
DOI 10.1007/s00165-007-0049-0
BCS © 2007
Formal Aspects of Computing (2008) 20: 241–258

Formal Aspects
of Computing

A functional formalization of on chip
communications
Julien Schmaltz1 and Dominique Borrione2

1Radboud University, Institute for Computing and Information Sciences, Postbus 9010, 6500 GL Nijmegen, The Netherlands.
E-mail:julien@cs.ru.nl
2TIMA Laboratory, VDS Group, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France.
E-mail: Dominique.Borrione@imag.fr

Abstract. This paper presents a formal model and a systematic approach to the validation of communication
architectures at a high level of abstraction. This model is described mathematically by a function, named GeNoC .
The correctness of GeNoC is expressed as a theorem, which states that messages emitted on the architecture reach
their expected destination without any modification of their content. The model identifies the key constituents
common to all on chip communication architectures, and their essential properties from which the correctness
theorem is deduced. Each constituent is represented by a function that has no explicit definition but is constrained
to satisfy the essential properties. Thus, the validation of a particular architecture is reduced to the proof that
its concrete definition satisfies the essential properties. In practice, the model has been defined in the logic of
the ACL2 theorem proving system. We illustrate our approach on several architectures that constitute concrete
instances of the generic GeNoC model. Some of these applications come from industrial designs, such as the
AMBA AHB bus or the Octagon network from ST Microelectronics.

Keywords: Networks on chip; Communication architectures; Formal methods; Automated theorem proving

1. Introduction

Current chip technology (65 nm) allows the integration of several hundred million transistors on a single die,
which requires a huge progress in design methodologies. Indeed, chip business is highly competitive and time to
market has shrunk. A three month delay induces the loss of one-fourth of the expected income [Büt05]. To face
this increasing time pressure, systems on a chip (SoC) are designed through a platform based approach: a new
SoC is built according to a generic architecture, using pre-designed parameterized modules and processor cores.
In that context, the interconnect structure becomes challenging both for design and verification [Spi04].

Until recently, most of the verification effort was spent on the processing elements, and the literature specifically
devoted to the embedded communication architecture is relatively sparse. Bus architectures, and their protocols,
have been the subject of the earlier works on that topic. Roychoudhury et al. use the SMV model checker [McM93]
to debug an academic implementation of the AMBA AHB protocol [RMK03]. Their model is written at the
register transfer level and without any parameter. Roychoudhury et al. detect a live lock scenario that was caused
by the implementation of their arbiter rather than by the protocol itself. More recently, Amjad [Amj04] used a
model checker, implemented in the HOL [Gor87] theorem prover, to verify the AMBA APB and AHB protocols,
and their composition in a single system. Using model checking, safety properties are verified on each protocol

Correspondence and offprint requests to: J. Schmaltz, E-mail: julien@cs.ru.nl

242 J. Schmaltz and D. Borrione

individually. The HOL tool is used to verify their composition. In this work also, the model is at a low level of
abstraction, and without any parameter.

Networks on a chip (NoC) are a more recent design paradigm, and little work has been done about their
formal verification outside straightforward model checking on fixed structures. A notable exception is the work
of Gebremichael et al. [GVZ05], who recently specified the Æthereal protocol [GDR05] of Philips in the PVS
logic [ORS92]. The main property they verified is the absence of deadlock for an arbitrary number of masters
and slaves.

At this point, it is worth noting that the above mentioned formal verification efforts, devoted to communication
architectures and protocols, were performed at the register transfer level (RTL), on a very specific design. This
level was considered appropriate when the same source was generating the synthesizable design for the full system.
With the advent of outsource Intellectual Properties (IPs) and platform based design, the current trend in the SoC
design community is to raise the level of abstraction [Spi04] and rely on verified parameterized library modules.
This requirement will soon extend to communication network kernels, yet a formal theory for this category of
functional modules is non existing today. In effect, most textbooks (e.g. [DaT04]) describe architectures in an
informal manner.

On the path to the definition of a formal theory of communications, two important studies have already
treated part of it. Moore [Moo93] defined a formal model of asynchrony by a function in the Boyer–Moore
logic [BoM88], and showed how to use this general model to verify a biphase mark protocol. More recently,
Herzberg and Broy [HeB05] presented a formal model of stacked communication protocols, in the sense of the
OSI reference model. In a relational framework supporting a component-oriented view, they defined operators
and conditions to navigate between protocol layers. Herzberg and Broy’s framework considers all OSI layers.
Thus, it is more general than Moore’s work, which is targeted at the lowest layer. In contrast, Moore provides
mechanized support. Both studies focus on protocols and do not consider the underlying interconnection structure
explicitly.

Our long term objective is to support the validation of abstract specifications for on chip communication
architectures, and the verification of their correct implementation by a given, possibly parameterized, IP.
Communications on the chip share many concepts with computer networks, but work on a different time scale.
Systems on a chip often have very hard time, heat and power constraints. On chip communications must be
predictable: losing and resending a message, or reordering message pieces is unacceptable within a SoC, while it is
current practice on the Internet. On chip communications are more constrained, and their topology is statically
defined, which simplifies the protocols. Our research only deals with these restricted communications systems:
buses and NoCs.

Our goal is to provide a general formal framework that encompasses the essential constituents of
communication modules—i.e. protocols and topologies, routing algorithms and scheduling policies—and applies
to a wide variety of communication architectures. It is essential that our theory be directly expressible in the logic
of an interactive theorem prover, either first or higher order, to provide mechanized reasoning support.

This paper presents what constitutes, to the best of our knowledge, a first proposal for a formal theory of
communication architectures. We formalize a generic communication architecture in a functional form. The heart
of the model is function GeNoC , which formalizes the interactions between the three key constituents: interfaces,
routing and scheduling. This model is expressed in the computational logic of a theorem proving system. We
formally verify the correctness of industrial designs under this model.

The original contributions of our work are threefold: (1) the generic model. It makes no assumption on
the protocol, the topology, the routing algorithm, or the scheduling policy. To abstract from any particular
architecture, we have identified essential properties (considered proof obligations or simply constraints) for each
constituent. Those imply the overall correctness of GeNoC . Hence, the validation of any particular architecture
is reduced to the proof that each one of its constituents satisfies the generic constraints. (2) By embedding our
theory in the logic of an automated proof assistant, we provide a tool to specify and to validate network on a
chip descriptions at a high level of abstraction. For any concrete architecture, the proof assistant automatically
generates the proof obligations that must be satisfied to prove the compliance of this architecture with our model.
(3) The application of our approach has been demonstrated on industrial designs.

