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Abstract. A fundamental method of analyzing a system such as a program or a circuit is invariance analysis,
in which one proves that an assertion holds on all reachable states. Typically, the proof is performed via induc-
tion; however, an assertion, while invariant, may not be inductive (provable via induction). Invariant generation
procedures construct auxiliary inductive assertions for strengthening the assertion to be inductive. We describe
a general method of generating invariants that is incremental and property-directed. Rather than generating
one large auxiliary inductive assertion, our method generates many simple assertions, each of which is inductive
relative to those generated before it. Incremental generation is amenable to parallelization. Our method is also
property-directed in that it generates inductive assertions that are relevant for strengthening the given assertion.
We describe two instances of our method: a procedure for generating clausal invariants of finite-state systems
and a procedure for generating affine inequalities of numerical infinite-state systems. We provide evidence that
our method scales to checking safety properties of some large finite-state systems.

Keywords: Static analysis; Model checking; Invariant generation; Affine invariants; Polynomial invariants;
Clausal invariants

1. Introduction

A safety assertion of a transition system such as a program or a sequential circuit asserts that all reachable states
of the system satisfy the assertion; or, alternately, that certain states are unreachable. The fundamental technique
for proving that a safety assertion is a property of a given system is induction: prove that (1) every initial state of
the transition system satisfies the assertion; and that (2) if a state satisfies the assertion, then so does its successors
[Flo67, MP95]. Unfortunately, there are many safety properties of systems that are not inductive—they cannot
be proved through induction.

How, then, does one prove that such a safety assertion is indeed a property of its system? The inductive
assertion method of proving a safety assertion � of a system suggests finding an auxiliary assertion χ such that
� ∧ χ is inductive for the system [MP95, BM07a]. Typically, each of the two steps of the inductive argument
are carried out by a theorem prover. The challenge, of course, is to find this auxiliary assertion. Methods for
finding auxiliary inductive assertions are collectively known as invariant generation procedures. We review the
main characteristics of these procedures and then introduce our approach to invariant generation.

Correspondence and offprint requests to: A. R. Bradley, E-mail: arbrad@cs.stanford.edu



380 A. R. Bradley and Z. Manna

1.1. Bottom-up invariant generation

A standard method for finding inductive assertions is abstract interpretation [CC77]. It is a bottom-up technique
in that it considers only the system and not any assertion that one would like to prove. An abstract interpretation
over-approximates the semantics of a given transition system in some abstract domain by interpreting the effects
of the initial condition and each transition of the system within this domain. An inductive assertion within the
domain is a fixpoint of the equations given by the abstract semantics, and it over-approximates the reachable states
of the system. Such an assertion may or may not be sufficient for proving the desired safety assertion. Examples
of abstract domains include numerical domains such as linear equations [Kar76], intervals [CC77], polyhedra
[CH78], octahedra [Min01], and template constraints [SSM05]; and memory shape domains [WSR02].

The classic implementation of abstract interpretation is to compute a forward propagation within the abstract
domain according to the system semantics [CC77]. To guarantee termination of the forward propagation, many
domains require a widening operator that guesses the limit of the forward propagation. In the examples given
above, only the domain of linear equations guarantees termination of the analysis; the other domains require
applying a widening operator in practice, sacrificing completeness.

An alternative implementation is to compute a fixpoint directly via a related constraint system [AW92, Aik99,
CSS03]. For example, the duality theorem of linear programming [Sch86] can be exploited to construct a constraint
system whose solutions are inductive affine inequalities [CSS03]. Affine inequalities are related to polyhedra in
that each facet of a polyhedron is given by an affine inequality. However, the forward propagation-based and
constraint-based analyses differ in that the former can compute an inductive assertion consisting of many affine
inequalities [CH78], while the latter solves for only one or a small fixed number of inductive affine inequalities
[CSS03]. Additionally, the constraint-based approach is complete for a given number of inequalities—it will find
an inductive assertion of a set size if one exists—while forward propagation is not complete for any class of
assertions because of the necessary application of widening. Practically, the two strategies for implementation
have trade-offs: the dual-representation implementation of the polyhedral domain can require in practice an
exponential amount of space, while constraint solvers based on linear-programming typically require little space.
However, achieving efficiency in practice with the constraint-based approach requires giving up completeness:
to maintain completeness requires solving nonlinear constraints [Tar51, Col75], inhibiting the scalability of an
exact solver.

1.2. Top-down invariant generation

In contrast to bottom-up invariant generation procedures, top-down, or property-directed, procedures focus on a
given (noninductive) safety assertion. A well-known example of a top-down procedure is BDD-based symbolic
model checking of safety properties of finite-state systems [CE82, BCM+92]. The typical fixpoint computation
starts with the safety assertion and then iteratively strengthens it by computing and conjoining weakest precon-
ditions. [The weakest precondition of a set of states S is the set of states that must reach a state of S in one
step (or from which the system cannot progress).] A fixpoint is detected when the weakest precondition of the
current intermediate assertion is implied by the intermediate assertion itself. If the fixpoint contains the initial
states of the system, the safety assertion indeed holds, and the computed fixpoint is an inductive proof of this
fact. Otherwise, the safety assertion is invalid for the system.

The advantage of a top-down invariant generation procedure is that it computes an auxiliary assertion that is
directly useful for proving a desired safety assertion. However, an exact backward propagation, as in the BDD-
based model checker described above, can suffer to the same degree as a forward propagation. In both cases,
one can compute more information than is actually needed to prove a given safety assertion. In general, any
domain that has elements with a representation exponential in some aspect of the assertion and system, such as
the number of variables, has the potential of failing simply though generating too much information. Examples
of such domains include BDDs and polyhedra.

What one desires is to compute an inductive over-approximation of the reachable states of a system that is
strong enough to prove a given safety assertion. Such techniques exist. For example, predicate abstraction with
counterexample-guided refinement [GS97, CGJ+00] computes successively refined abstractions of the system
and its state space until the given safety assertion is proved. Interpolation-based model checking [McM03,
McM05] uses the interpolant of an unsatisfiable bounded model checking [BCCZ99] instance to compute an
over-approximation to the strongest postcondition. (The strongest postcondition of a set of states S is the set of
states that can be reached in one step from states in S .)
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1.3. Top-down incremental invariant generation

We propose an alternative approach for computing top-down invariants that is based on computing a sequence
of simple inductive assertions, each of which is inductive relative to the assertions that appear before it, such
that the conjunction of all assertions proves the given safety assertion. One assertion ϕ is inductive relative to
another assertion ψ if the inductive step of the proof of ϕ holds under the assumption ψ . We call a sequence of
such inductive assertions an incrementally inductive sequence. By “simple inductive assertions”, we mean small
assertions from a fixed domain. In Sect. 4, we show how to generate at each iteration a single inductive clause
over the latches of a circuit. In Sect. 5, we show how to generate at each iteration a single inductive affine
inequality (or a small fixed number of them) over the numerical variables of a system. Each such inductive
assertion is weak; however, the conjunction of an incrementally inductive sequence can be strong, as we show
empirically.

This approach to invariant generation is derived from the incremental approach that we typically use when
analyzing a system by hand [MP95]. It is fundamentally limited: for a fixed domain, there can exist a subset of
elements whose conjunction is inductive, yet for which there is no ordering that yields a sequence of incrementally
inductive assertions. For example, in a system in which initially x � 1 and that at each step assigns x := − x ,
neither −1 ≤ x nor x ≤ 1 is inductive, yet −1 ≤ x ≤ 1 is inductive. In even this simple system, an approach
limited to producing one new inductive affine inequality at each step must fail; and, in general, an approach
limited to producing a small fixed number of assertions at each step must fail on similar simple systems. Yet we
show that in other small programs with relatively sophisticated behavior, the incremental approach succeeds; and
we show that on circuits, the incremental approach can yield results superior to known approaches to model
checking safety properties.

We consider top-down invariant generation procedures: each element of the computed incrementally inductive
sequence should be useful in proving the given safety assertion. We propose using counterexamples to induction
to guide the generation of new incrementally inductive assertions. Specifically, if the conjunction of the cur-
rent sequence with the given safety assertion is not inductive, then there is a state that satisfies the sequence
and the safety assertion and that has a successor that violates the safety assertion. This state is a counterex-
ample to induction. The search for the next small inductive assertion then focuses on proving that this state is
unreachable. For example, the procedure of Sect. 4 searches for an inductive clause that proves that the state
is unreachable; while the procedure of Sect. 5 searches for an affine inequality that proves that the state is
unreachable.

