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1 Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, Brazil
2 Department of Computer Science, University of York, York, UK

Abstract. Circus specifications define both data and behavioural aspects of systems using a combination of Z and
CSP constructs. Previously, a denotational semantics has been given to Circus; however, a shallow embedding of
Circus in Z, in which the mapping from Circus constructs to their semantic representation as a Z specification, with
yet another language being used as a meta-language, was not useful for proving properties like the refinement laws
that justify the distinguishing development technique associated with Circus. This work presents a final reference
for the Circus denotational semantics based on Hoare and He’s Unifying Theories of Programming (UTP); as
such, it allows the proof of meta-theorems about Circus including the refinement laws in which we are interested.
Its correspondence with the CSP semantics is illustrated with some examples. We also discuss the library of
lemmas and theorems used in the proofs of the refinement laws. Finally, we give an account of the mechanisation
of the Circus semantics and of the mechanical proofs of the refinement laws.
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1. Introduction

Throughout the past decades two schools have been developing formal techniques for precise and correct software
development. Model-based languages like Z [Spi92, WD96] focus on data aspects of the systems; constructs to
model behavioural aspects are not explicitly provided. On the other hand, CSP [Hoa85, Ros98], among other
process algebras, focuses on the behavioural aspects of the systems; however, it does not support a concise and
elegant way to describe complex data aspects of the systems.

Combinations of Z with CCS [GS97, TA97], Z with CSP [Fis98, MS98, RWW94], Object-Z [CDD+90] with
CSP [Fis97, MD98, Smi97], and Object-Z with timed CSP [MD98] are some attempts to combine both schools
of formalisms. Furthermore, combinations of B and action systems [Abr03], B and CSP [TS99], and notations
that describe both aspects, like RAISE [Gro92] have been used. As far as we know, however, none of them has
a related refinement calculus to support code development. This has motivated the design of Circus [WC02], a
language that characterises systems as processes, which group constructs that describe data and control; the Z
notation is used to define most of the data aspects, and CSP is used to define behaviour.

Predicate transformers [Dij76] are commonly used as the basis of semantic models for imperative refinement
calculi [Bac78, Mor87, Mor94]. However, a different model is used as the basis of theories of refinement for CSP,
the failures-divergence model [Hoa85, Ros98]. Other works, such as those presented in [Fis97, Smi97], provide a
failures-divergences model for Object-Z classes, in order to present the semantics for combinations of Object-Z
and CSP. Although data refinement was investigated for these combinations, no refinement laws were proposed.
In [WDB00], the failures model was used to give behavioural semantics to abstract data types. To give a semantics
to Circus, we need a semantic model that is able to combine the notions of refinement for CSP and for imperative
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programs. The UTP [HJ98] is a framework that makes this combination possible by unifying the programming
discipline across many different computational paradigms.

Every program, design, and specification is interpreted in the UTP as a relation between an initial observation
and a subsequent observation, which may be either an intermediate or a final observation of the behaviour of a
program execution. The relations are defined as predicates over observational variables; they represent concepts
that are important to describe all relevant aspects of a program behaviour. The initial observations of each variable
are represented using its undecorated name, and subsequent observations are represented using the name of the
variable decorated with a dash, very much in the style of Z, for example.

Eight distinguished variables record important observations about a program: okay indicates whether the
system has been properly started in a stable state or not; okay′ records the subsequent stabilisation in an observable
state. The observational variable wait distinguishes the intermediate observations of waiting states from final
observations on termination; wait′ distinguishes a stable intermediate state from a stable final state. But what
is the role of wait′ when okay′ is false? First, note that any behaviour is better than divergence, so we cannot
specify that a process must diverge, for such a specification would have only divergent refinements. This essential
asymmetry is captured in a healthiness condition, CSP2 (see Sect. 3.1 for details), that has the property that a
CSP process P can be expressed in the form P[false/okay′] ∨ (okay′ ∧ P[true/okay′]). Because okay′ and wait′
are boolean variables, there are four possible combinations of their values, but another healthiness condition,
CSP1 (see Sect. 3.1 for details), conflates two of these possibilities. Suppose that a process P actually diverges (this
is different from specifying that it must). Then okay′ will be false. This means that okay is false in the following
process, Q. Now, CSP1 says that, if a process is activated in a divergent state, then the only behaviour that can be
relied upon is that the trace will be extended. In this way, Q continues P’s divergence and behaves arbitrarily, but not
even a divergent process can undo past events. A particular consequence of CSP1 is that the value of wait in Q is
irrelevant. So, there are only three situations that are important in P: okay′ ∧ wait′, okay′ ∧ ¬ wait′, and ¬ okay′.

The sequence of events tr records the events that occurred before the program was started; the sequence tr′
records the events that occurred up to the intermediate or final state. The set of events ref ′ describe the events
being refused in the intermediate or final state. Finally, the set of events ref is used only for a technicality: to
make the program’s relation homogeneous in its dashed and undashed components.

A denotational semantics for Circus was first published in [WC02]; it was also based on the UTP, but there
our model for a Circus program is a Z specification. By using Z, that semantics allowed the use of tools like
Z/EVES [Saa97] to analyse and validate the definitions, and to reason about systems specified in Circus. Un-
fortunately, that semantics is not appropriate to prove our refinement laws. The reason is that in [WC02] we
provided a shallow embedding [BG95] of Circus in Z. Such an embedding does not allow us to express these
laws; in order to prove properties about Circus itself, like our refinement laws, a new embedding of Circus in
Z is needed. For this reason, in this paper, we provide Circus with a new and definitive denotational semantics.
The approach taken in [CW06] described below was an inspiration for this semantics and fosters the reuse of the
results presented there, simplifying and modularising the proofs of our refinement laws. Furthermore, based on
this new semantics, we were able to mechanise the syntax and the semantics of Circus in Z. This allows us to
mechanise the proofs of the Circus refinement laws that have already been done.

In [CW06], we present an introduction to CSP in the UTP. Our definitions correspond to the ones presented
in [HJ98], but with a different style of specification: every CSP process is defined as a reactive design of the
form R(pre � post). A design pre � post is defined as okay ∧ pre ⇒ okay′ ∧ post: if the program starts in a
state satisfying its precondition, the design will terminate, and, on termination, it will establish its postcondition.
Using this style, we use a design to define the behaviour of a process when its predecessor has terminated and
not diverged; the process behaviour in the other situations is defined by the healthiness condition R, which is a
composition of three healthiness conditions that we explain in the sequel. As we prove in [CW06], they can be
composed in any order.

Healthiness conditions are used in the UTP to test a specification or design for feasibility, and reject it, if it
makes implementation impossible in the target language. They are often expressed in terms of an idempotent
function φ that makes a program healthy; every φ-healthy program P is a fixed point of φ.

In Table 1, we summarise the three healthiness conditions that, together, characterise reactive processes. The
first healthiness condition, R1, states that the history of interactions of a process cannot be changed, therefore,
the value of tr can only get longer. The condition tr � tr′ holds if, and only if, the sequence tr is a prefix of or
equal to the sequence tr′. The second healthiness condition, R2, establishes that a reactive process should not
rely on the interactions that happened before its activation. The expression s − t stands for the result of removing
an initial copy of t from s; this partial operator is only well-defined if t is a prefix of s. The sequence tr′ − tr
represents the traces of events in which the process itself has engaged from the moment it starts to the moment
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Table 1. Healthiness conditions: reactive processes

Formal representation Description

R1 R1(P) �̂ P ∧ tr � tr′ The execution of a reactive process never
undoes any event that has already been per-
formed.

R2 R2(P(tr, tr′)) �̂ P(〈〉, tr′ − tr) The behaviour of a reactive process is obliv-
ious to what has gone before.

R3 R3(P) �̂ II rea � wait � P Intermediate stable states do not progress.

of observation. The final healthiness condition, R3, defines the behaviour of a process that is still waiting for
another process to finish: it should not start. If the condition b is true, the predicate P � b � Q is equivalent to
P; otherwise, it is equivalent to Q.

We consider the state variables v and v′ as part of the following definition for the reactive skip.

II rea �̂ (¬ okay ∧ tr � tr′) ∨ (okay′ ∧ tr′ � tr ∧ wait′ � wait ∧ ref ′ � ref ∧ v′ � v)

If the previous process diverged, the reactive skip only guarantees that the history of communication is not
forgotten; otherwise, it terminates and keeps the values of the variables unchanged. For conciseness, throughout
this paper, given a process with state components and local variables x1, . . . , xn, the predicate v′ � v denotes the
conjunction x′

1 � x1 ∧ · · · ∧ x′
n � xn.

The reactive skip could not be defined as a design, because the set of designs and the set of reactive processes
are disjoint [CW06]. It could, however, be defined as a reactive design.

Theorem 1.1 II rea � R(true � II )

This theorem can be proved by expanding the definitions of the healthiness conditions and designs. The II is the
relational skip; it is defined as okay′ � okay ∧ tr′ � tr ∧ wait′ � wait ∧ ref ′ � ref ∧ v′ � v.

The most recent denotational semantics of Circus was presented in [OCW06a]; it is based on the work
presented in [HJ98, WC02], but follows the style of [CW06]. In [CW06], we write the UTP definitions of some
CSP operators as reactive designs; we illustrate the approach in detail for the prefixing operator. In this paper,
we use these results to define a definitive semantics for Circus. Each construct is formally described in terms of a
predicate in the UTP theory which extends the CSP theory with new operators and extra healthiness conditions.

Based on the new definitions, we proved over 92% of the 146 refinement laws of Circus that were proposed
in [Oli05b] inspired by industrial case studies. These proofs, which can be found in [Oli05a], are of soundness with
respect to the semantics in this paper; they range over all the constructs of the language and include all the data
simulation laws. Besides supporting a practical refinement technique, the proof of the refinement laws helped
us to validate the semantics presented in this paper. Furthermore, this validation was also done by studying
its relationship to the UTP CSP theory, as discussed in Sect. 3, and by proving the soundness of the Circus
operational semantics [WCF05].

In [OCW06a], we also discussed the structure of the library of lemmas and theorems created during that work
and illustrated its usefulness by presenting the proof of one of our refinement laws. In this paper, we extend this
discussion by presenting further examples of lemmas and proofs that use the proof strategy.

In [OCW06b], we discuss a mechanisation of the UTP theory and our new Circus semantics using ProofPower-
Z [PPW]; it uses Z as a meta-notation to provide a model for our theory. More specifically, we present a set-based
model to UTP relations, and use it as a basis for the mechanisation of five theories: relations, designs, reactive
processes, CSP, and Circus. It is a conservative extension of the existing theories of ProofPower-Z; this guarantees
soundness. The automation of the proofs of the Circus refinement laws, however, was left as future work. In this
paper, we describe the issues that were raised during this automation, which provide Circus with a mechanised
refinement calculus; it is the basis for a refinement editor and a theorem prover for Circus.

In the next section we present Circus. Section 3 describes the Circus denotational semantics based on the
UTP. A discussion on the Circus healthiness conditions is presented in Sect. 4 and the mechanisation of the
Circus semantics in a theorem prover, ProofPower-Z is presented in Sect. 5. In sect. 6 we discuss the structure of
the library of lemmas and theorems created during this work; its usefulness is illustrated with the proofs of some
of our refinement laws. A discussion of the automation of these proofs is also presented in this section. Finally,
we draw some conclusions in Sect. 7.
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Fig. 1. Fuel pump in Circus

2. Circus

Circus is based on imperative CSP, but includes specification facilities in the Z style; this enables both state and
communication aspects to be captured in the same specification. Circus programs are formed by a sequence
of paragraphs: channel declarations, channel set definitions, Z paragraphs, or process definitions. A process
encapsulates its state and communicates through channels.

An example is given in Fig. 1: it specifies a process that controls a fuel pump. Seven channels are used in
the system: init is used to initialise the pump, liftNozzle and putNozzle indicate to the pump that the nozzle has
been lifted or put back, pressTrigger and releaseTrigger indicate to the pump that the trigger has been pressed or
released, enterAmount is used by customers to enter the amount of fuel they want, and finally, reload is used by
the gas station employee to reload the pump.

