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Abstract. This paper addresses the problem of representing the intruder’s knowledge in the formal verification of
cryptographic protocols, whose main challenges are to represent the intruder’s knowledge efficiently and without
artificial limitations on the structure and size of messages. The new knowledge representation strategy proposed
in this paper achieves both goals and leads to practical implementation because it is incrementally computable
and is easily amenable to work with various term representation languages. In addition, it handles associative
and commutative term composition operators, thus going beyond the free term algebra framework. An extensive
computational complexity analysis of the proposed representation strategy is included in the paper.
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1. Introduction

The formal, automatic verification of security properties of cryptographic protocols is a difficult task, which has
already been explored in previous papers. Some of them leverage automatic proof techniques, with the help of
various proof systems and formalisms, e.g. [Pau98, Sch98, BDNP02]; although partial automation of proofs with
theorem provers is possible, the use of such tools is usually quite time consuming and difficult.
Another approach is to use state exploration methods, such as model checking, e.g. [Low96, MS01, CJM00]. In
state exploration, one of the challenges is to find a compact and efficient representation of the intruder’s knowl-
edge, which plays a central role in modelling the protocol behaviour in an hostile environment, without sacrificing
the expressive power of the specification language. Previous papers only give partial solutions to this problem,
the most common approach being to restrict the way in which messages can be built. For example, a common
restriction is to force encryption keys to be atomic [CJM98]. Such a restriction can also be found with some
theorem proving techniques, e.g. [Pau98]. It is worth noting that offering support for constructed, non-atomic
keys is becoming increasingly important to analyse real-world protocols since, for example, it is common for such
protocols to build a symmetric key from shared secrets and other data exchanged between parties during a run
of the protocol itself.
This paper presents a novel intruder’s knowledge representation strategy that achieves both the goals of com-
pactness and implementation efficiency without artificially restricting the way in which messages can be built.
In particular, the proposed representation is largely independent from the term representation language chosen,
i.e. it supports all main cryptographic message construction operators, including the full term language of spi
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Table 1. Naming conventions Symbol Meaning

P is the set of term algebra operators; it contains the standard term algebra operators
of Table 2, as well as the additional operators described in Sect. 4

a ranges over names: a ∈ A
T is the set of all terms that can be built by combining the elements of A with the

operators of P
σ , ρ and η range over terms, either atomic or non-atomic, in T
x and y range over variables
b ranges over fresh names
P , Q and R range over processes
≤A is a total order relation on A
≤P is a total order relation on P
≤T is a total order relation on T

calculus [AG99]. Moreover, it keeps the intruder’s knowledge in a minimised, canonical form, and is shown to be
incrementally computable.
Having a canonical intruder’s knowledge representation is especially important when state exploration tech-
niques are used to check security properties. In fact, simpler non-canonical representations, such as for example
the plain set of messages the intruder has access to when eavesdropping honest agents, may lead to state prolif-
eration, because different sets of known messages may correspond to the same intruder’s knowledge.
In addition, this representation goes beyond the free term algebra setting assumed by most existing work and also
handles commutative and associative operators. This feature is very important to model and verify any real-world
cryptographic protocol that makes use of this kind of operator, as pointed out in [BB02, CJM98, Low97, Low99,
MCJ97, Mon99, RT01], and is actively being addressed by other researchers too, e.g. [CKRT03, CLS03, MN02,
MS03].
The basic knowledge representation without the extension to commutative and associative operators has been
used in a framework for automatic testing equivalence verification of spi calculus specifications, presented in
[DSV03], where symbolic techniques are used to get finite models.
This paper presents the proposed intruder’s knowledge representation with reference to the spi calculus speci-
fication language. Since the expressive power of the message specification section of such a language is greater
than or equivalent to the one of most other formalisms for cryptographic protocols, the adoption of spi calculus
as our reference specification language is not restrictive.
The paper assumes that the reader is familiar with basic cryptography, and is structured as follows: Sect. 2 presents
the syntax of spi calculus, and informally describes its semantics. In Sects 3 and 4 we discuss our knowledge rep-
resentation strategy along with its extension to handle commutative and associative term composition operators;
then, we work out some examples to better illustrate our technique.
In Sect. 5 we analyse the computational complexity of the method we propose with an increasing level of accuracy,
and present a comparison of the estimated asymptotic complexity against both the simulated and the actual,
measured complexity of a prototype model-checking tool [DSV03]. Section 6 discusses related work and draws
some conclusions.
Finally, Appendix A elaborates on some mathematical details of the computational complexity analysis whereas
Appendices B through D contain the proofs of the theorems introduced in the previous sections. This work
extends and completes the results first presented in the conference papers [CDSV03b, CDSV03a].

2. Spi calculus

The spi calculus is defined in [AG99] as an extension of the π calculus [MPW92] with cryptographic primitives. It
is a process algebraic language designed for describing and analysing cryptographic protocols. These protocols
heavily rely on cryptography and on message exchange through communication channels; accordingly, the spi
calculus provides powerful primitives to express cryptography and communication.
This section summarises the syntax and describes the language semantics informally; the language used in this
paper fully conforms to the original spi calculus definition [AG99], with the naming conventions outlined in
Table 1.
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Table 2. Term composition operators of the spi calculus

Notation Meaning Notation Meaning

(σ, ρ) Pair σ+ Public part
suc(σ ) Successor σ− Private part
H(σ ) Hashing {[σ ]}ρ Public-key encryption
{σ }ρ Shared-key encryption [{σ }]ρ Private-key signature

Table 3. Process syntax of the spi calculus

Notation Meaning Notation Meaning

σ 〈ρ〉.P Output [σ is ρ] P Match
σ (x ).P Input let (x , y) � σ in P Pair splitting
P | Q Composition case σ of 0 : P suc(x ) : Q Integer case
(νb) P Restriction case η of {x }ρ in P Shared-key decryption
!P Replication case η of {[x ]}ρ in P Decryption
0 Nil case η of [{x }]ρ in P Signature-check

The spi calculus has two basic language elements: terms, to represent data, and processes, to represent behaviours.
Terms can be either atomic elements, i.e. names, including the special name 0 representing the integer constant
zero, and variables, or compound terms built using the term composition operators listed in Table 2. Names may
represent communication channels, atomic keys and key pairs, nonces (also called fresh names) and any other
unstructured data.
Besides term specification, the spi calculus also offers a rich set of operators, shown in Table 3, to build behaviour
expressions that, in turn, represent processes.
As an example, Fig. 1 shows the spi calculus specification of a very simple protocol inspired by [FA01]. The
left-hand side of the figure shows the message exchanges involved in the protocol, using the informal, intuitive
representation often encountered in the literature, whereas the right-hand side of the figure shows the corre-
sponding spi calculus specification. In this protocol two agents A and B , represented by spi calculus processes
PA and PB , respectively, share a secret key k and exchange two messages:

• First, A sends to B message M encrypted under key k over public channel c. This is represented, in spi
calculus, by the output statement c〈{M }k 〉 in process PA and by the corresponding input statement c(y1) in
PB ; the latter statement assigns the datum just received to variable y1 of PB .

• Then, B tries to decrypt the message with key k , as specified by the statement case y1 of {y2}k in PB and,
when successful, sends back to A the hashed cleartext of M on the same channel c, with the output statement
c〈H (y2)〉. Process A receives this message with the input statement c(x ).

• Finally, A checks that the hash just received is correct with the statement [x is H (M )] and proceeds with
further operations on message M , represented by the unspecified process F (M ).

The role of the spi calculus process Psample in this example is twofold:

• With the restriction operator (νk ), it generates a restricted, private name k , only known to PA, PB and itself,
to be used as the encryption key.

• It instantiates both PA and PB to run in parallel, by means of the parallel composition operator |, so that an
instance of Psample represents all agents involved in a session of the protocol.

Fig. 1. A simple spi calculus specification
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3. Intruder’s knowledge representation

Our approach to the representation of the knowledge that an intruder can acquire, already described in [DSV03],
borrows some of the notation and concepts introduced in [CJM98], and has some similarities with [FA01] and
[Hui99] as Sect. 6 points out. However, it is more sophisticated than previous representations in some respects,
because encryption and decryption keys are not restricted to be atomic, the spi calculus is considered to its full
extent, including public/private key cryptosystems, and the intruder’s knowledge is always kept in a minimised
form which both speeds up and simplifies processing.
As most other researchers do, our method relies on the well-known perfect encryption assumptions, and adopts
the Dolev-Yao intruder model inspired by [DY83].

3.1. The minimal intruder’s knowledge representation

Let A be the set of spi calculus names, including the integer constant 0, and T the set of all spi calculus terms
that can be built by combining the elements of A by means of the operators defined in Table 2. For simplicity,
and without loss of generality, it is assumed that distinct names and variables of the spi calculus always have
lexically distinct forms, since it is always possible to construct a unique identifier for each name or variable of the
spi calculus by taking scope information into account.
The closure of a set of terms � ⊆ T is denoted ̂� and is defined as the set of all spi calculus terms that can be
built by combining the elements of � by means of the operators defined in Table 2 and their inverses. Formally,
̂� is the least set of terms such that, for each σ , σ1 and σ2 ∈ T , the following closure rules hold:

σ ∈ � ⇒ σ ∈ ̂� (1)

σ ∈ ̂� ⇒ suc(σ ) ∈ ̂� (successor) (2)

σ1 ∈ ̂� ∧ σ2 ∈ ̂� ⇒ (σ1, σ2) ∈ ̂� (pairing) (3)

σ1 ∈ ̂� ∧ σ2 ∈ ̂� ⇒ {σ1}σ2 ∈ ̂� (sh. key encryption) (4)

σ ∈ ̂� ⇒ H(σ ) ∈ ̂� (hashing) (5)

σ1 ∈ ̂� ∧ σ +
2 ∈ ̂� ⇒ {[σ1]}σ +

2
∈ ̂� (pub. key encryption) (6)

σ1 ∈ ̂� ∧ σ−
2 ∈ ̂� ⇒ [{σ1}]σ−

2
∈ ̂� (priv. key signature) (7)

σ ∈ ̂� ⇒ σ + ∈ ̂� ∧ σ− ∈ ̂� (key projection) (8)

suc(σ ) ∈ ̂� ⇒ σ ∈ ̂� (prec) (9)

(σ1, σ2) ∈ ̂� ⇒ σ1 ∈ ̂� ∧ σ2 ∈ ̂� (projection) (10)

{σ1}σ2 ∈ ̂� ∧ σ2 ∈ ̂� ⇒ σ1 ∈ ̂� (sh. key decr.) (11)

{[σ1]}σ +
2

∈ ̂� ∧ σ−
2 ∈ ̂� ⇒ σ1 ∈ ̂� (pub. key decr.) (12)

{[σ1]}σ−
2

∈ ̂� ∧ σ +
2 ∈ ̂� ⇒ σ1 ∈ ̂� (signature check) (13)

σ + ∈ ̂� ∧ σ− ∈ ̂� ⇒ σ ∈ ̂� (key pairing) (14)

In principle, if � is the set of messages the intruder has intercepted so far, the generation of individual elements
of ̂� (informally, the set of all messages the intruder can generate at a given point) starting from � can be viewed
as a derivation in a natural deduction system [Pra65].
In this respect, closure rule (1) represents the ability to derive an element from itself, closure rules (2)–(8) are
equivalent to the introduction rules of the natural deduction system (I rules), and closure rules (9)–(14) are equiv-
alent to its elimination rules (E rules). In the following, it will sometimes be necessary to consider the closure of
a set � under I rules, that is, computed using only rules (1) and (2)–(8); that closure will be denoted by ̂�I .
For example, using the rule notation of [Pra65], closure rule (4) is equivalent to the introduction rule:

σ1 σ2

{σ1}σ2

{}-I rule. (15)
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Informally, we can read this rule as: “when both σ1 and σ2 are known to the intruder, then the intruder also knows
about {σ1}σ2 .”
Similarly, closure rule (11) is equivalent to the elimination rule:

{σ1}σ2 σ2

σ1
{}-E rule. (16)

Informally, we can read this rule as: “when the intruder knows both {σ1}σ2 and σ2, then it can successfully perform
a decryption and add σ1 to its knowledge.”
In an elimination rule, the premise that contains the operator removed by the rule is called the major premise,
while all other premises are called minor premises. For example, in rule (16), {σ1}σ2 is the major premise and σ2 is
the minor premise.

The theory of natural deduction [Pra65] implies that, if σ ∈ ̂�, then σ can be deduced from � with a natural
deduction in normal form, that is, a chain of applications of E rules followed by a chain of applications of I rules,
along the rules’ major premises. This is not necessarily true along minor premises, so the closure of � under E
rules only is not a suitable candidate to represent the intruder’s knowledge, unless some additional constraints
are imposed, such as the atomicity of encryption keys; this is exactly the approach adopted, for example, in
[CJM98, Pau98]. In the following, we show that this difficulty can be overcome by introducing the concept of
minimal closure seed of �, denoted by �, and by suitably refining the derivation rules of the deduction system.
Informally, � is a minimised, canonical representation of the intruder’s knowledge, which contains no redundant
elements, but includes only the minimum set of simplest terms that the intruder needs in order to generate all
data it has ever known of.
For example, if the intruder eavesdrops {m}k but is unable to generate the decryption key k , it must add {m}k to
its knowledge representation. If k becomes known to the intruder at a later time, the intruder can then add k and
m to its knowledge representation, because k allows it to decipher {m}k ; at the same time, it can remove {m}k
from its knowledge representation, because it is now able to re-generate this term starting from k and m.

Given a finite set of terms �, we define the minimal closure seed of �, and denote it as �, the largest subset of ̂�
that satisfies the following predicates for each a ∈ A, and for each σ , σ1, σ2 ∈ T .

a ∈ � ⇔ a ∈ ̂� (17)
suc(σ ) 
∈ � (18)
(σ1, σ2) 
∈ � (19)

{σ1}σ2 ∈ � ⇔ σ2 
∈ ̂� (20)

H(σ ) ∈ � ⇔ σ 
∈ ̂� (21)

{[σ1]}σ +
2

∈ � ⇔ σ +
2 
∈ ̂� ∨ σ1 
∈ ̂� (22)

[{σ1}]σ−
2

∈ � ⇔ σ−
2 
∈ ̂� ∨ σ1 
∈ ̂� (23)

σ + ∈ � ⇔ σ 
∈ ̂� (24)

σ− ∈ � ⇔ σ 
∈ ̂� (25)

For example, if � � {{[a]}k+, k−}, then � � {{[a]}k+, k−, a}, because:

• k− ∈ �, by rule (25), because k 
∈ ̂�. In fact, k cannot be deduced by k− only.

• a ∈ �: since k− ∈ � ⊂ ̂�, then k− can be used to decrypt {[a]}k+ , and a ∈ ̂�, by rule (12). Moreover, being
a a name, by rule (17), a ∈ �.

• {[a]}k+ ∈ �, by rule (22), because k+ 
∈ ̂�, so there is no way to construct {[a]}k+ starting from other members
of �.
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Table 4. An example of reduction

i �i R �I �O

0 {c, {{k1}k2 }k3 , {[m ]}k1
+ , k1

+, k2, k3} (33) {{{k1}k2 }k3 } {{k1}k2 }
1 {c, {[m ]}k1

+ , k1
+, k2, k3, {k1}k2 } (33) {{k1}k2 } {k1}

2 {c, {[m ]}k1
+ , k1

+, k2, k3, k1} (29) {k1
+} ∅

3 {c, {[m ]}k1
+ , k2, k3, k1} (34) ∅ {m}

4 {c, {[m ]}k1
+ , k2, k3, k1,m} (27) {{[m ]}k1

+ } ∅
5 {c, k2, k3, k1,m}

Before discussing the basic properties of �, let us define r(σ,�) as the boolean value obtained by executing the
following algorithm:

boolean r(σ, �) {
if σ ∈ � then return TRUE;
else if σ � suc(σ1) then return r(σ1, �);
else if σ � (σ1, σ2) then return r(σ1, �) ∧ r(σ2, �);
else if σ � {σ1}σ2 then return r(σ1, �) ∧ r(σ2, �);
else if σ � H(σ1) then return r(σ1, �);
else if σ � {[σ1]}σ +

2
then return r(σ1, �) ∧ r(σ +

2 , �);
else if σ � [{σ1}]σ−

2
then return r(σ1, �) ∧ r(σ−

2 , �);
else if σ � σ +

1 then return r(σ1, �);
else if σ � σ−

1 then return r(σ1, �);
else (σ ∈ A\�) return FALSE;

}

Informally, this algorithm recursively checks whether σ can be deduced from the set � using introduction rules,
i.e. (2)–(7), only; in this respect, an introduction rule is a rule that builds a new term by combining one or more
simpler terms.
The properties of � are then expressed by the following theorems adapted from [DSV03] and proved in Appen-
dix C; these properties make it a good candidate as a finite and minimised representation of the term generation
capabilities of an intruder that has learned the set of terms �.

Theorem 3.1 (Finiteness and uniqueness) For each finite set of terms � ⊆ T , � is finite and unique.

Theorem 3.2 (Minimality under introduction rules) Let � ⊆ T be a finite set of terms, and σ ∈ �. Then
̂(�\{σ })

I

⊂ ̂�.

Theorem 3.3 (Closure preservation) For each finite set of terms � ⊆ T , ̂� � ̂�.

Theorem 3.4 (Computability) For each finite set of terms � ⊆ T , � can be computed in a finite number of steps.

Theorem 3.5 (Decidability) Let σ ∈ T be any finite term and � ⊆ T be a finite set of terms. Then, the question if
σ ∈ ̂� is decidable.

The computation of � from � can be carried out by repeatedly applying closure rules (1)–(14). More precisely,
let us define a reduction rule as a triple R � 〈�I , C , �O 〉, where �I and �O are sets of terms representing,
respectively premises and conclusions of closure rule C .
Applying reduction step R to a finite set of terms � means eliminating the premises from and adding the conclu-

sions to �. This is written �
R−→ �′, where �′ � (�\�I ) ∪ �O is the resulting set.