Of course, the very process of generating a simple inductive assertion generalizes beyond the single coun-
terexample to induction. Indeed, in Sect. 4, much of the intellectual work focuses on finding a minimal (or prime)
inductive clause: a clause that does not contain a strict subclause that is also inductive. Such a clause is a maximal
inductive generalization (within the fixed domain of clauses) from the observation that the counterexample to
induction should be unreachable. Consequently, from relatively few counterexamples to induction, one often
obtains a small inductive proof of the entire safety assertion.

Immediately, one must ask: what if there is no simple inductive assertion that proves the unreachability of
a given counterexample to induction? We know that the counterexample state should be unreachable—unless
the given safety assertion is invalid for the system. Therefore, we simply augment the safety assertion to say that
this state is also an error state. For finite-state systems, this failure step guarantees completeness of the method:
the analysis either finds an auxiliary inductive assertion proving the safety assertion; or it augments the safety
assertion until it includes an initial state, indicating that the assertion fails. For infinite-state systems, such as the
systems we consider in Sect. 5, this augmentation simply avoids considering the particular counterexample to
induction again. The resulting analysis may not terminate. But the intermediate incrementally inductive sequence
can provide useful information, just as a bottom-up invariant generation procedure provides information even
when it fails to prove a particular safety assertion.

Overall, then, each iteration of a top-down incremental invariant generation procedure works as follows:

1. Check if the safety assertion � is inductive relative to the current incrementally inductive sequence χi . If so,
then the safety assertion is a property of the system.

2. Otherwise, obtain as a counterexample to induction the state s .
3. Attempt to generate a simple incrementally inductive assertion ϕi+1 that proves that s is unreachable.
4. Upon success, append the new inductive assertion to the incrementally inductive sequence: χi+1 := χi ∧ϕi+1.
5. Upon failure, augment the safety assertion to assert that state s , too, is an error state: � := � ∧ ¬s .
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1.4. The verification team

The theorem prover or constraint solver used in Step 1 can be instrumented to return several counterexamples
to induction, each of which yields a potentially different inductive assertion in Step 3. This feature is a basis
for parallelizing the analysis. Each process independently solves for a counterexample to induction, relying on
randomness—or, if necessary, the use of blocking clauses [McM02] or a similar device—to find a unique state.
The process then attempts to generate an inductive assertion proving that the state is unreachable, which it then
shares with the other processes.

This loose cooperation among processes is similar to the way in which a team of humans verifies a complex
assertion for a system. In practice, humans tackle complex properties by making simpler relevant observations
about the system in the form of lemmas. Members of a verification team make and prove such conjectures
independently and then share the information in a library. The team succeeds at proving the assertion when it is
inductive relative to the library of lemmas. We present evidence in Sect. 6 that this style of parallelization indeed
scales well to many processes, at least when analyzing empirically difficult properties of large circuits on computer
clusters available today.

This paper synthesizes two conference papers that introduce top-down incremental procedures for numerical
programs [BM06] and for circuits [BM07b]. We present a uniform abstract setting for these procedures (Sect. 3).
From this foundation, we describe the clause domain and analysis (Sect. 4) and the affine inequality domain and
analysis (Sect. 5). For applications to hardware, we present empirical results (Sect. 6). Finally, we discuss related
techniques (Sect. 7) and conclude (Sect. 8).

2. Preliminaries

2.1. Propositional logic

For Sect. 4, it will be convenient to review several useful notations and definitions of propositional logic. Other
concepts from first-order logic will be introduced as needed. A literal � is a propositional variable x or its negation
¬x . A clause c is a disjunction of literals. The size |c| of clause c is its number of literals. A subclause d � c is a
disjunction of a subset of literals of c. A formula in conjunctive normal form (CNF) is a conjunction of clauses,
while a formula in disjunctive normal form (DNF) is a disjunction of conjunctions of literals.

We write ϕ[x ] to indicate that the formula ϕ has variables x � {x1, . . . , xn }. An assignment s associates a truth
value {true, false} with each variable xi of x . ϕ[s ] is the truth value of ϕ on assignment s , and s is a satisfying
assignment of ϕ if ϕ[s ] is true. A partial assignment t need not assign values to every variable. Assignment s can
be represented as a formula ŝ , which is a conjunction of literals that correspond to the truth values given by s .

Finally, a formula ϕ implies a formula ψ if every satisfying assignment (that assigns a truth value to every
variable of ϕ and ψ) of ϕ also satisfies ψ . In this case, we say that the implication ϕ ⇒ ψ holds. The implication
ϕ ⇒ ψ holds if and only if the formula ϕ ∧ ¬ψ is unsatisfiable.

2.2. Transition systems

We model software and hardware uniformly in first-order logic as transition systems [MP95].

Definition 2.1 (Transition System) A transition system S : 〈x , θ, ρ〉 contains three components:

• a set of system variables x � {x1, . . . , xn},
• a formula θ [x ] over variables x specifying the initial condition,
• and a formula ρ[x , x ′] over variables x and x ′ specifying the transition relation.

Primed variables x ′ represent the next-state values of the variables x .

Several restricted forms of transition systems will be of interest in this paper. In a Boolean transition system,
all variables x range over B : {true, false}. Boolean transition systems are appropriate for modeling hardware. In
a real-number transition system, all variables range over R. A linear transition system is a real-number transition
system in which the atoms of θ and ρ are affine inequalities, while a polynomial transition system has polynomial
inequality atoms. Linear and polynomial transition systems are useful for analyzing programs that emphasize
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(a) (b)

Fig. 1. Example loops

numerical data (either explicitly or, for example, through size functions that map data structures to integers).
Although the variables of these systems range over R, every invariant is also an invariant when considering the
variables to range over Z.

Example 2.1 (Boolean) Consider the contrived Boolean transition system SB with variables

x � {x0, x1, x , y0, y1, y, z },
initial condition

θ : (x0 ↔ ¬x1) ∧ x ∧ (y0 ↔ ¬y1) ∧ y ∧ z ,

and transition relation

ρ :

[
(x ′

0 ↔ ¬x0) ∧ (x ′
1 ↔ ¬x1) ∧ (x ′ ↔ x0 ∨ x1)

∧ (y ′
0 ↔ x ∧ ¬y0) ∧ (y ′

1 ↔ x ∧ ¬y1) ∧ (y ′ ↔ y0 ∨ y1)
∧ (z ′ ↔ x ∧ y)

]
.

The intention is that x and y—and thus z—are always true. We assert this intention as the safety assertion� : z .
�

Example 2.2 (Alternating) Consider the linear transition system S1:

S1 〈{x : Z}, x � −1, x ′ � −x 〉.
We assert that x is always at least −1: � : x ≥ −1. �

Example 2.3 (Simple) Consider the loop Simple in Fig. 1a [CH78]. The notation · · · in Fig. 1a indicates nonde-
terministic choice. The corresponding linear transition system SSimple is the following:

x : {j , k},
θ : j � 2 ∧ k � 0,
ρ1 : j ′ � j + 4 ∧ k ′ � k ,
ρ2 : j ′ � j + 2 ∧ k ′ � k + 1,

with ρ : ρ1 ∨ ρ2. �
Example 2.4 (Integer Square-Root) Consider the loop Sqrt in Fig. 1b. It computes the integer square-root z of
positive integer x . The following linear transition system SSqrt ignores the branch exiting the loop:

x : {u,w , x , z },
θ : x ≥ 1 ∧ u � 1 ∧ w � 1 ∧ z � 0,
ρ : w ≤ z ∧ z ′ � z + 1 ∧ u ′ � u + 2 ∧ w ′ � w + u + 2.

Correctness is stated by the assertion that on exit, z is the integer square-root of x : z 2 ≤ x < (z + 1)2. With some
ingenuity, one may step this assertion back to the loop (by computing weakest preconditions):

� : (w ≤ x → (z + 1)2 ≤ x ) ∧ (w > x → x < (z + 1)2).

We take � as the safety assertion for SSqrt. �
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The semantics of a transition system are defined in terms of states and computations.