In Fig. 2, we present the BNF of the Circus syntax. We use CircusPar∗ to denote a possibly empty list of
elements of the syntactic category CircusPar of Circus paragraphs; similarly for PPar∗ (process paragraphs).
We use N+ to denote a non-empty list of Z identifiers N. The categories Par, SchemaExp, Exp, Pred, and Decl
include the Z paragraphs, schema expressions, expressions, predicates and declarations defined in [Spi92].

The declarations of all the channels give their names and the types of the values that they can communicate. In
Fig. 1, channels enterAmount and reload communicate the amount of fuel that the client wants and the amount
of fuel that was loaded into the pump. If, however, a channel does not communicate any value its declaration
contains only its name. This is illustrated in Fig. 1 by the declaration of channels init, liftNozzle, putNozzle,
pressTrigger, and releaseTrigger.

Generic channel declarations introduce families of channels. For instance, channel [T ] c : T declares a family
of channels c. For every actual type S, we have a channel c[S] that communicates values of type S. Channels can
also be declared using schemas that group channel declarations. Channel sets may be introduced in a chanset
paragraph. The empty set {||}, channel enumerations enclosed in {| and |}, and expressions formed by some of
the Z set operators are the elements of the syntactic category CSExp. In a similar way, the empty set {}, name
enumerations enclosed in { and }, and expressions formed by some of the Z set operators are the elements of the
syntactic category NSExp. In our example, the set SyncCustomer groups the channels through which a customer
may interact with the pump and the set SyncEmployee groups the channels through which an employee may
interact with the pump.

A process may be explicitly defined or defined in terms of other processes (compound processes). An explicit
process definition is delimited by the keywords begin and end, and is formed by a sequence of process paragraphs;
a nameless action at the end defines the process behaviour. The process Pump in Fig. 1 is defined in this way.
The schema PState describes the internal state of the Pump: it contains a natural number fuelQ that stores the
current quantity of fuel in the pump. The behaviour of Pump is described by the unnamed action after the •. It is
recursive: after a request to initialise, it performs the initialisation of the state, and behaves recursively, executing
PumpIdle. The state component fuelQ is initialised with 5,000 using the Z operation PInit. The Z operation
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Fig. 2. Circus syntax

Reload adds an input value q? to the current quantity of fuel fuelQ; Supply subtracts (not below zero) the input
q? from the current quantity of fuel.

Compound processes are defined using the CSP operators of sequence, external and internal choice, parallel
composition and interleaving, or their corresponding iterated operators, event hiding, or indexed operators,
which are particular to Circus specifications, and are described later in this section. We can also instantiate a
parametrised process by providing values for each of its parameters.

The parallel operator follows the alphabetised approach adopted by [Ros98]; we must declare a synchronisa-
tion channel set. By way of illustration, the process SinglePumpStation presented below is a parallel composition
of an employee and a pump. The employee initialises the pump and reloads it with an additional 1,000 l. The
employee and the pump synchronise on the set of events SyncEmployee.

Processes can also be composed in interleaving. For instance, a process that represents two pumps running
independently can be defined as follows:

process TwoPumps �̂ Pump ||| Pump

In this case the occurrence of any event in SyncCustomer or SyncEmployee in the environment leads to a non-
deterministic choice of which Pump will synchronise with that event. For instance, if an event init occurs, one of
the processes initialises, and the other one does not.

The event hiding operator P \ cs is used to encapsulate the events that are in the channel set cs. This
removes these events from the interface of P, which become no longer visible to the environment. For instance,
the process SinglePumpStation encapsulates the interaction between the processes SinglePumpEmployee and
Pump (SyncEmployee); the only way to interact with SinglePumpStation is via the channels in SyncCustomer.

Circus introduces a new operator that can be used to define processes. The indexed process i : T � P behaves
exactly like P, but for each channel c of P, we have a freshly named channel c i, where i is the name of the
variable. These channels are implicitly declared by the indexed operator, and communicate pairs of values:
the first element, the index, is a value i of type T , and the second element is the value of the original type
of the channel. An indexed process P can be instantiated using the instantiation operator P�e; it behaves just
like P, however, the value of the expression e is used as the first element of the pairs communicated through all
the channels.

For instance, we may define a process similar to TwoPumps, in order to have the same process that represents
two pumps running independently, but with an identification of which pump is initialised. In order to interact
with the indexed process below we must use the channels init i, liftNozzle i, and so on.

process IndexPump �̂ i : {1, 2} � Pump

We may instantiate the process IndexPump: the process IndexPump�1, for instance, inputs pairs through channel
enterAmount i whose first elements are 1 and the second elements are the amount of fuel requested by the
customer. It may be initialised by sending the value 1 through the channel init i. Similarly, we have the process
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IndexPump�2. Finally, we have the process presented below that represents a pair of pumps: the first element of
the pairs that are communicated through channels like enterAmount i identifies the pump.

process TwoPumpsId �̂ IndexPump�1 ||| IndexPump�2
The renaming operator P[oldc :� newc] replaces all the communications that are done through channels oldc

by communications through channels newc, which are implicitly declared, if needed.
An action can be a schema expression, a guarded command, an invocation of any action, or a combination

of these constructs using CSP operators. Also, three primitive actions are available: Skip, Stop, and Chaos. The
action Skip does not communicate any value nor changes the state: it terminates immediately. The action Stop
deadlocks, and the action Chaos diverges.

The prefixing operator is standard, but a guard construction may be associated with it. For instance, if the
condition p is true, the action p & c?x → A inputs a value through channel c and assigns it to the variable x,
and then behaves like A, which has the variable x in scope. If, however, the condition p is false, the same action
blocks. Such enabling conditions like p may be associated with any action.

The CSP operators of sequence, external and internal choice, parallel composition, interleaving, their corre-
sponding iterated operators, and hiding may also be used to compose actions. Communications and recursive
definitions are also available. In Pump we use an external choice to define PumpIdle: the nozzle can be lifted, in
which case the Pump behaves like PumpActive, or the pump can be reloaded, using channel reload , or the pump
can be initialised using channel init. In PumpActive, we have another external choice: the nozzle can be put back
in the pump, in which case the pump recurses, or an amount of fuel may be requested via channel enterAmount,
in which case the pump waits for the trigger to be pressed, and then it supplies the amount of fuel requested,
releases the trigger, and recurses.

To avoid conflicts in the access to the variables in scope, parallel composition and interleaving of actions
must declare a synchronisation channel set and two disjoint sets of variables. In the parallel composition
A1 |[ ns1 | cs | ns2 ]| A2, the actions A1 and A2 synchronise on the channels in the set cs. Both A1 and A2
have access to the initial values of all variables in both ns1 and ns2, but A1 and A2 may modify only the values of
the variables in ns1 and ns2, respectively. The changes made by A1 in the variables in ns1 are not seen by A2, and
vice-versa.

Finally, an action may also be a variable block, a specification statement, an assumption, a coercion, an
alternation, or an assignment. The semantics of Circus is an enriched failures-divergences model expressed in
the UTP. It caters for communication and reaction, like the model of CSP, but also for data and data operations.
The details of this semantics is the subject of the next section.

3. Circus denotational semantics

The original semantics given as a translation from Circus to Z [WC02] only allowed the proof of properties of
particular Circus specifications, rather than general properties of Circus constructs, like the refinement laws. The
denotational semantics of Circus that we present in the sequel provides a framework to prove properties of Circus
as well as of Circus specifications; its summary can be found in Appendix B.

3.1. Circus actions

A Circus action can be a CSP process, a guarded command, an invocation of any action, a schema expression,
or a combination of these constructs using CSP operators. The following sections present the semantics of each
one of them.

3.1.1. Basic actions

The first action we define is the deadlock Stop: it is incapable of engaging in any events and is always waiting.

Stop �̂ R(true � tr′ � tr ∧ wait′)

Stop has a true precondition because it never diverges. Furthermore, it never engages in any event and is indefinitely
waiting; therefore, its trace is left unchanged and wait′ is true. Since it represents deadlock, Stop must refuse all
events: the final value of the refusal set, ref ′, is left unconstrained because any refusal set is a valid observation.
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As state changes do not decide a choice, in order to be the unit for external choice, Stop must leave the values of the
state components unconstrained. In [CW06], we have proven that this definition corresponds to that of the UTP.

Skip is the action that terminates immediately and makes no changes to the trace or to the state components: its
reactive design has a true precondition and tr′ � tr ∧ ¬ wait′ ∧ v′ � v as postcondition. The value of ref ′ is left
unspecified because it is irrelevant after termination.

The worst Circus action is Chaos; it has an almost unpredictable behaviour and has R(false � true) as its
semantics. Since it is defined as a reactive design, Chaos cannot undo the events of a process history. For this
reason, it is not the right zero for sequential composition.

3.1.2. Sequence

The Circus sequential composition is not defined as a reactive design but as the relational sequence, which is
defined in the UTP as an existential quantification on the intermediary state.

A1; A2 �̂ ∃ x0 • A1[x0/x′] ∧ A2[x0/x]

In this definition, besides the state components and local variables v, the list of variables x also contains the four
UTP observational variables.

3.1.3. Guarded action

The guarded action g & A deadlocks if g is false, and behaves like A otherwise. For conciseness, in the definition
that follows and throughout this paper, we abbreviate A[b/okay′][c/wait] as Ab

c . Basically,
Af

f �̂ A[false/okay′][false/wait] are the conditions in which A diverges when it is not waiting for its prede-
cessor to finish, and At

f �̂ A[true/okay′][false/wait] are the conditions in which A does not diverge when it is not
waiting for its predecessor to finish.

g & A �̂ R((g ⇒ ¬ Af
f ) � ((g ∧ At

f ) ∨ (¬ g ∧ tr′ � tr ∧ wait′)))

If the guard g is false, this definition can be reduced to Stop. However, if g is true, we are left with the reactive
design R(¬ Af

f � At
f ); the following theorem shows us that this reactive design is exactly A itself.

Theorem 3.1 (from [HJ98]) For every CSP process A, A � R(¬ Af
f � At

f ).

This theorem is proved in [HJ98] and applies to CSP processes. These processes are defined in the UTP as reactive
processes that satisfy two other healthiness conditions presented in Table 2: the only guarantee on divergence
of a CSP1 process is the extension of the trace, and CSP2 processes may not require non-termination. In the
definition of CSP2 we take the approach of [CW06] instead of that in [HJ98]. We make use of an idempotent
function CSP2, which is defined in terms of a predicate J defined as follows:

J �̂ (okay ⇒ okay′) ∧ tr′ � tr ∧ wait′ � wait ∧ ref ′ � ref ∧ v′ � v

Besides CSP1 and CSP2, processes that can be defined using the notation of CSP satisfy other healthiness
conditions. The first one of them, CSP3, requires that the behaviour of a process does not depend on the initial
value of ref ; only the value of ref ′ is relevant to determine which events can be refused. Intuitively, the set of
events that were previously refused (ref ) should not be of any concern to the current process. Next, a terminating
CSP4 process does not restrict ref ′. Finally, a deadlocked CSP5 process that is refusing some events offered by
the environment is still deadlocked in an environment that offers even fewer events.

The definition of CSP3 refers to the CSP SKIP1, which is defined as R(∃ ref • II ). The UTP model of CSP
processes, that is, those that satisfy CSP1 and CSP2, is not isomorphic to the failures-divergences model [CW06];
it includes extra processes, and for those SKIP is not necessarily an identity. These extra processes may exhibit,
for example, miraculous behaviour. They are useful for a theory that combines data operations, CSP constructs,
and a refinement notion.

1 It is important to notice the difference between the CSP SKIP (capital letters) and the Circus Skip (capital S).
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Table 2. Healthiness conditions: CSP processes

Formal representation Description

CSP1 CSP1(P) �̂ P ∨ (¬ okay ∧ tr � tr′) Extension of the trace is the only
guarantee on divergence.

CSP2 CSP2(P) �̂ P; J A process may not require
J �̂ (okay ⇒ okay′) ∧ tr′ � tr non-termination.