This paper is structured as follows. The next section presents a motivating example network, and defines our
notations. Section 3 gives an overview of our theory. Section 4 constitutes the core of the paper and our original
contribution: it precisely defines the functions and proof obligations for the main constituents of a network on
chip. Section 5 exposes our methodology for applying our model to a practical network on chip in a systematic
way, and gives an overview of our experiments on a variety of communication architectures. The instantiation

A functional formalization of on chip communications 243

7

5

6

0

4

3

2

1

Fig. 1. Basic Octagon Unit

of the GeNoC model to the “Octagon” design by STMicroelectronics is used as an illustration. Finally, Sect. 6
concludes the paper and gives future research directions.

2. Background for the theory

Our theory relies on some background principles and fundamental common features of all communication
architectures. To make our theory easily expressible in interactive proof assistants, we define it using lists and
their associated operators, as introduced at the end of this section. Let us first start with an example.

2.1. An NoC example: the octagon

This network on a chip has been designed by STMicroelectronics [KND02]. A basic Octagon unit consists of
eight nodes and twelve bidirectional links (Fig. 1). It has two main properties: the communication between any
pair of nodes requires at most two hops, and it has a simple, shortest-path routing algorithm [KND02].

An Octagon packet is data that must be carried from the source node to the destination node as the result
of a communication request by the source node. A scheduler allocates the entire path between the source and
destination nodes of a communicating node pair. Non-overlapping communication paths can occur concurrently,
permitting spatial reuse.

The routing of a packet is accomplished as follows. Each node compares the tag (PackAd) to its own address
(NodeAd) to determine the next action. The node computes the relative address of a packet as:

RelAd � (PackAd − NodeAd) mod 8 (1)

At each node, the route of packets is a function of RelAd as follows:

• RelAd = 0, process at node
• RelAd = 1 or 2, route clockwise
• RelAd = 6 or 7, route counterclockwise
• route across otherwise

Example 1 Consider a packet Pack at node 2 sent to node 5. First, 5 − 2 mod 8 � 3, Pack is routed across to 6.
Then, 5 − 6 mod 8 � 7, Pack is routed counterclockwise to 5. Finally, 5 − 5 mod 8 � 0, Pack has reached its
final destination.

2.2. A unifying model

The previous example is generalized to the communication model of Fig. 2. An arbitrary but finite number of nodes
is connected to some communication architecture, bus or network. Topologies, routing algorithms and scheduling
policies are its essential constituents. Each node is divided in an application and an interface [RSV97]. Applications
represent the computational and functional aspects of nodes. Interfaces represent the communication aspects.
To distinguish between interface–application and interface–interface communications, an interface and an
application communicate using messages; two interfaces communicate using frames.

244 J. Schmaltz and D. Borrione

Interface

Application

Interface

Application

Interface

Application

Interface

Application

messages

messages

messages

messages

frames

frames

frames

frames

Architecture

Communication

Fig. 2. Communication Model

Table 1. Notations and functions used to manipulate lists

Name Purpose

e.l Add element e to list l
l1 ⊆l E l1 is a list of E (type)
l1 � l2 Append of l1 and l2
e ∈l l1 e is an element of list l1
l1 � l2 l1 is included in l2
l1 � l2 Elements common to l1 and l2
List(l1, l2) Juxtaposition of lists l1 and l2
Len(l) The number of elements contained in l
Last(l) The last element of l
NoDuplicatesp(l) Recognizes a list l with no duplicate
ε The empty list
l[i] An element of list l, 0 � i � Len(l) − 1

Applications are either active or passive. Typically, active applications are processors and passive applications
are memories. We consider that each node contains one passive and one active application, i.e. each node is
capable of sending and receiving frames. As we want a general model, applications are not considered explicitly:
passive applications are not actually modeled, and active applications are reduced to the list of their pending
communication requests. We focus on communications between distant nodes. We suppose that in every
communication, the destination node is distinct from the source node.

2.3. Lists: notations and operators

Lists are essential to the implementation of our formalism. We briefly present the notations and the functions
used to manipulate them. Notations about lists are summarized in Table 1.

Letters l or L are used to denote a list or a list of lists. List elements are often represented by letter e. The
empty list is denoted by ε. A list l is a finite sequence of k values indexed from 0 to k − 1 , l � (l[i])i∈[0; k−1].

Len(l) returns the length of list l (its number of elements), and Last(l) returns its last element. Predicate
NoDuplicatesp(l) recognizes a list in which each two elements are distinct. The type of a list l1 is defined by the
membership of its elements to a given set E, and is denoted with the ⊆l operator. Adding an element e in front of
a list l creates a new list l ′, noted l ′ � e.l . Element e takes index 0 in l ′. Elements of l ′ with an index i greater that
0 are elements of l with index i − 1 . If the list is a list of lists, e is a list. The append of two lists, l1 and l2, of the
same type is denoted l1 � l2 , resulting in a list of this type. If the lists have not the same type, their juxtaposition is
obtained by function List(l1, l2). An element e is an element of a list l if and only if e is a value of l. e ∈l l1 reads:
e is an element of list l1. A list l1 is included in a list l2, denoted l1 � l2 , if and only if every element of l1 is an
element of l2. The empty list, ε, is included in all lists. For instance, the list (1 1 1) is included in the list (1); the
list (3 2) is included in the list (1 2 3). The list l in which the first occurrence of an element e has been removed
is noted l \ e. The list l ′ containing all the elements that are elements of lists l1 and l2 is noted l ′ � l1 � l2 . This list

A functional formalization of on chip communications 245

preserves the element ordering of l1. For instance, (1 2 5 3) � (1 2 1 3 4) � (1 2 3). The definition of operator
� is as follows:

l1 � l2 �
{

ε if l1 � ε ∨ l2 � ε
l ′1 � l2 if l1 � e.l ′1 ∧ e
∈l l2
e.(l ′1 � (l2\e)) if l1 � e.l ′1 ∧ e ∈l l2

(2)

If the elements e of a list L are lists, the list of the elements of L with the same index i in each e is noted L�i .
In our model, the meaning of the elements of e is often given by an identifier. For readability, we shall use the

identifier rather than its index. For instance, assume that e is a list composed of a key, a name and a surname:
e � (key name surname). Let L be a list of elements e of this kind. The list of the keys is noted L�key, the list of
the names L�name and the list of the surnames L�surname.