Given a finite set of terms �, a reduction of � is a finite sequence of application of reduction rules Ri to finite
sets of terms �i , denoted:

�0
R0−→ �1

R1−→ �2 · · · �k−1
Rk−1−→ �k

such that �0 � � and Ri ∈ R(�i ), where R(�i ) is the set of reduction rules whose pre-conditions are satisfied by
�i . Below, the notation a → b means that if the pre-condition a is true, then the reduction rule b can be applied
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in �i , that is, b ∈ R(�i ). The set R(�i ) is the least set such that the following relations hold:

H(σ ) ∈ �i ∧ r(σ,�i ) → 〈{H(σ )}, (5),∅〉 (26)
{[σ1]}σ +

2
∈ �i ∧ r(σ1, �i ) ∧ r(σ +

2 , �i ) → 〈{{[σ1]}σ +
2
}, (6),∅〉 (27)

[{σ1}]σ−
2

∈ �i ∧ r(σ1, �i ) ∧ r(σ−
2 , �i ) → 〈{[{σ1}]σ−

2
}, (7),∅〉 (28)

σ + ∈ �i ∧ r(σ,�i ) → 〈{σ +}, (8),∅〉 (29)
σ− ∈ �i ∧ r(σ,�i ) → 〈{σ−}, (8),∅〉 (30)

suc(σ ) ∈ �i → 〈{suc(σ )}, (9), {σ }〉 (31)
(σ1, σ2) ∈ �i → 〈{(σ1, σ2)}, (10), {σ1, σ2}〉 (32)

{σ1}σ2 ∈ �i ∧ r(σ2, �i ) → 〈{{σ1}σ2}, (11), {σ1}〉 (33)
{[σ1]}σ +

2
∈ �i ∧ r(σ−

2 , �i ) ∧ ¬r(σ1, �i ) → 〈{{[σ1]}σ +
2
}, (12), {σ1, {[σ1]}σ +

2
}〉 (34)

[{σ1}]σ−
2

∈ �i ∧ r(σ +
2 , �i ) ∧ ¬r(σ1, �i ) → 〈{[{σ1}]σ−

2
}, (13), {σ1, [{σ1}]σ−

2
}〉 (35)

σ + ∈ �i ∧ σ− ∈ �i → 〈{σ +, σ−}, (14), {σ }〉 (36)

It can be shown that the reduction process preserves closures and leads to � in a finite number of steps, i.e. that
the following propositions hold, as shown in Appendix C:

Proposition 3.1 If �
R−→ �′ is a one-step reduction, then ̂� � ̂�′.

Proposition 3.2 Given a finite set of terms �, all of its reductions � � �0
R0−→ �1 · · · �k−1

Rk−1−→ �k have a finite
number k of steps and end in �, that is, �k � �.

In analogy with the natural deduction system, and unlike [CJM98], we allow both I and E rules to be applied in
the computation of � from �, under the constraint of their pre-condition, and at the expense of a greater com-
putational complexity, which will be analysed in Sect. 5. However, as entailed by these theorems, this approach
does neither sacrifice decidability nor computability.
The discussion above entails that if a new term ρ is added to a minimal closure seed �, e.g. as a consequence
of an output process, the new minimal closure seed � ∪ {ρ} can be incrementally computed by a reduction that
starts from � ∪ {ρ}, without restarting from scratch; it can be expected that the incremental computation is far
less expensive in terms of computing power with respect to the full one.

3.2. Examples of reduction

As an example, let us start with the minimal closure seed

� � {c, {{k1}k2}k3 , {[m]}k1
+ , k1

+, k2}
and let us observe the reduction process described above when the new term ρ � k3 is added; in Table 4 the
second column lists the contents of the partially reduced sets �i at each reduction step, the next column recalls
the reduction rule applied in that step, and the rightmost two columns list the set of elements removed from and
added to �i by the application of the rule, denoted �I and �O , respectively.
In the table, rule applications are serialised, i.e. only one rule is applied at each step for clarity; in an actual imple-
mentation, all independent rules can be applied simultaneously, as outlined in the complexity analysis carried
out in Sect. 5.
Table 5 presents a reduction involving a non-atomic symmetric key; the initial intruder’s knowledge is � �
{{kA}kS

, {m}{kB }kA , kB , H(m)} and the added term is ρ � kS . Note that in the second step, the premises of rule
(33) are indeed satisfied, because r({kB }kA

, �1) is true, even if {kB }kA

∈ �1.

4. Commutative and associative operators

The introduction of operators with special properties has several subtle implications in the intruder’s knowledge
representation, where the necessary and sufficient condition for the equivalence of two terms simply relies on
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Table 5. A reduction involving a non-atomic key

i �i R �I �O

0 {{kA}kS , {m}{kB }kA ), kB , H(m), kS } (33) {{kA}kS } {kA}
1 {{m}{kB }kA , kB , H(m), kS , kA} (33) {{m}{kB }kA } {m}
2 {kB , H(m), kS , kA,m} (26) {H(m)} ∅
3 {kB , kS , kA,m}

their syntactic identity. In fact, when a free term algebra is extended with commutative and/or associative oper-
ators, two or more syntactic representations of the same term are allowed. For example, if � is a commutative,
binary operator, �1 � {σ � ρ} and �2 � {ρ � σ } express exactly the same knowledge and are both minimum
and canonical according to the original definition of � presented in Sect. 3, but clearly they are not equal in a
syntactical sense.
In order to correctly handle such operators, we introduce the notion of canonical term representation and we
assume that all algorithms presented in Sect. 3, such as � minimisation and r(·, ·) always act on canonical terms.
Moreover, the intruder’s knowledge closure rules, the predicates defining �, the r(·, ·) algorithm, and the � min-
imisation rules have to be extended to take the operator’s properties into account. Having done this, it can be
proved that all the properties of � mentioned in Sect. 3, including incremental computability, still hold, as shown
in Appendix D.
The canonical term representation leverages on the concept of term equivalence class induced by the operators’
properties: two terms belong to the same equivalence class, induced by a given property, iff they can be made
equal by applying that property. For example H(a � b) and H(b � a) are in the same equivalence class if � is a
commutative operator, because they can be made syntactically equal by applying the commutative property.
The canonical term representation has the important role of selecting, for each term equivalence class induced
by the operators’ properties, a unique element that will represent the class as a whole in all contexts.
From now on it is assumed that two terms that can be obtained from each other by a suitable application of one or
more operators’ properties are indistinguishable from the intruder’s point of view. For this reason, any additional
observation the intruder can make on term generation besides the final value, such as timing or accuracy, is
neglected.
In addition to the main notational conventions of Table 1, note also that in this section:

• When multiple atoms, terms, and operators are needed in the same context, a unique, numeric subscript is
used to distinguish them. For example, a1 and a2 are two distinct, and possibly different, atoms.

• When appropriate, the arity of the operator is explicitly denoted with a subscript, for example: �n is an n-ary
operator. When more than one operator is needed in the same context, the first subscript singles out the
operator, and the second one gives its arity. For example, �1n and �2m are two distinct, and possibly different
operators; the first one has arity n, the second has arity m.

• The infix and prefix operator notation are used interchangeably, that is, a � b � �(a, b).

4.1. Canonical term representation

Term canonicalisation has the purpose of determining a unique, canonical form for each σ ∈ T ; the canonical
form is used when inserting a term into the intruder’s knowledge, and when checking whether the intruder is able
or not to synthesise a term from a given knowledge.
Term canonicalisation selects one representative element from each equivalence class induced on T by operator
properties according to the following informal rules:

• The canonical form of an atom is the atom itself.
• The canonical form of the invocation of an operator without special properties is the invocation of the same

operator on the same operands, put into canonical form.
• The canonical form of the invocation of a commutative operator � on a list of operands σ1, . . . , σn is the

invocation of the same operator on the operands put into canonical form and then sorted according to ≤T ,
to ensure the uniqueness of representation (rule 37). The relation ≤T is a total order relation on the canonical
subset of T and will be defined in Sect. 4.2.
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• The canonical form of the invocation of an associative operator � on a list of operands σ1, . . . , σn is the
invocation of the same operator on the operands taken into canonical form. If, after canonicalisation, some
operands have the same operator � as their top-level operator, the hierarchy of invocations of � is flattened
(rule 38).

Formally, the term canonicalisation function C∗ : T → T is the result of the reduction performed by the term
rewrite system defined according to the following set of rules, where PC is the set of commutative operators, and
PA is the set of associative operators. The intersection of these sets may be non-empty because operators may
have multiple properties.
In the following, a rewrite rule like π

σ
C�−→σ ′

should be read as: when the prerequisite predicate π is true, then term

σ can be rewritten as σ ′.
� ∈ PC ∧ (∃ i | σi 
� C∗(σi ) ∨ ∃ i , j , i < j , | C∗(σi ) 
≤T C∗(σj )) ∧
∃k1, . . . , kn , ki 
� kl ∀ i , l | C∗(σki

)≤T C∗(σki+1 ), i � 1, . . . ,n − 1

�(σ1, . . . , σn )
C�−→ �(C∗(σk1 ), . . . , C∗(σkn

))
(37)

� ∈ PA ∧ ∃ i | C∗(σi ) � �(σi1, . . . , σim )

�(σ1, . . . , σn )
C�−→ �(σ1, . . . , σi−1σi1, . . . , σimσi+1, . . . , σn )

(38)

Theorem 4.1 The function C∗ : T → T is computable for any finite σ ∈ T .

The proof is based on the observation that the term rewrite system defined above is convergent.

4.2. Total order relation on terms

We assume that there is a total order relation ≤P on the elements of P , which is always possible when P is finite
or is a countable infinity; similarly, we assume that there is a total order relation ≤A on the elements of A, as it
is the case when the total number of atomic terms ever used in a session of the protocol is finite or is a countable
infinity. Under these hypotheses, we define a relation ≤T on the canonical subset of T as the smallest relation that
satisfies the following implications:

σ1 ∈ A ∧ σ2 ∈ A ∧ σ1≤Aσ2 ⇒ σ1≤T σ2 (39)

σ1 ∈ A ∧ σ2 
∈ A ⇒ σ1≤T σ2 (40)

σ1 � �1n (. . .) ∧ σ2 � �2m (. . .) ∧ n < m ⇒ σ1≤T σ2 (41)

σ1 � �1n (σ11, . . . , σ1n ) ∧ σ2 � �2n (σ21, . . . , σ2n )

∧ ∃ j | σ1j 
� σ2j ∧ σ1j≤T σ2j

∧ σ1i � σ2i ∀ i < j ⇒ σ1≤T σ2 (42)

σ1 � �1n (σ11, . . . , σ1n ) ∧ σ2 � �2n (σ21, . . . , σ2n )

∧ σ1i � σ2i ∀ i ∧ �1n ≤P�2n ⇒ σ1≤T σ2 (43)

It can be shown that the ≤T relation, as defined above, is computable.

Theorem 4.2 The relation ≤T is a total order relation on the canonical subset of T .

4.3. Commutative operators

Let us assume, without loss of generality, that � is a binary, commutative operator. The ability to synthesise
a compound term by means of operator � can be captured by the following closure rule, to be added to rules
(1–14):

σ1 ∈ ̂� ∧ σ2 ∈ ̂� ∧ σ1≤T σ2 ⇒ σ1 � σ2 ∈ ̂�. (44)
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Accordingly, the following, additional predicate for the definition of � must be added to (17–25):

σ1 � σ2 ∈ � ⇔ (σ1 
∈ ̂� ∨ σ2 
∈ ̂�) ∧ σ1≤T σ2. (45)

This predicate has been defined with reference to the closure rule (44) in the same way as predicates (17–25) were
derived from (1–14), also taking canonicalisation into account. For example, predicate (20) states that {σ1}σ2 ∈ �

iff σ2 
∈ ̂� because otherwise it would be possible to reduce {σ1}σ2 into simpler terms by rule (11), and rebuild it
from the reduction results by rule (4).
In this case, σ1 � σ2 can possibly belong to � iff it cannot be synthesised from its operands σ1 and σ2, that is, iff
σ1 
∈ ̂� ∨ σ2 
∈ ̂�. Moreover, σ1 � σ2 can possibly belong to � iff it is, or has been put, in canonical form, that
is, from canonicalisation rule (37), iff σ1≤T σ2. In turn, this implies that only canonical terms belong to �.
Similarly, closure rule (44) gives rise to the following additional � reduction rule to be added to (26–36):

σ1 � σ2 ∈ �i ∧ r(σ1, �i ) ∧ r(σ2, �i ) → 〈{σ1 � σ2}, (44),∅〉 (46)

When its premises are satisfied, rule (46) has a premise term σ1 � σ2 which can be generated using other ele-
ments of �i , because the truth of r(σ1, �i ) ∧ r(σ2, �i ) makes closure rule (44) applicable, and simply removes
it. Therefore, it guarantees that no loops are introduced in the reduction process, preserves the closure ̂� and
ensures that �i+1 only contains canonical terms if the same is true for �i . Closure rule (44) is also the starting
point to extend function r(·, ·) presented in Sect. 3:

boolean r(σ, �) {
...
else if σ � �(σ1, σ2) ∧ � ∈ PC then

return r(σ1, �) ∧ r(σ2, �) ;
...

}

4.4. Associative operators

Let us assume, without loss of generality, that � ∈ PA is a n-ary, associative operator, with n ≥ 2. In addition,
let us assume that the (degenerate) invocation of operator � with one operand is the operand itself: �(σ ) � σ .
The ability to synthesise a compound term by means of operator �, possibly leveraging the associative property,
is captured by the following closure rule:

� (σ11, . . . , σ1m ) ∈ ̂� ∧ � (σ21, . . . , σ2n ) ∈ ̂� ⇒ �(σ11, . . . , σ1m , σ21, . . . , σ2n ) ∈ ̂� (47)

by the additional predicate for the definition of �:

� (σ1, . . . , σn ) ∈ � ⇔ ∀ i ∈ [1,n − 1] � (σ1, . . . , σi ) 
∈ ̂� ∨ � (σi+1, . . . , σn ) 
∈ ̂� (48)

by the additional � reduction rule:

�(σ1, . . . , σn ) ∈ �i

∧ ∃ i ∈ [1,n − 1] | r(�(σ1, . . . , σi ), �i )
∧ r(�(σi+1, . . . , σn ), �i )

}

→ 〈{�(σ1, . . . , σn )}, (47),∅〉 (49)

and by the following extension to the r(·, ·) function:

boolean r(σ, �) {
...
else if σ � �(σ1, . . . , σn) ∧ � ∈ PA

then return =∃i ∈ [1, n − 1] |
r(�(σ1, . . . , σi),�) ∧ r(�(σi+1, . . . , σn),�);

...
}

If � is both associative and commutative, the rules outlined above must be complemented because if the lists:
(σ1, . . . , σi ) and (σi+1, . . . , σn ) are both sorted according to ≤T , this does not imply that their concatenation
(σ1, . . . , σi , σi+1, . . . , σn ) is also sorted according to the same relation.
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Fig. 2. The Diffie–Hellman key exchange protocol

So, for example, assuming that σ1≤T σ2≤T σ3 it can be �(σ1, σ2, σ3) ∈ ̂� even if σ1 
∈ ̂� ∧ � (σ2, σ3) 
∈ ̂� ∧ �
(σ1, σ2) 
∈ ̂� ∧ σ3 
∈ ̂� and closure rule (47) cannot be applied. In fact, this happens whenσ2 ∈ ̂� ∧ �(σ1, σ3)∈ ̂�.
On the other hand, the same closure rule can introduce non-canonical terms in ̂�, for the same reason. The
refined closure rule for a commutative and associative operator therefore is:

� (σ11, . . . , σ1m ) ∈ ̂� ∧ � (σ21, . . . , σ2n ) ∈ ̂� ⇒ C∗(�(σ11, . . . , σ1m , σ21, . . . , σ2n )) ∈ ̂�, (50)

where the invocation of the canonicalisation operator C∗ avoids non-canonical terms in ̂�. On the other hand,
when defining the predicate for the definition of � and the corresponding reduction rules on terms in the form
�(σ1, . . . , σn ), all possible partitions of S � {σ1, . . . , σn } into two subsets must be considered:

�(σ1, . . . , σn ) ∈ � ⇔
∀S1,S2 | S1 
� ∅ ∧ S2 
� ∅ ∧ S1 ∩ S2 � ∅ ∧ S1 ∪ S2 � {σ1, . . . , σn } � (S1) 
∈ ̂� ∨ � (S2) 
∈ ̂� (51)

�(σ1, . . . , σn ) ∈ �i

∧ ∃S1,S2 | S1 
� ∅ ∧ S2 
� ∅
∧ S1 ∩ S2 � ∅
∧ S1 ∪ S1 � {σ1, . . . , σn }
∧ r(�(S1), �i ) ∧ r(�(S2), �i )

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

→ 〈{�(σ1, . . . , σn )}, (50),∅〉 (52)

In the above rules, with a little abuse of notation, we let �(S ) � �(σ1, . . . , σn ), where S � {σ1, . . . , σn } is a set
of terms. In the same manner, the extension to the r(·, ·) function must be:

boolean r(σ, �) {
...
else if σ � �(σ1, . . . , σn) ∧ � ∈ PA ∩ PC

then return ∃ S1, S2 | S1 
� ∅ ∧ S2 
� ∅ ∧ S1 ∩ S2 � ∅ ∧
S1 ∪ S2 � {σ1, . . . , σn} ∧
r(�(S1), �) ∧ r(�(S2), �) ;

...
}

4.5. Modular exponentiation

In the Diffie–Hellman protocol [DH76], depicted in Fig. 2, two numbers G and N are publicly agreed on by the
communicating principals A and B . A chooses X � Gn1 mod N for some random n1 and sends the result to
B as message (1). B chooses Y � Gn2 mod N for some random n2 and sends the result to A as message (2). A
computes k � Y n1 mod N and B computes k � X n2 mod N . The result of these two calculations is the same
and is equal to the new session key k . This provides a means for exchanging keys but gives no guarantees of
authenticity.
The last step (3) does not belong to the key-exchange protocol itself, but shows how the new key shared among
agents can be used: A sends a message M encrypted by means of k � (Gn2 mod N )n1 mod N to B which in turn
can decrypt it by means of the same key k � (Gn1 mod N )n2 mod N .
To model the computation carried out in this protocol, we define a new operator as:

� σ�σ1,...,σn

N � σσ1,...,σn mod N . (53)

The new operator has the following properties:

� σ�σ1,...,σn

N � � σ��(σ1,...,σn )
N , (54)
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where �(σ1, . . . , σn ) is a permutation, which captures the commutative property of the exponent product, and:

� � σ�σ11,...,σ1n
N �σ21,...,σ2m

N � � σ�σ11,...,σ1nσ21,...,σ2m
N , (55)

which reflects the ability to associate nested invocations of the operator in base position.

The generic term canonicalisation rewrite rules outlined in Sect. 4.1 can be specialised for the Diffie–Hellman
operator, taking into account its well-known operator’s algebraic properties recalled in (53–55). Since these rules
have been derived by specialisation, they preserve the properties of the generic rules they derive from, namely, all
the properties of � mentioned in Sect. 3 still hold.