∧ wait′ � wait ∧ ref ′ � ref
∧ v′ � v

CSP3 CSP3(P) �̂ SKIP; P A process does not depend on ref .
CSP4 CSP4(P) �̂ P; SKIP A terminating process does not

restrict ref ′.
CSP5 CSP5(P) �̂ P ||| SKIP A deadlocked process that is

refusing some events offered by
the environment is still deadlocked
in an environment that offers even
fewer events.

3.1.4. External and internal choice

An external choice A1 � A2 does not diverge if neither A1 nor A2 do. We capture this behaviour in the precondition
of the following definition of external choice. The postcondition establishes that if the trace has not changed and
the choice has not terminated, the behaviour of a choice is given by the conjunction of the effects of both actions;
otherwise, the choice has been made and the behaviour is either that of A1 or A2.

A1 � A2 �̂ R(¬ A1
f
f ∧ ¬ A2

f
f � (A1

t
f ∧ A2

t
f ) � tr′ � tr ∧ wait′ � (A1

t
f ∨ A2

t
f ))

It is a direct and important consequence of this definition that a state change does not resolve a choice; this would
be expressed by including v′ � v in the condition of the postcondition.

For example, let us consider the choice (x :� 0; c1 → Skip) � (x :� 1; c2 → Skip). It does not happen
instantly, but only when either c1 or c2 happens. The final value of x depends on which communication actually
happens. We have chosen state changes not to resolve an external choice because states are encapsulated within
a Circus process, and so their changes should not be noticed by the external environment.

The internal choice is not defined as a reactive design: it is the disjunction of both actions. This is a simple defini-
tion, and the use of reactive designs to define an internal choice gives rise to a slightly more complicated definition.

3.1.5. Prefixed action

Our semantics for prefixed actions uses the function do presented below, which gives the behaviour of the prefixed
action regarding tr and ref ′. For us, an event is a pair (c, e), where the first element is the name of the channel
and the second element is the value that is communicated. For events that do not model the communication of
any specific value, we have the special value Sync. While waiting, an action that is willing to synchronise on an
event (c, e) has not changed its trace and cannot refuse this event. After the communication (¬ wait′), the event
is included in the trace of the action.

do (c, e) �̂ tr′ � tr ∧ (c, e) �∈ ref ′ � wait′ � tr′ � tr � 〈(c, e)〉
This function is much simpler than the function doA used in the UTP [HJ98] to define the CSP prefixing. Basically,
the function doA is a result of applying R to do. Lemma 3.1 presented below states this property; its proof and
the proof of other lemmas used in this paper can be found in Appendix A.

Lemma 3.1 doA � R(do)

In what follows, we use this lemma to calculate the definition of the CSP prefixing as a reactive design. Our
calculation is presented in Fig. 3. In the first step, we use Theorem 3.1 to write the CSP prefixing as a reactive
design.
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Fig. 3. Calculation of prefixing as a reactive design

Now, our concern is to transform the pre and the postcondition into more intuitive predicates. We use the
two following lemmas.

Lemma 3.2 (c → SKIP)f
f � ¬ okay ∧ tr � tr′

Lemma 3.3 (c → SKIP)t
f � CSP1(do (c, Sync))

First, prefixing only diverges if it has already started in a divergent state, in which case, it only guarantees that the
trace is not forgotten. At the end, the prefixing establishes the expected result given by the expression do (c, Sync);
the properties on divergence are guaranteed by CSP1. We continue our transformation by using both lemmas
to transform the pre and the postcondition. Next, the definition of designs and simple predicate calculus can be
used to simplify the precondition. Furthermore, the simple expansion of designs shows us that we may include (or
remove) okay in (or from) the postcondition of any design. We use this fact, to introduce okay in the postcondition.
The last lemma that we use in this calculation states that the application of CSP1 is innocuous if we have that
okay is true.

Lemma 3.4 okay ∧ CSP1(P) � okay ∧ P

The expansion of CSP1 and simple predicate calculus is enough to prove this lemma. We use this lemma and the
freedom to remove okay from the postcondition to conclude the calculation in Fig. 3. �

The CSP prefixing never diverges and establishes the result of do on termination. This definition corresponds
directly to the Circus one presented below; the only difference is that in Circus we must consider state variables: the
Circus prefixing does not diverge nor does it change the state.

c → Skip �̂ R(true � do (c, Sync) ∧ v′ � v)

An input prefixing considers every possible value that can be communicated through the channel. Besides,
once the communication happens, the value of the input variable changes accordingly. The function doI takes
these aspects into account. We use an environment δ that records for each channel c its type δ(c). Before the com-
munication, c?x : P cannot refuse any communication in the set composed by the events on c that communicate
values of the type of c that satisfy the predicate P. After the communication the trace is extended by one of these
events. Besides, the final value of x is that which is communicated. The function snd returns the second element
of a pair, and the function last returns the last element of a non-empty list.

doI (c, x, P) �̂ tr′ � tr ∧ {e : δ(c) | P • (c, e)} ∩ ref ′ � ∅
�wait′�
tr′ − tr ∈ {e : δ(c) | P • 〈(c, e)〉} ∧ x′ � snd(last(tr′))

Similarly to non-input prefixed action, we define the input prefixed action in terms of doI ; however,
c?x : P → A(x) implicitly declares a new variable x and, after the communication, uses the communicated
value in A. We consider below that variable lists v and v′ do not contain x and x′, respectively.

c?x : P → A(x) �̂ var x • R(true � doI (c, x, P) ∧ v′ � v); A(x)

In [Oli05b], we show that if the set {e : δ(c) | P} is finite, the input prefixing above corresponds to the external
choice � x : {e : δ(c) | P} • c.x → A(x). In this paper, we do not consider all the possible combinations of inputs
and outputs in a prefixing; their semantics is lengthy, but not illuminating.

3.1.6. Parallel composition and interleaving

The parallel composition A1 |[ ns1 | cs | ns2 ]| A2 models interaction between the two concurrent actions A1
and A2. Here, we assume that references to channel sets have already been expanded using their corresponding
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definitions. We present the semantics of the parallel operator as a reactive design in two parts: first we discuss its
precondition, and then, we discuss its postcondition.

Divergence can only happen if it is possible for either of the actions to reach divergence. This is characterised
by a trace that leads one of the actions to divergence and on which both actions agree regarding cs. For instance,
∃ 1.tr′, 2.tr′ • (A1

f
f ; (1.tr′ � tr)) ∧ (A2f ; (2.tr′ � tr)) ∧ 1.tr′ � cs � 2.tr′ � cs characterises possibility of divergence

for A1. If there exist two traces 1.tr′ and 2.tr′, defined as a trace of A1 after divergence and as a trace of A2, and if
these two traces are equal modulo cs, then it is possible for A1 to reach divergence. First, we define the trace 1.tr′

on which A1 diverges as A1
f
f ; (1.tr′ � tr). The first predicate of the sequence give us the conditions under which A1

diverges; we record the final trace in 1.tr′ in the second predicate of the sequence, which ignores the final values of
the other variables. In this case, we are not interested in the divergence of A2 because A1 is already divergent; hence,
we do not replace okay′ by any particular value. Similarly, we define 2.tr′ for A2 as A2f ; (2.tr′ � tr). Finally, we
compare these traces after removing all the events that are not in cs (using the sequence filtering function �). These
can occur independently, but for the communications that require synchronisation, 1.tr′ and 2.tr′ have to agree.

In a very similar way as we presented above for A1, we can also express the possibility of divergence for A2.
The parallel composition diverges if either of these conditions are true; hence, the precondition of the reactive
design for the parallel composition is the conjunction of the negation of both conditions.

The postcondition uses the parallel by merge from [HJ98]. Conceptually, it runs both actions independently
and merges their results afterwards:

((A1
t
f ; U1(outα A1)) ∧ (A2

t
f ; U2(outα A2)))+{v,tr}; M‖(cs)

To express their independent executions, we use a relabelling function Ul: the result of applying Ul to a set
{v′

1, . . . , v′
n} of dashed names is l.v′

1 � v1 ∧ · · · ∧ l.v′
n � vn. For instance, the application of U1 to {wait′} yields

the predicate 1.wait′ � wait. Before the merge, however, we extend the alphabet of the predicate that expresses the
independent execution of both actions with v and tr and their dashed counterparts; in this way, we record the
initial values of the trace tr and of the state components and local variables v in tr′ and v′, respectively. For a
predicate P and name n, the alphabet extension P+{n} is equivalent to P ∧ n′ � n. The initial values of tr and v
are used by the merge function M‖, as we explain in the sequel.

The function M‖ receives a channel set and merges the traces of both actions, the state components, local
variables, and the UTP observational variables.

M‖(cs) �̂ tr′ − tr ∈ (1.tr − tr ‖cs 2.tr − tr) ∧ 1.tr � cs � 2.tr � cs

∧
(

((1.wait ∨ 2.wait) ∧ ref ′ ⊆ ((1.ref ∪ 2.ref ) ∩ cs) ∪ ((1.ref ∩ 2.ref ) \ cs))
�wait′�
(¬ 1.wait ∧ ¬ 2.wait ∧ MSt)

)

The trace is extended with the merge of the new events that happened in both actions. The function ‖cs takes
the individual traces and gives a set containing all the possible combinations of these two traces taking cs
into consideration. The expression before the merge gives us all the possible behaviours of running A1 and A2
independently; however, only those combinations that are feasible regarding the synchronisation on cs should be
considered (1.tr � cs � 2.tr � cs). The definition of ‖cs is omitted here but can be found in [Oli05b]; it is similar to
that presented in [Ros98] for CSP. Finally, the parallel composition has not terminated if any of the actions have
not terminated. In this case, the parallel composition refuses all events in cs that are being refused by any of the
actions and all the events not in cs which are being refused by both actions. In order to terminate, both actions
in the parallel composition must terminate; we merge the state as follows.

MSt �̂ ∀ v • (v ∈ ns1 ⇒ v′ � 1.v) ∧ (v ∈ ns2 ⇒ v′ � 2.v) ∧ (v �∈ ns1 ∪ ns2 ⇒ v′ � v)

For every variable v, if it is declared in ns1, its final value is that of A1; if, however, it is declared in ns2, its final
value is that of A2. Finally, if it is declared in neither ns1 nor ns2, its value is left unchanged.

We present below the whole of the semantics of parallel composition.

A1 |[ ns1 | cs | ns2 ]| A2 �̂

R

⎛

⎜

⎜

⎝

¬ ∃ 1.tr′, 2.tr′ • (A1
f
f ; (1.tr′ � tr)) ∧ (A2f ; (2.tr′ � tr)) ∧ 1.tr′ � cs � 2.tr′ � cs

∧ ¬ ∃ 1.tr′, 2.tr′ • (A1f ; (1.tr′ � tr)) ∧ (A2
f
f ; (2.tr′ � tr)) ∧ 1.tr′ � cs � 2.tr′ � cs

�
((A1

t
f ; U1(outα A1)) ∧ (A2

t
f ; U2(outα A2)))+{v,tr}; M‖(cs)

⎞

⎟

⎟

⎠
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The interleaving does not have to consider any synchronisation channel. An interesting aspect regarding the
differences between the definitions of parallel composition and interleaving is the much simpler precondition for
interleaving. Since both actions may execute independently, the interleaving of two actions diverges if either of the
actions does. Therefore, its precondition is the same as that for external choice ¬ A1

f
f ∧ ¬ A2

f
f . Its postcondition

is very similar to that of the parallel operator, but uses a different merge function M|||. Interleaving is equivalent
to parallel composition on an empty synchronisation channel set.

3.1.7. Hiding

The hiding operator is also not defined as a reactive design. The calculations to express hiding as a reactive design
pointed out that the final definition would be quite complicated and extensive; hence, we preferred to base our
definition on that presented in [HJ98] for the CSP hiding. In the definition presented below, EVENT denotes the
universal set of events.

A \ cs �̂ R(∃ s • A[s, cs ∪ ref ′/tr′, ref ′] ∧ (tr′ − tr) � (s − tr) � (EVENT − cs)); Skip

If A reaches a stable state in which it cannot perform any further events in cs, than the action A \ cs has also
reached such state. The new events (tr′ − tr) performed by A \ cs are those new events performed by A (in this
definition, we rename the final trace of A to s; so s − tr gives us the new events of A), but filtered by the set of all
events but those in cs. We also include the events in cs in the final refusal set of A by replacing ref ′ by cs ∪ ref ′.
Skip guarantees that possible divergences introduced by hiding events in a recursive action are actually captured.