Very often, a list is built by the application of a function f to every element of a list l or a set l. This operation
corresponds to a higher-order function ϕ that takes as arguments a function f and a list l. Function ϕ returns the
list of the results of the application of f to every element of l.1 As function f could be complex, it is not always
practical to have it explicitly formulated. Often, it suffices to express the modification done on each element. To
alleviate the notation, the application of function ϕ is noted using operator � defined as follows:

�
e∈l l

f (e) ≡ ϕ(l, f) �
{

ε if l � ε
f (e).ϕ(l ′, f) otherwise l � e.l ′ (3)

For instance, let l be a list of integer couples e � (x1 x2). The list l ′ of the sums x1 + x2 over the elements e of
l is easily defined with operator �:

l ′ ��
e∈l l

(e[0] + e[1])

Since there is no ambiguity in the membership operator, the same notation will be used when l is a set.

3. Model overview

3.1. Principles of GeNoC

Function GeNoC represents the transmission of messages on a generic communication architecture, with an
arbitrary topology, routing algorithm and switching technique. Its main argument is the list of messages emitted
at source nodes. It returns the list of the results received at destination nodes. Its definition mainly relies on the
following functions:

1. Interfaces are represented by two functions: send encapsulates a message into a frame and injects the frame on
the network; recv decodes the frame to recover the emitted message. The main constraint associated to these
functions expresses that a receiver should be able to extract the encoded information, i.e. the composition
of functions recv and send (recv ◦ send) is the identity function. Note that this property is also present in
Moore’s model of asynchrony, as well as in Herzberg and Broy’s framework.

2. Routing and topology are represented by function Routing . The routing algorithm consists of the successive
application of unitary moves. For each pair made of a source s and a destination d , Routing computes all the
possible routes allowed by the unitary moves. The main constraint associated to Routing is that each route
from s to d effectively starts in s and uses only existing nodes to end in d .

3. The switching technique is represented by function Scheduling . The scheduling policy participates in the
management of conflicts, and computes a set of possible simultaneous communications. Formally, these
commutations satisfy an invariant. Scheduling a communication, i.e. adding it to the current set of authorized
communications, must preserve the invariant, at all times and in any admissible state of the network. The
invariant is specific to the scheduling policy. In our formalization, the existence of this invariant is assumed but
not explicitly represented. From a list of requested communications, function Scheduling extracts a sub-list
of communications that satisfy the invariant. The rest represents the delayed communications

1 In functional programming, this corresponds to the map operation.

246 J. Schmaltz and D. Borrione

Routing

Scheduling

Messages Messages
Application Application

Node A

Node A Interface

Node A

Node B Interface

Node B

Node B

FramesFrames

Fig. 3. GeNoC : A Generic Network

Fig. 4. Unfolding of function GeNoC

We stress the fact that all these functions are generic: their essential properties, called proof obligations or
simply constraints, are formalized, but not their explicit definition.

3.2. Unfolding function GeNoC

Function GeNoC is pictured in Fig. 3. It takes as arguments the list of requested communications and the
characteristics of the network. It produces two lists as results: the messages received by the destination of successful
communications and the aborted communications. In the remainder of this section, we detail the basic components
of the model.

The main input of GeNoC is a list T of transactions of the form t = (id A msgt B). Transaction t represents
the intention of application A to send a message msgt to application B. A is the origin and B the destination. Both
A and B are members of the set of nodes, NodeSet . Each transaction is uniquely identified by a natural id . Valid
transactions are recognized by predicate Tlstp(T ,NodeSet).

The unfolding of function GeNoC is depicted in Fig. 4. For every message in the initial list of transactions,
function ComputeMissives applies function send to compute the corresponding frame. Each frame together with
its id, origin and destination constitutes a missive. A missive is valid if the ids are naturals (with no duplicate);

A functional formalization of on chip communications 247

the origin and the destination are members of NodeSet . A valid list, M of missives is recognized by predicate
Mlstp(M,NodeSet). Then, function Routing computes a list of routes for every missive. If the routing algorithm
is deterministic, this list has only one element. Once routes are computed, a travel denotes the list composed of
a frame, its id and its list of routes. A list V of travels is valid if the ids are naturals (with no duplicate). Such
a list is recognized by predicate Vlstp(V). Function Scheduling separates V into a list Scheduled of scheduled
travels and a list Delayed of delayed travels. The results of the scheduled travels are computed by calling recv .
The applications of functions Routing and Scheduling are combined together. This defines function GeNoC t
(see Sect. 4.5). Delayed travels are converted back to missives and constitute the argument of a recursive call to
GeNoC t.

To make sure that this function terminates, we associate a finite number of attempts to every node. At every
recursive call of GeNoC t, every node with a pending transaction consumes one attempt. The association list att
stores the attempts and att [i] denotes the number of remaining attempts for the node i. Function SumOfAtt(att)
computes the sum of the remaining attempts for all the nodes and is used as the decreasing measure of parameter
att . Function GeNoC t halts if all attempts have been consumed.

The first output list R of GeNoC contains the results of the completed transactions. Every result r is of the
form (id B msgr) and represents the reception of a message msgr by its final destination B. Transactions may not
run to completion (e.g. due to network contention). The second output list of GeNoC is named Aborted and
contains the canceled transactions.

The correctness of GeNoC is expressed by two properties. First, the messages that are received are identical
to the messages that were sent. Second, each message is received by its expected destination. Formally, this is
expressed by the formula below, which shows that each result rst is obtained from a unique transaction t that has
the same identifier, the same message and the same destination as rst .

∀ rst ∈l R, ∃!t ∈l T ,

{ IdR(rst) � IdT (t)
∧ MsgR(rst) � MsgT (t)
∧ DestR(rst) � DestT (t)

(4)

4. Details of the functional model

4.1. Nodes and parameters

Nodes are defined on an arbitrary domain, GenNodeSet , with characteristic function ValidNodep:

∀ x,ValidNodep(x) ⇔ x ∈ GenNodeSet (5)

The set of nodes of a particular network is noted NodeSet . In all this section, we shall use a subscripted curly
D to represent a domain of elements. For instance, Dmsg is the domain of messages, Dfrm is the domain of frames,
etc.

