
Furthermore, in the UTP, existential quantifications are used in two different ways: in the definition of variable
blocks, the authors explicitly state that the quantified variables are removed from the alphabet; and in the defini-
tion of SKIP, the alphabet is, implicitly, left unchanged. Our encoding defines two existential and two universal
quantifications: one of them removes the quantified variables from the alphabet, and the other one does not. The
redefinition of some UTP definitions resulted in easier proofs.

Our work also reveals details that are left implicit in the UTP regarding the domain of the healthiness condi-
tions. By mechanising R3, for instance, we make it explicit that this healthiness condition, and consequently R,
is a partial function that can only be applied to homogeneous reactive relations.

We expressed the language constructors as functions. For this reason, they can be extended without losing
the previous proofs; the syntax of expressions was abstracted by using five simple definitions: values, variables,
relations, unary functions, and binary functions. Furthermore, the strategy that we adopted for lifting Z functions
and relations to relational predicates, for instance �R, makes the Z toolkit directly available in our theory.

In the mechanisation of the CSP and Circus theories, some expressions proved to be non-trivial. For instance,
in the encoding of the function do C, the expressions regarding the refusal set and the increment of the trace, and

156

Unifying theories in ProofPower-Z

the representation of events were not trivial. Our strategy for lifting Z functions and relations to values proved
to be of much use in both cases.

The current number of laws on sequential composition may need to be expanded to allow users of our the-
ory of relations not to expand its definition in the proof of theorems. The proof of more laws on sequential
composition that will make this possible is an important piece of future work.

We are currently developing the mechanical proofs of the Circus refinement laws. A few proofs have already
been done; they are based on the encoding of the Circus semantics presented in this paper. Table 1 presents a
summary of the effort needed so far. During these proofs, we are investigating and implementing proof tactics
that can be used to reduce considerably the proof scripts. Furthermore, the proofs done so far raised subtleties
on alphabets and free variables that were left implicit during the hand proofs, but needed to be made explicit
during mechanical proofs. Mostly, they involve properties on the healthiness conditions (specially on reactive
and csp processes). For instance, properties of expressions like tr � tr′, that are used in the definitions of the
healthiness conditions and the Circus operators, properties of substitutions, conditional expressions, and equal-
ities, and properties of the substitution functions ωt, ωf , σt, σf like distribution over predicate constructors and
commutativity with healthiness conditions.

Circus is not the first specification language of concurrent systems that has its semantics mechanised in a the-
orem prover. The CSP traces model and failures-divergences model have already been encoded in HOL [Cam90a,
Cam90b]. In both cases, Camilleri also proved some standard CSP laws based on his encodings. The CSP trace
semantics has also been embedded in PVS [DS97] and used to verify the correctness of a verification protocol.
Their CSP variant also differs: Dutertre and Schneider [DS97] mechanise Roscoe’s CSP [Ros98] whereas Camil-
leri [Cam90a] mechanises Hoare’s CSP [Hoa85]. Because of the state-rich nature of Circus processes, the encoding
of its semantics requires the encoding of a semantic model that is able to combine the notions of refinement for
CSP and for imperative programs. For this reason, we encoded the Circus semantics based on our previous
mechanisation of the UTP [OCW06b]. In [CW06], we relate our model to Roscoe’s standard model.

Our aim is to provide a mechanisation of the UTP that can support the development of other languages
whose semantics is based on the UTP. Circus is such a language, and is the first one to use our mechanisation
of the UTP. In the future, we intend to complete the automation of the proofs of the Circus refinement laws.
This will provide Circus with a mechanised refinement calculus that can be used in the formal development of
state-rich reactive programs; it will be the basis for a refinement editor and a theorem prover for Circus.

Acknowledgements

We thank QinetiQ and the Royal Society for their financial support. The work of Marcel Oliveira is supported by
CNPq: grant 551210/2005-2. Philip Clayton, Rob Arthan, Roger Bishop Jones, Mark Adams, and Will Harwood
provided valuable advice for our work. The reviews of the anonymous referees have also contributed to the final
version of this paper.