3.1.8. Recursion

We consider only the explicit definition (μ X • F (X )) of recursion; the implicit definition using action invocation
can be syntactically transformed to it. The semantics of recursion is standard: for a monotonic function F from
Circus actions to Circus actions, the weakest fixed-point is defined as the greatest lower bound (the weakest)
of all the fixed-points of F ( {X | F (X ) �A X }); in a similar way, mutually recursive actions are defined as
weakest fixed-points, but the functions are vectorial and so is the refinement order. In our work, �A denotes
action refinement; its definition can be found in [CSW03].

3.1.9. Iterated operators

Iterated operators are used to generalise the binary operators of sequence, external and internal choice, parallel
composition, and interleaving; only finite types can be used for the indexing variables. Basically, the semantics of
all the iterated operators is given by the expansion of the operator.

3.1.10. Action invocation, parametrised action and renaming

The semantics of a reference to an action name is given by the copy rule: it is the body of the action. Invocation
of an unnamed parametrised action (d • A)(e) is defined simply as the substitution of the argument e for the
formal parameter declared in d . The renaming of the local variables and state components is simply the syntactic
substitution of the new names for the old ones.

3.1.11. Commands

The semantics of assignment is rather simple: it never diverges, terminates successfully leaving the trace unchanged,
and sets the final values of the variables in the left-hand side to their new corresponding values. The remaining
variables, denoted in the definition below by u (u � v \ {x1, . . . , xn}), are left unchanged.

x1, . . . , xn :� e1, . . . , en �̂ R(true � tr′ � tr ∧ ¬ wait′ ∧ x′
1 � e1 ∧ · · · ∧ x′

n � en ∧ u′ � u)

A specification statement only terminates successfully establishing the postcondition if its precondition holds;
only the variables in the frame can be changed. Furthermore, on successful termination, the trace is left unchanged.
Now, we use u to denote the variables that are not in the frame (u � v \ w).

w : [ pre, post ] �̂ R(pre � post ∧ ¬ wait′ ∧ tr′ � tr ∧ u′ � u)
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Assumptions {g} and coercions [ g ] are simply syntactic sugaring for specification statements : [g, true] and
: [true, g], respectively.

Alternation can only diverge if none of the guards is true, or if any action guarded by a valid guard diverges;
any of the guarded actions whose guard is valid can be chosen for execution.

if [] i • gi → Ai fi �̂ R((
∨

i • gi) ∧ (
∧

i • gi ⇒ ¬ Ai
f
f ) � ∨ i • gi ∧ Ai

t
f )

Variable block is defined in terms of the UTP constructors var and end; the former begins the scope of a
variable, and the latter ends it.

Parametrisation by value, result, or by value-result are defined in terms of variable blocks and assignments.
For instance, in a parametrisation by value, the formal parameter receives the value of the actual argument, which
is actually used by the action; that is, we define (val x : T • A)(e) as var x : T • x :� e; A. If, however, the
parametrisation is neither by value, result, nor by value-result, the parameter is considered as a local variable
and its instantiation is the substitution of the argument for the formal parameter. This is the parametrisation
mechanism of CSP.

3.1.12. Schema expression

We use the basic conversion rule of [CW99] to characterise schema expressions as specification statements. We
assume that the schema expressions have already been normalised using the techniques presented in [WD96].
Besides, in Circus, the Z notations for input (?) and output (!) variables are syntactic sugaring for undashed
and dashed variables, respectively. This means that we actually have schemas containing the declaration of
dashed (ddecl ′) and undashed (udecl) variables, and, of course, a predicate that determines the effect of the action.
As a small abuse of notation, ddecl also stands for a comma-separated list of undashed variables introduced as
dashed variables in ddecl ′.

[udecl; ddecl ′ | pred ] �̂ ddecl : [∃ ddecl ′ • pred, pred ]

In this case, we are concerned with the Z constructs in Circus; the semantics is given by Z normalisation and
conversion to a specification statement, both justified by the Z theory and refinement calculus [CW99], and by
the use of R as a link to embed a data operation into the theory of reactive processes.

This definition concludes the semantics of the Circus actions. We are now left with the semantics of Circus
process, which we present in the sequel.

3.2. Circus processes

An explicitly defined process has an encapsulated state, a sequence PPars of paragraphs, and a main action A.
Its meaning is that of a variable block that declares the state components and whose body is A.

begin state [decl | pred ] PPars • A end �̂ var decl • A

The invariant only plays a role when it is explicitly included in an operation schema. In other words, just like in
Z, types are maximal and invariants, therefore, only play a role in arguments of correctness. Constructs like Skip,
Stop, and Chaos, for example, do not enforce the maintenance of the invariant.

All compound processes are defined in terms of an explicit process specification. For instance, sequence,
external and internal choice are defined as follows; we use op to stand for any of ; , � or �.

P op Q �̂

⎛

⎜

⎜

⎜

⎝

begin state State �̂ P.State ∧ Q.State
P.PPar ∧� Q.State
Q.PPar ∧� P.State
• P.Act op Q.Act

end

⎞

⎟

⎟

⎟

⎠

The state of the process P op Q is defined as the conjunction of the individual states of P and Q; for simplicity,
we assume that name clashes are avoided through renaming. Furthermore, every schema in the paragraphs of
P (Q), specify an operation on P.State (Q.State); they are not by themselves operations on P op Q. For this
reason, we need to lift them to operate on the global State. For a sequence of process paragraphs P.PPar, the
operation P.PPar ∧� Q.State stands for the conjunction of each schema expression in the paragraphs P.PPar
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Table 3. Healthiness conditions: Circus processes

Formal representation Description

C1 C1(A) �̂ A; Skip The value of the variable ref ′ has no relevance
after termination

C2 C2(A) �̂ A ||[v | ∅]|| Skip A deadlocked process that refuses some events
offered by its environment will still be dead-
locked in an environment which offers even
fewer events

C3 C3(A) �̂ R(¬ Af
f ; true � At

f ) The precondition of a Circus process expressed
as a reactive design contains no dashed
variables

with �Q.State; this indicates that they do not change the components of the state of process Q (Q.State). The
main actions are composed in the same way using op.

For parallel composition and interleaving the only difference is that we must determine the state partitions
of the operators. These are the state components of each individual process. The semantics of hiding includes all
the process paragraphs as they are, but the main action includes the hiding.

Our semantics for an indexed process i : T � P is that of a parametrised process i : T • P. However, all the
communications within the corresponding parametrised processes are changed. For every channel c used in P,
we have a freshly named channel c i, which communicates pairs of values: the first element is an index i of type
T , and the second element is the value of the original type of the channel. The semantics of the corresponding
parametrised process is given using an extended channel environment δ that includes the new implicitly declared
channels c i.

i : T � P �̂ (i : T • P)[c : usedC(P) • c i.i]

The notation P[c : usedC(P) • c i.i] denotes the change, in P, of all the references to every used channel c by a
reference to c i.i. Since our semantics for indexed processes are parametrised processes, the semantics for their
instantiation is simply a parametrised process invocation.

All the predicates used to give semantics to Circus constructs satisfy a number of healthiness conditions that
are important in the proof of laws. They are discussed in the next section.

4. Healthiness conditions

The vast majority of the Circus actions are defined as reactive designs of the form R(pre � post). Those which
are not defined in this way, reuse the results of [HJ98] and were proved to be reactive. As a direct consequence of
this, we have that the following theorem holds; its proof is by induction on the structure of the Circus actions.

Theorem 4.1 Every Circus action is R (R1, R2, and R3) healthy.

In Sect. 3, we used Theorem 3.1 to reason about the behaviour of guarded actions. The following theo-
rem guarantees that Circus actions are indeed CSP1, CSP2 and CSP3 healthy, and therefore, Theorem 3.1 is
applicable to them.

Theorem 4.2 Every Circus action is CSP1, CSP2, and CSP3 healthy.

Part of the proof of this theorem is a direct result from the fact that reactive designs are indeed CSP1 and
CSP2 [CW06]. The rest of the proof is done by induction on the syntax of the language; for the sake of conciseness,
it is omitted here. This proof and the proof of all the new theorems presented in this paper can be found in [Oli05a].

From Theorems 4.1 and 4.2, we already know that every Circus action is R and CSP1-CSP3 healthy. However,
processes that can be defined using the notation of CSP also satisfy other healthiness conditions: the value
of ref ′ has no relevance after termination of CSP4 processes, and a deadlocked CSP5 process that refuses
some events offered by its environment will still be deadlocked in an environment that offers even fewer events.
Both CSP4 and CSP5 are expressed in terms of CSP constructs that have a slightly different definitions in
Circus: CSP4 processes satisfy the right unit law (P; SKIP � P) and CSP5 processes satisfy the unit law of
interleaving (P ||| SKIP � P) [HJ98]. The healthiness conditions C1 and C2 presented in Table 3 lift these two
healthiness conditions to state-rich Circus processes.
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The last of the Circus healthiness conditions, C3, guarantees that every Circus action, when expressed as
a reactive design, has no dashed variables in the precondition. The sequential composition of the precondition
with true guarantees that only those actions with no dashed variables in the precondition will be a fixed-point of
the function C3.

The last theorem regarding healthiness conditions guarantees that every Circus operator is C1–C3 healthy.

Theorem 4.3 Every Circus action is C1, C2, and C3 healthy.

As for the similar theorems for R and CSP, the proof of this theorem is done by induction on the language.
Based on this new semantics, we proved over 90% of the 146 proposed refinement laws. The mechanical proof

of these laws requires the mechanisation of the Circus semantics, which is the subject of the next section.

5. Mechanising the Circus semantics

Our aim is to provide a mechanisation that can support the development of Circus programs using the Cir-
cus refinement laws. In order to achieve such result, we mechanised the Circus semantics in a theorem prover,
ProofPower-Z. In [OCW06b], we presented the first step towards our objective, which is summarised in Sect. 5.1: the
mechanisation of the UTP in ProofPower-Z.

5.1. The UTP theories

A very important part of that work is the theory of relations. It provides a set-based model for alphabetised
relations. In this theory, we define alphabets, relations, and basic programming constructs as we briefly describe
in the sequel.

A name is an element of the given set NAME. Each relation has an ALPHABET , which is defined as
P NAME. Every alphabet a contains an input alphabet of undashed names, and an output alphabet of dashed
names. Instead of using free-types, which would lead to more complicated proofs in ProofPower-Z, we use the
injective (�) function dash : NAME � NAME to model name decoration. The set of dashed names is defined
as the range of dash. The complement of this set are the undashed names; hence, names are either dashed or
undashed , but multiple dashes is allowed. For the sake of conciseness, we omit the definitions of the functions
in a and out a, which return the input and the output alphabets of a given alphabet.

An alphabet a in which n ∈ a ⇔ n′ ∈ a, for all undashed names n, is called homogeneous. For us, n′ is
mechanised as dash(n). Similarly, a pair of alphabets (a1, a2) is composable if n ∈ a2 ⇔ n′ ∈ a1, for every
undashed name n; this notion is used in the definition of relational sequence.

A value is an element of the free-type VALUE, which can be an integer, a boolean, a channel, a sequence of
values, a set of values, a pair of values, or a special synchronisation value.

VALUE ::� Int(Z) | Bool(B) | Channel(NAME) | Seq(seq VALUE)
| Set(F VALUE) | Pair(VALUE × VALUE) | Sync

In ProofPower-Z, Bool(B) stands for the Z constructor Bool〈〈B〉〉, which introduces a collection of constants,
one for each element of the set B. The ProofPower-Z type B is the booleans. The type VALUE can be extended
without any impact on the proofs because they do not depend on its structure.

Although we are defining an untyped theory, the observational variables have types; for instance, okay is
a boolean. For this reason, we have defined some restricted sets; for instance, boolean values are in the set
BOOL VAL �̂ {Bool(true), Bool(false)}.