4.2. Interfaces

Function send builds a frame from a message and function recv builds a message from a frame. Their functionality
is:

send : Dmsg → Dfrm (6)

recv : Dfrm → Dmsg (7)

The constraint on these functions is that their composition is the identity function. The following proof
obligation has to be relieved:

Proof Obligation 1 Validity of The Interface Functions

∀msg ∈ Dmsg , recv ◦ send (msg) � msg (PO1)

248 J. Schmaltz and D. Borrione

4.3. Routing

4.3.1. Principles and correctness criteria

Let d be the destination of a frame standing at node s. In the case of deterministic algorithms, the routing logic
of a network selects a unique node as the next step in the route from s to d . This logic is represented by function
L(s, d). The list of the visited nodes for every travel from s to d is obtained by the successive applications of
function L until the destination is reached, i.e. while L(s, d)
� d . The route from s to d is:

s,L(s, d),L(L(s, d), d),L(L(L(s, d), d), d), . . . , d

A route is computed by function ρdet that recursively applies function L from the source node to the destination
node. Function ρdet is defined as follows:

ρdet (s, d) �
{

d if s � d
s.ρdet (L(s, d), d) otherwise (8)

In the adaptive case, the routing logic offers at each intermediate node several “next” nodes. Several routes
are possible between a source s and a destination d . In that case, the routing algorithm is represented by function
ρndet , which computes all possible routes between nodes s and d . The principle is that the routing logic is now
represented as relation Lndet which computes a set of possible successors. We obtain all possible routes between
two nodes by the recursive application of this relation to every possible successor. This is expressed as follows:

ρndet (s, d) �
{

d if s � d

�n∈GenNodeSet,Lndet (s,n) n.ρndet (Lndet (n, d), d) otherwise
(9)

To cover the general case, the routing algorithm is represented by function ρ, which takes as arguments a
source node s and a destination node d . This function returns the list of the possible routes between s and d . Its
functionality is the following, where C denotes a list of lists of nodes:

ρ : GenNodeSet × GenNodeSet → C (10)

Routing termination Since function ρ is recursive, it must be shown to terminate, both to ensure the liveness of
the network, and to be accepted by a proof assistant.

Let S be a set and ≺S be a total ordering relation on S. We recall that (S ,≺s) is a well-founded structure
if any subset of S has a minimal element for ≺S . Typically, the proof of termination of a function is done by
showing that some measure on its parameters is decreasing on a well-founded structure for every recursive call of
that function.

Let us return to the deterministic case and function ρdet . Let (S ,≺S) be a well-founded structure (most often
S is the set of naturals), and mes be a measure on S.

mes : GenNodeSet × GenNodeSet → S

To prove that ρdet terminates, one needs to prove that the “governing” condition for the recursive call, namely
s
� d , implies that mes is decreasing. The following proof obligation has to be satisfied:

Proof Obligation 2 Termination Condition for ρdet .

∀ s, d ∈ GenNodeSet, ∃mes : GenNodeSet × GenNodeSet → S,
s
� d ⇒ mes(L(s, d), d) ≺S mes(s, d) (PO2)

When considering adaptive algorithms, the termination condition must hold for all successors proposed by
the routing logic.

Proof Obligation 3 Termination Condition for ρndet .

∀ s, d ∈ GenNodeSet, ∃mes : GenNodeSet × GenNodeSet → S,
s
� d ⇒ ∀ n ∈ GenNodeSet,Lndet (s, n),mes(n, d) ≺S mes(s, d) (PO3)

A functional formalization of on chip communications 249

Routing correctness The correctness of a route is defined according to a missive. A route r is correct with respect
to a missive m if r starts with the origin of m, ends with the destination of m and every node of r belongs to the
set of nodes of the network. Every correct route has at least two nodes. The following predicate defines these
conditions:

Definition 1 ValidRoutep.

ValidRoutep(r, m,NodeSet) �
{

r[0] � OrgM(m)
∧ Last(r) � DestM(m)
∧ r ⊆l NodeSet ∧ Len(r) � 2

Whether routing is deterministic or adaptive, this predicate must be satisfied by all routes produced by function
ρ. The following proof obligation has to be relieved:

Proof Obligation 4 Correctness of routes produced by ρ.

∀ M,Mlstp(M,NodeSet)
⇒ ∀ m ∈l M,∀ r ∈l ρ(OrgM(m),DestM(m)),ValidRoutep(r, m,NodeSet) (PO4)

4.3.2. Definition and validation of function Routing

Function Routing takes as arguments a missive list and the set NodeSet of nodes of the network. It returns a
travel list in which a list of routes is associated to each missive. The functionality of Routing is the following:

Routing : DM × P(GenNodeSet) → DV (11)

Function Routing builds a travel list from the identifier, the frame, the origin and the destination of missives.

Definition 2 Function routing

Routing(M,NodeSet) �

�
m∈lM

List(IdM(m),FrmM(m), ρ(OrgM(m),DestM(m)))

Concerning data types, one has to prove that function Routing produces a valid travel list if the initial missive
list is valid.

Proof Obligation 5 Type of Routing .

∀M,Mlstp(M,NodeSet) ⇒ Vlstp(Routing(M,NodeSet)) (PO5)

The definition of function Routing preserves the properties proved about the previous function ρ. Function
Routing terminates and the routes of every travel satisfy predicate ValidRoutep. In a missive list, identifiers are
unique. For every travel v produced by function Routing , there is a unique missive m such that its identifier equals
the identifier of v and the frame of v equals the frame of m.

Theorem 1 Missive/Travel Match.

∀ M,Mlstp(M,NodeSet) ⇒
∀ v ∈l Routing(M,NodeSet), ∃!m ∈l M, IdV (v) � IdM(m) ∧ FrmV (v) � FrmM(m) (TH1)

Proof. By definition of Routing . �

Travels delayed by the scheduling function—but produced by function Routing—are converted back to
missives by function ToMissives. The latter builds missives in the following manner. It takes the identifier and the
frame of a travel. The origin and the destination of a missive are the first and the last node of a route. Function
ToMissives is the reverse of function Routing .

Theorem 2 Routing ToMissives.

250 J. Schmaltz and D. Borrione

∀ M,Mlstp(M,NodeSet) ⇒ ToMissives ◦ Routing(M,NodeSet) � M (TH2)

Proof. Frames are not modified by function Routing . Since the latter satisfies predicate ValidRoutep for all routes
of all travels that it produces, the first and the last node of any route are equal to the origin and the destination
of the initial missive. �

4.4. Scheduling

Function Scheduling takes as arguments the travel list produced by function Routing and the list att of the
remaining number of attempts. It returns a new list of number of attempts and two travel lists: the list Scheduled
and the list Delayed . The functionality of Scheduling is:

Scheduling : DV × AttLst → DV × DV × AttLst (12)

A scheduled travel only keeps one of the possible routes for the missive. For technical reasons, we avoid the
introduction of a new data type and do not make a special case of scheduled travels: they contain a list of routes,
even if this list has only one element.

The validation of Scheduling requires the satisfaction of several proof obligations.
In the following, the projection of a vector on one of its dimensions is denoted π

j
i , with the following

functionality:

π
j
i : D1 × D2 × · · · × Dj → Di (13)

For instance, π2
1 (x1 , x2) � x1 and π2

2 (x1 , x2) � x2 .
First, if the first parameter V of Scheduling is a valid travel list, the lists Scheduled and Delayed are also valid.