The specialised rewrite rules are:

(∃ i | σi 
� C∗(σi ) ∨ ∃ i , j , i < j , | C∗(σi ) 
≤T C∗(σj )) ∧
∃k1, . . . , kn , ki 
� kl ∀ i , l | C∗(σki

)≤T C∗(σki+1 ), i � 1, . . . ,n − 1

� σ�σ1,...,σn

N
C�−→ � σ�C∗(σk1 ),...,C∗(σkn )

N

(56)

σ � � σ ′�σ11,...,σ1n
N

� σ�σ21,...,σ2m
N

C�−→ � σ ′�σ11,...,σ1n ,σ21,...,σ2m
N

(57)

The intruder’s ability to compute the Diffie–Hellman operator can be expressed by the following closure rules
which are the specialisation of (44) and (50):

σ ′ ∈ ̂� ∧ σ1, . . . , σn ∈ ̂� ∧ σi≤T σi+1 ∀ i ∈ [1,n − 1] ⇒ � σ ′�σ1,...,σn

N ∈ ̂� (58)

� σ ′�σ11,...,σ1n
N ∈ ̂� ∧ σ21, . . . , σ2m ∈ ̂� ⇒ C∗(� σ ′�σ11,...,σ1n ,σ21,...,σ2m

N ) ∈ ̂� (59)

Rule (58) captures the commutative property of the Diffie–Hellman operator with respect to σ1, . . . , σn ; simi-
larly, rule (59) captures the ability to flatten nested invocations of the Diffie–Hellman operator in base position
by grouping exponents σ11, . . . , σ1n and σ21, . . . , σ2m together.

Notice that, in rule (58), canonicalisation is unnecessary, because the rule’s prerequisites implicitly ensure that
the right-hand term is canonical.

According to the closure rules above, we can introduce the following additional predicates for the definition of
�; below, S1 and S2 represent any binary partition of S � {σ1, . . . , σn } and, with a little abuse of notation, we
let � σ�S1

N � � σ�σ11,...,σ1k
N :

� σ�σ1,...,σn

N ∈ � ⇔ (σ 
∈ ̂� ∨ ∃ i | σi 
∈ ̂�) ∧ σj≤T σj+1 ∀ j ∈ [1,n − 1] (60)

� σ�σ1,...,σn

N ∈ � ⇔ ∀S1,S2 |

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S1 � {σ11, . . . , σ1k },
S2 � {σ21, . . . , σ2l },
S1 
� ∅ ∧ S2 
� ∅ ∧ S1 ∩ S2 � ∅ ∧
S1 ∪ S2 � {σ1, . . . , σn } ∧
(� σ�S1

N 
∈ ̂� ∨ ∃ i | σ2i 
∈ ̂�)

(61)

Last, closure rules (58) and (59) induce the following � reduction rules, which are the specialisation of (46) and
(52):

� σ�σ1,...,σn

N ∈ �i ∧ r(σ,�i ) ∧ r(σj , �i ) ∀ j ∈ [1,n] → 〈{� σ�σ1,...,σn

N }, (58),∅〉 (62)
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Table 6. An example of canonicalisation
� ρ C

{c,G,N } � G�n1
N

{c,G,N , � G�n1
N } � G�n2

N

{c,G,N , � G�n1
N , � G�n2

N } {M }��G�n2
N �n1

N
(57)

{M }�G�n2n1
N

(56)

{M }�G�n1n2
N{c,G,N , � G�n1

N , � G�n2
N , {M }�G�n1n2

N
}

� σ�σ1,...,σn

N ∈ �i ∧ ∃S1,S2 | S1 � {σ11, . . . , σ1k },
S2 � {σ21, . . . , σ2l },S1 
� ∅ ∧ S2 
� ∅ ∧ S1 ∩ S2 � ∅
∧ S1 ∪ S2 � {σ1, . . . , σn }
∧ r(� σ�S1

N , �i ) ∧ r(σ2j , �i ) ∀ j ∈ [1, l ]

⎫

⎪

⎬

⎪

⎭

→ 〈{� σ�σ1,...,σn

N }, (59),∅〉 (63)

and the following extension to the r(·, ·) function:

boolean r(σ, �) {
...
else if σ � � σ ′�σ1,...,σn

N

then return ( r(σ ′, �) ∧ r(σj, �) ∀ j ) ∨
(∃S1 � {σ11, . . . , σ1n}, S2 � {σ21, . . . , σ2m} |
S1 
� ∅ ∧ S2 
� ∅ ∧
S1 ∩ S2 � ∅ ∧ S1 ∪ S2 � {σ1, . . . , σn} ∧
r(� σ ′�S1

N , �) ∧ r(σ2j, �) ∀ j);
...

}

It should be noted that if we allow S1 � ∅ and assume that the degenerate application of modular exponentiation
to any σ with an empty set of exponents yields σ itself (that is, � σ�∅

N ≡ σ ∀ σ ), then (60) becomes a special
case of (61). However, it may still be convenient to keep them separate, both to adhere to the general theory
developed in Sects. 4.3 and 4.4 more closely, and to have distinct reduction rules, (62) and (63), for the two cases.
In this way, by evaluating these rules in the given sequence, it becomes possible to avoid the expensive computation
of all the partitions of {σ1, . . . , σ2} into two subsets S1 and S2, entailed by the evaluation of (63), when the simpler
rule (62) applies and renders that computation useless. In fact, the conclusions of (62) remove � σ�σ1,...,σn

N from
σ and thus unconditionally invalidate the premises of (63). From the implementation point of view, (62) can also
be seen as an efficient shortcut to (63) that covers the simplest situations.
It can also be noted that the ability of handling any generic commutative operator allows this method to handle,
at least in principle, other forms of encryption commutativity besides Diffie–Hellman. However, this possibility
has not been further investigated in the present work.

4.6. Example of intruder’s knowledge management

Table 6 shows how the intruder’s knowledge grows up when the intruder intercepts the messages exchanged
between A and B of Fig. 2: � is the minimised intruder’s knowledge, ρ is the eavesdropped message, and column
C contains the number of the canonicalisation rules needed to put ρ in canonical form.
The first and second message of Fig. 2 are already in canonical form, thus no canonicalisation is needed. More-
over, they cannot be split into simpler sub-messages, thus the new minimal intruder’s knowledge is obtained
simply by adding these messages to the initial one.
The last message of Fig. 2 has been encrypted by a nested invocation of the new operator thus, by rule (57), the asso-
ciative property is exploited and {M }�G�n2n1

N
is obtained. Last, rule (56) gives the canonical form {M }�G�n1n2

N

where each exponent precedes the next one with respect to the total order relation among terms (we assume
n1≤T n2).
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Table 7. An example of reductions
� � {c,G,N ,n1} C∗(ρ) � � G�n1

N
i �i R �I �O

0 {c,G,N ,n1,� G�n1
N } (62) {� G�n1

N } ∅
1 {c,G,N ,n1}

� � {c,G,N ,n1} C∗(ρ) � � G�n2
N

i �i R �I �O

0 {c,G,N ,n1,� G�n2
N }

� � {c,G,N ,n1, � G�n2
N } C∗(ρ) � {M }�G�n1n2

N

i �i R �I �O

0 {c,G,N ,n1,� G�n2
N , {M }�G�n1n2

N
} (33) {{M }�G�n1n2

N
} {M }

1 {c,G,N ,n1,� G�n2
N ,M }

� � {c,G,N ,n1, � G�n2
N ,M }

Table 7 shows what happens to the intruder’s knowledge when n1 belongs to the initial �, too. Since the canon-
icalisation details have already been analysed in the previous example, here we assume that each message the
intruder intercepts is already in canonical form (C∗(ρ)), and we focus on the intruder’s knowledge minimisation
steps, induced by the presence of n1 in the initial �.
At each protocol step � (obtained from the previous step) and the intercepted message C∗(ρ) are listed in a
row. Below, the sequence of reduction steps follows, starting from �0 � � ∪ {C∗(ρ)} and ending when a new
minimised �i has been obtained. For each step, the reduction rule used (R) and the corresponding �I and �O

sets are shown.
Starting from � � {c,G,N ,n1}, the intruder captures the first message � G�n1

N sent from A to B , thus
�0 � {c,G,N ,n1,� G�n1

N } is obtained. � G�n1
N can be synthesised starting from G and n1 (N is embedded

into the operator itself, but this is correct since N and G are publicly agreed between A and B ), in fact rule (62)
allows it to be removed from �0.
The next intercepted message is � G�n2

N ; it is added to � without any reduction, since it can neither be synthes-
ised from simpler messages, nor it allows to decode some message already in �. In fact, premises of both rules
(62) and (63) fail.
The last intercepted message is {M }�G�n1n2

N
; since r(�0,� G�n1n2

N ) is true, then rule (33) allows to remove
{M }�G�n1n2

N
from, and addM to the intruder’s knowledge. In fact,r(� G�n1n2

N , �0) corresponds to the last exten-

sion to r(·, ·) made before the examples. By defining S1 � {n2} and S2 � {n1}, we have that both r(� G�S1
N , �0)

and r(n1, �0) are true.

5. Complexity analysis

The complexity analysis is carried out in three steps: first, we describe a basic complexity model for operators
with no special properties. Then, we extend the model to encompass operator’s properties and take a sequence
of reductions into account. A comprehensive set of experimental results concludes the section.

5.1. Basic computational complexity

5.1.1. On the computation of the question σ ∈ �

In this and in the following sections, let op(σ ) be the number of operators in term σ and n(�) the number of
elements in set �. Moreover, we extend the domain of the operator op(·) to sets of terms, by defining it as:

op(�) � max
σ∈�

(op(σ ))

in that case. Assuming that the comparison between atomic terms can be carried out in constant time, and the
lookup of a term in � is sequential, then the computational complexity to check whether σ ∈ � is O(nm), where
n � n(�) and m � op(σ ).
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5.1.2. On the computation of r(σ, �)

The worst case happens when the operator’s tree in σ is fully unbalanced, that is, each invocation of r(σ,�) on
a compound term σ with m operators entails the recursive computation of r(σ1, �) and r(σ2, �), where σ1 is
atomic, and σ2 has m − 1 operators.
In this case, each recursion step executes in O(nm), where n � n(�) and m � op(σ ) as shown above, and
the recursion depth is m. So, the computational complexity of r(σ,�) is O(nm2), as it has also been proved in
[McA93] in the more general framework of local inference rule sets, of which the definition of r(·, ·) is a special
case.

5.1.3. On the incremental computation of �

For the sake of this discussion, and without loss of generality, let us define a reduction step as the simultaneous
application of all independent reduction rules and let us denote it with →. The incremental reduction of � after
the addition of the new term ρ can be seen as a finite sequence of reduction steps starting from � ∪ {ρ} � �0;
reduction step i acts on set �i and produces the (partially) reduced set �i+1:

� ∪ {ρ} � �0 → · · · → �i → �i+1 → · · ·
Let ni � n(�i ) be the number of terms in �i , and mi � op(�i ) the maximum number of operators of terms in
�i . Then, we have the initial condition:

{

n0 � n(� ∪ {ρ})
m0 � op(� ∪ {ρ})

In the worst case, up to ni reduction rules can be applied at step i , one for each term in �i ; assuming that we
can determine which reduction rule must be applied in constant time, each application of such rule entails one
invocation of the ∈ operator and up to two invocations of r(·, ·); therefore, each application of a reduction rule
at reduction step i has a computational complexity of O(nimi ) + O(nim2

i ) � O(nim2
i ), and the computational

complexity of reduction step i is O(n2
i m

2
i ).

At each reduction step i , whenever we remove a term σ from �i , and add some other terms σ1, . . . , σn derived from
it, the added terms will always have one operator less than the term they originated from, that is, op({σ1, . . . , σn }) �
op(σ ) − 1.
Therefore, as a result of reduction step i we remove ni terms with mi operators and add up to 2ni terms with
up to mi − 1 operators; rules (34) and (35) are the only exceptions in this respect, because they do not remove
any term. However, their application does not lead to the worst-case complexity because they leave in �i+1 the
compound term {[σ1]}σ +

2
or {[σ1]}σ−

2
that cannot be further reduced, because σ1 ∈ �i+1 as a consequence of the

application of the rule itself.
So, we can write:

{

ni+1 � 2ni

mi+1 � mi − 1

After a maximum of m0 reduction steps, �m0 is reduced to contain only atoms and no further reductions are
possible. So the computational complexity of the reduction as a whole is:

m0
∑

i�0

O(n2
i m

2
i ) �

m0
∑

i�0

O((2in0)2(m0 − i )2) � O(n2
0 22m0 ) � O

(

(n02m0 )2) (64)

5.1.4. Comparison with normal, natural deductions

When we assume that encryption keys are atomic, neglect public/private cryptosystems, and restrict our scope
to normal, natural deductions only, as in [CJM98], we can replace all invocations of r(σ,�) in pre-conditions
(26)–(36) with the simpler check σ ∈ �, and we can drop out reduction rules (27)–(30) and (34)–(36).
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Accordingly, the complexity of a reduction step as defined in the previous section is reduced to O(nimi ), because
function r(·, ·) is never invoked in this case. So, the complexity of the reduction process as a whole reduces to:

m0
∑

i�0

O(nim2
i ) �

m0
∑

i�0

O(2in0(m0 − i )2) � O(n02m0 ) (65)

5.2. Commutative and associative operators

5.2.1. Computation of σ1≤T σ2

The total order relation on terms is defined on canonical terms only; therefore, we can assume that both σ1 and
σ2 are canonical.
The computation of the relation when at least one operand is an atom is carried out in constant time, because
only rule (39) or (40) may possibly apply.
When neither operand is an atom, rules (41–43) may apply, and the complexity is then linear with respect to the
number of operators. In this respect, we consider a k -ary operator equivalent to the nesting of k − 1 applications
of a binary operator. In summary, the complexity of σ1≤T σ2 is:

O(op({σ1, σ2}))

5.2.2. Computation of C∗(σ )

The complexity of the canonicalisation depends on the actual term structure, because the properties of each
operator determine which of rules (37–38) must be applied at the corresponding step of the recursive descent
through the structure of the term.
The worst case is rule (37), which entails sorting the top-level operands, taken into canonical form, according to
relation ≤T . When using a naive sort algorithm, the complexity of such a sort is quadratic in the complexity of
≤T applied on the top-level operands. The worst case for a term with m � op(σ ) commutative and associative
operators happens when the operators can be flattened into a single application of the operator to m + 1 atomic
operands, and the corresponding complexity is:

O((m + 1)2) � O(m2) (66)

barring lower-order addenda.

5.2.3. Computation of the question σ ∈ �

This computation is not affected by the extension to the intruder’s knowledge representation for associative and
commutative operators, so its complexity is O(mn) as before.

5.2.4. Computation of r(σ, �)

The computation of r(σ,�) does not involve, per se, any canonicalisation, though the canonicalisation of σ must
be performed before the invocation of r(·, ·), so the complexity of the latter can be computed independently.
The worst case occurs when the operators in σ are both associative and commutative, because in this case the
computation of r(·, ·) involves the recursive invocation of the same function on all possible partitions of the
operands in σ into two subsets. If a given σ1 has k operands, the number P of such partitions is:

P � 1
2

k−1
∑

i�1

(

k
i

)

� 2k−1 − 1, k ≥ 2 (67)
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Taking into account that the worst case for the complexity of the recursion still happens when the expression tree
is fully unbalanced, and equating the complexity of all cases to the worst one, the complexity of r(σ1, �), where
op(σ1) � k and we let σ1 � a � σ2, is:

[cmplx(r(a, �)) + cmplx(r(σ2, �))] (2(k−1) − 1),

where op(σ2) � k − 1 and cmplx(·) denotes the complexity of computation ·. Barring terms of lower order and
bringing the summation to closed form we obtain for the overall complexity of r(σ,�):

O(nm22
m2

2 ) (68)

With respect to this complexity, the additional complexity introduced by the canonicalisation step to be performed
beforehand (66) can be neglected.

5.2.5. Incremental computation of �

The framework is the same as in the complexity analysis of the basic knowledge representation; the difference is
that, from (67) and reduction rule (52), the application of each reduction rule may now involve up to 2(mi−1) − 1
invocations of r(·, ·) instead of two, so the overall complexity of reduction step i is:

ni [2(mi−1) − 1]O
(

nimi
22

m2
i

2

)

� O
(

n2
i m

2
i 2

m2
i

2

)

provided we neglect the lower-order term in the exponent of 2. The overall complexity is therefore:
m0
∑

i�0

O
(

n2
i m

2
i 2

m2
i

2

)

�
m0
∑

i�0

O
(

(2in0)2(m0 − i )22
(m0−i)2

2

)

that is, barring lower order terms in the summation:

O(n2
0 22m2

0 ) (69)

With respect to the original complexity for a free-term algebra, we have now 2m2
0 instead of 2m0 at the exponent.

5.3. Further refinements

The most important shortcoming of the basic computational complexity analysis carried out in Sects. 5.1 and
5.2 is that it takes only a single reduction into account, that is, the incremental computation of the updated �
after the addition of a single term ρ.
This approach neglects the effects that each reduction can possibly have on the complexity of subsequent ones.
For example, if a given reduction splits some compound terms into atoms and thereby removes the formers
from the new �, these very same terms will no longer have to be considered in any reduction that follows, thus
intuitively lowering its complexity.
The model of a sequence of reductions presented in this section tries to solve these issues to some extent, and
provide a more realistic asymptotic complexity figure. The computation will be carried out with respect to the
basic knowledge representation strategy of Sect. 3; however, the same model is still true under the extension
presented in Sect. 4.

5.3.1. Multiple reduction model

Let us make, for the sake of the following discussion, some further definitions and simplifying assumptions:

m is the maximum term length ever occurring in the intruder’s knowledge. As a consequence, m − 1 is the
maximum number of operators in non-atomic terms.

�i is the minimised intruder’s knowledge at the beginning of the i th reduction. In order to simplify the analysis,
the number of operators in each non-atomic term σ ∈ �i is approximated with the worst-case value m − 1,
that is, op(σ ) � m − 1.
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xi is the number of non-atomic terms in �i .
yi is the number of atoms in �i .
αi represents the fraction of non-atomic terms in �i that is split into atoms by the i th reduction. By definition,

0 ≤ αi ≤ 1, ∀ i .
βi represents the fraction of the atoms produced by the i th reduction that are “fresh”, that is, were not already

known to the intruder; these atoms will become new elements of �i+1. The fraction of fresh atoms added in
the i th reduction is then αiβi . By definition, 0 ≤ βi ≤ 1, ∀ i .

ρi represents the term added to �i to trigger the i th reduction. It is assumed, as a worst-case hypothesis, that
all ρi are non-atomic, that op(ρi ) � m − 1, and that they are always “fresh”, that is, they were not already
known to the intruder, even if some of their constituents possibly were.

It should be noted that none of the simplifications above affects the behavior of the algorithm that computes �;
they are merely worst-case assumptions introduced to simplify its complexity analysis.
Under the set of definitions and assumptions discussed above, we can write the following recurrence relations:

{

xi+1 � (xi + 1)(1 − αi )
yi+1 � yi + m(xi + 1)αiβi

i ≥ 1 (70)

with initial values x1 and y1. The relations above hold because the i th reduction starts, after the addition of ρi ,
with xi + 1 non-atomic terms in �i . By definition of αi , the reduction process leaves (xi + 1)(1 − αi ) of them
untouched, whilst splitting (xi + 1)αi of them into atoms, thus producing m atoms for each non-atomic term.
Among the atoms produced, by definition of βi , only m(xi + 1)αiβi are actually fresh, and increase the number
of atoms in �i+1, denoted by yi+1.