Three definitions allow us to abstract from the syntax of expressions. The set of relations between values is
RELATION �̂ VALUE ↔ VALUE. The set of unary functions is UNARY F �̂ VALUE �→ VALUE; similarly,
for binary functions we have the set BINARY F �̂ (VALUE × VALUE) �→ VALUE, which defines the set of
partial functions from pairs of values to values. An expression can be a value, a name, a relation, or a unary or
binary function application.

EXPRESSION ::� Val(VALUE) | Var(NAME)
| Rel(RELATION × EXPRESSION × EXPRESSION)
| Fun1(UNARY F × EXPRESSION)
| Fun2(BINARY F × EXPRESSION × EXPRESSION)
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The definitions for unary functions, binary functions, and relations only deal with values. For instance, for a given
unary function f , the expression Fun1(f , e) can only be evaluated once e is evaluated to some VALUE.

A binding is a partial function from NAME to VAL, and therefore we define the set of all bindings, BINDING,
as NAME �→ VAL. The type BINDINGS represents sets of bindings, P BINDING. Given a binding b and an
expression e with free variables in the domain (dom) of b, Eval(b, e) gives the value of e in b (beta-reduction).

A relation is modelled in our work by the type REL PREDICATE defined below. A relation is a pair: the
first element is its alphabet, and the second is a set of bindings, which gives us all bindings that satisfy the UTP
predicate modelled by the relation. The domain of the bindings must be equal to the alphabet.

REL PREDICATE �̂ {a : ALPHABET ; bs : BINDINGS | (∀ b : bs • dom(b) � a) • (a, bs)}
This corresponds directly to the definition of alphabetised predicates of the UTP.

In [OCW06b], each predicate construct is defined as an alphabetised relation. One of them is true: for a given
alphabet a, TrueR a is as the pair with alphabet a, and with all the bindings with domain a.

TrueR : ALPHABET → REL PREDICATE

∀ a : ALPHABET • TrueR(a) � (a, {b : BINDING | dom(b) � a})
In our work, we subscript the names of the constructs in order to make it easier to identify to which theory they
belong; we use R for the theory of relations.

Nothing satisfies false: the second element of FalseR(a) is the empty set. This operator is the main motivation
for representing relations as pairs. If we had defined relations just as a set of bindings with the same domain a,
which would be considered as the alphabet, we would not be able to tell the difference between FalseR(a1) and
FalseR(a2), since both sets would be empty. Besides, it is important to notice the difference between TrueR(∅) and
FalseR(∅): the former has a set that contains one empty set of bindings as its second element, and the latter has
the empty set as its second element.

All usual predicate combinators are defined. Conjunctions and disjunctions extend the alphabet of each
relation to the alphabet of the other. The function ⊕R is alphabet extension; the values of the new variables are
left unconstrained. In the following definition we make use of the Z domain restriction A�B: it restricts a relation
B : X ↔ Y to a set A, which must be a subset of X , ignoring any member of B whose first element is not a
member of A.

⊕R : REL PREDICATE × ALPHABET → REL PREDICATE

∀ u : REL PREDICATE; a : ALPHABET
• u ⊕R a � (u.1 ∪ a, {b : BINDING | (u.1 � b) ∈ u.2 ∧ dom(b) � u.1 ∪ a})

The conjunction is defined as the union of the alphabets and the intersection of the extended set of bindings
of each relation.

∧R : REL PREDICATE × REL PREDICATE → REL PREDICATE

∀ u1, u2 : REL PREDICATE • u1 ∧R u2 � (u1.1 ∪ u2.1, (u1 ⊕R u2.1).2 ∩ (u2 ⊕R u1.1).2)

The definition of disjunction is similar, but the union of the extend set of bindings is the result.
An alphabetised equality compares the values of variables and expressions. It is modelled as a function from

WF EqualsR to UTP relations. The type WF EqualsR is the set of triples (a, n, e) where the name n is a member
of the alphabet a and the free variables of the expression e are a subset of a.

�R: WF EqualsR → REL PRED

∀ a n e : WF EqualsR •
�R (a n e) � (a n e.1, {b : BINDING | dom(b) � a n e.1 ∧ b(a n e.2) � Eval(b, a n e.3)})

The alphabet of an equality is simply the alphabet given as argument. In Z, t.n refers to the n-th element of a
tuple t; for instance, a n e.1 represents the first element of a n e, which corresponds to the alphabet. For a given
alphabet a, name n, and expression e, such that n ∈ a and the free variables of e are in a, the function �R (a, n, e)
returns a relational predicate (a, bs), in which for every binding b in bs, b(n) � Eval(b, e).

The negation ¬ R of a relation r does not change its alphabet. Only those bindings b that do not satisfy
r (b �∈ r.2) are included in the resulting bindings. For the sake of conciseness, we omit the definitions of the
remaining relational operations like conditional ( �R �R ), which can be trivially defined in terms of the
previously defined operators. All the definitions and proof scripts can be found in [Oli05a].
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In [OCW06b], we describe theories that contains definitions and properties of the observational variables
okay, wait, tr, and ref . For instance, in the theory utp-okay, we define okay as an undashed name.

okay : NAME

okay ∈ undashed

We restrict the type of values which okay and okay′ can be associated with: they can only be boolean values.

∀ b : BINDING | okay ∈ dom(b) • b(okay) ∈ BOOL VAL
∧ ∀ b : BINDING | dash(okay) ∈ dom(b) • b(dash(okay)) ∈ BOOL VAL

The same restriction is valid for wait and wait′. Besides, only sequences of events can be associated with tr and
tr′, and ref and ref ′ can only be associated with sets of events.

Designs are defined in the theory utp-des. The set ALPHABET DES is the set of all alphabets that contain
okay and okay′. First we define DES PREDICATE, the set of relations u, such that u.1 is a ALPHABET DES.
Designs with precondition p and postcondition q are written p � q and defined as okay ∧ p ⇒ okay′ ∧ q. The
expression okay is the equality okay �a true, which is mechanised in our work as �R (a, okay, Val(Bool(true))).
A design is defined as follows.

�D : WF DES PREDICATE PAIR → REL PREDICATE

∀ d : WF DES PREDICATE PAIR •
d .1 �D d .2 � (�R (d .1.1, okay, Val(Bool(true))) ∧R d .1) ⇒R

(�R (d .1.1, dash(okay), Val(Bool(true))) ∧R d .2)

The members of WF DES PREDICATE PAIR are pairs of relations (r1, r2) of the type DES PREDICATE
with the same alphabet. The turnstile is used by both ProofPower-Z and the UTP. The former uses it to give names
to theorems, and the later uses it to define designs. In our work, we have kept both of them, but we subscript the
UTP design turnstile with a D.

In the theory utp-rea, we define REA PREDICATE, the set of relations whose alphabet is a member of
ALPHABET OWTR; this is the set of alphabets that contain okay, tr, wait, ref , and their dashed counter-
parts. Finally, a CSP PROCESS is defined in the theory utp-csp as a CSP1 healthy and CSP2 healthy reactive
process: the sets containing all the CSP1 healthy and CSP2 healthy processes, respectively.

CSP PROCESS �̂ {p : REA PROCESS | p ∈ CSP1 healthy ∧ p ∈ CSP2 healthy}
The definitions of the theories of relations, designs, reactive processes, and CSP, and around five-hundred

theorems, is the result of the work in [OCW06b]. This work was the basis for mechanising the Circus semantics
in [Oli05b]. In what follows, we present the automation of some of the Circus constructors.

5.2. The Circus theory

Although the constructors of CSP do not contain state variables, the set of processes described by the theory of
CSP contains processes that might have state components. The only restriction on the alphabet is that it must
contain the observational variables okay, wait, tr, and ref and their dashed counterparts in the alphabet, but
there may be more variables. Therefore, for us, Circus actions are modelled by predicates that are in the set
CSP PROCESS; we do not define a new set of predicates.

The definitions of the ProofPower-Z theory of Circus, utp-circus, follow directly from the semantics presented
in this paper. The Circus operators that are inherited from CSP have very similar definitions to their CSP
counterparts; however, the state components of the Circus processes must be taken into account in these new
definitions.

The first ProofPower-Z definition that we present is the one for Stop. For a given homogeneous alphabet
a that contains the four observational variables and their dashed counterparts (WF hom alphaC ), Stop is the
reactive design with a true precondition, which we mechanise using the relational TrueR, and with the conjunction
tr′ �a tr ∧R wait′ as its postcondition; the predicate tr′ �a tr is mechanised as �R (a, dash(tr), Var(tr)).

Stop : WF hom alphaC → CSP PROCESS

∀ a : WF hom alphaC •
Stop(a) � R(TrueR(a) �D ((�R (a, dash(tr), Var(tr))) ∧R (�R (a, dash(wait), Val(Bool(true))))))
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Four auxiliary functions mechanise the substitutions Pb
c ; in order to make it more alike the textual notation,

we use a prefix notation for them. For instance, P σf ωf mechanises the predicate Pf
f .

ωf , ωt, σf , σt : CSP PROCESS → CSP PROCESS

∀ c : CSP PROCESS • c σf � /R(c, Val(Bool(false)), dash(okay))
∧ c σt � /R(c, Val(Bool(true)), dash(okay))
∧ c ωf � /R(c, Val(Bool(false)), wait) ∧ c ωt � /R(c, Val(Bool(true)), wait)

The expression /R(p, e, n) automates the substitution of a variable n for an expression e in a predicate p.
Using these auxiliary functions, we can define the external choice as follows. The pairs of CSP processes with

the same alphabet compose the set WF CSP PROCESS PAIR.

�C : WF CSP PROCESS PAIR → CSP PROCESS

∀ PQ : WF CSP PROCESS PAIR •
PQ.1 �C PQ.2 � R( ((¬ RPQ.1 σf ωf ) ∧R (¬ RPQ.2 σf ωf ))

�D
(((¬ RPQ.1 σt ωf ) ∧R (¬ RPQ.2 σt ωf ))
�R((�R (PQ.1, dash(tr), Var(tr)))

∧R (�R (PQ.1, dash(wait), Val(Bool(true)))))�R
((¬ RPQ.1 σt ωf ) ∨R (¬ RPQ.2 σt ωf ))) )

Although long, this definition is a direct mechanisation of the previously presented reactive design representation
of external choice.

Besides making it possible to prove the refinement laws, the semantics presented here defines most of the
operators as reactive designs. For the proofs of the refinement laws we created a vast library of laws and lemmas
on the UTP theories, and more specifically reactive designs, that is discussed in the next section.

6. The library: proof of refinement laws

In this section, we discuss the strategy adopted in our proofs and the structure of our library of laws and lemmas,
which fosters reuse of our results in the proof of other laws and properties of Circus and reactive designs in general.
The full library and the respective proofs can be found in [Oli05b]. At the end of this section, we discuss some
issues that were raised during the application of this strategy in the automated proof of Circus refinement laws.

6.1. The proof strategy

The strategy for proving that a program P is equal (or refined) to Q is illustrated graphically in Fig. 4. It involves
three stages:

(1) Flatten program P to a single reactive design R(preP � postP).
(2) Flatten program Q to a single reactive design R(preQ � postQ).
(3) Use lemmas and theorems from the library and predicate calculus to transform the first reactive design into

the second one; in the case of refinement, an inverse implication is the required result.

The stage (3) does not involve transformations on the healthiness condition R; rather, it is simply a proof of
equivalence (or refinement) between de designs preP � postP and preQ � postQ to which R is being applied to.
This simplification is supported by the following lemma.

Lemma 6.1 R(P) � R(Q) provided P � Q

The proofs of this lemma and others that follow in this section can be found in Appendix A.
The flattening stage involves definitions and theorems that transform program structures into a single reactive

design. For example, if P is a sequence, the lemma below transforms it into a single reactive design.
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Fig. 4. Using the library to prove refinement laws

Lemma 6.2

R(P1 � Q1); R(P2 � Q2)
�
R(P1 ∧ ¬ ((okay′ ∧ ¬ wait′ ∧ Q1); ¬ P2) � ((wait′ ∧ Q1) ∨ ((okay′ ∧ ¬ wait′ ∧ Q1); Q2)))

for P1 not mentioning dashed variables, and P1, Q1, P2 and Q2 R2-healthy.