Proof Obligation 6 Type of Scheduled and Delayed .

Let Scheduled be π3
1 ◦ Scheduling(V, att) and

Delayed be π3
2 ◦ Scheduling(V, att), then :

∀ V,Vlstp(V) ⇒ Vlstp(Scheduled) ∧ Vlstp(Delayed) (PO6)

At each scheduling round, all travels of V are analyzed. If several travels are associated to a single node, this
node consumes one attempt for the set of its travels. At each call to Scheduling , an attempt is consumed at each
node. If all attempts have not been consumed, the sum of the remaining attempts after the application of function
Scheduling is strictly less than the sum of the attempts before the application of Scheduling . This is expressed by
the following proof obligation:

Proof Obligation 7 Function Scheduling consumes at least one attempt.

Let natt be π3
3 ◦ Scheduling(V, att), then:

SumOfAtt(att)
� 0
→ SumOfAtt(natt) < SumOfAtt(att) (PO7)

The list of the delayed travels must be a sublist of V . Formally, one ensures that for every delayed travel dtr ,
there exists a unique initial travel v such that dtr and v have the same identifier, the same frame and the same
routes. Hence the following proof obligation:

Proof Obligation 8 Correctness of the delayed travels.

Let Delayed be π3
2 ◦ Scheduling(V, att), then:

∀ V,Vlstp(V) ⇒ ∀ dtr ∈l Delayed , ∃!v ∈l V,

{ IdV (dtr) � IdV (v)
∧ FrmV (dtr) � FrmV (v)
∧ RoutesV (dtr) � RoutesV (v)

(PO8)

Since the scheduling function only keeps one route for every scheduled travel, the list Scheduled is not exactly
a sublist of the initial travel list V . The identifiers and the frames are not modified. We check that the route, or

A functional formalization of on chip communications 251

Fig. 5. Proof of GeNoC

more generally, the routes of a scheduled travel belong to the routes of the corresponding initial travel. Formally,
we ensure that for every scheduled travel str , there exists a unique initial travel v such that str and v have the
same identifier, the same frame and that the routes associated with str are among the routes associated with v.

Proof Obligation 9 Correctness of the scheduled travels.
Let Scheduled be π3

1 ◦ Scheduling(V, att), then:

∀ V,Vlstp(V) ⇒ ∀ str ∈l Scheduled , ∃!v ∈l V,

{ IdV (str) � IdV (v)
∧ FrmV (str) � FrmV (v)
∧ RoutesV (str) � RoutesV (v)

(PO9)

Since routes of travels in Scheduled are routes of travels of V , function Scheduling preserves the correctness of
routes. If routes of V satisfy predicate ValidRoutep, so do the routes of Scheduled .

A travel cannot, at the same time, be scheduled and delayed.

Proof Obligation 10 Mutual exclusion between Delayed and Scheduled .

Let Scheduled be π3
1 ◦ Scheduling(V, att) and

Delayed be π3
2 ◦ Scheduling(V, att), then :

∀V,Vlstp(V) ⇒ Delayed �id � Scheduled �id � ε (PO10)

4.5. Definition and validation of GeNoC

The definition of function GeNoC and its correctness proof are summarized in Fig. 5. The recursive call in GeNoC
involves functions Routing and Scheduling only. We define function GeNoC t to be the subfunction computing
this recursion. It takes as arguments a list M of missives, the set NodeSet of nodes of the network, the list att of
the attempt numbers and a travel list V that is initially empty. It returns two lists: a travel list that contains the
frames received by the destination nodes of the missives in M and a list that contains the aborted missives. Its
functionality is the following:

GeNoC t : DM × P(GenNodeSet) × AttLst × DV → DV × DM (14)

If all attempts have been consumed, GeNoC t returns the travels accumulated in V and the list of the remaining
missives, i.e. the aborted missives. Otherwise, the travels produced by function Routing are passed to function
Scheduling . The scheduled travels are added to list V . The delayed travels are converted to missives and constitute
an argument of the recursive call to GeNoC t. The remaining arguments are the updates of the lists att and V .

252 J. Schmaltz and D. Borrione

Definition 3 Definition of GeNoC t.
GeNoC t(M,NodeSet, att,V) �
if SumOfAtt(att) � 0 then
List(V,M)

else
Let(ScheduledRtg DelayedRtg att1) be

Scheduling(Routing(M,NodeSet), att) in
GeNoCt(ToMissives(DelayedRtg),NodeSet, att1,ScheduledRtg � V)

endif

The correctness of function GeNoC t is obtained if for every element ctr of the scheduled travels G, the frame
and the last node of the route2 of ctr are equal to the frame and the destination of the missive m in M that has
the same identifier as ctr. Let φ be that property. The main idea of the proof of φ is pictured in the right part of
Fig. 5. The proof proceeds by induction. Since travels in G may have been “delayed” in intermediate recursive
calls, in the induction step we need to prove that φ is satisfied for the scheduled (case 1) and the delayed travels
(case 2). This is expressed by the theorem below:

Theorem 3 Correctness of GeNoC t.

∀ ctr ∈l G, ∃!m ∈l M,

{ IdV (ctr) � IdM(m)
∧ FrmV (ctr) � FrmM(m)
∧ ∀ r ∈l RoutesV (ctr),Last(r) � DestM(m)

(TH3)

where

G � π2
1 ◦ GeNoC t(M,NodeSet, att, ε)

Proof. This theorem is proven by induction on the structure of function GeNoC t. It follows from proof obligation
10 that the scheduled and the delayed travels can be proven separately. Scheduled travels have a correspondence
with the travel list input in Scheduling (proof obligation 9). Function Routing produces correct routes (proof
obligation 4), which are still correct after Scheduling . So, frames and destinations after Scheduling match the
missives input to function Routing . The delayed travels are proven using the induction hypothesis and proof
obligation 8. �

Function GeNoC takes as arguments a list T of transactions, the set NodeSet of nodes of the network, the list
att of attempt numbers. It returns the list R containing the results and the list A containing the aborted missives.
It has the following functionality:

GeNoC : DT × P(GenNodeSet) × AttLst → DR × DM (15)

Function ComputeMissives applies function send to the message of each transaction of the list T . This
function produces a list of missives from the initial transactions. Its functionality is the following:

ComputeMissives : DT → DM (16)

It is defined as follows:

Definition 4 ComputeMissives.