5.3.2. Asymptotic convergence

If αm � mini (αi ), from the first recurrence in (70) we can write:

xi+1 � (xi + 1)(1 − αi ) ≤ (xi + 1)(1 − αm) (71)

and then, solving the recurrence relations under the additional restriction that 0 < αm ≤ 1, as shown in the
appendix, it results that:

lim
i→+∞ xi ≤ 1 − αm

αm
(72)

iff the limit on the left-hand side of the equation exists, thus ensuring that both the elements of the succession
and its limit have a finite upper bound; it can also be shown that the same result holds when αi � 0 for a finite
number of choices of i .
In addition, it can easily be shown that when the values of αi are chosen according to a uniform or normal
probability distribution, a reasonable approximation of the asymptotic limit of the succession xi , when it exists,
is:

1 − α

α
, (73)

where α is the distribution’s mean.
Let us now consider the succession yi and introduce the additional assumption:

βi � 1 − yi

N
, (74)

where N is finite and represents the total number of atoms ever known in the system. Basically, this corresponds
to assume that the frequency of collision is proportional to the fraction yi/N of atoms already known to the
intruder, and that when all existing atoms are known, no further atoms can add up into the intruder’s knowledge.
Assuming N to be a finite quantity is reasonable, because the non-decidability of the problem with an infinite N
has already been proved otherwise.
Then, we can solve the recurrence as described in the appendix and obtain:

lim
i→+∞ yi ≤ N , (75)
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Under the initial, obviously true, condition y1 ≤ N , and assuming N ≥ 1, it can easily be proved that the
succession yi is monotonic, non-decreasing and its upper limit is N .
From Eqs. (72) and (75), and assuming that both successions have a finite limit, denoted by xlim and ylim,
respectively, we can write the following asymptotic relations:

{

xlim ≤ 1−αm
αm

ylim ≤ N
(76)

At equilibrium, �i has up to (1 − αm)/αm compound terms, and up to N atoms. Then, on each subsequent
reduction, substituting (76) into (70) and keeping in mind the definition of αm, up to

(

1 − αm
αm

+ 1
)

αm � 1 (77)

terms are split into atoms, but none of these is fresh.

5.3.3. Refined complexity analysis

From the point of view of the computational complexity, starting from the asymptotic behaviour analysis car-
ried out in Sect. 5.3.2, combined with the discussion of Sect. 5.1 about the complexity of the basic reduction
algorithms, we have:

• The worst-case complexity of the lookup of a term σ in � (Sect. 5.1.1) is: O(m(xlim+1))+O(N ) � O(mxlim+
N ).

• The worst-case complexity of r(σ,�) (Sect. 5.1.2) is: mO(mxlim + N ) � O(m2xlim + mN ).
• The splitting into atoms of a single compound term with m − 1 operators entails up to m applications of a

reduction rule. In turn, neglecting the complexity of the lookup in � with respect to the r(·, ·) operator, this
implies up to 2m applications of the r(·, ·) operator. Thus, the overall complexity is:

2mO
(

m2xlim + mN
) � O

(

m3xlim + m2N
)

(78)

that is polynomial in m.

It can easily be shown that, in the same framework, limiting the reduction process to natural deductions only,
the complexity is:

2mO
(

m2xlim + mN
) � O

(

m2xlim + mN
)

(79)

that, again, is polynomial in m, albeit with a lesser exponent.
Comparing (78) and (79) it can be seen that, asymptotically, the complexity of our reduction method is still
greater than methods based on natural deductions, but the disadvantage is considerably lesser than it would seem
to be when considering a single reduction alone, as was done in Sect. 5.1. Similar results can be obtained for
commutative and associative operators.

5.4. Experimental results

5.4.1. Comparison against a reduction simulator

In order to compare the results about asymptotic behaviour derived in Sect. 5.3.2 with the actual evolution of
the reduction model presented in Sect. 5.3.1, a simulator of the reduction model was used to produce two sets of
simulation results. In both sets, the value assigned to parameters αi , N , and m is derived from, and representative
of, real-world protocols, as will be discussed in detail in the next section.
In the first set, all αi are assumed to be constant. Figure 3 plots the values of xi and yi for 30 reductions obtained
from the simulator, and compares them against their asymptotic upper bounds.
In the second set, the values αi are chosen at random according to two different probability distribution functions.
Figure 4 compares the simulator’s values for xi and yi against both the asymptotic limit and the upper bound of
xi , and the upper bound of yi , when the αi are uniformly distributed in a given range. The asymptotic limit of xi

has been computed as discussed in Sect. 5.3.2.
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Fig. 3. Simulation results with constant αi � 0.3 to the left, and αi � 0.2 to the right; in both cases, N � 10 and m � 3
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Fig. 4. Simulation results with uniformly distributed αi ∈ [0.3, 0.5] (i.e. α � 0.4) to the left, and αi ∈ [0.2, 0.4] (i.e. α � 0.3) to the right; in
both cases, N � 10 and m � 3

Figure 5 makes the same comparison, but with normally distributed αi . In this case, the upper bound on the xi

has been computed assuming αm � α − σα.
All plots show a good correspondence between the simulated and the asymptotic behaviours. All simulations
start from the initial conditions x1 � 0 and y1 � 1, thus assuming that, at the very beginning, the intruder’s
knowledge includes a single atom, e.g. a public communications channel, and no compound terms.

5.4.2. Comparison with the actual minimisation process

To better assess the conformance of the simulator to the behaviour of the intruder’s knowledge minimisation
process in real protocol analysis, simulator’s results were compared with some test runs of a prototype, automatic
model-checking tool [DSV03], with source code instrumentation added to dump the contents of the intruder’s
knowledge after each reduction, thus enabling us to gather statistics about its contents. Since the tool only works
on the basic knowledge representation described in Sect. 3 and does not support the extensions presented in
Sect. 4 we did not use commutative and associative operators in the test runs.
Figure 6 compares the solution for xi , i.e. the number of non-atomic terms in the intruder’s knowledge, computed
by the simulator and measured with the tool’s instrumentation for two parallel sessions of the well-known WMF
protocol that appears in [AG99] and is recalled in Fig. 7. The simulator’s parameters have been determined by
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Fig. 5. Simulation results with normally distributed αi , with α � 0.4 and σα � 0.1 to the left, and α � 0.3 and σα � 0.1 to the right; in both
cases, N � 10 and m � 3
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Fig. 6. Comparison between simulation and tool results for the WMF protocol. Simulator’s parameters are N � 12, m � 2, and a constant
αi � 1/6

Fig. 7. Spi specification of the WMF protocol, two sessions
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Fig. 8. Comparison between simulation and tool results for the protocol of Fig. 9. Simulator’s parameters are N � 3, m � 2, and a constant
αi � 1/3

Fig. 9. Spi specification of two parallel sessions of the protocol of Fig. 1

fitting the model to the spi specification of the protocol itself, for parameters N and m, and estimating αi from
one of the protocol traces with maximum length. In particular:

• Parameter N has been determined by counting the total number of atoms in the protocol specification (N �
12).

• Parameter m has been determined by inspecting the structure of all messages exchanged in the protocol, and
counting the maximum number of operators they contain (m � 2).

• Parameter αi has been estimated from one of the traces of the protocol with maximum length, by computing
the fraction of output terms that went into the intruder’s knowledge without being split by the reduction
process.

Figure 8 repeats the same comparison, but for two parallel sessions of the protocol already presented in Fig. 1
and whose spi specification can be found in Fig. 9. It can be noticed that, even when the number of reductions
in the actual protocol is very small, like in this case, thus placing the simulator in its worst-case, the simulator’s
result are still near the measured ones, and the error is below unity.

6. Concluding remarks and related work

Most finite [CJM98, CJM00, Low96] and infinite-state [AL00, BDNP02, Bor01] protocol analysis methods
restrict encryption operators to atomic keys only. For example, in [CJM98] and [Pau98], this restriction comes
from the adoption of the closure of � under E rules as a representation of the intruder’s knowledge.
Other approaches based on theorem proving do not pose this restriction but the trade-off in the general case is
between incompleteness and possible non-termination of the analysis, as pointed out by [MS01]. For example,
the approach taken by Proverif [Bla01] admits non-atomic keys, but may give false positives.
It is worth noting that support for constructed, non-atomic keys is becoming increasingly important to be able to
analyse real-world protocols, since it is common for such protocols to build a symmetric key from shared secrets
and other data exchanged between parties during a run of the protocol itself.
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Other papers, such as [FA01, Hui99, BMV05], relax this restriction but neither explicitly introduce the notion
of �, that is, the minimised, canonical representation of the intruder’s knowledge, nor analyse and exploit its
properties. As a consequence their intruder’s knowledge representation is less than optimal.
The free term algebra of [MS01], too, allows any term to be used as an encryption key for both public-key and
symmetric key encryption, but the attacker’s knowledge representation is not minimised and some other slight
restrictions are in effect, such as for example the assumption that private keys are never leaked. This assumption
seems quite reasonable, but cannot easily be guaranteed by hand when dealing with complex protocols; so, we
believe that such property is best checked with the aid of a formal, automated method.
On the other hand, [RT01] proves that the maximum length of a derivation of a term σ from an arbitrary set of
terms � is bounded by the size of the Directed Acyclic Graph (DAG) representation of σ and �, thus implying
the existence of a polynomial algorithm to carry out a single reduction step. However, the proof of this result
heavily relies on the assumption that asymmetric encryption keys are restricted to be atomic, i.e. the validity of
this result has not been proved in the general case of non-atomic keys. The same restriction affects [CKRT03]
too, which extends [RT01] to also cope with the exclusive or operator.
By contrast, our approach does not pose any restriction on the internal structure and construction operators of
symmetric and asymmetric encryption keys, and supports the full term language of the spi calculus itself. This
result comes at the expense of a greater computational complexity for a single reduction step; however, the overall
complexity of our method for a whole reduction has been shown to be asymptotically polynomial anyway.
The additional expressive power and flexibility of our method more than outweighs this disadvantage in the com-
munications protocols typically found in practice, as it has been shown by a refined model for complexity analysis.
This result was relieved by the comparison of the refined model against the actual behaviour of a model-checking
tool, showing good results.
Several recent papers, e.g. [CKRT03, CLS03, MN02, MS03], present methods to overcome the limitations of a
free term algebra framework and support commutative, associative and self-cancelling operators; however, they
have not been applied to model checking and do not keep the intruder’s knowledge in a minimised form.
Last, it should be noted that, even if we adopted the term syntax of spi calculus in this paper, our method is easily
amenable to work with other term representation languages with similar sets of term composition operators.
As a future work, it would be interesting and useful to further extend this method to handle self-cancelling
operators and, more in general, cancellation. However, at present, this possibility has been little investigated.

Appendix A: Refined computation analysis details

This section works out the mathematical details of the refined computational analysis described in Sect. 5.3,
under the same assumptions already outlined in Sect. 5.3.1. If αm � mini (αi ), from the first recurrence in (70)
we can write:

xi+1 � (xi + 1)(1 − αi ) ≤ (xi + 1)(1 − αm) (80)

and then, solving the recurrence relation:

xi+1 ≤ (1 − αm)ix1 +
i

∑

j�1

(1 − αm)j (81)

Under the additional restriction that 0 < αm ≤ 1:

lim
i→+∞(1 − αm)ix1 � 0, ∀ x1 (82)

and
+∞
∑

j�1

(1 − αm)j � 1 − αm
αm

(83)

So, substituting (82) and (83) into (81), we obtain (72), iff the limit on the left-hand side of the equation exists.
We have shown that when the succession xi has a limit for i → +∞, then both the elements of the succession and
its limit have a finite upper bound, provided that 0 < αm ≤ 1; it can also be shown that the same result holds
when αi � 0 for a finite number of choices of i .
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Let us now consider the succession yi , with the additional assumption (74), where N is finite and represents the
total number of atoms ever known in the system.
If αM � maxi (αi ), substituting (74) into the second recurrence in (70) we can write:

yi+1 � yi + m(xi + 1)αiβi ≤ yi + m(xi + 1)αM
(

1 − yi

N

)

(84)

Since the succession xi has a finite upper bound (72), then we can choose a suitable M to write:

m(xi + 1)αM ≤ M , ∀ i (85)

Substituting (85) into (84) and solving the recurrence, we obtain:

yi+1 ≤ yi + M
(

1 − yi

N

)

� (y1 − N )
(

1 − M
N

)i

+ N (86)

and, therefore, when |1 − M /N | < 1, that is, being M > 0 by definition, when M < 2N , (75) holds since, in this
case:

lim
i→+∞

(

1 − M
N

)i

� 0. (87)

Under the initial, obviously true condition y1 ≤ N , and assuming N ≥ 1, it can easily be proved that the
succession yi is monotonic, non-decreasing and its upper limit is N .

Appendix B: Summary of Theorems

Theorem C.1 Let � ⊆ T be a finite set of terms, with closure ̂�, and � defined by (17)–(25), given σ ∈ ̂�, then

σ satisfies a predicate among (17)–(25) ⇔ σ cannot be built by a rule among (2)–(8) from ̂�

i.e. each σ ∈ � is computed from ̂� by means of closure rules (1), and (9)–(14) only.

Corollary C.0.1 Let � ⊆ T be a finite set of terms, with closure ̂�, � defined by (17)–(25), and given σ ∈ � then,
σ ∈ � ∨ σ is a sub-term of some σ ∈ �.

Uses Theorem C.1.

Theorem 3.1 (Finiteness) For each finite set of terms � ⊆ T , � is finite and unique.

Uses Corollary C.0.1.

Theorem 3.2 (Minimality) Let � ⊆ T be a finite set of terms, and σ ∈ �. Then ̂(�\{σ })I ⊂ ̂�.

Uses Theorem C.1.

Theorem C.2 Given a finite set of terms � ⊆ T , with closure ̂�, a finite message σ ∈ T , and a finite subset of ̂�
S , then

r(σ,S ) ⇒ σ ∈ ̂�

and r(σ,S ) can be computed in a finite number of steps.

Theorem C.3 Given a finite set of finite messages � ⊆ T with closure ̂�,

σ ∈ ̂�\{σ } ⇒ ̂�\{σ } ≡ ̂�

Proposition 3.1 Given a finite set of finite messages � ⊆ T with closure ̂�, and a reduction rule R � 〈�I , C , �O 〉,
then

�
R−→ �′ ⇒ ̂� ≡ ̂�′

Uses Theorems C.2 and C.3.
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Theorem C.4 Given a finite set of terms � ⊆ T , and a finite message σ ∈ T , then

r(σ,�) ⇔ σ ∈ ̂�I

and r(σ,�) is computed in a finite number of steps.

Theorem C.5 Given a finite set of terms � ⊆ T , � defined by (17)–(25), and a finite message σ ∈ T , then

r(σ, �) ⇔ σ ∈ ̂�

and the computation of r(σ, �) takes a finite number of steps.

Theorem C.6 Given a finite set of terms � ⊆ T , and � defined by (17)–(25) ⇒ rules (26)–(36) do not hold in � .

Uses Theorems C.3, C.4 and C.5.

Theorem C.7 Given a finite set of terms � ⊆ T ,

if rules (26)–(36) do not hold in � ⇒ ̂�\ ̂�I � ∅
i.e. from such a � we can build ̂� by using I rules only (̂� ≡ ̂�I ).

Uses Theorem C.4.

Theorem C.8 Given a finite set of terms � ⊆ T , and � defined by (17)–(25),

if rules (26)–(36) do not hold in � ⇒ � ≡ �

Uses Theorems C.1, C.3 and C.7.

Appendix C: Proofs of Theorems

Theorem C.1 Let � ⊆ T be a finite set of terms, with closure ̂�, and � defined by (17)–(25), given σ ∈ ̂�, then

σ satisfies a predicate among (17)–(25) ⇔ σ cannot be built by a rule among (2)–(8) from ̂�.

Proof. We need to prove that each σ cannot be built by combining simpler terms, i.e. when rules (17)–(25) hold,
the preconditions of closure rules (2)–(8) are always invalid (since � ⊆ ̂�, then σ ∈ ̂� and closure rules apply)
and vice-versa. We address each syntactic form of σ .
⇒
• if σ � a, rule (17) holds and no rule among (2)–(8) can build a name belonging to ̂�;
• rule (18) states that σ cannot be a successor, then it cannot have been built by means of closure rule (2);
• rule (19) states that σ cannot be a pair, then it cannot have been built by means of closure rule (3);

• if σ � {σ1}σ2 , rule (20) states that σ2 
∈ ̂�, then the preconditions of closure rule (4) are always invalid;

• if σ � H(σ ), rule (21) states that σ 
∈ ̂�, then the preconditions of closure rule (5) are always invalid;

• if σ � {[σ1]}σ +
2

, rule (22) states that σ +
2 
∈ ̂� ∨ σ1 
∈ ̂�, then the preconditions of closure rule (6) are always

invalid;
• if σ � [{σ1}]σ−

2
, rule (23) states that σ−

2 
∈ ̂� ∨ σ1 
∈ ̂�, then the preconditions of closure rule (7) are always
invalid;

• if σ � σ +, rule (24) states that σ 
∈ ̂�, then the preconditions of closure rule (8) are always invalid;

• if σ � σ−, rule (25) states that σ 
∈ ̂�, then the preconditions of closure rule (8) are always invalid.