Definition 2.2 (State & Computation) A state s of transition system S is an assignment of values (of the proper
type) to variables x . We write a state s as either a tuple of assignments 〈x1 � v1, . . . , xn � vn 〉 or as a conjunction
of equations ŝ : x1 � v1 ∧ · · · ∧ xn � vn . A computation σ : s0, s1, s2, . . . is an infinite sequence of states such
that

• s0 satisfies the initial condition: θ [s0], or s0 |� θ ,
• and for each i ≥ 0, si and si+1 are related by ρ: ρ[si , si+1], or (si , si+1) |� ρ.

A state s is reachable by S if there exists a computation of S that contains s .

Example 2.5 (Alternating) 〈x � 1〉 is a state of transition system S1. One possible computation of the system is
the following:

σ : 〈x � −1〉, 〈x � 1〉, 〈x � −1〉, 〈x � 1〉, . . . .
Each state of the computation is (obviously) reachable, while state 〈x � 2〉 is not reachable. �
Example 2.6 (Boolean) One possible initial state of Boolean transition system SB is

s : 〈x0 � true, x1 � false, x � true, y0 � false, y1 � true, y � true, z � true〉,
or more succinctly:

ŝ : x0 ∧ ¬x1 ∧ x ∧ ¬y0 ∧ y1 ∧ y ∧ z .

A possible computation of the system is the following:

σ : x0 ∧ ¬x1 ∧ x ∧ ¬y0 ∧ y1 ∧ y ∧ z ,
¬x0 ∧ x1 ∧ x ∧ y0 ∧ ¬y1 ∧ y ∧ z ,
x0 ∧ ¬x1 ∧ x ∧ ¬y0 ∧ y1 ∧ y ∧ z ,
¬x0 ∧ x1 ∧ x ∧ y0 ∧ ¬y1 ∧ y ∧ z ,
. . .

Each state of the computation is (obviously) reachable. We will prove that any state in which z is false is unreachable.
�

A safety assertion � of a transition system S is a first-order formula over the variables x of S. It asserts that
at most the states s that satisfy � (s |� �) are reachable by S. Invariants and inductive invariants are central to
studying safety properties of transitions systems.

Definition 2.3 (Invariant) A formula ϕ is an invariant of S (or is S-invariant) if for every computation σ :
s0, s1, s2, . . ., for every i ≥ 0, si |� ϕ.

Definition 2.4 (Inductive Invariant) A formula ϕ is S-inductive if

• it holds initially: ∀ x . θ [x ] → ϕ[x ] (initiation)
• and it is preserved by ρ: ∀ x , x ′. ϕ[x ] ∧ ρ[x , x ′] → ϕ[x ′] (consecution)

These two requirements are sometimes referred to as verification conditions. If ϕ is S-inductive, then it is
S-invariant. When S is obvious from the context, we omit it from S-inductive and S-invariant.

For convenience, we abbreviate formulae using implication: ϕ ⇒ ψ abbreviates ∀ y . ϕ → ψ , where y are all
variables of ϕ and ψ . Then (initiation) is θ ⇒ ϕ, and (consecution) is ϕ ∧ ρ ⇒ ϕ′.

Definition 2.5 (Relatively Inductive Invariant) A formula ϕ is S-inductive relative to ψ if it is S-inductive under
the assumption ψ :

• θ ⇒ ϕ (initiation)
• ψ ∧ ϕ ∧ ρ ⇒ ϕ′ (consecution)

Definition 2.6 (Counterexample to Induction) Consider safety assertion � of transition system S. �-state s (a
state that satisfies�) is a counterexample to induction if it violates (consecution): s has some successor ¬�-state.
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Example 2.7 (Alternating) The assertion x ≥ −1 of S1 is not inductive because (consecution) fails:

x ≥ −1 ∧ x ′ � −x �⇒ x ′ ≥ −1.

One counterexample to induction is s : 〈x � 2〉.
However, the assertion −1 ≤ x ≤ 1 (−1 ≤ x ∧ x ≤ 1) is inductive: it satisfies (initiation):

x � −1 ⇒ −1 ≤ x ≤ 1,

and (consecution):

−1 ≤ x ≤ 1 ∧ x ′ � −x ⇒ −1 ≤ x ′ ≤ 1.

�
Example 2.8 (Boolean) The assertion z of SB is not inductive because (consecution) fails with, for example, the
counterexample to induction

s : x0 ∧ x1 ∧ ¬x ∧ y0 ∧ y1 ∧ ¬y ∧ z

whose successor

¬x0 ∧ ¬x1 ∧ x ∧ ¬y0 ∧ ¬y1 ∧ y ∧ ¬z

violates � : z .
In contrast, the formula

¬x0 ∨ ¬x1 ∨ ¬x

is inductive: it satisfies (initiation),

θ ⇒ ¬x0 ∨ ¬x1 ∨ ¬x ,

because x0 ↔ x1 implies x0 ∨ ¬x1; and it satisfies (consecution),

(¬x0 ∨ ¬x1 ∨ ¬x ) ∧ ρ ⇒ ¬x ′
0 ∨ ¬x ′

1 ∨ ¬x ′,

because ¬x ′
0 ∨ ¬x ′

1 ∨ ¬x ′ is equivalent to x0 ∨ x1 ∨ ¬(x0 ∨ x1) according to the transition relation ρ of SB. �
The main problem that we consider is the following: given transition system S : 〈x , θ, ρ〉 and safety assertion

�, is� S-invariant? Proving that� is inductive answers the question affirmatively. But frequently� is invariant
but not inductive. The inductive assertion method [Flo67, MP95] suggests finding a formula χ such that�∧ χ is
inductive; χ is called an auxiliary or strengthening assertion.

Example 2.9 (Alternating) The assertion −1 ≤ x ≤ 1 is S1-inductive, while the original safety assertion� : −1 ≤
x is not S1-inductive. Hence, x ≤ 1 is a strengthening (though not inductive) assertion for� : −1 ≤ x that allows
us to prove the invariance of� via induction. Also, each of −1 ≤ x and x ≤ 1 is inductive relative to the other. �
Example 2.10 (Integer Square-Root) Consider again the transition system SSqrt. Its safety assertion

� : (w ≤ x → (z + 1)2 ≤ x ) ∧ (w > x → x < (z + 1)2)

is not inductive. However, the assertion

χ : w � (z + 1)2

is inductive; so is � ∧ χ . Hence, χ is a strengthening assertion that allows us to prove the invariance of � via
induction. �
Example 2.11 (Boolean) � : z is not SB inductive; however, with

χ :
[

(¬x0 ∨ ¬x1 ∨ ¬x ) ∧ (x0 ∨ x1 ∨ ¬z ) ∧ x
∧ (¬y0 ∨ y1 ∨ ¬z ) ∧ (¬y0 ∨ ¬y1) ∧ y

]

the assertion � ∧ χ is SB-inductive. Hence, χ is a strengthening assertion that allows us to prove the invariance
of � via induction. �

If � is not invariant, then we seek instead a counterexample trace.
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Definition 2.7 (Counterexample Trace) A counterexample trace of system S and specification � is a (prefix of a)
computation σ : s0, s1, s2, . . . , sk such that sk violates �: sk |� ¬�.

3. Property-directed incremental invariant generation

The inductive assertion method suggests that to prove that � is an invariant of S : 〈x , θ, ρ〉, we should find a
strengthening assertion χ such that � ∧ χ is inductive. How do we find χ?

Suppose that we have an invariant generation procedure P that, given a state s , generates a simple invariant
of a fixed form that proves the unreachability of s—if such an invariant exists. For example, for considering
Boolean transition systems, we describe a procedure PB that produces an inductive clause that excludes a given
state (Sect. 4); while for considering real-number transition systems, we describe a procedure PR that produces an
inductive affine inequality that excludes a given state (Sect. 5). Additionally, the procedure P accepts a restriction
formula ψ such as the conjunction of all previously generated invariants. P need only generate a formula that is
inductive relative to ψ . In summary, P(s, ψ) returns a formula that is inductive relative to ψ and that proves that
s is unreachable—if the domain contains such a formula.

We describe in this section an incremental strategy for using such an invariant generation procedure P. The
ideas are of course classical [MP95], but they motivate new ways of analyzing systems.

3.1. Incremental invariant generation

Suppose first that we do not have a desired safety assertion to prove. In this case, our strategy is simply to discover
incrementally a sequence ϕ1, ϕ2, ϕ3, . . . of formulae, each of which is S-inductive relative to those that occur
previously. We call such a sequence an incrementally inductive sequence. Let χi be the conjunction of all ϕj , j ≤ i ;

hence, χ0
def� true. Clearly, each χi is S-inductive.