ComputeMissives(T) �

�
t∈lT

List(IdT (t),OrgT (t), send (MsgT (t)),DestT (t))

Function ComputeResults applies function recv to each frame of a travel list to produce a list of results. Its
functionality is the following:

ComputeResults : DV → DR (17)

It is defined as follows:

2 Note that to keep our notations consistent, a travel is always made of a list of routes, even if this list has only one element.

A functional formalization of on chip communications 253

Definition 5 ComputeResults.

ComputeResults(V) �

�
tr∈lV

List(IdV (tr),Last(RoutesV (tr)), recv (FrmV (tr)))

Function GeNoC is defined using these functions and GeNoC t. Function ComputeMissives gives the first
argument of GeNoC t from the transaction list T . The last argument of GeNoC t is the empty list. The aborted
missives are produced by function GeNoC t. The definition of GeNoC is the following:

Definition 6 Definition of GeNoC .
GeNoC (T ,NodeSet, att) �

Let (Responses Aborted) be
GeNoC t(ComputeMissives(T),NodeSet, att, ε) in

List(ComputeResults(Responses),Aborted)

The correctness of GeNoC is defined by expression 4 defined in section 3.

Theorem 4 Correctness of GeNoC .
Let R be π2

1 ◦ GeNoC (T ,NodeSet, att) in

∀ rst ∈l R, ∃!t ∈l T ,

{ IdR(rst) � IdT (t)
∧ MsgR(rst) � MsgT (t)
∧ DestR(rst) � DestT (t)

(TH4)

Proof. The last term of the conjunct is directly obtained from Lemma 3. From this lemma, it also follows that
the frames produced by function ComputeMissives are identical to the frames converted in messages by function
ComputeResults . From proof obligation 1 on the interfaces, it comes that messages of results are equal to messages
in the initial transaction list. �

5. Methodology and case studies

We have embedded our theory in the logic of the ACL2 theorem proving system [KMM00]. Despite the fact that
ACL2 is first order, and does not support the explicit use of quantifiers, the choice of this system offered a number
of advantages:

• The input language being a subset of Common Lisp, the functions are executable. It is realistic to execute a
model on test benches, and visualize the behavior of a particular network specification, as a first debugging
step before proceeding with human time consuming proofs. This feature is important also for quick software
prototyping, as a basis of discussion with network designers.

• The ACL2 community continuously extends and improves the system. A large number of existing previous
works are publicly available, and developing a new theory benefits from many layers of expert developments
that extend the system first principles. Libraries of functions definitions and proven theorems can be compiled
and stored for later use, restoring an environment is a single statement.

• Very powerful definition mechanisms, such as the encapsulation principle, allow to extend the logic and reason
on undefined functions that satisfy one or more theorems, provided one witness can be exhibited. We made an
extensive use of this principle to prove the correctness of GeNoC assuming the satisfaction of the constraints
on the functions that formalize the network constituents.

• The combined use of typing predicates, list filtering, implication and recursive function definitions over list
arguments provides a means to express universally quantified properties over domains, and the statement
“there exists a unique element such that”.

Applying a systematic, and reusable, mode of expression (see [ScB06] for details), the complete GeNoC
formalization could be performed in the ACL2 logic, using the above listed capabilities, and we thus benefited
from the high degree of automated mechanized reasoning in ACL2.

The proof of the main theorem about GeNoC and its modules involve 71 functions, 119 theorems in 1,864 lines
of code. Only one fourth of these is dedicated to the encapsulation of the different modules. Most of the definitions

254 J. Schmaltz and D. Borrione

Routing

Scheduling

FramesFrames

Node A Interface Node B Interface

Fig. 6. Concrete Instances of GeNoC

and theorems concern data types and the proof of the overall correctness. This makes GeNoC “relatively simple”
to use, because users will only be concerned with the modules, as we shall now discuss.

5.1. Overview of the applications

Figure 6 summarizes concrete instances of on chip communications constituents in our model. Any combination
of these different concrete instances is defined and validated by generic function GeNoC , which means without
any additional effort.

We have shown that the circuit [ScB04] and the packet [ScB05] switching techniques are concrete instances of
Scheduling . Recently, we have modeled a wormhole based network [BHP07]. Based on previous work [ScB03],
we proved that bus arbitration in the AMBA AHB is also a valid instance of the generic scheduling policy. From
Moore’s work on asynchrony [Moo93], we proved that his model of the biphase protocol constitutes a valid
instance of the interfaces. We have modeled an Ethernet controller3 and we are investigating its compliance with
GeNoC .

With respect to Routing , several topologies and associated routing algorithms were shown to be correct
instances of this function. A model and a proof of the Octagon [ScB04], as well as the XY routing in a 2D
mesh [ScB05] are such valid instances of our generic model. Finally, we are currently working on the proof that
an adaptive routing algorithm—the double Y channel algorithm in a 2D mesh—is a valid instance of function
Routing . More details about all these studies can be found in Schmaltz’s thesis [Sch06].

Among all these industrial cases, we choose to illustrate our methodology on the Octagon network. The
presentation that follows, based on the generic model, is significantly different from the earlier proof [ScB04].

5.2. Method for instantiating the model

The application of GeNoC to a particular network consists of the following steps:

Node Definition. The topology of a network determines the node numbering and the unitary moves allowed
between two adjacent nodes. Before all, we define the node definition domain, which is a particular instance

3 This work has been done during a visit of the first author at the University of Texas at Austin, in cooperation with Warren Hunt.

A functional formalization of on chip communications 255

of predicate ValidNodep, noted ValidNodep�. The generic definition domain GenNodeSet becomes a particular
domain GenNodeSet �, the naturals for instance. We give a concrete definition of Eq. 5, that is:

∀ x,ValidNodep�(x) ⇔ x ∈ GenNodeSet � (18)

Routing Definition. First, we identify the moves allowed between two adjacent nodes. As we consider regular
networks (or a regularization of an irregular network), these moves are all identical at each point of the network.
Identifying these unitary moves defines a concrete instance, L�, of the routing logic L. The routing function ρ�

results of the successive application of these unitary moves (see Eq. 8, or Eq. 9 in the adaptive case).
The distance between the current position of a message and its destination is deduced from the topology. The

distance between nodes s and d is noted dist(s, d). Most often, this distance is the measure used to prove that
the routing function terminates. It suffices to prove that each unitary move reduces this distance. The distance is
a function that returns a natural for any node pair. This function has the following functionality:

dist : GenNodeSet � × GenNodeSet � → N (19)

To prove the termination of ρ�, we must prove that this function satisfies a concrete instance of proof obligation
PO2 (or PO3 in the adaptive case).