⇐
• if σ � a, by (17) (a ∈ � ⇔ a ∈ ̂�) we have the thesis, without the need of assuming that rules (2)–(8) do not

hold;
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• if σ � suc(σ ), only closure rules (2) and (9) deal with suc(·), moreover closure rule (2) does not hold, i.e. its
premises are false by hypothesis. We claim that this leads to suc(σ ) 
∈ ̂�, and, since � ⊆ ̂�, then (18) holds
too, leading to the thesis. The truth of the claim comes from the truth of:

σ ∈ �� ⇒ suc(σ ) ∈ ��
∧

suc(σ ) ∈ �� ⇒ σ ∈ ��
∧

σ 
∈ ��

������
�����

⇒ suc(σ ) 
∈ ��

which can be easily proved by using boolean expressions.
• if σ � (σ1, σ2), only closure rules (3) and (10) deal with (·, ·), moreover closure rule (3) does not hold, i.e. its

premises are false by hypothesis. We claim that this implies (σ1, σ2) 
∈ ̂�, and, since � ⊆ ̂�, also (19) holds
too, leading to the thesis. The truth of the claim comes from the truth of:

σ1 ∈ �� ∧ σ2 ∈ �� ⇒ (σ1, σ2) ∈ ��
∧

(σ1, σ2) ∈ �� ⇒ σ1 ∈ �� ∧ σ2 ∈ ��
∧

σ1 
∈ �� ∨ σ2 
∈ ��

������
�����

⇒ (σ1, σ2) 
∈ ��

which can be easily proved by using boolean expressions.
• if σ � {σ1}σ2 , only closure rules (4) and (11) deal with {·}·, moreover closure rule (4) does not hold, i.e. its

premises are false, and {σ1}σ2 ∈ ̂�. We claim that this implies σ2 
∈ ̂� ∧ {σ1}σ2 ∈ ̂�, allowing (20) to hold too,
leading to the thesis. The truth of the claim comes from the truth of:

σ1 ∈ �� ∧ σ2 ∈ �� ⇒ {σ1}σ2 ∈ ��
∧

{σ1}σ2 ∈ �� ∧ σ2 ∈ �� ⇒ σ1 ∈ ��
∧

{σ1}σ2 ∈ ��
∧

σ1 
∈ �� ∨ σ2 
∈ ��

����������
���������

⇒ σ2 
∈ �� ∧ {σ1}σ2 ∈ ��

which can be easily proved by using boolean expressions.
• if σ � H(σ ), we have that the premises of closure rule (5) are invalid by hypothesis, then rule (21) holds, and

the thesis comes from the truth of:

σ ∈ �� ⇒ H(σ ) ∈ ��
∧

σ 
∈ ��
∧

H(σ ) ∈ ��

������
�����

⇒ σ 
∈ ��

which can be easily proved by using boolean expressions.

• if σ � {[σ1]}σ +
2

, we have closure rule (6) whose premises are invalid by hypothesis, and {[σ1]}σ +
2

∈ ̂�. We claim

that this implies
(

σ1 
∈ ̂� ∨ σ +
2 
∈ ̂�

)

∧ {[σ1]}σ +
2

∈ ̂�, allowing (22) to hold too, leading to the thesis. The

truth of the claim comes from the truth of:

σ1 ∈ �� ∧ σ+
2 ∈ �� ⇒ {[σ1]}σ+

2
∈ ��

∧
{[σ1]}σ+

2
∈ ��

∧
σ1 
∈ �� ∨ σ+

2 
∈ ��

�������
������

⇒
�
σ1 
∈ �� ∨ σ+

2 
∈ ��� ∧ {[σ1]}σ+
2

∈ ��

which can be easily proved by using boolean expressions.
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• if σ � [{σ1}]σ−
2

, we have closure rule (7) whose premises are invalid by hypothesis, and [{σ1}]σ−
2

∈ ̂�. We claim

that this implies
(

σ1 
∈ ̂� ∨ σ−
2 
∈ ̂�

)

∧ [{σ1}]σ−
2

∈ ̂�, allowing (23) to hold too, leading to the thesis. The

truth of the claim comes from the truth of:

σ1 ∈ �� ∧ σ−
2 ∈ �� ⇒ [{σ1}]σ−

2
∈ ��

∧
[{σ1}]σ−

2
∈ ��

∧
σ1 
∈ �� ∨ σ−

2 
∈ ��

�������
������

⇒
�
σ1 
∈ �� ∨ σ−

2 
∈ ��� ∧ [{σ1}]σ−
2

∈ ��

which can be easily proved by using boolean expressions.

• if σ � σ +, we have closure rule (8) whose premises are invalid by hypothesis, and σ + ∈ ̂�. We claim that this
implies σ 
∈ ̂� ∧ σ + ∈ ̂�, allowing (24) to hold too, leading to the thesis. The truth of the claim comes from
the truth of:

σ ∈ �� ⇒ σ+ ∈ �� ∧ σ− ∈ ��
∧

σ+ ∈ ��
∧

σ 
∈ ��

������
�����

⇒ σ 
∈ �� ∧ σ+ ∈ ��

which can be easily proved by using boolean expressions.

• if σ � σ−, we have closure rule (8) whose premises are invalid by hypothesis, and σ− ∈ ̂�. We claim that this
implies σ 
∈ ̂� ∧ σ− ∈ ̂�, allowing (25) to hold too, leading to the thesis. The truth of the claim comes from
the truth of:

σ ∈ �� ⇒ σ+ ∈ �� ∧ σ− ∈ ��
∧

σ− ∈ ��
∧

σ 
∈ ��

������
�����

⇒ σ 
∈ �� ∧ σ− ∈ ��

which can be easily proved by using boolean expressions. �

Corollary C.0.1 Let � ⊆ T be a finite set of terms, with closure ̂�, � defined by (17)–(25), and σ ∈ � then,
σ ∈ � ∨ σ is a sub-term of some σ ∈ �.

Proof. From Theorem C.1, it comes that σ can be built from ̂� by means of closure rules (1), and (9)–(14) only.
Since � ⊆ ̂�, the thesis can be deduced by inspection of closure rules (1) and (9)–(14). �

Theorem 3.1 (Finiteness) For each finite set of terms � ⊆ T , � is finite and unique.

Proof. Here a set of terms is finite if it contains a finite number of finite terms. So let us divide the proof: first of
all we prove that each term in � is finite, then that � contains a finite number of terms.

Each term in � is finite: Absurdly, let us assume that ∃ σ∞ ∈ � | σ∞ is made by an infinite number of sub-terms.
Corollary C.0.1 states that such σ∞ ∈ � ∨ σ is a sub-term of some σ ∈ �, but this means that � contains at
least an infinite term, and this violates the hypothesis of finiteness of �. �
The cardinality of � is finite: Absurdly, let us assume that the cardinality of � is infinite: then, by Corollary C.0.1,
we have that � contains infinite terms, or some term with infinite sub-terms, but this violates the hypothesis of
finiteness of �.

� is unique: Let us absurdly assume that ∃ two distinct �1 and �2 both satisfying rules (17)–(25): let σ ∈ �1 and
σ 
∈ �2 (or vice-versa): σ cannot be a pair or a successor by rules (18) and (19), on the other hand, the remaining
rules among (17) and (25) are necessary and sufficient conditions on ̂�, then, given a ̂�, just one � exists. �
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Definition C.1 Let � ⊆ T be a set of terms, we define ̂�I as the closure of � under rules (1) and (2)–(8) only.

Theorem 3.2 (Minimality) Let � ⊆ T be a finite set of terms, and σ ∈ �. Then ̂(�\{σ })I ⊂ ̂�.

Proof. Absurdly, let us assume that ̂(�\{σ })I 
⊂ ̂�.
In general, given two sets H , K |H 
⊂ K , it means that H � K ∨ ∃ h ∈ H |h 
∈ K . In this case we know how that
�\{σ } ⊂ �, moreover the set of rules under which we close �\{σ } is a subset of the set of rules under which we

close �. Then ̂(�\{σ })I cannot be larger than ̂�, and, in particular, ̂(�\{σ })I cannot include terms not included

in ̂� also, then we can reduce our absurd hypothesis ̂(�\{σ })I 
⊂ ̂� to ̂(�\{σ })I � ̂�.

Since σ ∈ �, we have that σ ∈ ̂� and, absurdly being ̂(�\{σ })I � ̂�, it also holds that σ ∈ ̂(�\{σ })I . Then we
should be able to build σ from �\{σ } by using rules (1) and (2)–(8) only.

We have that σ 
∈ �\{σ } by definition, then we cannot use rule (1). On the other hand, being both ̂(�\{σ })I and
̂� subsets of ̂�, Theorem C.1 holds and states that premises of (2)–(8) are not satisfied by elements of �, and,
even more so, this holds for the subset �\{σ }, i.e. we are not able to compute σ from �\{σ } by means of rules
(1) and (2)–(8) only, and this comes from our initial, absurd hypothesis. �

The absurd hypothesis ̂(�\{σ })I � ̂� ⇒ σ ∈ ̂(�\{σ })I , but Theorem C.1 proves that this last statement is

false, and this implies that our absurd hypothesis is false (σ ∈ ̂(�\{σ })I ⇒ ̂(�\{σ })I � ̂�).

Theorem C.2 Given a finite set of terms � ⊆ T , with closure ̂�, a finite message σ ∈ T , and a finite subset of ̂� S ,
then

r(σ,S ) ⇒ σ ∈ ̂�

and r(σ,S ) can be computed in a finite number of steps.

Proof. The basic idea is to carry out the proof inductively: the theorem will be proved directly for the two disjoint2

cases σ ∈ S , and σ ∈ A\S (i.e. the base of the induction) and inductively the remaining cases: σ 
∈ A ∧ σ 
∈ S
(i.e. σ 
∈ A ∪ S ).
Base (σ ∈ S ∨ σ ∈ A\S )

• σ ∈ S : we have that

– σ ∈ S as hypothesis;

– σ ∈ S ⇒ r(σ,S ) from the definition of r (if σ ∈ S then return TRUE);

– σ ∈ S ⇒ σ ∈ ̂� since S ⊆ ̂� as hypothesis.

Thus we shall prove that under these hypotheses r(σ,S ) ⇒ σ ∈ ̂� holds, i.e.:

σ ∈ S
∧
σ ∈ S ⇒ r(σ,S )
∧
σ ∈ S ⇒ σ ∈ ��

�����
����

⇒
�
r(σ,S ) ⇒ σ ∈ ���

which can be easily proved by using boolean expressions.
• σ ∈ A\S : we have that

– σ ∈ A ∧ σ 
∈ S as hypothesis;

– σ ∈ A ∧ σ 
∈ S ⇒ r(σ,S ) from the definition of r (else (σ ∈ A\S) return FALSE);

– σ ∈ S ⇒ σ ∈ ̂� since S ⊆ ̂� as hypothesis.

2 S ∩ (A\S ) � ∅.
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Thus we shall prove that under these hypotheses r(σ,S ) ⇒ σ ∈ ̂� holds, i.e.:

σ ∈ A ∧ σ 
∈ S
∧
σ ∈ A ∧ σ 
∈ S ⇒ r(σ,S )
∧
σ ∈ S ⇒ σ ∈ ��

�����
����

⇒
�
r(σ,S ) ⇒ σ ∈ ���

which can be easily proved by using boolean expressions.

Induction (σ 
∈ A ∪ S )

• Let σ � suc(σ1) ∧ suc(σ1) 
∈ S : trivially r(σ1,S ) ⇒ r(suc(σ1),S ), moreover suc(σ1) 
∈ S , and this makes true
also the backward implication3

r(σ1,S ) ⇐ r(suc(σ1),S )

Closure rule (2) states that σ1 ∈ ̂� ⇒ suc(σ1) ∈ ̂�.
By inductively assuming r(σ1,S ) ⇒ σ1 ∈ ̂�, we have the thesis:

r(suc(σ1),S ) ⇒ r(σ1,S ) ⇒ σ1 ∈ ̂� ⇒ suc(σ1) ∈ ̂�

• Let σ � (σ1, σ2) ∧ (σ1, σ2) 
∈ S : trivially r(σ1,S ) ∧ r(σ2,S ) ⇒ r((σ1, σ2),S ), moreover (σ1, σ2) 
∈ S , and
this makes true also the backward implication

r(σ1,S ) ∧ r(σ2,S ) ⇐ r((σ1, σ2),S )

Closure rule (3) states that σ1 ∈ ̂� ∧σ2 ∈ ̂� ⇒ (σ1, σ2) ∈ ̂� and, by inductively assuming r(σ1,S ) ⇒ σ1 ∈ ̂�

and r(σ2,S ) ⇒ σ2 ∈ ̂�, it holds that

r((σ1, σ2),S ) ⇒ r(σ1,S ) ∧ r(σ2,S )
∧

r(σ1,S ) ⇒ σ1 ∈ ̂�
∧

r(σ2,S ) ⇒ σ2 ∈ ̂�
∧

σ1 ∈ ̂� ∧ σ2 ∈ ̂� ⇒ (σ1, σ2) ∈ ̂�

which easily implies r((σ1, σ2),S ) ⇒ (σ1, σ2) ∈ ̂�.
• Let σ � {σ1}σ2 ∧{σ1}σ2 
∈ S : trivially r(σ1,S ) ∧ r(σ2,S ) ⇒ r({σ1}σ2 ,S ), moreover {σ1}σ2 
∈ S , and this makes

true also the backward implication

r(σ1,S ) ∧ r(σ2,S ) ⇐ r({σ1}σ2 ,S )

Closure rule (4) states that σ1 ∈ ̂� ∧ σ2 ∈ ̂� ⇒ {σ1}σ2 ∈ ̂� and, by inductively assuming r(σ1,S ) ⇒ σ1 ∈ ̂�

and r(σ2,S ) ⇒ σ2 ∈ ̂�, we have the same case of σ � (σ1, σ2) (where {σ1}σ2 replaces (σ1, σ2)), which easily
implies r({σ1}σ2 ,S ) ⇒ {σ1}σ2 ∈ ̂�.

• Let σ � H(σ1) ∧ H(σ1) 
∈ S : trivially r(σ1,S ) ⇒ r(H(σ1),S ), moreover H(σ1) 
∈ S , and this makes true also
the backward implication

r(σ1,S ) ⇐ r(H(σ1),S )

Closure rule (5) states that σ1 ∈ ̂� ⇒ H(σ1) ∈ ̂�.
By inductively assuming r(σ1,S ) ⇒ σ1 ∈ ̂�, we have the thesis:

r(H(σ1),S ) ⇒ r(σ1,S ) ⇒ σ1 ∈ ̂� ⇒ H(σ1) ∈ ̂�

3 we know that r(suc(σ1),S ) has given TRUE, and that the result has been computed by means of r(σ1,S ).
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• Let σ � {[σ1]}σ +
2

∧ {[σ1]}σ +
2


∈ S : trivially r(σ1,S ) ∧ r(σ +
2 ,S ) ⇒ r({[σ1]}σ +

2
,S ), moreover {[σ1]}σ +

2

∈ S , and

this makes true also the backward implication

r(σ1,S ) ∧ r(σ +
2 ,S ) ⇐ r({[σ1]}σ +

2
,S )

Closure rule (6) states that σ1 ∈ ̂�∧σ +
2 ∈ ̂� ⇒ {[σ1]}σ +

2
∈ ̂� and, by inductively assuming r(σ1,S ) ⇒ σ1 ∈ ̂�

and r(σ +
2 ,S ) ⇒ σ +

2 ∈ ̂�, we have the same case of σ � (σ1, σ2) (where {[σ1]}σ +
2

replaces (σ1, σ2)), which easily

implies r({[σ1]}σ +
2
,S ) ⇒ {[σ1]}σ +

2
∈ ̂�.

• Let σ � [{σ1}]σ−
2

∧ [{σ1}]σ−
2


∈ S is handled exactly as the previous one [where closure rule (7) replaces (6)].

• Let σ � σ +
1 ∧σ +

1 
∈ S : trivially r(σ1,S ) ⇒ r(σ +
1 ,S ), moreover σ +

1 
∈ S , and this makes true also the backward
implication

r(σ1,S ) ⇐ r(σ +
1 ,S )

Closure rule (8) states that σ1 ∈ ̂� ⇒ σ +
1 ∈ ̂�.

By inductively assuming r(σ1,S ) ⇒ σ1 ∈ ̂�, we have the thesis:

r(σ +
1 ,S ) ⇒ r(σ1,S ) ⇒ σ1 ∈ ̂� ⇒ σ +

1 ∈ ̂�

• σ � σ−
1 ∧ σ−

1 
∈ S is handled exactly as the previous one.

Since, by hypothesis, σ is a finite message, and S is a finite set containing finite messages only, the check r(σ,S )
can be carried out in a finite number of steps. �
Theorem C.3 Given a finite set of finite messages � ⊆ T with closure ̂�,

σ ∈ ̂�\{σ } ⇒ ̂�\{σ } ≡ ̂�

Proof. Since σ ∈ ̂�\{σ } by hypothesis, closure rules (2)–(14) that hold for a term in ̂�\{σ }, also hold for the
same term in ̂�. Closure rule (1) does not hold in ̂�\{σ }, but it has been replaced by the hypothesis itself. �
Proposition 3.1 Given a finite set of finite messages � ⊆ T with closure ̂�, and a reduction rule R � 〈�I , C , �O 〉,
then

�
R−→ �′ ⇒ ̂� ≡ ̂�′

Proof. The proof can be carried out by taking into account each rule at a time, and by reasoning on the related
� and �′.

(26) �I � {H(σ )}, �O � ∅, then �′ � �\{H(σ )}.
r(σ,�) � TRUE by rule (26): while doing such a computation, r(·) starts from σ , and recursively computes
on σ ’s subterms, then it will never be called on H(σ ). Then it also holds that r(σ,�\{H(σ )}) � TRUE and, by
Theorem C.2, we have that σ ∈ ̂�\{H(σ )}, and this implies that closure rule (5) holds, i.e. H(σ ) ∈ ̂�\{H(σ )}
too, and by Theorem C.3 we have that ̂�\{H(σ )} ≡ ̂�.

(27) �I � {{[σ1]}σ +
2
}, �O � ∅, then �′ � �\{{[σ1]}σ +

2
}.

r(σ1, �) � TRUE and r(σ +
2 , �) � TRUE by rule (27): while doing such a computation, r(·), respectively

starts from σ1, and σ +
2 , and recursively computes on σ1’s and σ +

2 ’s subterms, then it will never be called
on {[σ1]}σ +

2
. Then it also holds that r(σ1, �\{{[σ1]}σ +

2
}) � TRUE and r(σ +

2 , �\{{[σ1]}σ +
2
}) � TRUE and, by

Theorem C.2, we have that σ1 ∈ ̂�\{{[σ1]}σ +
2
} and σ +

2 ∈ ̂�\{{[σ1]}σ +
2
}, and this implies that closure rule (6)

holds, i.e. {[σ1]}σ +
2

∈ ̂�\{{[σ1]}σ +
2
} too, and by Theorem C.3 we have that ̂�\{{[σ1]}σ +

2
} ≡ ̂�.

(28) see (27).
(29) �I � {σ +}, �O � ∅, then �′ � �\{σ +}.

r(σ,�) � TRUE by rule (29): while doing such a computation, r(·) starts from σ , and recursively computes
on σ ’s subterms, then it will never be called on σ +. Then it also holds that r(σ,�\{σ +}) � TRUE and, by
Theorem C.2, we have that σ ∈ ̂�\{σ +}, and this implies that closure rule (8) holds, i.e. σ + ∈ ̂�\{σ +} too,
and by Theorem C.3 we have that ̂�\{σ +} ≡ ̂�.

(30) see (29).
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(31) �I � {suc(σ )}, �O � {σ }, then �′ � �\{suc(σ )} ∪ {σ }.
�′ has been obtained from � by replacing suc(σ ) with σ , on the other hand, closure rules (2) and (9) state
that suc(σ ) ∈ ̂� ⇔ σ ∈ ̂�, i.e. starting from �, by means of closure rule (9), we obtain �∪{σ }, on the other
hand, starting from �′, by means of closure rule (2), we obtain �′ ∪ {suc(σ )}, and � ∪{σ } ≡ �′ ∪ {suc(σ )}.