References

[Art] Arthan R PowerProof Reference Page. http://www.lemma-one.com/ProofPower/index/index.html
[BG95] Bowen JP, Gordon MJC (1995) A shallow embedding of Z in HOL. Inf Softw Technol 37(5–6):269–276
[Cam90a] Camilleri AJ (1990) A higher order logic mechanization of the csp failure-divergence semantics. Technical Report HPL-90-194,

HP Laboratories, Bristol
[Cam90b] Camilleri AJ (1990) Mechanizing CSP trace theory in higher order logic. IEEE Trans Softw Eng 16(9):993–1004
[CCO05] Cavalcanti ALC, Clayton P, O’Halloran C (2005) Control law diagrams in Circus. In: Fitzgerald J, Hayes IJ, Tarlecki A (eds)

FM 2005: formal methods symposium, Vol 3582 of LNCS. Springer, Heidelberg, pp 253–268
[CSW03] Cavalcanti ALC, Sampaio ACA, Woodcock JCP (2003) A refinement strategy for Circus. Formal Asp Comput 15(2–3):146–181
[CW06] Cavalcanti ALC, Woodcock JCP (2006) A tutorial introduction to CSP in unifying theories of programming. In: Cavalcan-

ti ALC, Sampaio ACA, Woodcock JCP (eds) Refinement techniques in software engineering, Vol 3167 of LNCS. Springer,
Heidelberg, pp 220–268

[CWD06] Cavalcanti ALC, Woodcock JCP, Dunne S (2006) Angelic nondeterminism in the unifying theories of programming. Formal
Asp Comput 18(3):288–307

[Dij76] Dijkstra EW (1976) A discipline of programming. Prentice-Hall, Englewood Cliffs
[DS97] Dutertre B, Schneider S (1997) Using a PVS embedding of CSP to verify authentication protocols. In: Gunter EL, Felty A (eds)

Theorem proving in higher order logics: 10th international conference. TPHOLs’97, Vol 1275 of LNCS, Murray Hill, August
1997. Springer, Heidelberg, pp 121–136

157

M. Oliveira et al.

[Fis97] Fischer C (1997) CSP-OZ: a combination of Object-Z and CSP. In: Bowman H, Derrick J (eds) Formal methods for open
object-based distributed systems (FMOODS’97), Vol 2. Chapman & Hall, New York, pp 423–438

[GM93] Gordon MJC, Melham TF (eds) (1993) Introduction to HOL: a theorem proving environment for higher order logic. Cambridge
University Press, Cambridge

[GMW79] Gordon M, Milner R, Wadsworth C (1979) Edinburgh LCF, Vol 78 of LNCS. Springer, Heidelberg
[HJ98] Hoare CAR, Jifeng H (1998) Unifying theories of programming. Prentice-Hall, Englewood Cliffs
[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, Englewood Cliffs
[ISO02] ISO/IEC 13568:2002. Information technology—Z formal specification notation—syntax, type system and semantics, 2002.

International Standard
[KAW96] King DJ, Arthan RD, Winnersh ICL (1996) Development of practical verification tools. ICL Syst J 11(1)
[Mor94] Morgan C (1994) Programming from specifications. Prentice-Hall, Englewood Cliffs
[NW04] Nuka G, Woodcock JCP (2004) Mechanising the alphabetised relational calculus. In: WMF2003: 6th Braziliam workshop on

formal methods, Vol 95. Campina Grande, Brazil, pp 209–225
[NW06] Nuka G, Woodcock JCP (2006) Mechanising a unifying theory. In: Dunne S, Stoddart B (eds) UTP 2006: first international

symposium on unifying theories of programming, Vol 4010 of LNCS. Springer, Heidelberg, pp 217–235
[OCW05] Oliveira MVM, Cavalcanti ALC, Woodcock JCP (2005) Formal development of industrial-scale systems. Innovat Syst Softw

Eng NASA J 1(2):125–146
[OCW06a] Oliveira MVM, Cavalcanti ALC, Woodcock JCP (2006) A denotational semantics for Circus. In: Aichernig B, Boiten E,