It establishes that the sequence of two reactive designs R(P1 � Q1); R(P2 � Q2) diverges if either P1 is already
violated in the very beginning or if, on termination of the first reactive design (okay′ ∧ ¬ wait′), P2 is violated.
Otherwise, the whole sequence is either in an intermediate state that satisfies Q1 or in a state that results from
the execution of the second reactive design after the completion of the first one. This lemma applies to reactive
designs. This is useful in the context of our strategy because it is based on reactive designs, which are used as
the semantics of the vast majority of the Circus operators. In the proviso, we require that P1 does not have free
occurrences of dashed variables. This is not too restrictive because, from Theorem 4.3, our reactive designs are
C3-healthy. For conciseness, we omit here the proof of this lemma; it can be found in [Oli05b].

6.1.1. Sequence zero

By way of illustration, we present one out of over a hundred proofs we presented in [Oli05b]: the sequence zero
law (Stop; A � Stop). We start the proof of this refinement law (stage (1)) by applying the definition of external
choice to the left hand-side of the law.

(1)
Stop;A
� R(true � tr′ � tr ∧ wait′); A [Stop]

Theorem 3.1 guarantees that every CSP process can be written as a reactive design; the application of this theorem
transforms A into another reactive design.

� R(true � tr′ � tr ∧ wait′); R(¬ Af
f � At

f ) [Theorem 3.1]

Now we have two reactive designs and, in order to complete stage (1), we must flatten these into a single reactive
design. The Lemma 6.2 can be used to give us the desired result.

� R

⎛

⎝

true ∧ (¬ ((okay′ ∧ ¬ wait′ ∧ tr′ � tr ∧ wait′); ¬ (¬ Af
f )))

�
(wait′ ∧ tr′ � tr ∧ wait′) ∨ ((okay′ ∧ ¬ wait′ ∧ tr′ � tr ∧ wait′); At

f )

⎞

⎠ [Lemma 6.2]

[LHS]

The definition of Stop establishes the stage (2) of the proof strategy.

(2)
Stop
� R(true � tr′ � tr ∧ wait′) [Stop]

[RHS]
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We start the stage (3) of our proof strategy by applying trivial predicate calculus to the pre and the postcondition
of the design.

(3)
LHS

� R(¬ (false; Af
f ) � (tr′ � tr ∧ wait′) ∨ (false; At

f )) [Predicate Calculus]

In the UTP, sequence is defined as an existential quantification on the intermediary state. For this reason, it is
trivial that the following lemma is valid.

Lemma 6.3 false; P � P; false � false

We use this lemma to simplify both the pre and the postcondition.

� R(¬ false � (tr′ � tr ∧ wait′) ∨ false) [Lemma 6.3]

Finally, by using simple predicate calculus we can conclude this proof.

�RHS [Predicate calculus]

�

Another example of a lemma on reactive designs that can be used to flatten programs into a single reactive
design is presented below; it flattens the non-deterministic choice between two reactive designs.

Lemma 6.4 R(P1 � Q1) � R(P2 � Q2) � R((P1 ∧ P2) � (Q1 ∨ Q2))

The internal choice between two reactive designs diverges if either P1 or P2 is violated; otherwise, the final state
of the internal choice satisfies either Q1 or Q2.

6.1.2. Internal choice zero

Lemma 6.4 can be used in the stage (1) of the simple proof of the internal choice zero law (A � Chaos) presented
below. This stage of this proof is very similar to the one of the previous proof, but uses Lemma 6.4.

(1)
A � Chaos
� A � R(false � true) [Chaos]

� R(¬ Af
f � At

f ) � R(false � true) [Theorem 3.1]

� R((¬ Af
f ∧ false) � (At

f ∨ true)) [Lemma 6.4]

[LHS]

The stage (2) is also very similar to the one of the previous proof, but uses the definition of Chaos instead.

(2)
Chaos
� R(false � true) [Chaos]

[RHS]

The last stage of this proof is extremely simple and can be achieved with the application of predicate calculus.

LHS
�RHS [Predicate calculus]

�

Two other lemmas give the conditions under which a reactive design diverges and the conditions under which
a reactive design does not diverge when it is not waiting for its predecessor to finish. They are useful in the
transformation stage (3) of proofs that involve operators (after using Theorem 3.1) and healthiness conditions
like C3, which refer explicitly to these conditions. A reactive design diverges if started in a divergent state or in a
state that does not satisfy its precondition. Provided its precondition is satisfied and hence, it does not diverge, a
reactive design establishes its postcondition.
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Lemma 6.5 (R(P � Q))f
f � R1(¬ (okay ∧ R2(P))), provided wait and okay′ are not free in P and Q.

Lemma 6.6 (R(P � Q))t
f � CSP1(R1(R2(P ⇒ Q))), provided wait and okay′ are not free in P and Q.

These lemmas can be proved by applying the definitions of the healthiness conditions.

6.1.3. External choice unit

In what follows, we discuss the proof of the external choice unit law (Stop � A � A), which besides illustrating
the use of our library, shows the reasons for defining that Stop leaves the state unconstrained. Before presenting
this proof, we present two lemmas that are used in the proof. These lemmas are also part of our library and
are proved using Lemmas 6.5 and 6.6 discussed above. Lemmas 6.7 and 6.8 give the conditions on which Stop
diverges and the effects of Stop when it does not diverge, respectively.

Lemma 6.7 Stopf
f � ¬ okay ∧ tr � tr′

Lemma 6.8 Stopt
f � CSP1(tr′ � tr ∧ wait′)

Since the precondition of Stop is true, it only diverges if its predecessor has done so and, in this case, only
guarantees that the trace history is not forgotten. Secondly, Stop does not change the trace and waits indefinitely;
CSP1 guarantees the expected behaviour on divergence of the predecessor.

We start the proof of the external choice unit law (stage (1)) by applying the definition of external choice to
the left hand-side of the law.

(1)
Stop � A

� R

⎛

⎝

(¬ Stopf
f ∧ ¬ Af

f )
�
((Stopt

f ∧ At
f ) � tr′ � tr ∧ wait′ � (Stopt

f ∨ At
f ))

⎞

⎠ [External choice]

[LHS]

The application of Theorem 3.1 establishes the stage (2) of the proof strategy.

(2)
A

� R(¬ Af
f � At

f ) [Theorem 3.1]

[RHS]

We start the stage (3) of our proof strategy by transforming the precondition of the reactive design originated by
step (1). Using Lemmas 6.7 and 6.8, we transform Stopf

f and Stopt
f , respectively.

(3)
LHS

� R

⎛

⎝ (¬ (¬ okay ∧ tr � tr′) ∧ ¬ Af
f ) �

⎛

⎝

(CSP1(tr′ � tr ∧ wait′) ∧ At
f )

�tr′ � tr ∧ wait′�
(CSP1(tr′ � tr ∧ wait′) ∨ At

f )

⎞

⎠

⎞

⎠ [Lemmas 6.7 and 6.8]

The application of predicate calculus gives us the following result.

� R

⎛

⎝ (¬ ((¬ okay ∧ tr � tr′) ∨ Af
f )) �

⎛

⎝

(CSP1(tr′ � tr ∧ wait′) ∧ At
f )

�tr′ � tr ∧ wait′�
(CSP1(tr′ � tr ∧ wait′) ∨ At

f )

⎞

⎠

⎞

⎠ [Predicate calculus]

At this point we have exactly the definition of CSP1 applied to Af
f in the precondition.

� R

⎛

⎝ (¬ (CSP1(Af
f ))) �

⎛

⎝

(CSP1(tr′ � tr ∧ wait′) ∧ At
f )

�tr′ � tr ∧ wait′�
(CSP1(tr′ � tr ∧ wait′) ∨ At

f )

⎞

⎠

⎞

⎠ [CSP1]
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Another lemma from our library can be used at this point. It states that the substitutions of okay′ and wait for
any value commute with CSP1.

Lemma 6.9 CSP1(Ab
c) � (CSP1(A))b

c

The predicate Ab
c corresponds to the substitution of okay′ and wait in A; however, the disjunct¬ okay ∧ tr � tr′

that is used in the definition of CSP1 does not mention either of these variables. Therefore, we may commute the
substitution with CSP1; the use of this lemma leaves us with the following reactive design.

� R

⎛

⎝ ¬ (CSP1(A))f
f �

⎛

⎝

(CSP1(tr′ � tr ∧ wait′) ∧ At
f )

�tr′ � tr ∧ wait′�
(CSP1(tr′ � tr ∧ wait′) ∨ At

f )

⎞

⎠

⎞

⎠ [Lemma 6.9]

Since every Circus action is CSP1-healthy (Theorem 4.2), the application of CSP1 to A can be removed.

� R

⎛

⎝ ¬ Af
f �

⎛

⎝

(CSP1(tr′ � tr ∧ wait′) ∧ At
f )

�tr′ � tr ∧ wait′�
(CSP1(tr′ � tr ∧ wait′) ∨ At

f )

⎞

⎠

⎞

⎠ [Theorem 4.2]

At this point, we have already shown that the preconditions of the left-hand side and the right-hand side are the
same. We now turn our attention to the postcondition.

As previously explained, we may include (or remove) okay in (or from) the postcondition of any design.
Furthermore, using the definition of conditional and simple predicate calculus, we may distribute okay to both
branches of the conditional as follows.

� R

⎛

⎝ ¬ Af
f �

⎛

⎝

okay ∧ CSP1(tr′ � tr ∧ wait′) ∧ At
f

�tr′ � tr ∧ wait′�
okay ∧ CSP1(tr′ � tr ∧ wait′) ∨ At

f

⎞

⎠

⎞

⎠ [Designs and predicate calculus]

The use of Lemma 3.4 and the previously explained freedom to remove okay from the postcondition leaves us
with the following reactive design.

� R(¬ Af
f � (tr′ � tr ∧ wait′ ∧ At

f � tr′ � tr ∧ wait′ � (tr′ � tr ∧ wait′) ∨ At
f )) [Lemma 3.4]

The next step in our proof is to remove the disjunction of the right-hand side of the condition and leave just the
predicate At

f ; this can be done because the predicate tr′ � tr ∧ wait′ is false: it is in the else-part of a conditional on
the same predicate. The conditional comes directly from our definition of external choice, in which, as explained
in Sect. 3, state changes have no direct consequence. If we had chosen state changes to decide the choice, this
would be expressed by including the predicate v′ � v in the condition of the choice. If this were the case, then
Stop would also have to leave the state unchanged.

� R(¬ Af
f � ((tr′ � tr ∧ wait′ ∧ At

f ) ∨ At
f )) [Conditional]

Using absorption we can remove the predicate tr′ � tr ∧ wait′ ∧ At
f . We are left with the reactive design originated

by step (2); this concludes our proof.

�RHS [Predicate calculus]

�

6.1.4. Library summary

In total, our library contains 122 theorems and more than 200 lemmas, which are structured into three groups.
With the exception of the lemmas used in stages (1) and (2), in our proof strategy, they are used in the following
order.

• Lemmas on Circus operators: these are the lemmas that involve some particular structure resulting from each
of the Circus operators. They are first used in the stage (3) of the proof strategy to remove references to Circus
operators in the pre and the postcondition. In this paper, we have presented (and used) two lemmas (6.7
and 6.8) on Stop; both of them transform the substitution of observational variables on Stop into much
simpler predicates.
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Table 4. Theories mechanisation

Number of theorems Lines of proof script

utp-z-library 23 1,293
utp-rel 360 22,794
utp-okay 30 1,197
utp-des 57 4,263
utp-wtr 41 1,829
utp-rea 129 7,046
utp-csp 46 5,885
utp-circus 15 3,195
Total 701 47,502

• Lemmas on the healthiness conditions: they are directly related to the healthiness conditions discussed in Sect. 3.
The vast majority of them, like Lemmas 3.4 and 6.9, are used during the stage (3) of our proof strategy to
remove references to healthiness conditions in the pre and the postcondition.