Given χi , on iteration i + 1 we seek a new formula ϕi+1 that is inductive relative to χi , so that χi+1 is then also
inductive. The challenge is to derive a new piece of information. Ideally, we would discover an assertion ϕi+1 that
satisfies (initiation) and (consecution) and that excludes some state s that χi does not exclude:

∃x . χi [x ] ∧ ¬ϕi+1[x ] (strengthening)

Given inductive invariant generation procedure P, an approximation of this condition is (1) to choose a state s
such that s |� χi , and (2) to let ϕi+1

def� P(s, χi ). P may fail—indeed, s may actually be reachable—in which case,
we record the state s and exclude it from consideration in future iterations. There is no criterion for terminating
this process. Each χi is inductive and yields useful information.

Incremental invariant generation is useful in practice for discovering information about a program in the
absence of a specification.

Example 3.1 (Simple) Consider the linear transition system SSimple. In Sect. 5, we describe a procedure PR that
discovers inductive invariants in the form of affine inequalities.

• Initially, every state is assume to be reachable. Suppose that state

s1 : 〈j � −1, k � −3〉
is selected. PR(s1, true) returns the affine inequality

ϕ1 : k ≥ 0.

• Now we must choose a state that satisfies χ1 : k ≥ 0. Suppose that state

s2 : 〈j � 2, k � 0〉
is selected. PR(s2, k ≥ 0) fails to find an inductive inequality that excludes s2.

• If the next selected state is

s3 : 〈j � −1, k � 0〉,
then PR(s3, k ≥ 0) might return

ϕ2 : j ≥ 0.
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• If the next selected state—which must satisfy k ≥ 0 ∧ j ≥ 0—is

s4 : 〈j � 0, k � 0〉
then PR(s4, k ≥ 0 ∧ j ≥ 0) returns

ϕ3 : j ≥ 2k + 2.

In general, any selected state that violates j ≥ 2k + 2 allows PR to discover ϕ3.
• There are no more affine invariants to find, although this method will simply continue to generate states that

satisfy χ3 and fail to find excluding invariants.

In this example, each of k ≥ 0, j ≥ 0, and j ≥ 2k + 2 is actually inductive by itself. �

3.2. Property-directed incremental invariant generation

Suppose now that we have a desired safety assertion � to prove. We seek an incrementally inductive sequence
ϕ1, ϕ2, ϕ3, . . . , ϕn such that (using the same definition for χi as above) � ∧ χn is S-inductive. Notice that even
if each χi is inductive only relative to �, � ∧ χn is inductive. That is, we may assume � even as we search for a
strengthening assertion.

Given χi , on iteration i + 1 we seek a new formula ϕi+1 that is inductive relative to � ∧ χi , so that χi+1 is
then also inductive relative to�. As in the case without�, the challenge is to derive a new piece of information.
Ideally, we would discover an inductive assertion ϕi+1 that excludes some (� ∧ χi )-state s that has a successor
that violates �:

∃x , x ′. � ∧ χi ∧ ¬ϕi+1 ∧ ρ ∧ ¬�′. (�-strengthening).

That is, an ideal procedure would discover an assertion ϕi+1 that satisfies (initiation), (consecution), and
(�-strengthening).

However, our inductive invariant generation procedure P considers one state at a time. Thus, we seek a
counterexample to induction: if (consecution),

� ∧ χi ∧ ρ ⇒ �′

fails, there is a counterexample to induction s such that

s |� ∃x ′. � ∧ χi ∧ ρ ∧ ¬�′.

Let ϕi+1
def� P(s, � ∧ χi ). If P fails to find a new inductive invariant, we include proving that s is unreachable

as a subgoal of proving �: � := � ∧ ¬ŝ (where ŝ is the formula that describes state s).
If S is a finite-state system, then one of two situations eventually occurs. Either

1. �∧ χn is S-inductive at some iteration n, which is indicated by the lack of any counterexample to induction
(induction succeeds); or

2. through the addition of subgoals, ¬� ∧ θ becomes satisfiable, indicating that the original safety assertion
does not hold for S.

In the latter case, one can extract a counterexample trace from the subgoals conjoined to the original safety
assertion.

If S is an infinite-state system, then there is no guarantee of termination. However, every state excluded by
χi cannot be reached without first violating �. Thus, the intermediate formulae χi can be informative, just as
bottom-up invariants are informative even when they are not strong enough to prove a desired assertion.

In practice, one must find counterexamples to induction (or simply states s that satisfyχi in the case when there
is no assertion�). For analyzing Boolean transition systems (Sect. 4), we use a propositional satisfiability solver
to find states that satisfy χi ; for analyzing linear transition systems (Sect. 5), we use a rational linear programming
solver; and for analyzing nonlinear real-number transition systems (Sect. 5), we use either a complete decision
procedure such as cylindrical algebraic decomposition (CAD) [Tar51, Col75] or an incomplete solver such as
numeric constraint solving. Some randomness in the solver will assist in providing a general view of the potential
state space, although it is unnecessary for preserving completeness in the finite-state case.
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Example 3.2 (Alternating) Consider the linear transition system S1 in which x alternates between −1 and 1. We
use the procedure of Sect. 5 to find an assertion strengthening the safety assertion � : x ≥ −1.

• � satisfies (initiation) but not (consecution):

s1 : 〈x � 2〉 |� x ≥ −1 ∧ x ′ � −x ∧ ¬(x ′ ≥ −1).

s1 is a counterexample to induction. P(s1, �) discovers the assertion

ϕ1 : x ≤ 1,

which is inductive relative to � but not on its own.
• � ∧ χ1 : −1 ≤ x ≤ 1 is S1-inductive, proving the S1-invariance of � : x ≥ −1. �
Example 3.3 (Boolean) Consider the Boolean transition system SB for which we would like to prove that � : z
is invariant. In Sect. 4, we describe a procedure PB that discovers inductive invariants in the form of clauses.

• � satisfies (initiation) but not (consecution):

ŝ1 : x0 ∧ x1 ∧ ¬x ∧ y0 ∧ y1 ∧ ¬y ∧ z |� z ∧ ρ ∧ ¬z ′.

s1 is a counterexample to induction. PB(s1, �) fails to find an inductive clause to exclude s1, so we set
� := � ∧ ¬ŝ1.

• Proceeding in a depth-first manner, we seek to prove that s1 is unreachable. Consider the predecessor of s1

ŝ2 : ¬x0 ∧ ¬x1 ∧ x ∧ ¬y0 ∧ ¬y1 ∧ y ∧ z

and its predecessor

ŝ3 : x0 ∧ x1 ∧ x ∧ y0 ∧ y1 ∧ y ∧ z .

PB(s2, � ∧ ¬ŝ1) does not yield an invariant; however PB(s3, � ∧ ¬ŝ1 ∧ ¬ŝ2) returns the clause

ϕ1 : ¬x0 ∨ ¬x1 ∨ ¬x ,

which is inductive relative to � ∧ ¬ŝ1 ∧ ¬ŝ2.
• Now PB(s2, � ∧ ¬ŝ1 ∧ χ1) returns clause

ϕ2 : x0 ∨ x1 ∨ ¬z ,

and PB(s1, � ∧ χ2) returns clause

ϕ3 : x .

• Subsequent iterations yield clauses

ϕ4 : ¬y0 ∨ ¬y1 ∨ ¬y,
ϕ5 : y0 ∨ y1 ∨ ¬z ,
ϕ6 : ¬y0 ∨ ¬y1,
ϕ7 : y .

Finally, � ∧ χ7 is SB-inductive, proving the SB-invariance of z . �

3.3. Parallel analysis

Large systems, such as some of the hardware systems that we study in Sect. 6, often require many simple inductive
assertions to prove a given safety assertion. Many of these assertions are inductive relative to a subset of the previ-
ously generated assertions. Hence, one can search for many inductive assertions simultaneously by starting from
different counterexamples to induction (or even the same counterexample if aspects of the invariant generation
are randomized).

Parallelizing an analysis based on incremental invariant generation is thus straightforward. Each process
performs its own analysis and shares the discovered invariants and subgoals with the other processes. In Sect. 6,
we report on experiments that show that relying on some randomness in the process of selecting counterexamples
to induction is sufficient to keep the processes from generating too much redundant information, at least with
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the amount of parallelism available in today’s average-size computer clusters. Propositional satisfiability solvers,
which we use for our experiments, naturally have some randomness. An alternative to relying on randomness is
to use and share blocking clauses [McM02] or a similar device to prevent discovering the same counterexample
to induction simultaneously in different processes.