Derrick J, Groves L (eds) Refine—international refinement workshop, eletronic notes in theoretical computer science. Springer,
Heidelberg (to appear)

[OCW06b] Oliveira MVM, Cavalcanti ALC, Woodcock JCP (2006) Unifying theories in ProofPower-Z. In: Dunne S, Stoddart B (eds)
UTP 2006: first international symposium on unifying theories of programming, Vol 4010 of LNCS. Springer, Heidelberg, pp
123–140

[Oli05a] Oliveira MVM (2005) Formal derivation of state-rich reactive programs using circus—additional material. At
http://www.cs.york.ac.uk/circus/refinement-calculus/oliveira-phd/

[Oli05b] Oliveira MVM (2005) Formal derivation of state-rich reactive programs using Circus. PhD thesis, Department of Computer
Science, University of York. YCST-2006/02

[Pau91] Paulson LC (1991) ML for the Working Programmer. Cambridge University Press, Cambridge
[PPW] ProofPower. At http://www.lemma-one.com/ProofPower/index/index.html
[QDC03] Qin SC, Dong JS, Chin WN (2003) A semantic foundation of TCOZ in unifying theories of programming. In: Araki K, Gnesi

S, Mandrioli D (eds) FME 2003: formal methods, Vol 2805 of LNCS. Springer, Heidelberg, pp 321–340
[Ros98] Roscoe AW (1998) The theory and practice of concurrency. Prentice-Hall Series in Computer Science, Prentice-Hall
[RWW94] Roscoe AW, Woodcock JCP, Wulf L (1994) Non-interference through Determinism. In: Gollmann D (ed) ESORICS 94, Vol

875 of LNCS. Springer, Heidelberg, pp 33–54
[Saa97] Saaltink M (1997) The Z/EVES System. In: Bowen JP, Hinchey MG, Till D (eds) ZUM’97: The Z formal specification notation,

Vol 1212 of LNCS. Springer, Heidelberg, pp 72–85
[SJ02] Sherif A, Jifeng H (2002) Towards a time model for Circus. In: George C, Miao H (eds) Formal methods and software engi-

neering: 4th international conference on formal engineering methods, ICFEM 2002, Vol 2495 of LNCS. Springer, Heidelberg,
pp 613–624

[SS99] Seres S, Spivey MJ (1999) Embedding prolog into haskell. In: Haskell Workshop’99, Sep 1999
[TA97] Taguchi K, Araki K (1997) The state-based CCS semantics for concurrent Z specification. In: Hinchey M, Liu S (eds) Interna-

tional conference on formal engineering methods. IEEE, New York, pp 283–292
[TS99] Treharne H, Schneider S (1999) Using a process algebra to control B operations. In: Araki K, Galloway A, Taguchi K (eds)

Proceedings of the 1st international conference on integrated formal methods. Springer, Heidelberg, pp 437–456
[WC01] Woodcock JCP, Cavalcanti ALC (2001) Circus: a concurrent refinement language. Technical report, Oxford University

Computing Laboratory, Wolfson Building,
[WD96] Woodcock JCP, Davies J (1996) Using Z—specification, refinement, and proof. Prentice-Hall University Press, Englewood

Cliffs
[WH02] Woodcock JCP, Hughes A (2002) Unifying theories of parallel programming. In: George C, Miao H (eds) Formal methods and

software engineering: 4th international conference on formal engineering methods, ICFEM 2002, Vol 2495 of LNCS. Springer,
Heidelberg, pp 24–37

Received 31 October 2006
Revised 9 May 2007
Accepted 25 June 2007 by S E Dunne and T S E Maibaum

158

Published online 3 August 2007

	Unifying theories in ProofPower-Z
	Abstract
	1. Introduction
	2. Design issues
	3. Encoding the UTP
	3.1. Relations
	3.2. Proving theorems
	3.3. Okay and designs
	3.4. WTR and reactive processes
	3.5. CSP processes

	4. Circus
	4.1. The language
	4.2. Encoding the Circus semantics

	5. Conclusions
	Acknowledgements
	References