• Lemmas on UTP theories: these are related to particular UTP theories and are subdivided into relations,
designs, reactive designs, and CSP. Most lemmas of this category, like Lemmas 6.3, 6.5, and 6.6 are also used
during the stage (3) of the proof strategy; however, some lemmas on reactive designs, like Lemmas 6.2 and 6.4,
are used to flatten the programs into a single reactive design in the stages (1) and (2).

As expected, there is a dependence between the lemmas of these categories. Most lemmas on Circus operators
use lemmas on healthiness conditions in their proofs, and most of these lemmas use lemmas on the UTP theories
in their proofs. The mechanical proofs of these lemmas is currently under development.

6.2. Proof automation

As expected, the proof of the Circus refinement laws requires further work on the UTP theories discussed in
Sect. 5. In Table 4 we summarise the amount of effort required so far. The new theorems exploit properties of
the UTP theories that are the theoretical basis of Circus, which were not a major concern in [Oli05b, Oli05a].
Basically, they involve properties on the healthiness conditions (specially R, R1, R2, R3, and CSP1). This includes
properties of expressions like tr � tr′, that are used in the definitions of the healthiness conditions and the Circus
operators, properties of substitution, conditional, and equalities, and properties of the substitution functions ωt,
ωf , σt, σf like distribution over predicate constructors and commutativity with healthiness conditions (that is
Lemma 6.9).

An important aspect that has a direct impact on the effort spent in these proofs and on the size of the proof
scripts is the typing requirements to use previously proved theorems. Although we have used strategies to reduce
these requirements (see [OCW06b] for details), there are some requirements that are still needed and are very time
consuming. For instance, suppose we have the goal presented below. In our work, the type REL PREDICATE
represents the alphabetised predicates from the UTP. In what follows, we use P1, . . . , Pn? � G, to represent a list
of premises P1, . . . , Pn and the goal G of the proof.

P ∈ REL PREDICATE ∧ Q ∈ REL PREDICATE
R ∈ REL PREDICATE ∧ S ∈ REL PREDICATE
(P ∨ Q) ∧ (R ∨ S)
? �
((P ∨ Q) ∧ R) ∨ ((P ∨ Q) ∧ S)

It is clear that we may apply the following distribution theorem to conclude the proof.

∀ X , Y , Z : REL PREDICATE • X ∧ (Y ∧ Z) � (X ∧ Y ) ∨ (X ∧ Z)

However, in order to use this lemma in the proof, we need to instantiate it with X � P ∨ Q, Y � R, and Z � S;
hence, we need to assert that P ∨ Q is a member of REL PREDICATE. In this case, using forward chaining and
a theorem that is already defined in our theory of relations we may include this information. This task of including
inductive typing information in the premisses, however, becomes very time consuming when we have more complex
predicates. Furthermore, this task cascades to all the theories. A solution for this problem is the creation of a
ProofPower-Z tactic that makes an inductive analysis on the structure of the goal and uses previously defined
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theorems to include the typing information needed in the assumption of the goal. This tactic can be used right at
the beginning of any proof, reducing considerably the effort needed; we intend to implement it in the near future.

The mechanical proofs pointed out that some information was missing in the UTP theories presented
in [OCW06b]. First, in that work, we declared that the observational variables were members of the type NAME.
We did not, however, declare that they were different names. This was left implicit in [OCW06a], but needed to
be explicitly stated in order to guarantee, for instance, that the substitution of wait for true on okay is innocu-
ous (okayf � okay). A proviso of these lemmas was also left implicit in [OCW06a]: the observational variables
wait and okay′ are not free in neither P nor Q. This proviso guarantees that, for any boolean values b and c,
Pb

c � P and Qb
c � Q.

Another point is that in our theory of relations, the substitution P[e/n] is defined only if the free-variables of
the expression e and the name n are in the alphabet of the predicate P, which are the names that characterise a
range of external observations of P. Intuitively, it makes no sense to replace a name by anything in a predicate,
if that name is not of any concern for the predicate. Because of this restriction on substitutions, extra provisos
relating the observational variables and the alphabets of the predicates are often needed. Another consequence
of this restriction was the need to change the alphabet of tr � tr′ in the definition of R1, which was previously
defined as {tr, tr′}. For example, we use the commutativity theorem (R1(P))t � R1(Pt) and, in order to prove
it, we expand the definition of R1 and distribute the substitution over the conjunction. However, as previously
explained, the predicate (tr � tr′)[true/okay′] is only well defined if okay′ is in the alphabet of tr � tr′. For this
reason, in the definition of R1, we changed the alphabet of tr � tr′ to be an alphabet that contains all the four
observational variables (and their dashed counterparts) needed to describe reactive processes.

So far, the proof strategy presented in Sect. 6 has proved to be extremely useful to modularise proofs and, as
a direct consequence, to reduce effort in the mechanical proofs.

7. Conclusions

This paper presents an example of the application of the UTP to a practical language of some complexity. We have
taken into consideration issues related to the design of a refinement, to program development, and to practical
use through the provision of tools. Furthermore, it presents the CSP part of Circus as a collection of explicit
reactive designs that clarify the link between the theories of designs and reactive processes, a library of lemmas,
and a theorem prover.

The Circus semantics presented in [WC02] did not allow us to prove meta-theorems in the Circus theory and,
as a direct consequence, refinement laws. For this reason, a new denotational semantics was presented in this
paper; it is a final reference for the Circus denotational semantics.

We now have proved over 92% of the 146 refinement laws, and we are working to complete all the proofs. These
proofs are of soundness with respect to the semantics presented in this paper. If we were to find any invalid law,
then either we would propose an alternative law or, if the invalid law is particularly attractive, we would consider
changing the semantics to accommodate. We understand that the latter would involve considerable regression
in our work. Nevertheless, we have improved our confidence on this semantics in three ways: by studying its
relationship to the UTP CSP theory as in Sect. 3, by proving the refinement laws, and by proving the soundness
of the Circus operational semantics published in [WCF05].

Although based on the definitions from [HJ98, WC02] this new semantics follows the style of [CW06], where
we express the semantics of the vast majority of the Circus constructs as reactive designs. The structural uniformity
of the semantics given to the Circus operators is reflected in the proofs of the refinement laws, which use the
strategy discussed in this paper. For instance, Lemma 6.1 that is analogous to a factorisation result, can only be
used because our definitions are reactive designs. Our work shows that we can use a pre-postcondition style to
specify processes and gives a foundation to reason about them in a familiar assertional style. The uniformity also
facilitates mechanisation. Together, the library of lemmas presented in this paper and in [CW06], and the proof
strategy fosters the reuse of our results in the mechanisation of other languages that have a UTP semantics like
TCOZ [MD98, QDC03].

The semantic model for Circus processes presented in [WC02] was a Z specification, and every Circus operator
was defined by a Z schema that included the state definition, and therefore, the invariant as well. For this reason,
the state invariant was maintained by all constructs, including Skip, Stop, and Chaos, for example. As already
mentioned, this is no longer the case. This ensures, for instance, that there are really no guarantees about the
behaviour of Chaos.

The definitions of most control constructs are also affected by the presence of data. For example, we have
addressed how data operations affect choice: as a direct consequence of our definition for external choice and
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the need for Stop to be its unit, our semantics of Stop does not keep the state unchanged, but unconstrained. An
alternative would be to allow state changes to resolve external choices, in which case, Stop would keep the state
unchanged; however, the states of the processes are encapsulated and state changes should not be noticed by the
external environment.

We have addressed sharing concerns in the definitions of the several forms of parallelism: state partitions in
the parallel composition and interleaving remove the problems intrinsic to shared variables and were suggested
in [CSW03]. These partitions also have a direct impact on the semantics of the parallel composition and in-
terleaving of processes. In [WC02], the parallel composition P |[ cs ]| Q conjoins each paragraph in P (Q) with
�Q.State (�P.State); this lifts the paragraphs in P (Q) to a state containing also the elements of Q (P), but
with no extra restrictions. For us, in the semantics of parallel composition and interleaving, each side of the
composition has a copy of all the variables in scope. They may change the values of all these variables, but only
the changes to those variables that are in their partition have an effect in the final state of the composition. For
this reason, we do not need to leave Q.State unconstrained. We use a definition that is very similar to the other
binary process combinators; the only change is the consideration of state partitions.

Besides the healthiness conditions satisfied by reactive processes (R1-R3) and by CSP processes (CSP1-
CSP3), Circus processes also satisfy three further healthiness conditions: the first two, C1 and C2, have a direct
correspondence with two of the extra CSP healthiness conditions, CSP4 and CSP5. However, C3 is novel; it
guarantees that our designs do not contain any dashed variables in the precondition.

The semantics presented in this paper has been mechanised in ProofPower-Z [Oli05b]; this work was based on
a mechanisation of the UTP theories [OCW06b]. Based on this result, we are currently developing the mechanical
proof of Circus refinement laws. This work has already shown us the need of tactics to reduce considerably the
amount of effort needed; furthermore, it has shown subtleties on alphabets and free-variables that were left
implicit during the hand-proofs, but needed to be made explicit.

Circus, however, is not the first specification language of concurrent systems that has its semantics mechanised
in a theorem-prover. In [Cam90b], the CSP trace model is mechanised in HOL. This work was later extended
in [Cam90a], where the failures-divergence model is considered. In both cases, besides mechanising the semantics,
the author also proved some standard CSP laws based on his mechanisation. A semantic embedding of CSP’s
trace semantics in PVS was presented in [DS97] and used to verify the correctness of a verification protocol. This
embedding is a little more general than Camilleri’s one because they use parametric types for events instead of
considering events as atomic symbols represented by strings. Their CSP variant also differs: [DS97] mechanises
Roscoe’s CSP [Ros98] whereas [Cam90b] mechanises Hoare’s CSP [Hoa85]. In order to be able to mechanise the
semantics of Circus, we need to use the mechanisation of a semantic model that is able to combine the notions of
refinement for CSP and for imperative programs. For this reason, differently from [Cam90a, DS97], we mechanise
Circus semantics based on our previous mechanisation of the UTP [OCW06b]. In [CW06], we relate our model
to Roscoe’s standard model.

Nuka and Woodcock formalised the alphabetised relational calculus in Z/EVES [NW04]. They did not restrict
the set of bindings in the same way as we do, but the restriction on the domain of the bindings is satisfied by all
the constructors. By including the restriction on the set of bindings, we make this information available in all the
proofs, and not only in those including some particular operators. Moreover, we extend [NW04] by including many
other operations, such as sequencing, assignment, refinement, and recursion. The hierarchical mechanisation of
the theories of designs, reactive processes, CSP, and Circus is also a contribution of our work that provides a
powerful tool for further investigation.

In [NW06], the authors present the same mechanisation that was presented in [NW04] but, this time, in
ProofPower-Z. They also extend [NW04] by mechanising a specification language that includes, among other op-
erators, skip, abort, miracle, Hoare triples, assertions, coercions, weakest preconditions, and iterations. However,
their syntax is defined using Z free types; any extension to the language would require proving most of the laws
again making it harder to extend their specification language.

Ultimately, we intend to mechanise the proofs of all refinement laws. This will provide both academia and
industry with a mechanised refinement calculus that can be used in the formal development of state-rich reactive
programs as the one presented in [OCW05].
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A. Proof of lemmas

Lemma 3.1 doA � R(do).

Proof.

doA(a) [Definition of doA]
� 	(tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉) [Definition of 	]
� (R ◦ andB) (tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉) [Definition of andB]
� R(B ∧ (tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉)) [Definition of B]
� R(((tr′ � tr ∧ wait′) ∨ tr < tr′) ∧ (tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉)) [Distribution]

� R
(

(tr′ � tr ∧ wait′ ∧ (tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉))
∨ (tr < tr′ ∧ (tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉))

)

[Conditional]

� R
(

(tr′ � tr ∧ wait′ ∧ a �∈ ref ′)
∨ (tr < tr′ ∧ (tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉))

)

[Distribution]

� R
(

(tr′ � tr ∧ wait′ ∧ a �∈ ref ′)
∨ (tr < tr′ ∧ tr′ � tr ∧ a �∈ ref ′ � wait′ � tr < tr′ ∧ tr′ � tr � 〈a〉)

)

[Predicate Calculus]

� R((tr′ � tr ∧ wait′ ∧ a �∈ ref ′) ∨ (false � wait′ � tr < tr′ ∧ tr′ � tr � 〈a〉)) [Predicate Calculus]
� R((tr′ � tr ∧ wait′ ∧ a �∈ ref ′) ∨ (¬ wait′ ∧ tr′ � tr � 〈a〉)) [Conditional]
� R(tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉) [Definition of do]
� R(do(a))

Lemma 3.2 (c → SKIP)f
f � ¬ okay ∧ tr � tr′.