4. Clausal invariants

In this section, we consider a particular invariant generation procedure PB(s, ψ) for Boolean transition systems.
It searches for a subclause c of ¬ŝ that is inductive relative to ψ and whose strict subclauses are not inductive
relative to ψ . We call such a clause a minimal inductive subclause. A state s can have many minimal inductive
subclauses (or none); we are interested in finding just one.

Because a minimal inductive subclause is a subclause of ¬ŝ , it implies ¬ŝ and thus proves that s is unreach-
able. Additionally, the process of discovering a minimal inductive subclause generalizes the argument that s is
unreachable to prove that many other related states are unreachable as well.

4.1. Overview

We present an overview of the procedure for finding minimal inductive subclauses; subsequent sections provide
the technical details.

Consider an arbitrary clause c that need not be inductive. It induces the subclause lattice Lc : 〈2c,�,�,�〉 in
which

• the elements 2c are the subclauses of c;
• the elements are ordered by the subclause relation �: in particular, the top element is c itself, and the bottom

element is the formula false;
• the join operator � is simply disjunction;
• the meet operator � is defined as follows: c1 � c2 is the disjunction of the literals common to c1 and c2.

Lc is complete; by the Knaster–Tarski fixpoint theorem [Kna28, Tar55], every monotone function on Lc has a
least and a greatest fixpoint.

Consider the monotone nonincreasing function down(Lc, d ) that, given the subclause lattice Lc and the clause
d ∈ 2c , returns the (unique) largest subclause e � d such that the implication ψ ∧ e ∧ ρ ⇒ d ′ holds. In other
words, it returns the greatest under-approximation in Lc to the weakest precondition of d . If the greatest fixpoint
c̄ of down(Lc, c) satisfies the implication θ ⇒ c̄ of initiation, then it is the largest subclause of c that is inductive
relative to ψ . Section 4.2 describes how to find c̄ with a number of satisfiability queries linear in |c|.

Example 4.1 Consider the state (first encountered in Example 3.3)

ŝ1 : x0 ∧ x1 ∧ ¬x ∧ y0 ∧ y1 ∧ ¬y ∧ z

of SB and the corresponding clause

c1 : ¬x0 ∨ ¬x1 ∨ x ∨ ¬y0 ∨ ¬y1 ∨ y ∨ ¬z .

Checking if

� ∧ c1 ∧ ρ ⇒ c ′
1

reveals counterexample

¬x0 ∧ ¬x1 ∧ x ∧ ¬y0 ∧ ¬y1 ∧ y ∧ z

with corresponding clause

d1 : x0 ∨ x1 ∨ ¬x ∨ y0 ∨ y1 ∨ ¬y ∨ ¬z .

The best clause that under-approximates c1 ∧ d1 is c1 � d1:

c2 : ¬z ,

which is computed as the intersection of c1’s and d1’s literal sets. However, c2 does not satisfy (initiation), so it is
not an inductive subclause of c1. �
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Example 4.2 Consider the state (first encountered in Example 3.3)

ŝ3 : x0 ∧ x1 ∧ x ∧ y0 ∧ y1 ∧ y ∧ z

of SB and the corresponding clause

c1 : ¬x0 ∨ ¬x1 ∨ ¬x ∨ ¬y0 ∨ ¬y1 ∨ ¬y ∨ ¬z .

Checking if

� ∧ ¬ŝ1 ∧ ¬ŝ2 ∧ c1 ∧ ρ ⇒ c ′
1 (1)

reveals that c1 satisfies (consecution) relative to � ∧ ¬ŝ1 ∧ ¬ŝ2. It also satisfies (initiation).
The subformula ¬ŝ1 ∧ ¬ŝ2 occurs in (1) because s1 and s2 were added as subgoals of proving the invariance

of � in Example 3.3. �

Large inductive clauses are undesirable, however, because they provide less information than smaller clauses:
they are satisfied by more states. We want to find a minimal inductive subclause of c, an inductive subclause
that does not itself contain any strict subclause that is inductive. Therefore, we examine the least fixpoint of
a monotone nondecreasing function on inductive subclause lattices, which are lattices whose top elements are
inductive. Constructing an inductive subclause lattice requires first computing the greatest fixpoint of down on
a larger subclause lattice.

To that end, consider the (nondeterministic) function implicate(ϕ, c) that, given formula ϕ and clause c,
returns a minimal subclause d � c such that ϕ ⇒ d if such a clause exists, and returns true otherwise. This
minimal subclause d is known as a prime implicate [McM02, JS05]. There can be exponentially many such
minimal subclauses since the CNF representation of a formula can be exponentially large. But there may not be
any prime implicate if ϕ �⇒ c. Section 4.3 discusses an implementation of implicate.

Using implicate, we can find a subclause of c that best approximates θ : b : implicate(θ, c). Consider the sub-
clause sublattice Lb,c of Lc that has top element c and bottom element b. Consider also the operation up(Lb,c, d )
that, for element d of Lb,c , returns a minimal subclause e � c such that the implication ψ ∧ d ∧ ρ ⇒ e ′ holds.
In other words, it computes e ′ : implicate(ψ ∧ d ∧ ρ, c′), a least over-approximation in Lb,c of the strongest
postcondition of d .

The operation up can be determinized into a function on Lb,c—which maps an element of Lb,c to an element
of Lb,c—precisely when the top element c is inductive. In this case, a least fixpoint c̄ is an inductive subclause of
c that is small in practice.

Example 4.3 Continuing from Example 4.2, we want to find a small inductive subclause of the inductive clause

c1 : ¬x0 ∨ ¬x1 ∨ ¬x ∨ ¬y0 ∨ ¬y1 ∨ ¬y ∨ ¬z .

Computing implicate(θ, c1) yields clause

d1 : ¬x0 ∨ ¬x1.

The clause ¬y0 ∨ ¬y1 is also an implicate of θ . We next compute up(Ld1,c1 , d1), yielding clause

d2 : ¬x0 ∨ ¬x1 ∨ ¬x .

up(Ld1,c2 , d2) � d2, so we have reached a fixpoint: d2 is a small inductive subclause of c1. �

The discovered inductive clause is not necessarily a minimal inductive subclause, as different deterministic
instantiations of implicate result in different least fixpoints, some of which may be strict subclauses of others.

Now for a given clause c, compute the greatest fixpoint of down on Lc to discover inductive clause c̄ and its
corresponding inductive sublattice Lc̄ . Compute b : implicate(θ, c) to identify the inductive sublattice Lb,c̄ whose
bottom element over-approximates θ . Finally, compute the least fixpoint of up on Lb,c̄ to find a small inductive
subclause d̄ of c. In practice, d̄ is small but need not be minimal.

A brute-force recursive technique finds a minimal inductive subclause. First apply the procedure described
above to c to find d̄ . Then recursively treat each immediate strict subclause of d̄ , of which there are |d̄ |. A clause
d̄ is a minimal inductive subclause of c precisely when each of these recursive calls fails to find an inductive strict
subclause of d̄ . We call this procedure mic(c, ψ). It returns a minimal subclause of c that is S-inductive relative
to ψ , or true if no such clause exists.
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Example 4.4 The discovered clause d2 of Example 4.3 is a minimal inductive subclause. For neither ¬x0 ∨ ¬x
nor ¬x1 ∨ ¬x satisfies (initiation), while computing the fixpoint of down on clause ¬x0 ∨ ¬x1 yields false, which
also does not satisfy (initiation). �

Finally, mic is the basis for the invariant generation procedure: for Boolean transition systems, PB(s, ψ) is
implemented as mic(¬ŝ, ψ).

Subsequent sections provide the details of the operations introduced in this section.

4.2. Backward phase

Recall that the monotone nonincreasing function down(Lc, d ) computes the largest subclause e � d such that the
implication ψ ∧ e ∧ρ ⇒ d ′ holds. A straightforward method of computing the greatest fixpoint of down in Lc—
which iteratively computes under-approximations to the weakest precondition—can require 	(|c|2) satisfiability
queries. For systems with many variables, this quadratic cost is prohibitively expensive.