The validity of a route is tested by predicate ValidRoutep. The definition of ValidRoutep is valid for all
networks, it needs not be redefined (see Definition 1).

Finally, to validate the concrete routing function, it suffices to prove that is satisfies predicate ValidRoutep
for the set NodeSet � of concrete nodes of the network, instantiating proof obligation PO4.

A function Routing� that matches the generic definition 2 (of Sect. 4.3) computes a list of routes for each
missive of a list M.

To prove the compliance of this function with GeNoC , we still need to prove that Routing� produces a valid
travel list if the initial list M is a valid list of missives (proof obligation PO5).

Please recall that all these proof obligations are automatically generated by ACL2 from the instantiation of
the generic functions.

Scheduling. The instantiation of the generic Scheduling function follows a similar pattern. A concrete definition
must be provided, and proof obligations PO6 to PO10 must be discharged.

Main Function. The definition and proof of GeNoC t� and GeNoC � follow from the above. They can be
automatically macro-generated in ACL2.

5.3. Octagon case study

5.3.1. Octagon node definition

Our Octagon model considers an arbitrary, but finite, number of nodes, noted NumNode. This number is a natural,
multiple of 4. So, we can define that number using a natural N , NumNode � 4N . Predicate ValidNodepOct takes
as arguments a node x and number N :

∀ N ∈ N,∀ x,ValidNodepOct (x ,N) ⇔ x ∈ N ∧ x < 4N (20)

5.3.2. Octagon routing function

Let s be the current node and d the destination node. The three unitary moves in the Octagon are defined as:

Clockwise(s,NumNode) � (s + 1) mod NumNode

CounterClockwise(s,NumNode) � (s − 1) mod NumNode

Across(s,NumNode) �
(

s +
NumNode

2

)
mod NumNode

These moves are grouped into function LOct . The relative address is RelAd � (d − s) mod 4N . If the current
node is the destination, the message is consumed. If the relative address is positive and less than N , the message

256 J. Schmaltz and D. Borrione

moves clockwise. If this address is between 3N and 4N , it moves counterclockwise. Otherwise, it moves across.
The definition of LOct is as follows:

Definition 7 Unitary moves in the Octagon.

LOct (s, d ,N) �

⎧⎪⎨
⎪⎩

s if RelAd � 0
Clockwise(s, 4N) if 0 < RelAd � N
CounterClockwise(s, 4N) if 3N � RelAd < 4N
Across(s, 4N) otherwise

Routing function ρOct is defined as the recursive application of the unitary moves:

Definition 8 Routing Function of the Octagon, ρOct .

ρOct (s, d ,N) �
{

d if s � d
s.ρOct (LOct (s, d ,N), d ,N) otherwise

As there are two ways of traversing the Octagon, there exist two distances between two nodes. The measure
used to prove that function ρOct terminates is the minimum between these two distances:

mesOct (s, d ,NumNode) � Min[(d − s) mod NumNode, (s − d) mod NumNode]

To prove that the octagon routing function terminate, it suffices to prove that the unitary moves reduce this
distance:

Theorem 5 Octagon Routing Function Terminates.

∀ s, d ∈ GenNodeSetOct , s
� d ⇒ mesOct (LOct (s, d), d ,NumNode) < mesOct (s, d ,NumNode) (TH5)

Proof. The proof is decomposed according to the different moves. Each one of them reduces the distance. The
proof is a huge case split because of functions Min and mod. In ACL2, the proof is decomposed in more that
1,200 cases. It only requires 10 additional lemmas about function modulo in addition to the latest arithmetic
library [RKM03]. Two lemmas are also required to drive ACL2 to the right case split. The proof is automatically
performed in less that 100 s on a Pentium IV 1.6 GHz, 256 MB of memory and running under Linux. �

To show that function ρOct constitutes a valid instance of the generic routing function, we need to prove that
it produces routes which satisfy predicate ValidRoutep:

Theorem 6 Validity of Octagon Routes.

∀ M,Mlstp(M,NodeSetOct)
⇒ ∀m ∈l M,∀ r ∈l ρOct (OrgM(m),DestM(m)),ValidRoutep(r ,m,NodeSetOct)

(TH6)

Proof. By induction on the route length. �

Finally, function RoutingOct follows the generic signature:

Definition 9 Octagon Routing, function RoutingOct

RoutingOct (M,NodeSetOct) ��
m∈M

List(IdM(m),FrmM(m),List(ρOct (OrgM(m),DestM(m))))

We still need to prove that this function produces a valid travel list. The proof of the following theorem is
trivial:

Theorem 7 Type of Octagon Routes.

∀ M,Mlstp(M,NodeSetOct) ⇒ Vlstp(RoutingOct (M,NodeSetOct)) (TH7)

Table 2 shows details about the ACL2 modeling and proof. ACL2 is run on a Pentium IV at 1.6 GHz with
256 MB under Linux. The Octagon specification and proof are relatively small, an important point for the initial
high level design step. In the proof, a huge amount of time is devoted to arithmetic reasoning.

A functional formalization of on chip communications 257

Table 2. Functions, theorems and proof time for the definition and validation of the Octagon

No. of No. of Proof time Size
functions theorems (s)

OctagonNodeSet 5 4 <1 70 lines
Lemmas on mod 0 10 <3 150 lines
Routing 19 41 ∼720 955 lines
Total 21 64 <740 1,325 lines

6. Conclusion and future work

We have presented a generic model for communication architectures. It is formalized by function GeNoC , which
is defined by three key components: interfaces, a routing algorithm and a scheduling policy. The generic model
does not assume any particular definition of these components. It only relies on a set of proof obligations (or
constraints) associated with each component. The correctness of GeNoC includes the proof that messages are
either lost or reach their expected destination without modification of their content. This proof is deduced from
the proof obligations only. Hence, the specification and the validation of a particular communication architecture
amounts to an explicit definition of each component and the proof that these definitions satisfy the corresponding
constraints. Moreover, each component is self-contained and can be specified and validated in isolation.

To validate our approach, we have applied it to a variety of architectures that constitute as many concrete
instances of our theory: some come from industrial systems, like the AMBA bus or the Octagon network, others
are more academic examples, like XY or double Y channel routing in a 2D mesh, packet, wormhole and circuit
switching techniques or the biphase mark protocol Bi-φ-M.

The current GeNoC definition is very abstract and very simplified. Successive, proven correct refined models
are needed before reaching the level of details of an implementation specification. We are currently investigating
different extensions of GeNoC . Our research involves the further application ofGeNoC to NoC designs, especially
designs that can be synthesized on FPGA platforms. We are interested in extending GeNoC with control flow
mechanisms, like credits [DaT04].