(32) �I � {(σ1, σ2)}, �O � {σ1, σ2}, then �′ � �\{(σ1, σ2)} ∪ {σ1, σ2}.
�′ has been obtained from � by replacing (σ1, σ2) with σ1 and σ2, on the other hand, closure rules (3)
and (10) state that (σ1, σ2) ∈ ̂� ⇔ σ1 ∈ ̂� ∧ σ2 ∈ ̂�, i.e. starting from �, by means of closure rule
(10), we obtain � ∪ {σ1, σ2}, on the other hand, starting from �′, by means of closure rule (3), we obtain
�′ ∪ {(σ1, σ2)}, and � ∪ {σ1, σ2} ≡ �′ ∪ {(σ1, σ2)}.

(33) �I � {{σ1}σ2}, �O � {σ1}, then �′ � �\{{σ1}σ2} ∪ {σ1}.
�′ has been obtained from � by replacing {σ1}σ2 with σ1, provided that r(σ2, �) is TRUE. r(σ2, �) � TRUE by
rule (33): while doing such a computation, r(·) starts from σ2, and recursively computes on σ2’s subterms,
then it will never be called on {σ1}σ2 . Then it also holds that r(σ2, �

′) � TRUE and, by Theorem C.2, we have
that both σ2 ∈ ̂� and σ2 ∈ ̂�′. Then closure rules (11) and (4), respectively hold, enabling us to respectively,
build � ∪ {σ1} and �′ ∪ {{σ1}σ2}, and the last two sets are equal.

(34) �I � {{[σ1]}σ +
2
}, �O � {σ1, {[σ1]}σ +

2
}, then �′ � � ∪ {σ1}.

�′ has been obtained from � by adding σ1, provided that r(σ−
2 , �) is TRUE. r(σ−

2 , �) � TRUE by rule (34)
(and trivially it holds that r(σ−

2 , �′) � TRUE, being �′ a superset of �), and, by Theorem C.2, we have that
σ2− ∈ ̂�. Then closure rule (12) holds, enabling us to add σ1 to �, thus obtaining �′.

(35) see (34).
(36) �I � {σ +, σ−}, �O � {σ }, then �′ � �\{σ +, σ−} ∪ {σ }.

�′ has been obtained from � by replacing σ +, σ− with σ , on the other hand, closure rules (14) and (8)
state that σ ∈ ̂� ⇔ σ + ∈ ̂� ∧ σ− ∈ ̂�, i.e. starting from �, by means of closure rule (14), we obtain
� ∪ {σ }, on the other hand, starting from �′, by means of closure rule (8), we obtain �′ ∪ {σ +, σ−}, and
� ∪ {σ } ≡ �′ ∪ {σ +, σ−)}.

In all cases we are able to obtain the same set as an intermediate result during the computation of the closure of
� and �′, thus they have the same closure. �
Theorem C.4 Given a finite set of terms � ⊆ T , and a finite message σ ∈ T , then

r(σ,�) ⇔ σ ∈ ̂�I

and r(σ,�) is computed in a finite number of steps.

Proof. The basic idea is to carry out the proof inductively: the theorem will be proved directly for the two disjoint4

cases σ ∈ �, and σ ∈ A\� (i.e. the base of the induction), and inductively the remaining cases: σ 
∈ A ∧ σ 
∈ �
(i.e. σ 
∈ A ∪ �).
Base (σ ∈ � ∨ σ ∈ A\�)

• σ ∈ �: we have that

– σ ∈ � as hypothesis;

– σ ∈ � ⇒ r(σ,�) from the definition of r (if σ ∈ � then return TRUE);

– σ ∈ � ⇒ σ ∈ ̂�I by rule (1).

Thus we shall prove that under these hypotheses r(σ,�) ⇔ σ ∈ ̂�I holds, i.e.:

σ ∈ �

∧
σ ∈ � ⇒ r(σ, �)
∧
σ ∈ � ⇒ σ ∈ ��I

�����
����

⇒
�
r(σ, �) ⇔ σ ∈ ��I

�

which can be easily proved by using boolean expressions.

4 � ∩ (A\�) � ∅.
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• σ ∈ A\�: we have that

– σ ∈ A ∧ σ 
∈ � as hypothesis;

– σ ∈ A ∧ σ 
∈ � ⇒ r(σ,�) from the definition of r (else (σ ∈ A\�) return FALSE);

– σ ∈ A ∧ σ 
∈ � ⇒ σ 
∈ ̂�I since rule (1) does not hold by hypothesis, and rules (2)–(8) cannot be used
to build a name.

Thus we shall prove that under these hypotheses r(σ,�) ⇔ σ ∈ ̂�I holds, i.e.:

σ ∈ A ∧ σ 
∈ �

∧
σ ∈ A ∧ σ 
∈ � ⇒ r(σ, �)
∧
σ ∈ A ∧ σ 
∈ � ⇒ σ 
∈ ��I

�����
����

⇒
�
r(σ, �) ⇔ σ ∈ ��I

�

which can be easily proved by using boolean expressions.

Induction (σ 
∈ A ∪ �)

• σ � suc(σ1) ∧ suc(σ1) 
∈ �: trivially r(σ1, �) ⇒ r(suc(σ1), �), moreover suc(σ1) 
∈ �, and this makes true
also the backward implication,5 thus leading to

r(σ1, �) ⇔ r(suc(σ1), �)

Moreover, by induction, we are allowed to assume

r(σ1, �) ⇔ σ1 ∈ ̂�I

Then, we still need to prove that

σ1 ∈ ̂�I ⇔ suc(σ1) ∈ ̂�I

⇒ Trivial, since rule (2) allows us to build suc(σ1) from σ1.
⇐ suc(σ1) 
∈ � by hypothesis, then rule (1) is not responsible for suc(σ1) ∈ ̂�I , then it holds that suc(σ1) has
been built by means of a rule among (2)–(8), i.e. rule (2), and this leads to σ1 ∈ ̂�I .
We can now state that

r(suc(σ1), �) ⇔ r(σ1, �) ⇔ σ1 ∈ ̂�I ⇔ suc(σ1) ∈ ̂�I

• σ � (σ1, σ2) ∧ (σ1, σ2) 
∈ �: trivially r(σ1, �) ∧ r(σ2, �) ⇒ r((σ1, σ2), �), moreover (σ1, σ2) 
∈ �, and this
makes true also the backward implication, thus leading us to have

r(σ1, �) ∧ r(σ2, �) ⇔ r((σ1, σ2), �)

Moreover, by induction, we are allowed to assume

r(σ1, �) ⇔ σ1 ∈ ̂�I

r(σ2, �) ⇔ σ2 ∈ ̂�I

We still need to prove that

σ1 ∈ ̂�I ∧ σ2 ∈ ̂�I ⇔ (σ1, σ2) ∈ ̂�I

⇒ Trivial, since rule (3) allows us to build (σ1, σ2) from σ1 and σ2 separately.
⇐ (σ1, σ2) 
∈ � by hypothesis, then rule (1) is not responsible for (σ1, σ2) ∈ ̂�I , then it holds that (σ1, σ2)
has been built by means of a rule among (2)–(8), i.e. rule (3), and this leads to σ1 ∈ ̂�I ∧ σ2 ∈ ̂�I .

5 we know that r(suc(σ1), �) has given TRUE, and that the result has been computed by means of r(σ1, �).
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Thus we shall prove that under these hypotheses r((σ1, σ2), �) ⇔ (σ1, σ2) ∈ ̂�I holds, i.e.:

r(σ1, �) ∧ r(σ2, �) ⇔ r((σ1, σ2), �)
∧
r(σ1, �) ⇔ σ1 ∈ ��I

∧
r(σ2, �) ⇔ σ2 ∈ ��I

∧
σ1 ∈ ��I ∧ σ2 ∈ ��I ⇔ (σ1, σ2) ∈ ��I

���������
��������

⇒
�
r((σ1, σ2), �) ⇔ (σ1, σ2) ∈ ��I

�

which can be easily proved by using boolean expressions.
• σ � {σ1}σ2 ∧ {σ1}σ2 
∈ �: trivially r(σ1, �) ∧ r(σ2, �) ⇒ r({σ1}σ2 , �), moreover {σ1}σ2 
∈ �, and this makes

true also the backward implication, thus leading us to have

r(σ1, �) ∧ r(σ2, �) ⇔ r({σ1}σ2 , �)

Moreover, by induction, we are allowed to assume

r(σ1, �) ⇔ σ1 ∈ ̂�I

r(σ2, �) ⇔ σ2 ∈ ̂�I

We still need to prove that

σ1 ∈ ̂�I ∧ σ2 ∈ ̂�I ⇔ {σ1}σ2 ∈ ̂�I

⇒ Trivial, since rule (4) allows us to build {σ1}σ2 from σ1 and σ2 separately.
⇐ {σ1}σ2 
∈ � by hypothesis, then rule (1) is not responsible for {σ1}σ2 ∈ ̂�I , then it holds that {σ1}σ2 has
been built by means of a rule among (2)–(8), i.e. rule (4), and this leads to σ1 ∈ ̂�I ∧ σ2 ∈ ̂�I .
Thus we shall prove that under these hypotheses r({σ1}σ2 , �) ⇔ {σ1}σ2 ∈ ̂�I holds, i.e.:

r(σ1, �) ∧ r(σ2, �) ⇔ r({σ1}σ2 , �)
∧
r(σ1, �) ⇔ σ1 ∈ ��I

∧
r(σ2, �) ⇔ σ2 ∈ ��I

∧
σ1 ∈ ��I ∧ σ2 ∈ ��I ⇔ {σ1}σ2 ∈ ��I

���������
��������

⇒
�
r({σ1}σ2 , �) ⇔ {σ1}σ2 ∈ ��I

�

which can be easily proved by using boolean expressions.
• σ � H(σ1) ∧ H(σ1) 
∈ �: trivially r(σ1, �) ⇒ r(H(σ1), �), moreover H(σ1) 
∈ �, and this makes true also

the backward implication, thus leading us to have

r(σ1, �) ⇔ r(H(σ1), �)

Moreover, by induction, we are allowed to assume

r(σ1, �) ⇔ σ1 ∈ ̂�I

We still need to prove that

σ1 ∈ ̂�I ⇔ H(σ1) ∈ ̂�I

⇒ Trivial, since rule (5) allows us to build H(σ1) from σ1.
⇐ H(σ1) 
∈ � by hypothesis, then rule (1) is not responsible for H(σ1) ∈ ̂�I , then it holds that H(σ1) has
been built by means of a rule among (2)–(8), i.e. rule (5), and this leads to σ1 ∈ ̂�I .
We can now state that

r(H(σ1), �) ⇔ r(σ1, �) ⇔ σ1 ∈ ̂�I ⇔ H(σ1) ∈ ̂�I
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• σ � {[σ1]}σ +
2

∧ {[σ1]}σ +
2


∈ �: trivially r(σ1, �) ∧ r(σ +
2 , �) ⇒ r({[σ1]}σ +

2
, �), moreover {[σ1]}σ +

2

∈ �, thus

leading us to have

r(σ1, �) ∧ r(σ +
2 , �) ⇔ r({[σ1]}σ +

2
, �)

Moreover, by induction, we are allowed to assume

r(σ1, �) ⇔ σ1 ∈ ̂�I

r(σ +
2 , �) ⇔ σ +

2 ∈ ̂�I

We still need to prove that

σ1 ∈ ̂�I ∧ σ +
2 ∈ ̂�I ⇔ {[σ1]}σ +

2
∈ ̂�I

⇒ Trivial, since rule (6) allows us to build {[σ1]}σ +
2

from σ1 and σ +
2 separately.

⇐ {[σ1]}σ +
2

) 
∈ � by hypothesis, then rule (1) is not responsible for {[σ1]}σ +
2

∈ ̂�I , then it holds that {[σ1]}σ +
2

has been built by means of a rule among (2)–(8), i.e. rule (6), and this leads to σ1 ∈ ̂�I ∧ σ +
2 ∈ ̂�I .

Thus we shall prove that under these hypotheses r({[σ1]}σ +
2
, �) ⇔ {[σ1]}σ +

2
∈ ̂�I holds, i.e.:

r(σ1, �) ∧ r(σ+
2 , �) ⇔

r({[σ1]}σ+
2
, �)

∧
r(σ1, �) ⇔ σ1 ∈ ��I

∧
r(σ+

2 , �) ⇔ σ+
2 ∈ ��I

∧
σ1 ∈ ��I ∧ σ+

2 ∈ ��I ⇔ {[σ1]}σ+
2

∈ ��I

������������
�����������

⇒
�
r({[σ1]}σ+

2
, �) ⇔ {[σ1]}σ+

2
∈ ��I

�

which can be easily proved by using boolean expressions.
• σ � [{σ1}]σ−

2
∧ [{σ1}]σ−

2

∈ � is handled exactly as the previous one (where closure rule (7) replaces (6)).

• σ � σ +
1 ∧ σ +

1 
∈ �: trivially r(σ1, �) ⇒ r(σ +
1 , �), moreover σ +

1 
∈ �, and this makes true also the backward
implication, thus leading us to have

r(σ1, �) ⇔ r(σ +
1 , �)

Moreover, by induction, we are allowed to assume

r(σ1, �) ⇔ σ1 ∈ ̂�I

We still need to prove that

σ1 ∈ ̂�I ⇔ σ +
1 ∈ ̂�I

⇒ Trivial, since rule (8) allows us to build σ +
1 from σ1.

⇐ σ +
1 
∈ � by hypothesis, then rule (1) is not responsible for σ +

1 ∈ ̂�I , then it holds that σ +
1 has been built

by means of a rule among (2)–(8), i.e. rule (8), and this leads to σ1 ∈ ̂�I .
We can now state that

r(σ +
1 , �) ⇔ r(σ1, �) ⇔ σ1 ∈ ̂�I ⇔ σ +

1 ∈ ̂�I

• σ � σ−
1 ∧ σ−

1 
∈ � then return r(σ1, �) is handled exactly as the previous one.

Since, by hypothesis, σ is a finite message, and � is a finite set containing finite messages only, the check r(σ,�)
can be carried out in a finite number of steps. �

Theorem C.5 Given a finite set of terms � ⊆ T , � defined by (17)–(25), and a finite message σ ∈ T , then

r(σ, �) ⇔ σ ∈ ̂�

and the computation of r(σ, �) takes a finite number of steps.
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Proof. The basic idea is to carry out the proof inductively: the theorem will be proved directly for the two disjoint6

cases σ ∈ �, and σ ∈ A\� (i.e. the base of the induction), and inductively for the remaining cases: σ 
∈ A∧σ 
∈ �
(i.e. σ 
∈ A ∪ �).

Base (σ ∈ � ∨ σ ∈ A\�)

• σ ∈ �: we have that

– σ ∈ � as hypothesis;

– σ ∈ � ⇒ r(σ,�) from the function (if σ ∈ � then return TRUE);

– σ ∈ � ⇒ σ ∈ ̂�, since � ⊆ ̂�.

Thus we shall prove that under these hypotheses r(σ,�) ⇔ σ ∈ ̂� holds, i.e.:

σ ∈ �

∧
σ ∈ � ⇒ r(σ, �)
∧
σ ∈ � ⇒ σ ∈ ��

�����
����

⇒
�
r(σ, �) ⇔ σ ∈ ���

which can be easily proved by using boolean expressions.
• σ ∈ A\�: we have that

– σ ∈ A ∧ σ 
∈ � as hypothesis;

– σ ∈ A ∧ σ 
∈ � ⇒ r(σ,�) from the function (else (σ ∈ A\�) return FALSE);

– σ ∈ A ⇒ (σ ∈ � ⇔ σ ∈ ̂�) from rule (17).

Thus we shall prove that under these hypotheses r(σ,�) ⇔ σ ∈ ̂� holds, i.e.:

σ ∈ A ∧ σ 
∈ �

∧
σ ∈ A ∧ σ 
∈ � ⇒ r(σ, �)
∧
σ ∈ A ⇒ (σ ∈ � ⇔ σ ∈ ��)

������
�����

⇒
�
r(σ, �) ⇔ σ ∈ ���

which can be easily proved by using boolean expressions. �

Induction (σ 
∈ A ∪ �)

• σ � suc(σ1) ∧ suc(σ1) 
∈ �: trivially r(σ1, �) ⇒ r(suc(σ1), �), moreover suc(σ1) 
∈ �, and this makes true
also the backward implication,7 leading us to have:

r(suc(σ1), �) ⇔ r(σ1, �)

Closure rules (2) and (9) state that σ1 ∈ ̂� ⇔ suc(σ1) ∈ ̂�.
By inductively assuming r(σ1, �) ⇔ σ1 ∈ ̂�, we have the thesis:

r(suc(σ1), �) ⇔ r(σ1, �) ⇔ σ1 ∈ ̂� ⇔ suc(σ1) ∈ ̂�

• σ � (σ1, σ2) ∧ (σ1, σ2) 
∈ �: trivially r(σ1, �) ∧ r(σ2, �) ⇒ r((σ1, σ2), �), moreover (σ1, σ2) 
∈ �, and this
makes true also the backward implication, leading us to have:

r((σ1, σ2), �) ⇔ r(σ1, �) ∧ r(σ2, �)

Closure rules (3) and (10) state that σ1 ∈ ̂� ∧ σ2 ∈ ̂� ⇔ (σ1, σ2) ∈ ̂�.