Proof.

(c → SKIP)f
f

� (CSP1(okay′ ∧ doA(a)))f
f [Definition of Prefix]

� CSP1((okay′ ∧ doA(a))f
f ) [Lemma 6.9]

� CSP1((false ∧ doA(a))f ) [Substitution]
� CSP1(false) [Predicate calculus]
� (¬ okay ∧ tr � tr′) ∨ false [CSP1]
� ¬ okay ∧ tr � tr′ [Predicate calculus]

Lemma 3.3 (c → SKIP)t
f � CSP1(do (c, Sync)).

Proof.

(c → SKIP)f
f

� (CSP1(okay′ ∧ doA(a)))f
f [Definition of Prefix]

� CSP1((okay′ ∧ doA(a))f
f ) [Lemma 6.9]

� CSP1((true ∧ doA(a))f ) [Substitution]
� CSP1((doA(a))f ) [Predicate calculus]
� CSP1((R(do(a)))f ) [Lemma 3.1]
� CSP1((R3(R2(R1(do(a)))))f ) [R]
� CSP1((II rea � wait � R2(R1(do(a))))f ) [R3]
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� CSP1((R2(R1(do(a))))f ) [Substitution and conditional]
� CSP1(R2(R1(do(a)))) [R1, R2, and do do not mention wait]
� CSP1(R2(do(a))) [Lemma A.1]
� CSP1(do(a)) [Lemma A.2]

Lemma A.1 R1(do(a)) � do(a).

Proof.

R1(do(a))
� (tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉) ∧ tr � tr′ [R1 and do]
� tr′ � tr ∧ a �∈ ref ′ ∧ tr � tr′ � wait′ � tr′ � tr � 〈a〉 ∧ tr � tr′ [Conditional and predicate calculus]
� tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉 [Sequences and predicate calculus]
� do(a) [do]

Lemma A.2 R2(do(a)) � do(a).

Proof.

R2(do(a))
� (tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉)[〈〉, tr′ − tr/tr, tr′] [R2 and do]
� tr′ − tr � 〈〉 ∧ a �∈ ref ′ � wait′ � tr′ − tr � 〈〉 � 〈a〉 [Substitution]
� tr′ � tr ∧ a �∈ ref ′ � wait′ � tr′ � tr � 〈a〉 [Sequences]
� do(a) [do]

Lemma 3.4 okay ∧ CSP1(P) � okay ∧ P.

Proof.

okay ∧ CSP1(P)
� okay ∧ ((¬ okay ∧ tr � tr′) ∨ P) [CSP1]
� (okay ∧ (¬ okay ∧ tr � tr′)) ∨ (okay ∧ P) [Predicate calculus]
� false ∨ (okay ∧ P) [Predicate calculus]
� okay ∧ P [Predicate calculus]

Lemma 6.1 R(P) �A R(Q), provided P �A Q.

Proof.

R(Q)
� R3(R2(R1(Q))) [R]
� II rea � wait � Q[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′ [R3, R2, and R1]
⇒ II rea � wait � P[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′ [Assumption and Predicate calculus]
� R3(R2(R1(P))) [R3, R2, and R1]
� R(P) [R]

Lemma 6.4 R(P1 � Q1) � R(P2 � Q2) � R((P1 ∧ P2) � (Q1 ∨ Q2)).

Proof.

R(P1 � Q1) � R(P2 � Q2)
� R(P1 � Q1) ∨ R(P2 � Q2) [�]
� (R2(R3(P1 � Q1)) ∧ tr � tr′) ∨ (R2(R3(P2 � Q2)) ∧ tr � tr′) [R and R1]
� R1(R2(R3((P1 � Q1))) ∨ R2(R3((P2 � Q2)))) [Predicate calculus and R1]
� R1(R3((P1 � Q1))[〈〉, tr′ − tr/tr, tr′] ∨ R3((P2 � Q2))[〈〉, tr′ − tr/tr, tr′]) [R2]
� R1(R2(R3((P1 � Q1)) ∨ R3((P2 � Q2)))) [Predicate calculus and R2]
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� R1(R2((II rea � wait � (P1 � Q1)) ∨ (II rea � wait � (P2 � Q2)))) [R3]
� R1(R2((II rea � wait � ((P1 � Q1) ∨ (P2 � Q2))))) [Predicate calculus]
� R((P1 � Q1) ∨ (P2 � Q2)) [R3 and R]
� R((P1 � Q1) � (P2 � Q2)) [�]
� R((P1 ∧ P2) � (Q1 ∨ Q2)) [UTP - Theorem 3.1.4 (1)]

Lemma 6.5 (R(P � Q))f
f � R1(¬ okay ∧ R2(P)).

Proof.

(R(P � Q))f
f

� (R3(R2(R1(P � Q))))f
f [R]

� (II rea � wait � (P � Q)[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′)f
f [R3, R2, and R1]

� ((P � Q)[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′)f [Substitution and conditional]

� (P[〈〉, tr′ − tr/tr, tr′] � Q[〈〉, tr′ − tr/tr, tr′])f ∧ tr � tr′ [Substitution]
� (¬ (okay ∧ P[〈〉, tr′ − tr/tr, tr′])) ∧ tr � tr′ [Design, Substitution and predicate calculus]
� R1(¬ (okay ∧ R2(P))) [R2 and R1]

Lemma 6.6 (R(P � Q))t
f � CSP1(R1(R2(P ⇒ Q))).

Proof.

(R(P � Q))t
f

� (R3(R2(R1(P � Q))))t
f [R]

� (II rea � wait � (P � Q)[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′)t
f [R3, R2, and R1]

� ((P � Q)[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′)t [Substitution and conditional]
� (P � Q)t[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′ [Substitution]
� (okay ∧ P ⇒ Q)[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′ [Designs and predicate calculus]
� (¬ okay ∨ ¬ P ∨ Q)[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′ [Predicate calculus]
� (¬ okay ∧ tr � tr′) ∨ ((P ⇒ Q)[〈〉, tr′ − tr/tr, tr′] ∧ tr � tr′) [Predicate calculus]
� CSP1(R1(R2(P ⇒ Q))) [CSP1,R1,R2]

Lemma 6.7 Stopf
f � ¬ okay ∧ tr � tr′.

Proof.

Stopf
f

� (R(true � tr′ � tr ∧ wait′))f
f [Stop]

� R1(¬ (okay ∧ R2(true))) [Lemma 6.5]
� ¬ okay ∧ tr � tr′ [R2, R1, Predicate calculus]



30 M. Oliveira et al.

Lemma 6.8 Stopt
f � CSP1(tr′ � tr ∧ wait′).

Proof.

Stopt
f � (R(true � tr′ � tr ∧ wait′))t

f [Stop]

� CSP1(R1(R2(true ⇒ tr′ � tr ∧ wait′))) [Lemma 6.6]
� CSP1(tr′ � tr ∧ wait′) [R1, R2, Predicate calculus]

B. Summary of the Circus semantics

Circus Actions Semantics
Stop R(true � tr′ � tr ∧ wait′)
Skip R(true � tr′ � tr ∧ ¬ wait′ ∧ v′ � v)
Chaos R(false � true)
A1; A2 ∃ x0 • A1[x0/x′] ∧ A2[x0/x]

g & A R((g ⇒ ¬ Af
f ) � ((g ∧ At

f ) ∨ (¬ g ∧ tr′ � tr ∧ wait′)))

A1 � A2 R

⎛

⎝ (¬ A1
f
f ∧ ¬ A2

f
f ) �

⎛

⎝

(A1
t
f ∧ A2

t
f )

�tr′ � tr ∧ wait′�
(A1

t
f ∨ A2

t
f )

⎞

⎠

⎞

⎠

A1 � A2 A1 ∨ A2
c → Skip R(true � do (c, Sync) ∧ v′ � v)
c.e → Skip R(true � do (c, e) ∧ v′ � v)
c!e → Skip c.e → Skip
c?x : P → A(x) var x • R(true � doI (c, x, P) ∧ v′ � v); A(x)
c?x → A(x) c?x : true → A(x)

A1 |[ ns1 | cs | ns2 ]| A2 R

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

¬ ∃ 1.tr′, 2.tr′ • (A1
f
f ; 1.tr′ � tr)

∧ (A2f ; 2.tr′ � tr)
∧ 1.tr′ � cs � 2.tr′ � cs

∧ ¬ ∃ 1.tr′, 2.tr′ • (A1f ; 1.tr′ � tr)
∧ (A2

f
f ; 2.tr′ � tr)

∧ 1.tr′ � cs � 2.tr′ � cs
�
(

(A1
t
f ; U1(outα A1))

∧ (A2
t
f ; U2(outα A2))

)

+{v,tr}
; M‖(cs)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A1 ||[ns2 | ns2]|| A2 R

⎛

⎜

⎜

⎜

⎝

(¬ A1
f
f ∧ ¬ A2

f
f )

�
(

(A1
t
f ; U1(outα A1))

∧ (A2
t
f ; U2(outα A2))

)

+{v,tr}
; M|||(cs)

⎞

⎟

⎟

⎟

⎠

A \ cs R

⎛

⎝

∃ s •
A[s, cs ∪ ref ′/tr′, ref ′]
∧ (tr′ − tr) � (s − tr) � (EVENT − cs)

⎞

⎠ ; Skip

μ X • F (X ) {X | F (X ) �A X }
Iterated operators By expansion of the operators
Action invocation By the copy-rule
(d • A) (e) A[e/x]
A[old :� new] A[new/old ]

x1, . . . , xn :� e1, . . . , en R
(

true �
(

tr′ � tr ∧ ¬ wait′
∧ x′

1 � e1 ∧ · · · ∧ x′
n � en ∧ u′ � u

) )

w : [ pre, post ] R(pre � post ∧ ¬ wait′ ∧ tr′ � tr ∧ u′ � u)
{g} : [g, true]
[g] : [true, g]

if [] i • gi → Ai fi R((
∨

i • gi) ∧ (
∧

i • gi ⇒ ¬ Ai
f
f ) � ∨ i • (gi ∧ Ai

t
f ))
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Circus Actions Semantics
var x : T • A var x : T; A; end x : T
(val x : T • A) (e) (var x : T • x :� e; A)
(res x : T • A) (y) (var x : T • A; y :� x)
(vres x : T • A) (y) (var x : T • x :� y; A; y :� x)
[udecl; ddecl ′ | pred ] ddecl : [∃ ddecl ′ • pred, pred ]

Circus Processes Semantics
begin state [decl | pred ] PPars • A end var decl • A
P op Q
op ∈ { ; , � , � } begin

state State �̂ P.State ∧ Q.State
P.PPar ∧� Q.State
Q.PPar ∧� P.State
• P.Act op Q.Act

end
P |[ cs ]| Q begin

state State �̂ P.State ∧ Q.State
P.PPar ∧� Q.State
Q.PPar ∧� P.State
• P.Act

|[α(P.State) | cs | α(Q.State)]|
Q.Act

end
P ||| Q begin

state State �̂ P.State ∧ Q.State
P.PPar ∧� Q.State
Q.PPar ∧� P.State
• P.Act

||[α(P.State) | α(Q.State)]||
Q.Act

end
P \ cs begin

state State �̂ P.State
P.PPar
• P.Act \ cs

end
i : T � P (i : T • P)[c : usedC(P) • c i.i]
(i : T � P)�v (i : T � P) (v)
Iterated operators By expansion of the operators
Process invocation By the copy-rule
(x : T • P) (e) P[e/x]
P[oldc :� newc] P[newc/oldc]
P[te0, . . . , ten] By instantiating the type variables

with the corresponding tei in the
body of P
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