We describe a method that requires a linear number of queries. Consider checking if the implicationψ∧c∧ρ ⇒
c′ holds. If it does, and if the implication θ ⇒ c of initiation also holds, then c is inductive relative to ψ . If it
does not, then the formula ψ ∧ c ∧ ρ ∧ ¬c′ is satisfied by some assignment (s, s ′) to the unprimed and primed
variables. Let ¬t̂ be the best over-approximation to ¬ŝ in Lc , which is the largest clause with literals common to
c and ¬ŝ . Then compute the new clause d : c � ¬t̂ . In other words, d has the literals common to c and ¬ŝ . Now
recurse on d .

If at any point during the computation, (initiation) does not hold, then report failure.
This algorithm, which we call lic(Lc, c), computes the largest inductive subclause of the given clause c.

Proposition 4.1 (Largest Inductive Subclause) The fixpoint of the iteration sequence computed by lic(Lc, c) is
the largest subclause of c that satisfies (consecution). If it also satisfies (initiation), then it is the largest inductive
subclause of c. Finding it requires solving at most O(|c|) satisfiability queries.

Proof. Let the computed sequence be c0 � c, c1, . . . , ck , where the fixpoint ck satisfies (consecution). Notice
that for each i > 0, ci � ci−1 by construction. Suppose that e � c also satisfies (consecution), yet it is not a
subclause of ck . We derive a contradiction.

Consider position i at which e � ci but e �� ci+1; such a position must occur by the existence of e. Now
partition ci into two clauses, e ∨ f ; f contains the literals of ci that are not literals of e. Since (consecution) does
not yet hold for ci , the formula ψ ∧ (e ∨ f ) ∧ ρ ∧ ¬(e ′ ∨ f ′) is satisfiable. Case splitting, one of the following two
formulae is satisfiable:

ψ ∧ e ∧ ρ ∧ ¬e ′ ∧ ¬f ′, (2)
ψ ∧ ¬e ∧ f ∧ ρ ∧ ¬e ′ ∧ ¬f ′. (3)

Formula (2) is unsatisfiable because e satisfies (consecution) by assumption. Therefore, formula (3) is satisfied by
some assignment (s, s ′). Now, because ¬e[s ] evaluates to true, we know that e � ¬ŝ (where ŝ is the conjunction
of literals corresponding to assignment s); but then e � ci+1 � ci � ¬ŝ , a contradiction.

The linear bound on the number of satisfiability queries follows from the observation that each iteration
(other than the final one) must drop at least one literal of c. �

We thus have an algorithm for computing the largest inductive subclause of a given clause with only a linear
number of satisfiability queries.

In practice, during one execution of mic, the clauses that are found not to contain inductive clauses should
be cached to preclude the future exploration of its subclauses.

4.3. Forward phase

Recall that the monotone nondecreasing function up(Lc, d ) computes a minimal subclause e � c such that the
implication ψ ∧ d ∧ ρ ⇒ e ′ holds. As explained in Sect. 4.1, the crucial part of implementing up is implementing
an algorithm for finding minimal implicates: implicate(ϕ, c) should return a minimal subclause of c such that
ϕ ⇒ c holds, or true if no such subclause exists. We focus on implicate in this section.
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Fig. 2. Linear search-based minimal

In fact, we consider a more general problem. Consider a set of objects S and a predicate p : 2S �→ {true, false}
that is monotone on S : if p(S0) is true and S0 ⊆ S1 ⊆ S , then also p(S1) is true. We assume that p(S ) is true;
this assumption can be checked with one preliminary query. The problem is to find a minimal subset S̄ ⊆ S that
satisfies p: p(S̄ ).

The correspondence between this general problem and implicate(ϕ, c) is direct: let S be the set of literals of
c and p be the predicate that is true for S0 ⊆ S precisely when ϕ ⇒ ∨

S0, where
∨

S0 is the disjunction of the
literals of S0.

A straightforward and well-known algorithm for finding a minimal satisfying subset of S requires a linear
number of queries to p. Drop an element of the given set. If the remaining set satisfies p, recurse on it; otherwise,
recurse on the given set, remembering never to drop that element again.

Figure 2 describes this algorithm precisely using an O’Caml-like language. It treats sets as lists. S0 contains
the required elements of S that have already been examined; if there are not any remaining elements, return
S0. Otherwise, the remaining elements consist of h :: t—a distinguished element h (the “head”) and the other
elements t (the “tail”). If p(S0 ∪ t) is true, h is unnecessary; otherwise, it is necessary, so add it to S0. We provide
these details to prepare the reader to understand an algorithm that makes asymptotically fewer queries to p.

We can do better than always making a linear number of queries to p. Suppose we are given two disjoint sets,
the “support” set sup and the set S0, such that p(sup ∪ S0) holds but p(sup) does not hold. We want to find a
minimal subset S̄ ⊆ S0 such that p(sup ∪ S̄ ) holds. If S0 has just one element, then that one element is definitely
necessary, so return it. Otherwise, split S0 into two disjoint subsets �0 and r0 with roughly half the elements each
(see Fig. 3 for a precise description of split). Now if p(sup ∪�0) is true, immediately recurse on �0, using sup again
as the support set. If not, but p(sup ∪ r0) is true, then recurse on r0, using sup again as the support set.

The interesting case occurs when neither p(sup ∪ �0) nor p(sup ∪ r0) hold: in this case, elements are required
from both �0 and r0. First, recurse on �0 using sup ∪ r0 as the support set. The returned set � is a minimal subset
of �0 that is necessary for p(sup ∪ � ∪ r0) to hold. Second, recurse on r0 using sup ∪ � (note: �, not �0) as the
support set. The returned set r is a minimal subset of r0 that is necessary for p(sup ∪�∪ r ) to hold. Finally, return
� ∪ r , which is a minimal subset of S0 for p(sup ∪ � ∪ r ) to hold.

Figure 3 gives a precise definition of this algorithm. To find a minimal subset of S that satisfies p, min is
initially called with an empty support set ([]) and S .

It has been brought to our attention that Junker describes this algorithm in the context of constraint solving
[Jun01]. However, we provide an independent proof of correctness and a different complexity analysis.

Theorem 4.1 (Correct) Suppose that S is nonempty, p(S ) is true, and p(∅) is false.

1. min p [] S terminates.
2. Let S̄ � min p [] S . Then p(S̄ ) is true, and for each e ∈ S̄ , p(S̄ \ {e}) is false.

Proof. The first claim is easy to prove: each level of recursion operates on a finite nonempty set that is smaller
than the set in the calling context.

For the second claim, we make an inductive argument of correctness. We prove first that p(S̄ ) is true. We then
prove that for each e ∈ S̄ , p(S̄ \ {e}) is false. To prove these claims, we prove that five assertions are inductive for
min. These assertions are summarized as function preconditions and function postconditions of min in Fig. 4.
Throughout the proof, let V � min p sup S0 be the return value.

For the first part of the second claim, we establish the following invariants:

1. p(sup ∪ S0)
2. p(sup ∪ V )
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Fig. 3. Binary search-based minimal

Fig. 4. Annotated prototype of min, where V is the return value

Invariant (1) is a function precondition of min; invariant (2) is a function postcondition of min. Hence, the
inductive argument for (1) establishes that it always holds upon entry to min, while the inductive argument for
(2) establishes that it always holds upon return of min.

Invariants (1) and (2) are proved simultaneously. For the base case of (1), note that p(∅ ∪ S ) � p(S ), which is
true by assumption. For the inductive case, consider that p(sup ∪ �0) and p(sup ∪ r0) are checked before the first
two recursive calls; that sup ∪ r0 ∪ �0 � sup ∪ S0 for the third recursive call; and that p(sup ∪ r0 ∪ �) is true by
invariant (2).

For the base case of invariant (2), we know at the first return of min that p(sup ∪ S0) from invariant (1), and
V � S0. For the inductive case, consider that (2) holds at the next two returns by the inductive hypothesis; and
that at the fourth return, p(sup ∪ � ∪ r ) holds by the inductive hypothesis of the prior line.

In the first call to min in minimal, sup � ∅; hence, p(S̄ ) � p(∅ ∪ S̄ ) � true by invariant (2).
To prove that S̄ is minimal (that for each e ∈ S̄ , p(S̄ \ {e}) is false) for the second part of the second claim,

consider the following invariants:

3. V ⊆ S0

4. ¬p(sup)
5. ¬p(sup ∪ V \ {e}) for e ∈ V

Invariant (4) is a function precondition, and invariants (3) and (5) are function postconditions.
For invariant (3), note for the base case that the first return of min returns V � S0 itself; that the next

two returns hold by inductive hypothesis; that � ⊆ �0 and r ⊆ r0 by inductive hypothesis; and, thus, that
V � � ∪ r ⊆ �0 ∪ r0 � S0.