6 � ∩ (A\�) � ∅.
7 we know that r(suc(σ1), �) has given TRUE, and that the result has been computed by means of r(σ1, �).
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By inductively assuming r(σ1, �) ⇔ σ1 ∈ ̂� and r(σ2, �) ⇔ σ2 ∈ ̂�, we have:

r(σ1, �) ∧ r(σ2, �) ⇔ r((σ1, σ2), �)
∧
r(σ1, �) ⇔ σ1 ∈ ��
∧
r(σ2, �) ⇔ σ2 ∈ ��
∧
σ1 ∈ �� ∧ σ2 ∈ �� ⇔ (σ1, σ2) ∈ ��

����������
���������

⇒
�
r((σ1, σ2), �) ⇔ (σ1, σ2) ∈ ���

which can be easily proved by using boolean expressions. �
• σ � {σ1}σ2 ∧ {σ1}σ2 
∈ �: trivially r(σ1, �) ∧ r(σ2, �) ⇒ r({σ1}σ2 , �), moreover {σ1}σ2 
∈ �, and this makes

true also the backward implication, thus leading us to have

r(σ1, �) ∧ r(σ2, �) ⇔ r({σ1}σ2 , �)

Now we have to deal with the two following cases:

– {σ1}σ2 ∈ ̂�: being � a subset of ̂�, rules relating � with ̂� hold, i.e. (20) in particular; closure rules (4)
and (11) always hold, and we have {σ1}σ2 
∈ � by hypothesis, leading us to

{σ1}σ2 
∈ �

∧
{σ1}σ2 ∈ ��
∧
σ1 ∈ �� ∧ σ2 ∈ �� ⇒ {σ1}σ2 ∈ ��
∧
{σ1}σ2 ∈ �� ∧ σ2 ∈ �� ⇒ σ1 ∈ ��
∧
{σ1}σ2 ∈ � ⇔ σ2 
∈ ��

��������������
�������������

⇒
�
σ1 ∈ �� ∧ σ2 ∈ �� ⇔ {σ1}σ2 ∈ ���

which can be easily proved by using boolean expressions. �

– {σ1}σ2 
∈ ̂�: here we have no constraints coming from �, and just closure rules (4) and (11) hold, leading
us to

{σ1}σ2 
∈ ��
∧
σ1 ∈ �� ∧ σ2 ∈ �� ⇒ {σ1}σ2 ∈ ��
∧
{σ1}σ2 ∈ �� ∧ σ2 ∈ �� ⇒ σ1 ∈ ��

������
�����

⇒
�
σ1 ∈ �� ∧ σ2 ∈ �� ⇔ {σ1}σ2 ∈ ���

which can be easily proved by using boolean expressions. �

and both of them lead to σ1 ∈ ̂� ∧ σ2 ∈ ̂� ⇔ {σ1}σ2 ∈ ̂�. By inductively assuming r(σ1, �) ⇔ σ1 ∈ ̂� and
r(σ2, �) ⇔ σ2 ∈ ̂�, we have:

r(σ1, �) ∧ r(σ2, �) ⇔ r({σ1}σ2 , �)
∧
σ1 ∈ �� ∧ σ2 ∈ �� ⇔ {σ1}σ2 ∈ ��
∧
r(σ1, �) ⇔ σ1 ∈ ��
∧
r(σ2, �) ⇔ σ2 ∈ ��

����������
���������

⇒
�
r({σ1}σ2 , �) ⇔ {σ1}σ2 ∈ ���

which can be easily proved by using boolean expressions. �
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• σ � H(σ1) ∧ H(σ1) 
∈ �: trivially r(σ1, �) ⇒ r(H(σ1), �), moreover H(σ1) 
∈ �, and this makes true also
the backward implication, thus leading us to have

r(σ1, �) ⇔ r(H(σ1), �))

Now we have to deal with the two following cases:

– H(σ1) ∈ ̂�: being � a subset of ̂�, rules relating � with ̂� hold, i.e. (21) in particular; closure rule (5)
always holds, and we have H(σ1) 
∈ � by hypothesis, leading us to

H(σ1) 
∈ �

∧
H(σ1) ∈ ��
∧
σ1 ∈ �� ⇒ H(σ1) ∈ ��
∧
H(σ1) ∈ � ⇔ σ1 
∈ ��

����������
���������

⇒
�
σ1 ∈ �� ⇔ H(σ1) ∈ ���

which can be easily proved by using boolean expressions. �

– H(σ1) 
∈ ̂�: here we have no constraints coming from �, and just closure rule (5) holds, leading us to

H(σ1) 
∈ ��
∧
σ1 ∈ �� ⇒ H(σ1) ∈ ��

��
� ⇒

�
σ1 ∈ �� ⇔ H(σ1) ∈ ���

which can be easily proved by using boolean expressions, �

and both of them lead to σ1 ∈ ̂� ⇔ H(σ1) ∈ ̂�. By inductively assuming r(σ1, �) ⇔ σ1 ∈ ̂�, we have:

r(σ1, �) ⇔ r(H(σ1), �)
∧
σ1 ∈ �� ⇔ H(σ1) ∈ ��
∧
r(σ1, �) ⇔ σ1 ∈ ��

������
�����

⇒
�
r(H(σ1), �) ⇔ H(σ1) ∈ ���

which can be easily proved by using boolean expressions. �
• σ � {[σ1]}σ +

2
∧ {[σ1]}σ +

2

∈ �: trivially r(σ1, �) ∧ r(σ +

2 , �) ⇒ r({[σ1]}σ +
2
, �), moreover {[σ1]}σ +

2

∈ �, and this

makes true also the backward implication, thus leading us to have

r(σ1, �) ∧ r(σ +
2 , �) ⇔ r({[σ1]}σ +

2
, �)

Now we have to deal with the two following cases:

– {[σ1]}σ +
2

∈ ̂�: being � a subset of ̂�, rules relating � with ̂� hold, i.e. (22) in particular; closure rule (6)
always holds, and we have {[σ1]}σ2 
∈ � by hypothesis, leading us to

{[σ1]}σ+
2


∈ �

∧
{[σ1]}σ+

2
∈ ��

∧
σ1 ∈ �� ∧ σ+

2 ∈ �� ⇒ {[σ1]}σ+
2

∈ ��
∧
{[σ1]}σ+

2
∈ � ⇔ σ+

2 
∈ �� ∨ σ1 
∈ ��

�����������
����������

⇒
�
.σ1 ∈ �� ∧ σ+

2 ∈ �� ⇔ {[σ1]}σ+
2

∈ ���

which can be easily proved by using boolean expressions. �

– {[σ1]}σ +
2


∈ ̂�: here we have no constraints coming from �, and just closure rule (6) holds, leading us to

{[σ1]}σ+
2


∈ ��
∧
σ1 ∈ �� ∧ σ+

2 ∈ �� ⇒ {[σ1]}σ+
2

∈ ��

���
�� ⇒

�
σ1 ∈ �� ∧ σ+

2 ∈ �� ⇔ {[σ1]}σ+
2

∈ ���

which can be easily proved by using boolean expressions. �
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and both of them lead to σ1 ∈ ̂� ∧ σ +
2 ∈ ̂� ⇔ {[σ1]}σ +

2
∈ ̂�. By inductively assuming r(σ1, �) ⇔ σ1 ∈ ̂�

and r(σ +
2 , �) ⇔ σ +

2 ∈ ̂�, we have:

r(σ1, �) ∧ r(σ+
2 , �) ⇔ r({[σ1]}σ+

2
, �)

∧
σ1 ∈ �� ∧ σ+

2 ∈ �� ⇔ {σ1}σ+
2

∈ ��
∧
r(σ1, �) ⇔ σ1 ∈ ��
∧
r(σ+

2 , �) ⇔ σ+
2 ∈ ��

����������
���������

⇒
�
r({[σ1]}σ+

2
, �) ⇔ {[σ1]}σ+

2
∈ ���

which can be easily proved by using boolean expressions. �
• σ � [{σ1}]σ−

2
∧ [{σ1}]σ−

2

∈ � is handled exactly as the previous one [where closure rule (7) replaces (6), and

(23) replaces (22)].
• σ � σ +

1 ∧ σ +
1 
∈ �: trivially r(σ1, �) ⇒ r(σ +

1 , �), moreover σ +
1 
∈ �, and this makes true also the backward

implication, thus leading us to have

r(σ1, �) ⇔ r(σ +
1 , �))

Now we have to deal with the two following cases:

– σ +
1 ∈ ̂�: being � a subset of ̂�, rules relating � with ̂� hold, i.e. (24) in particular; closure rule (8) always

holds, and we have σ +
1 
∈ � by hypothesis, leading us to

σ+
1 
∈ �

∧
σ+

1 ∈ ��
∧
σ1 ∈ �� ⇒ σ+

1 ∈ ��
∧
σ+

1 ∈ � ⇔ σ1 
∈ ��

����������
���������

⇒
�
σ1 ∈ �� ⇔ σ+

1 ∈ ���

which can be easily proved by using boolean expressions. �

– σ +
1 
∈ ̂�: here we have no constraints coming from �, and just closure rule (8) holds, leading us to

σ+
1 
∈ ��

∧
σ1 ∈ �� ⇒ σ+

1 ∈ ��

��
� ⇒

�
σ1 ∈ �� ⇔ σ+

1 ∈ ���

which can be easily proved by using boolean expressions. �

and both of them lead to σ1 ∈ ̂� ⇔ σ +
1 ∈ ̂�. By inductively assuming r(σ1, �) ⇔ σ1 ∈ ̂�, we have:

r(σ1, �) ⇔ r(σ+
1 , �)

∧
σ1 ∈ �� ⇔ σ+

1 ∈ ��
∧
r(σ1, �) ⇔ σ1 ∈ ��

������
�����

⇒
�
r(σ+

1 , �) ⇔ σ+
1 ∈ ���

which can be easily proved by using boolean expressions. �
• σ � σ−

1 ∧ σ−
1 
∈ � is handled exactly as the previous one, where (25) replaces (24).

Since, by hypothesis, σ is a finite message, and � is a finite set containing finite messages only (Theorem 3.1), the
check r(σ,�) can be carried out in a finite number of steps. �
Theorem C.6 Given a finite set of terms � ⊆ T , and � defined by (17)–(25) ⇒ rules (26)–(36) do not hold in �.

Proof. The basic idea is to carry out the proof for each syntactic form of σ ∈ �

• σ ∈ A: no rule among (26)–(36) deals with names, then we have the thesis.
• σ � suc(σ1): rule (18) forbids suc(·) to belong to �, and makes rule (31) inapplicable, the only one dealing

with suc(·) among (26)–(36).
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• σ � (σ1, σ2): rule (19) forbids (·, ·) to belong to �, and makes rule (32) inapplicable, the only one dealing with
(·, ·) among (26)–(36).

• σ � {σ1}σ2 : from (20) we have that {σ1}σ2 ∈ � ⇔ σ2 
∈ ̂�, and, by Theorem C.2, we have σ2 
∈ ̂� ⇒ r(σ2, �).
Among rules (26)–(36), just (33) deals with {·}·, but it needs r(σ2, �), and we have r(σ2, �).

• σ � H(σ1): from (21) we have that H(σ1) ∈ � ⇔ σ1 
∈ ̂�, and, by Theorem C.2, we have σ1 
∈ ̂� ⇒ r(σ1, �).
Among rules (26)–(36), just (26) deals with H(·), but it needs r(σ1, �), and we have r(σ1, �).

• σ � σ +
1 : from (24) we have that σ +

1 ∈ � ⇔ σ1 
∈ ̂�, and, by Theorem C.2, we have σ1 
∈ ̂� ⇒ r(σ1, �).
Among rules (26)–(36), just (29) deals with ·+, but it needs r(σ1, �), and we have r(σ1, �).

• σ � σ−
1 : as the above case, where (25) and (30) replace (24) and (29), respectively.

• σ � {[σ1]}σ +
2

: from (22) we have that {[σ1]}σ2 ∈ � ⇔ σ1 
∈ ̂� ∨ σ2 
∈ ̂�, and, by Theorem C.2, we have

σ1 
∈ ̂� ∨ σ2 
∈ ̂� ⇒ r(σ1, �) ∧ r(σ2, �). Among rules (26)–(36), (27) deals with {[·]}·+ , but it needs
r(σ2, �) ∧ r(σ1, �), and we have r(σ1, �) ∧ r(σ2, �).

• σ � [{σ1}]σ−
2

: as the above case, where (23) and (28) replace (22) and (27), respectively.

Now we have proved that rules (26)–(32) and (33) are inapplicable, and we still need to prove that also (34), (35),
and (36) are inapplicable:

• (34): if we absurdly assume that (34) holds, given {[σ1]}σ +
2

∈ �, we would have r(σ−
2 , �) ∧ r(σ1, �). In

particular r(σ−
2 , �) would enable Theorem C.4, then r(σ−

2 , �) ⇔ σ−
2 ∈ ̂�

I

and, being ̂�
I ⊆ ̂�, σ−

2 ∈ ̂�.

Since � ⊆ ̂�, we would have {[σ1]}σ +
2

∈ ̂� and σ−
2 ∈ ̂�, i.e. rule (12) would hold, giving us σ1 ∈ ̂� and, by

Theorem C.5 when � replaces a generic �, we would have r(σ1, �), but, by assuming (34) holding, we also
have r(σ1, �).

• (35): as the above case, where (13) and (35) replace (12) and (34), respectively.
• (36): if we absurdly assume that (36) holds, we would have σ + ∈ � ∧ σ− ∈ �, and this would enable (14),

leading us to have σ ∈ ̂�, but (24) and (25) hold and prevent σ ∈ ̂�.

Since the theorem holds for each syntactic form of σ ∈ �, we have the proof. �
Theorem C.7 Given a finite set of terms � ⊆ T ,

if rules (26)–(36) do not hold in � ⇒ ̂�\ ̂�I � ∅
i.e. from such a � we can build ̂� by using I rules only (̂� ≡ ̂�I ).

Proof. Let us absurdly assume that exists σ ∈ ̂�\̂�I . Then, in the sequence of closure rules leading to σ from �,
at least a rule among (9)–(14) shall exist.
The basic idea is to carry out the proof inductively:

Base (we assume that a rule among (9)–(14) is the first one in the sequence of rules leading to σ from �)

• (9): if this rule holds in �, then also (31) holds, but this is forbidden by hypothesis.
• (10): if this rule holds in �, then also (32) holds, but this is forbidden by hypothesis.
• (11): if this rule holds in �, then we have {σ1}σ2 ∈ � ∧ σ2 ∈ �, then also (33) holds, but this is forbidden by

hypothesis.
• (12): if this rule holds in �, then we have {[σ1]}σ +

2
∈ � ∧ σ−

2 ∈ �, so the first two hypotheses of rule (34) hold.
Let us now investigate what happens of the third hypothesis of rule (34):

– if r(σ1, �) then all the hypotheses of rule (34) hold, absurdly enabling it

– if r(σ1, �) then (34) does not hold, and, by Theorem C.4 it follows that σ1 ∈ ̂�I , and it means that σ1 can
be built from � by means of rules (1) and (2)–(8), i.e. rule (12) is not needed to compute σ1.

In practice, by assuming (12) enabled in �, we have two scenarios: an absurd situation, or rule (12) produces
a term which can be also computed by means of I rules only, i.e. (12) is not needed.
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• (13): the same as above, where we replace (12), (34), {[σ1]}σ +
2

and σ−
2 with (13), (35), [{σ1}]σ−

2
and σ +

2 , respectively.

• (14): if this rule holds in �, then (36) is absurdly enabled.

Induction (we assume that, starting from �, rules (1) and (2)–(8) have been applied a number of times, leading
to a new set � ∪ δ� , where it holds that � ∪ δ� ⊆ ̂�I , and δ� ⊆ ̂�I , and where a rule among (9)–(14) can be
applied).

• (9): suc(σ ) ∈ � ∪ δ� leads to two disjoint sub-cases

– suc(σ ) ∈ � already managed in Base;

– suc(σ ) ∈ δ� , then it has been computed by a rule among (2)–(8), because of the hypotheses about the
construction of δ� . The only rule, among (2)–(8), able to compute suc(σ ) is (2) and this means that also
σ shall belong to � ∪ δ� , i.e. rule (9) is not needed to compute σ .

• (10): (σ1, σ2) ∈ � ∪ δ� leads to two disjoint sub-cases

– (σ1, σ2) ∈ � already managed in Base;

– (σ1, σ2) ∈ δ� , then it has been computed by a rule among (2)–(8), because of the hypotheses about the
construction of δ� . The only rule, among (2)–(8), able to compute (σ1, σ2) is (3) and this means that both
σ1 and σ2 shall belong to � ∪ δ� , i.e. rule (10) is not needed to compute σ1 and σ2.

• (11): we have that

{σ1}σ2 ∈ � ∪ δ�

∧
σ2 ∈ � ∪ δ�

and, being � ∪ δ� built by means of I rules only, also σ2 ∈ � ∪ δ� ⇒ σ2 ∈ ̂�I holds, leading to two sub-cases:

– {σ1}σ2 ∈ δ� ∧ σ2 ∈ ̂�I , then {σ1}σ2 has been computed by a rule among (2)–(8), because of the hypotheses
about the construction of δ� . The only rule, among (2)–(8), able to compute {σ1}σ2 is (4) and this means
that both σ1 and σ2 shall belong to � ∪ δ� , i.e. rule (11) is not needed to compute σ1;

– {σ1}σ2 ∈ � ∧ σ2 ∈ ̂�I : by Theorem C.4 we have that {σ1}σ2 ∈ � ∧ σ2 ∈ ̂�I ⇔ {σ1}σ2 ∈ � ∧ r(σ2, �), and
this absurdly enables rule (33).

• (12): we have that

{[σ1]}σ +
2

∈ � ∪ δ�

∧
σ−

2 ∈ � ∪ δ�

and, being � ∪ δ� built by means of I rules only, also σ−
2 ∈ � ∪ δ� ⇒ σ−

2 ∈ ̂�I holds, leading to two
sub-cases:

– {[σ1]}σ +
2

∈ δ� ∧σ−
2 ∈ ̂�I , then {[σ1]}σ +

2
has been computed by a rule among (2)–(8), because of the hypoth-

eses about the construction of δ� . The only rule, among (2)–(8), able to compute {[σ1]}σ +
2

is (6) and this
means that both σ1 and σ +

2 shall belong to � ∪ δ� , i.e. rule (12) is not needed to compute σ1;

– {[σ1]}σ +
2

∈ �∧σ−
2 ∈ ̂�I : by Theorem C.4 we have that {[σ1]}σ +

2
∈ �∧σ−

2 ∈ ̂�I ⇔ {[σ1]}σ +
2

∈ �∧r(σ−
2 , �),

so the first two hypotheses of rule (34) hold in �, and, even more so, they hold in � ∪ δ� ({[σ1]}σ +
2

∈
� ∪ δ� ∧ r(σ−

2 , � ∪ δ�)). Let us now investigate what happens of the third hypothesis of rule (34):

· if r(σ1, � ∪ δ�) then by Theorem C.4 it holds that σ1 
∈ ̂� ∪ δ�

I
and, being δ� ⊆ ̂�I , it also holds that

σ1 
∈ ̂�I , leading to r(σ1, �) (by Theorem C.4). So now we have that {[σ1]}σ +
2

∈ �∧r(σ−
2 , �)∧r(σ1, �),

absurdly enabling rule (34) in �;

· if r(σ1, � ∪ δ�) then by Theorem C.4 it holds that σ1 ∈ ̂� ∪ δ�

I
and, being δ� ⊆ ̂�I , it also holds that

σ1 ∈ ̂�I , and it means that σ1 can be built from � by means of rules (1) and (2)–(8), i.e. rule (12) is not
needed to compute σ1.
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• (13): the same as above, where we replace (12), (34), {[σ1]}σ +
2

and σ−
2 with (13), (35), [{σ1}]σ−

2
and σ +

2 , respectively.