Our current treatment of adaptive routing algorithms does not take into account the current global state of
the network. The present routing function computes all possible routes. If this works for minimal algorithms, it
might not be feasible for non-minimal ones. We will surely face a similar issue when investigating fault-tolerance.
More abstract previous works targetted at protocols (e.g. [MGP04]) do not consider the underlying interconnect
structure: in that respect our work would bring complementary results.

We plan to extend GeNoC with a global notion of the network state. Finally, we are studying the extension
of GeNoC to consider low level aspects, like metastability or clock drift and jitter. The first author has recently
defined a formal model of low level system layers [Sch07], which considers these phenomena: from this work,
additional proof obligations will be identified, to guarantee the correctness of communications while considering
these aspects.

Acknowledgment

The authors would like to thank J Strother Moore, Matt Kaufmann and Warren Hunt for valuable remarks and
helpful advices regarding ACL2. We are also thankful to Katell Morin-Allory for suggesting improvements to a
previous version of this paper. We would like to thank our anonymous reviewers for providing apposite remarks
to enhance the presentation of this paper.

References

[Amj04] Amjad H (2004) Model checking the AMBA Protocol in HOL. Technical report, University of Cambridge, Computer
Laboratory, September, UK

[Büt05] Büttner W (2005) Is formal verification bound to remain a junior partner of simulation? In: Borrione D, Paul W (eds) Correct
hardware design and verification methods (CHARME’05), Volume 3725 of LNCS Invited Speaker. Springer, Saarbrücken

[BHP07] Borrione D, Helmy A, Pierre L, Schmaltz J (2007) A generic model for formally verifying NoC communication architectures:
a case study. In: Proceedings of first international symposium on networks-on-chip (NOCS’07), IEEE, Princeton, 7–9 May,
pp 127–136

258 J. Schmaltz and D. Borrione

[BoM88] Boyer RS, Strother MJ (1988) A computation logic handbook. Academic, New York
[DaT04] Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan-Kaufmann, San Fransisco
[GDR05] Goossens K, Dielissen J, Rădulescu A (2005) Æthereal network on chip: concepts, architectures, and implementations. IEEE

Des Test Comput 22(5):414–421
[Gor87] Gordon MJC (1987) HOL: a proof generating system for higher-order logic. In: Birthwislte G, Subrahmanyam PA (eds) VLSI

specification, verification and synthesis. Kluwer, Boston, pp 73–128
[GVZ05] Gebremichael B, Vaandrager F, Zhang M, Goossens K, Rijpkema E, Rădulescu A (2005) Deadlock Prevention in the Æthereal

protocol. In: Borrione D, Paul WJ (eds) Correct hardware design and verification methods (CHARME’05), Volume 3725 of
LNCS. Springer, Heidelberg, pp 345–348

[HeB05] Herzberg D, Broy M (2005) Modeling layered distributed communication systems. Form Asp Comput 17(1):1–18
[KMM00] Kaufmann M, Manolios P, Strother Moore J (2000) ACL2 computer aided reasoning: an approach. Klulwer, Dordrecht
[KND02] Karim K, Nguyen A, Dey S (2002) An interconnect architecture for networking systems on chip. IEEE Micro, September–

October, pp 36–45
[McM93] McMillan KL (1993) Symbolic model checking. Kluwer, Dordrecht
[MGP04] Miner PS, Geser A, Pike L, Maddalon J (2004) A unified fault-tolerance protocol. In: Lakhnech Y, Yovine S (eds) Formal

techniques, modeling and analysis of timed and fault-tolerant systems (FORMATS-FTRTFT), Volume 3253 of LNCS. Springer,
Heidelberg, pp 167–182

[Moo93] Strother Moore J (1994) A formal model of asynchronous communications and its use in mechanically verifying a biphase
Mark Protocol. Form Asp Comput 6(1):60–91

[ORS92] Owre S, Rushby JM, Shankar N (1992) PVS: a prototype verification system. In: Kapur D (ed) Eleventh international conference
on automated deduction (CADE’92), Saragota, Volume 607 of LNAI. Springer, Heidelberg, pp 748–752

[RKM03] Hunt WA, Krug R, Strother Moore J (2003) Linear and nonlinear arithemetic in ACL2. In: Geist D, Tronci E (eds) Correct
hardware design and verification methods (CHARME’03), Volume 2860 of LNCS. Springer, L’Aquila, pp 51–65

[RMK03] Roychoudhury A, Mitra T, Karri SR (2003) Using formal techniques to debug the AMBA system-on-chip Bus Protocol. In:
Design automation and test Europe (DATE’03), pp 828–833

[RSV97] Rowson JA, Sangiovanni-Vincentelli A (1987) Interface-based design. In: 34th design automation conference (DAC’96),
pp 178–183

[ScB03] Schmaltz J, Borrione D (2003) Verification of a parameterized bus architecture using ACL2. In: Proceedings of the fourth
international workshop on the ACL2 theorem prover and its applications

[ScB04] Schmaltz J, Borrione D (2004) A functional approach to the formal specification of networks on chip. In: Hu AJ, Martin AK
(eds) Formal methods in computer-aided design (FMCAD’04), Volume 3312 of LNCS. Springer, Austin, pp 52–66

[ScB05] Schmaltz J, Borrione D (2005) A generic network on Chip Model. In: Melham T, Hurd J (eds) Theorem proving in higher order
logics (TPHOLs’05), Volume 3603 of LNCS. Springer, Oxford, pp 310–325

[ScB06] Schmaltz J, Borrione D (2006) Towards a formal theory of on chip communications in the ACL2 Logic. In: Proceedings of the
sixth international workshop on the ACL2 theorem prover and its applications, part of FloC’06. ACM, Seattle, pp 47–60

[Sch06] Schmaltz J (2006) Une formalisation fonctionnelle des communications sur la puce. PhD thesis, Joseph Fourier University,
Grenoble, France (in French). A partial translation is available upon request to the first author

[Sch07] Schmaltz J (2007) A formal model of clock domain crossing and automated verification of time-triggered hardware. In:
Baumgartner J, Sheeran M (eds) Formal methods in computer-aided design (FMCAD’07). IEEE/ACM, Austin (to appear)

[Spi04] Spirakis G (2004) Beyond verification: formal methods in design. In: Hu A, Martin AK (eds) Formal methods in computer-aided
design (FMCAD’04), Volume 3312 of LNCS. Springer, Austin, USA Invited Speaker

Received 12 September 2006
Revised 23 June 2007
Accepted 10 September 2007 by C. Delgado Kloos
Published online 18 October 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