For the base case of invariant (4), consider that ¬p(∅) by assumption. For the inductive case, consider that
the first two recursive calls have the same sup as in the calling context and thus (4) holds by inductive hypothesis;
that at the third recursive call, ¬p(sup ∪ r0); and that at the fourth recursive call, ¬p(sup ∪ �0) and, from (3), that
� ⊆ �0, so that ¬p(sup ∪ �) follows from monotonicity of p.
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For the base case of invariant (5), consider that at the first return, ¬p(sup) by invariant (4). Hence, the one
element of S0 is necessary. The next two returns hold by the inductive hypothesis. For the final return, we know
by the inductive hypothesis that ¬p(sup ∪ �∪ r \ {e}) for e ∈ r ; hence, all of r is necessary. Additionally, from the
inductive hypothesis, ¬p(sup ∪ r0 ∪ � \ {e}) for e ∈ �, and ¬p(sup ∪ r0 ∪ � \ {e}) implies that ¬p(sup ∪ r ∪ � \ {e})
by monotonicity of p and because r ⊆ r0 by invariant (3); hence, all of � is necessary.

In the first call to min at minimal, sup � ∅ and V � S̄ ; hence, ¬p(S̄ \ {e}) for e ∈ S̄ from invariant (5). �

Theorem 4.2 (Upper Bound) Let S̄ � min p [] S . Discovering S̄ requires making at most

2
(

(|S̄ | − 1) + |S̄ | lg |S |
|S̄ |
)

queries to p.

Proof. Suppose that |S̄ | � 2k and |S | � n2k for some k ,n > 0. Each element of S̄ induces one divergence at
some level in the recursion. At worst, these divergences occur evenly distributed at the beginning, inducing |S̄ |
separate binary searches over sets of size |S |

|S̄ | . Hence, |S̄ | − 1 calls to min diverge, while |S̄ | lg |S |
|S̄ | calls behave like

in a binary search. Noting that each call results in at most two queries to p, we have the claimed upper bound
in this special case, which is also an upper bound for the general case. (Adding sufficient “dummy” elements to
construct the special case does not change the asymptotic bound.) �

For studying the lower bound on the complexity of the problem, suppose that S has precisely one minimal
satisfying subset.

Theorem 4.3 (Lower Bound) Any algorithm for determining the minimal satisfying subset S̄ of S must make

	
(
|S̄ | + |S̄ | lg

(
|S |−|S̄ |

|S̄ |
))

queries to p.

Proof. For the linear component, |S̄ |, consider deciding whether S̄ is indeed minimal. Since all that is known is
that p is monotone over S , the information that p(S0) is false does not reveal any information about p(S1) when
S1 \ S0 �� ∅. Therefore, p must be queried for each of the |S̄ | immediate strict subsets of S̄ .

For the other component, consider that any algorithm must be able to distinguish among C (|S |, |S̄ |) �
|S |!

|S̄ |!(|S |−|S̄ |)! possible results using only queries to p. Thus, the height of a decision tree must be at least lg C (|S |, |S̄ |).
Using Stirling’s approximation,

lg |S |!
|S̄ |!(|S |−|S̄ |)! ≥ lg |S |! − lg |S̄ |! − lg(|S | − |S̄ |)!

− o(lg |S̄ | + lg(|S | − |S̄ |))
� 	

(
|S | lg

(
|S |

|S |−|S̄ |
)

+ |S̄ | lg
(

|S |−|S̄ |
|S̄ |

))
.

�

Hence, the algorithm is in some sense optimal. However, a set can have a number of minimal subsets expo-
nential in its size. In this situation, the lower bound analysis does not apply.

In practice, one can often glean more information when executing the predicate p than just whether it is
satisfied by the given set. For example, a decision procedure for propositional satisfiability (a “SAT solver”) can
return an unsatisfiable core. Hence, ifψ ⇒ c holds (ψ∧¬c is unsatisfiable), the procedure might return a subclause
d � c such that ψ ⇒ d also holds. However, d need not be minimal. The algorithm of Fig. 5 incorporates this
extra information. Rather than a predicate p, it accepts a function f that returns two values: f (S ) returns the
same truth value as p(S ); and if p(S ) is true, it also returns a subset S0 � S such that p(S0) holds. This subset is
used to prune sets appropriately. Additionally, min returns both the minimal set and a pruned support set to use
on the other branch of recursion.

4.4. Minimality

The procedure mic introduced in Sect. 4.1 employs a recursive procedure to guarantee minimality of the returned
inductive clause. After finding a small inductive clause c̄ via the backward and forward analysis, it recurses on
each subclause of c̄ with one fewer literal.
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Fig. 5. Binary search-based minimal with additional information

A worst-case complexity analysis of mic suggests that O(|c|3) propositional queries are possible to find a
minimal inductive clause: each descent step moves one step down Lc , costing O(1) propositional queries and |c|
recursive steps; at each recursive step, all but one direct descendant does not have an inductive subclause, costing
O(|c|) queries per descendant and hence O(|c|2) queries overall for a recursive step. However, this cubic cost was
not achieved in our experiments.

5. Inequality invariants

In this section, we discuss a second instance of incremental invariant generation in the context of numerical
infinite-state systems. In this domain, our method does not provide any guarantees of termination or completeness.
Moreover, compared to the empirical investigation of the clause domain (see Sect. 6), the empirical work in this
domain is preliminary. However, it provides evidence that the incremental approach to invariant generation can
be applied more generally than just to finite-state systems.

We describe an invariant generation procedure PR(s, ψ) that searches for an affine (or, to a limited extent,
polynomial) inequality that is inductive relative to ψ and that excludes the state s . The method follows directly
from work on constraint-based generation of affine inequality invariants [CSS03]; the addition is simply to
introduce a condition into the constraint system that s should be excluded, corresponding to the (strengthening)
or (�-strengthening) conditions of Sect. 3. We review the constraint-based method in Sect. 5.1 and present the
adaptation to the incremental setting in Sect. 5.2. From previous work [CSS03, SSM04], the constraint-based
approach can generate one or a small fixed number of inductive inequalities per control location of the system;
however, we consider simple loops in our presentation. Even with multiple control locations, however, we still
consider just one counterexample to induction at a time.

5.1. Background: constraint-based invariant generation

The constraint-based generation of inductive affine inequalities invariants [CSS03] follows from Farkas’s Lemma,
which relates a primal constraint systemS (a conjunction of affine inequalities) over the program variables to a dual
constraint system over a set of introduced dual variables (also called Lagrangian multipliers) [Sch86]. Theorem
5.1 describes the case when S consists of a conjunction of affine inequalities. Then Corollary 5.1 extends the
result, with loss of completeness, to the case when some constraints of S are polynomial inequalities. Both are
statements of well-known theorems.
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Theorem 5.1 (Farkas’s Lemma) Consider the following universal constraint system of affine inequalities over real
variables x � {x1, . . . , xm}:

S :

⎡
⎢⎣

a1,0 + a1,1x1 + · · · + a1,mxm ≥ 0
...

...
...

an,0 + an,1x1 + · · · + an,mxm ≥ 0

⎤
⎥⎦.

If S is satisfiable, it implies affine inequality c0 + c1x1 + · · · + cmxm ≥ 0 if and only if there exist real numbers
λ1, . . . , λn ≥ 0 such that

c1 �
n∑

i�1

λi ai,1 · · · cm �
n∑

i�1

λi ai,m c0 ≥
(

n∑
i�1

λi ai,0

)
.

Furthermore, S is unsatisfiable if and only if S implies −1 ≥ 0.

Farkas’s Lemma states that the relationship between the primal and dual constraint systems is strict: the
universal constraints of the primal system are valid if and only if the dual (existential) constraint system has
a solution. Generalizing to polynomials preserves soundness but drops completeness. Stronger generalizations
than the following claim are also possible [Cou05, PJ04].