• (14): σ + ∈ � ∪ δ� ∧ σ− ∈ � ∪ δ� . Let us consider the following four cases separately:

– σ + ∈ � ∧ σ− ∈ �: this absurdly enables (36) in � (see Base);

– σ + ∈ δ� ∧ σ− ∈ δ� : σ + and σ− computed by a rule among (2)–(8), because of the hypotheses about the
construction of δ� . The only rule, among (2)–(8), able to compute both σ + and σ− is (8) and this means
that σ belongs to � ∪ δ� , i.e. rule (14) is not needed to compute σ ;

– σ + ∈ � ∧ σ− ∈ δ� : σ− computed by a rule among (2)–(8), because of the hypotheses about the construc-
tion of δ� . The only rule, among (2)–(8), able to compute σ− is (8) and this means that σ belong to � ∪δ� ,
i.e. rule (14) is not needed to compute σ ;

– σ + ∈ δ� ∧ σ− ∈ �: the same as above, where we exchange σ + with σ−.

Theorem C.8 Given a finite set of terms � ⊆ T , and � defined by (17)–(25),

if rules (26)–(36) do not hold in � ⇒ � ≡ �

Proof. By absurdly assuming that � 
≡ �, we have

� 
≡ � ⇒ �∃ σ ∈ � | σ 
∈ �
� ∨ �∃ σ ∈ � | σ 
∈ �

�
Let us begin to prove that ∃ σ ∈ � | σ 
∈ � leads to absurd. The proof is carried out for each syntactic form of
σ ∈ �:

• σ ∈ A (σ � a): our absurd hypothesis gives a 
∈ � and, by rule (17) (a ∈ � ⇔ a ∈ ̂�), we would have a 
∈ ̂�,
leading us to violate closure rule (1) (a ∈ � ⇒ a ∈ ̂�), so the σ we are looking for cannot be an atom.

• σ � suc(σ1): if such a term would belong to �, it would enable rule (31), violating the hypothesis.
• σ � (σ1, σ2): if such a term would belong to �, it would enable rule (32), violating the hypothesis.

• σ � {σ1}σ2 : our absurd hypothesis gives σ 
∈ � and, by rule (20) ({σ1}σ2 ∈ � ⇔ σ2 
∈ ̂�), we would have
σ2 ∈ ̂�. On the other hand, since no reduction rules are enabled, in particular do not hold the preconditions
of rule (33), i.e. r(σ2, �). Then, by Theorem C.5 (r(σ2, �) ⇔ σ2 
∈ ̂�I ), we would have σ2 ∈ ̂� \ ̂�I , i.e. a
violation of the thesis of Theorem C.7.

• σ � H(σ1): our absurd hypothesis gives σ 
∈ � and, by rule (21) (H(σ1) ∈ � ⇔ σ1 
∈ ̂�), we would have
σ1 ∈ ̂�. On the other hand, since no reduction rules are enabled, in particular do not hold the preconditions
of rule (26), i.e. r(σ1, �). Then, by Theorem C.5 (r(σ1, �) ⇔ σ1 
∈ ̂�I ), we would have σ1 ∈ ̂� \ ̂�I , i.e. a
violation of Theorem C.7.

• σ � {[σ1]}σ +
2

: our absurd hypothesis gives σ 
∈ � and, by rule (22) ({[σ1]}σ +
2

∈ � ⇔ σ +
2 
∈ ̂� ∨ σ1 
∈ ̂�), we

would have σ +
2 ∈ ̂� ∧ σ1 ∈ ̂�. On the other hand, since no reduction rules are enabled, in particular do not

hold preconditions of rules (27) and (34), i.e. r(σ1, �i ) ∧ r(σ +
2 , �i ) ∧ r(σ−

2 , �i ) ∧ ¬r(σ1, �i ). The resulting
boolean expression is

σ+
2 ∈ �� ∧ σ1 ∈ �� ∧

�
r(σ1, �) ∨ r(σ+

2 , �)
�

∧
�
r(σ−

2 , �) ∨ r(σ1, �)
�

By means of Theorem C.5, we replace r(σ1, �), r(σ +
2 , �), r(σ−

2 , �), and r(σ1, �), respectively with σ1 
∈ ̂�I ,
σ +

2 
∈ ̂�I , σ−
2 
∈ ̂�I , and σ1 ∈ ̂�I , and obtain:

σ+
2 ∈ �� ∧ σ1 ∈ �� ∧

�
σ1 
∈ ��I ∨ σ+

2 
∈ ��I
�

∧
�
σ−

2 
∈ ��I ∨ σ1 ∈ ��I
�

i.e. �
σ1 ∈ �� ∧ σ1 
∈ ��I ∧ σ+

2 ∈ �� ∧ σ−
2 
∈ ��I

�
∨
�
σ+

2 ∈ �� ∧ σ+
2 
∈ ��I ∧ σ1 ∈ �� ∧

�
σ−

2 
∈ ��I ∨ σ1 ∈ ��I
��

,

where in the two or-ed sub-expressions, we respectively, find σ1 ∈ ̂� ∧ σ1 
∈ ̂�I and σ +
2 ∈ ̂� ∧ σ +

2 
∈ ̂�I ,
which violate Theorem C.7, and make false the whole expression.

• σ � [{σ1}]σ−
2

: the same as above, where we replace (22), (27), (34), {[σ1]}σ +
2

, σ +
2 and σ−

2 with (23), (28), (35),
[{σ1}]σ−

2
, σ−

2 and σ +
2 , respectively.
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• σ � σ +
1 : our absurd hypothesis gives σ 
∈ � and, by rule (24) (σ +

1 ∈ � ⇔ σ1 
∈ ̂�), we would have σ1 ∈ ̂�.
On the other hand, since no reduction rules are enabled, in particular do not hold the preconditions of rule
(29) i.e. r(σ1, �). Then, by Theorem C.5 (r(σ1, �) ⇔ σ1 
∈ ̂�I ), we would have σ1 ∈ ̂�\̂�I , i.e. a violation of
Theorem C.7.

• σ � σ−
1 : the same as above, where we replace (24), (29), and σ +

1 with (25), (30), and σ−
1 , respectively.

Let us now prove that ∃ σ ∈ � | σ 
∈ � leads to absurd.
Because of σ ∈ �, Theorem C.1 (σ ∈ � ⇔ σ cannot have been built by rules (2)–(8) from ̂�) holds, and, being
� ⊆ ̂�, even more so, it holds in �, preventing us from building σ from � by means of rules (2)–(8).
By definition of �, we have � ⊆ ̂�, and, since σ ∈ �, we have σ ∈ ̂�. Moreover, hypotheses of Theorem C.7
hold here, so we have that ̂� ≡ ̂�I , leading to σ ∈ ̂�I . This means that σ can be computed from � by means of
closure rules (1) and (2)–(8) only (definition C.1). On the other hand, our absurd hypothesis σ 
∈ � prevents the
use of closure rule (1) during the computation of σ from �, leaving us closure rules (2)–(8) only for computing σ
from �: this makes the thesis of Theorem C.1 false, leading to make its hypotheses false. Since they are a subset
of our hypotheses, also the latter ones become false. �
Proposition 3.2 Given a finite set of terms �, there exists a finite reduction of � such that:

� � �0
R0−→ �1 · · · �k−1

Rk−1−→ �.

Proof. First of all we prove that each sequence of one-step reductions is finite, then we prove that the last computed
set is �.
Each rule in (26)–(36) in particular needs that a certain term σ belong to �i . Anyway, when all the premises are
satisfied, each one add to �i+1 a sub-term of σ , i.e. a simpler term.
Moreover, rules (26)–(33) and (36) always remove σ from �i+1, while (34) and (35) do not do it, but the presence
of the subterm of σ (σ1 in this case) in �i+1 prevents the rule from being enabled again on the same term.
In practice almost all rules replace a term σ with a simpler one, while a couple of them does not remove σ , but
prevent the rule itself from entering an infinite loop on the same term.
Then, being � finite, just a finite number of reduction steps can be done.
Above we have proved that always we reach a �k where no reduction rules are enabled, then Theorem C.8 holds,
leading us to state that �k ≡ �. Theorem C.6 states that in � no reduction rules are enabled. �
Proof of Theorem 3.3 Since Theorem 3.1 guarantees the closure preservation after each reduction step, by means

of Proposition 3.2 we have that ̂� ≡ ̂�. �
Proof of Theorem 3.4 Trivially from Proposition 3.2. �
Proof of Theorem 3.5 Trivially from Theorem 3.4, Theorem 3.3 and Theorem C.5. �

Appendix D: Extension to associative and commutative operators

In order to be sound, the extensions to the knowledge representation method described in Sect. 4 must not
invalidate any of the theorems and propositions introduced in Sect. 3.
Figure 10 depicts the relationships among the theorems, corollaries and propositions proved in Appendix C.
There, the main theorems and propositions, discussed in the main text, are highlighted by means of a grey box,
and double-stroked boxes mark the theorems whose proof also depends on one or more properties of rules (1)–
(14), (17)–(25), and (26)–(36). Finally, dependencies of a theorem on another are denoted by an arrow going from
the dependent to the dependee.
By means of Fig. 10, it is possible to locate the theorems whose proof is influenced by an extension of the above-
mentioned rules, identify the requirements they pose on the extension itself, and confirm that they are still satisfied
after the extension. In particular:

Theorem C.1 requires that the predicate of each rule within (17)–(25) and their extensions must invalidate the
corresponding I rules (2)–(8) and their extensions. Moreover, from the negation of the premises of rules
(2)–(8), it must be possible to derive the truth of the right-hand side of the corresponding rules in (17)–(25).
For a commutative operator, (45) implies σ1 
∈ ̂� ∨ σ2 
∈ ̂�, which invalidates the premises of (44). On the
other hand, the negation of the premises of (44) implies the truth of the right-hand side of (45).
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Theorem C.1 Theorem C.2 Theorem C.3

Proposition 3.1

Theorem C.4

Theorem C.7

Theorem C.8

Theorem C.5

Theorem C.6

Proposition 3.2

Theorem 3.4

Theorem 3.5

Corollary C.0.1

Theorem 3.2

Theorem 3.3

Theorem 3.1

Fig. 10. Dependencies of the theorems, corollaries and propositions proved in Appendix C, among themselves and with respect to rules
(1)–(14), (17)–(25), (26)–(36), and their extensions

For an associative operator, (48) implies �(σ11, . . . , σ1m ) 
∈ ̂� ∨ � (σ21, . . . , σ2n ) 
∈ ̂�, hence it cannot
be �(σ11, . . . , σ1m ) ∈ ̂� ∧ � (σ21, . . . , σ2n ) ∈ ̂� as required by (47). On the other hand, the negation of
the premises of (47) yields �(σ1, . . . , σi ) 
∈ ̂� ∨ � (σi+1, . . . , σn ) 
∈ ̂� for any i , which coincides with the
right-hand side of (48).
When considering an operator which is both commutative and associative, (51) implies �(σ11, . . . , σ1m ) 
∈
̂� ∨ � (σ21, . . . , σ2n ) 
∈ ̂�, hence it cannot be �(σ11, . . . , σ1m ) ∈ ̂� ∧ � (σ21, . . . , σ2n ) ∈ ̂� as required by
(50). On the other hand, the negation of the premises of (50) yields �(S1) 
∈ ̂� ∨ � (S2) 
∈ ̂� for any choice
of S1,S2 | S1 
� ∅ ∧ S2 
� ∅ ∧ S1 ∩ S2 � ∅ ∧ S1 ∪ S2 � {σ1, . . . , σn }, which makes the right-hand side of
(51) true.

Theorem C.2 proceeds by induction, with a separate case for each possible syntactic form of the term being
considered. From the similarities between the proofs of Theorems C.2 and C.4, it is possible to conclude that
Theorem C.4 is a stronger form of Theorem C.2:

r(σ,S ) ⇔ σ ∈ ̂S I by Theorem C.4 (88)

S ⊆ ̂� ⇒ ̂S ⊆ ̂� hypothesis of C.2, property of closures (89)
̂S I ⊆ ̂S restriction of a closure (90)

r(σ,S ) ⇒ σ ∈ ̂S I ⇒ σ ∈ ̂S ⇒ σ ∈ ̂� thesis of C.2 (91)

Therefore, the same proof technique that will be described for Theorem C.4 applies to Theorem C.2 as well.
Proposition 3.1 considers the reduction rules (26)–(36) one at a time. The rules added by the extension are similar,

for example, to (26) because they all have �O � ∅. The proof requires that, for each added rule:

• In the preconditions of the rule, r(·, ·) is always invoked on a proper subterm of the term in �i being
considered.

• By using an I rule, it must be possible to rebuild the terms which were removed from �i by the application
of the rule.
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By inspection, it can be seen that it is possible to rebuild the term σ1 � σ2 removed by (46) through rule
(44). In the same way, it is possible to rebuild �(σ1, . . . , σn ) removed by (49) through rule (47) by letting
σ11 � σ1, . . . , σ1m � σi , σ21 � σi+1, . . . With respect to rule (52), the removed term is in canonical form,
because it belonged to �i , and will be reintroduced in canonical form by (50) due to the forced canoni-
calisation on its right-hand side, with an appropriate assignment of σ1, . . . , σn to σ11, . . . , σ1m , σ21, . . . This
consideration also justifies the addition of the canonicalisation to rule (50) with respect to (47).

Theorem C.4 proceeds by induction, with a separate case for each possible syntactic form of the term being
considered. For a commutative operator �, the following must be proved:

• r(σ1, �) ∧ r(σ2, �) ⇒ r(σ1 � σ2, �)

• Assuming that σ1 � σ2 
∈ �, r(σ1 � σ2, �) ⇒ r(σ1, �) ∧ r(σ2, �)

• From the inductive hypothesis r(σ1, �) ⇔ σ1 ∈ ̂�I ∧ r(σ2,S ) ⇔ σ2 ∈ ̂�I , it must be r(σ1 � σ2, �) ⇒
r(σ1, �) ∧ r(σ2, �) ⇒ σ1 ∈ ̂�I ∧ σ2 ∈ ̂�I ⇒ σ1 � σ2 ∈ ̂�I

All these claims can easily be proved by examining the extension to the r(·, ·) function presented in Sect. 4.3
and the additional closure rule (44), which concurs to the construction of ̂�I being an I rule.
When associative operators are considered, the requirements become:

• r(�(σ11, . . . , σ1m ), �) ∧ r(�(σ21, . . . , σ2n ), �) ⇒ r(�(σ11, . . . , σ1m , σ21, . . . , σ2n ), �)

• Assuming that �(σ11, . . . , σ1m , σ21, . . . , σ2n ) 
∈ �,

r(�(σ11, . . . , σ1m , σ21, . . . , σ2n ), �) ⇒ r(�(σ11, . . . , σ1m ), �) ∧ r(�(σ21, . . . , σ2n ), �)

• From the inductive hypothesisr(�(σ11, . . . , σ1m ), �) ⇔ �(σ11, . . . , σ1m ) ∈ ̂�I ∧ r(�(σ21, . . . , σ2n ), �) ⇔
�(σ21, . . . , σ2n ) ∈ ̂�I , it must be

r(�(σ11, . . . , σ1m , σ21, . . . , σ2n ), �) ⇔ r(�(σ11, . . . , σ1m ), �) ∧ r(�(σ21, . . . , σ2n ), �) ⇔
�(σ11, . . . , σ1m ) ∈ ̂�I ∧ � (σ21, . . . , σ2n ) ∈ ̂�I ⇔ �(σ11, . . . , σ1m , σ21, . . . , σ2n ) ∈ ̂�I

Again, these claims can be proved by examining the extension to the r(·, ·) function presented in Sect. 4.4 and
the additional closure rule (47).
If the operator is both associative and commutative, then the above requirements must be satisfied regardless
of the order of the operands σ11, . . . , σ1m and σ21, . . . , σ2n . This justifies the introduction of subsets S1 and
S2 in the extension to the r(·, ·) function made in this case.

Theorem C.5 requires the same properties as Theorem C.4.

Theorem C.6 uses Theorem C.2 to state that σ1 
∈ ̂� ∨ σ2 
∈ ̂� ⇒ r(σ1, �) ∨ r(σ2, �).
Then, all the reduction rules in (26)–(36) and their extension which can possibly apply to the commutative
operator σ1 � σ2 must require r(σ1, �) ∧ r(σ2, �), and therefore be inapplicable. This constraint is trivially
satisfied by rule (46).
For an associative operator, rule (49) must be inapplicable if

∀ i ∈ [1,n − 1] | r(�(σ1, . . . , σi ), �) ∨ r(�(σi+1, . . . , σn ), �),

but the preconditions of the rule satisfy this constraint. If the operator is also commutative, the same state-
ment must be true regardless of the order in which the operands σ1, . . . , σn are considered: this justifies the
introduction of subsets S1 and S2 in rule (52).

TheoremC.7 uses several properties of E rules, but no additional rules of this kind are added by the extension.
TheoremC.8 proceeds by absurd with a separate path for each syntactic form of the term σ begin considered.

For a commutative operator � the proof requires the following steps:

• If σ1 � σ2 ∈ � but σ1 � σ2 
∈ �, then it must be σ1 ∈ ̂� ∧ σ2 ∈ ̂�. This is guaranteed by rule (45).

• The inapplicability of the corresponding reduction rule (46) implies that r(σ1, �) ∨ r(σ2, �).

• By Theorem C.4, this implies σ1 
∈ ̂�I ∨ σ2 
∈ ̂�I . Then, it would be σ1 ∈ ̂�\̂�I ∨ σ1 ∈ ̂�\̂�I , but this
is absurd because it violates Theorem C.7.



Attacker’s knowledge in protocol analysis 347

For an associative operator, the steps become:

• If �(σ11, . . . , σ1m , σ21, . . . , σ2n ) ∈ � but �(σ11, . . . , σ1m , σ21, . . . , σ2n ) 
∈ �, then it must be �(σ11, . . . ,

σ1m ) ∈ ̂� ∧ � (σ21, . . . , σ2n ) ∈ ̂�. This is guaranteed by rule (48).

• The inapplicability of the corresponding reduction rule (49) implies that

r(�(σ11, . . . , σ1m ), �) ∨ r(�(σ21, . . . , σ2n ), �).

• By Theorem C.4, this implies �(σ11, . . . , σ1m ) 
∈ ̂�I ∨ � (σ21, . . . , σ2n ) 
∈ ̂�I . Then, it would be
�(σ11, . . . , σ1m ) ∈ ̂�\̂�I ∨ � (σ21, . . . , σ2n ) ∈ ̂�\̂�I ,but this is absurd because it violates Theorem C.7.

If the associative operator is also commutative, the steps must be valid regardless of the order in which
σ11, . . . , σ1m , σ21, . . . , σ2n are considered. This is guaranteed by the introduction of subsets S1 and S2 in (51)
and (52).

Proposition 3.2 could be invalidated only by additional reduction rules with a non-empty �O , but this is not the
case for any of the extended rules.
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