Corollary 5.1 (Polynomial Lemma) Consider the universal constraint system S of polynomial inequalities over
real variables x � {x1, . . . , xm}:

A :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C :

a1,0 +
m∑
i�1

a1,i ti ≥ 0

...

an,0 +
m∑
i�1

an,i ti ≥ 0

c0 +
m∑
i�1

ci ti ≥ 0

where the ti are monomials over x . That is, S has the form A ⇒ C . Construct the dual constraint system as
follows. Multiply each row of A by a fresh Lagrangian multiplier λi . Then for monomials ti of even power (e.g.,
1, x 2, x 2y4, etc.), impose the constraint

ci ≥ λ1 a1,i + · · · + λn an,i ;

and for all other terms, impose the constraint

ci � λ1 a1,i + · · · + λn an,i .

Finally, impose the constraint that all λi are nonnegative: λi ≥ 0. If the dual constraint system is satisfiable, then
the primal constraint system is valid.

Constraint-based linear invariant generation uses Farkas’s Lemma to generate affine inequality invariants
over linear transition systems. The method begins by proposing an affine inequality template

c0 + c1x1 + · · · + cnxn ≥ 0,

where the ci are the template variables. It then imposes on the template the conditions (initiation)

θ ⇒ c0 + c1x1 + · · · + cnxn ≥ 0

and (consecution)

ψ ∧ c0 + c1x1 + · · · + cnxn ≥ 0 ∧ ρ ⇒ c0 + c1x ′
1 + · · · + cnx ′

n ≥ 0,

where ψ is additional information relative to which a solution to the template should be inductive.
Expressing θ ,ρ, andψ in disjunctive normal form reveals a finite set of parameterized linear constraint systems

of the form in Theorem 5.1, except for the presence of the parameters ci . Dualizing the constraint systems



Property-directed incremental invariant generation 397

according to Farkas’s Lemma and conjoining them produces a single large existential conjunctive constraint
system over the parameters ci and the introduced multipliers λ. The dual system is a bilinear or a parameterized
linear system: it is almost linear except for the presence of the parameters ci . Each solution to this dual constraint
system provides values for the ci corresponding to an inequality that is inductive relative to ψ . Corollary 5.1 and
stronger versions [Cou05] provide the mechanism for extending this technique to polynomial inequality invariants
and analyzing polynomial transition systems.

Example 5.1 (Simple) For SSimple, the constraint-based method seeks inductive instantiations of the template

p0 + p1j + p2k ≥ 0

with parameters pi . The (initiation) condition imposes the following constraint on the template:

j � 2 ∧ k � 0 ⇒ p0 + p1j + p2k ≥ 0,

or more simply,

p0 + 2p1 + 0p2 ≥ 0. (4)

Treating each disjunct of ρ separately, the (consecution) condition imposes two constraints:

p0 + p1j + p2k ≥ 0 ∧ j ′ � j + 4 ∧ k ′ � k ⇒ p0 + p1j ′ + p2k ′ ≥ 0,

or more simply

p0 + p1j + p2k ≥ 0 ⇒ (p0 + 4p1) + p1j + p2k ≥ 0 ; (5)

and

p0 + p1j + p2k ≥ 0 ⇒ (p0 + 2p1 + p2) + p1j + p2k ≥ 0. (6)

All together, the (primal) constraint problem is thus

p0 + 2p1 + 0p2 ≥ 0,
∧ p0 + p1j + p2k ≥ 0 ⇒ (p0 + 4p1) + p1j + p2k ≥ 0,
∧ p0 + p1j + p2k ≥ 0 ⇒ (p0 + 2p1 + p2) + p1j + p2k ≥ 0.

(7)

According to Theorem 5.1, we then have the following set of dual constraints:

p0 + 2p1 + 0p2 ≥ 0

from (4),

p1 � λ1 p1 ∧ p2 � λ1 p2 ∧ p0 + 4p1 ≥ λ1 p0

from (5), and

p1 � λ2 p1 ∧ p2 � λ2 p2 ∧ p0 + 2p1 + p2 ≥ λ2 p0

from (6). Conjoining them reveals the dual constraint system over the variables {p0, p1, p2, λ1, λ2}.
In nontrivial solutions, λ1 � λ2 � 1. One solution is p0 � 0, p1 � 0, p2 � 1, corresponding to the inductive

invariant k ≥ 0. �

5.2. Incremental invariant generation

Extending the constraint-based method to incremental invariant generation is straightforward. Recall that
PR(s, ψ) should attempt to compute an inductive affine or polynomial inequality that proves that s is unreachable.
The shape of this inequality is fixed in advance via a template.

For the linear case (the polynomial case is similar), let

p0 + p1x1 + · · · + pnxn︸ ︷︷ ︸
T

≥ 0

be the template and C be the dual constraint system generated as described in 5.1. Define the constraint system

Cs : C ∧ T [s ] < 0,
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where T [s ] is the term that results from substituting the values of the state s for the variables x . Every solution
of Cs corresponds to an inductive inequality that proves that s is unreachable.

For transition systems with more complicated control structure, the counterexample to induction s corre-
sponds to a particular control location � with associated template T�. Then Cs is C ∧ T�[s ] < 0; that is, just T� is
explicitly constrained by s .

When the template consists of the conjunction of several assertions T1 ≥ 0 ∧ · · · ∧ Tn ≥ 0, only T1 need be
constrained.

Example 5.2 (Simple) Consider again the linear transition system SSimple. Suppose, as in Example 3.1, that the
inductive assertion χ2 : k ≥ 0 ∧ j ≥ 0 has been discovered and that state

s : 〈j � 0, k � 0〉
is chosen. To discover an inductive assertion that proves the unreachability of s , we first fix the template

p0 + p1j + p2k︸ ︷︷ ︸
T

≥ 0.

Following the steps of Example 5.1—except that ψ is used in (consecution) constraints (5) and (6)—yields
constraint system C. Finally, we construct the constraint problem

Cs : C ∧ p0 + 0p1 + 0p2︸ ︷︷ ︸
T [s]

< 0,

that is, C ∧ p0 < 0. Two solutions of this constraint system are j ≥ 2 and j ≥ 2k + 2. Both are inductive and
exclude s . �
Example 5.3 (Integer Square-Root) Corollary 5.1 allows us to generate some polynomial inequality invariants.
Consider again transition system SSqrt and the safety assertion

� : (w ≤ x → (z + 1)2 ≤ x ) ∧ (w > x → x < (z + 1)2)

To analyze the system, we fix the template

Quadratic(u,w , x , z )︸ ︷︷ ︸
T

≥ 0.

Quadratic forms the most general parameterized quadratic expression over the given variables; e.g.,

Quadratic(x , y) � p0 + p1x + p2y + p3xy + p4x 2 + p5y2.

We implemented the analysis in Mathematica [WR05], using Mathematica’s numerical solver to solve for
counterexamples to induction and the solver of Sect. 5.3 to solve the constraint systems Cs . Executing the proce-
dure constructs the following sequence of inductive assertions, where each is inductive relative to the conjunction
of the previous ones:

ϕ1 : −x + ux − 2xz ≥ 0
ϕ2 : u ≥ 0
ϕ3 : u − u2 + 4uz − 4z 2 ≥ 0
ϕ4 : 3u + u2 − 4w ≥ 0
ϕ5 : x − ux + 2xz ≥ 0
ϕ6 : 1 + 2u + u2 − 4w ≥ 0

ϕ7 : −1 + u ≥ 0
ϕ8 : −2u − u2 + 4w ≥ 0
ϕ9 : −3 − u2 + 4w ≥ 0
ϕ10 : −5u − u2 + 6w ≥ 0
ϕ11 : −15 + 22u − 11u2 + 4uw ≥ 0
ϕ12 : −1 − 2u − u2 + 4w ≥ 0

As usual, χ12
def� ϕ1 ∧ · · · ∧ ϕ12.

On the thirteenth iteration, � ∧ χ12 is discovered to be inductive; hence, � is invariant. Specifically, ϕ1 and
ϕ5 imply u � 1 + 2z , while ϕ6 and ϕ12 imply 4w � (u + 1)2. Thus, w � (z + 1)2, implying �. �

5.3. Solving bilinear constraint problems

The constraint systems that arise in Step 2 of the procedures of Sect. 5.2 are bilinear constraint problems: quadratic
terms are of the form λ p, where λ and p are different variables. While solvable via quantifier elimination
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[Tar51, Col75], this complete approach does not scale because of the doubly-exponential theoretical cost and cor-
responding practical performance. Instead, [SSM04, BMS05, Cou05] suggest incomplete heuristic approaches,
while [SSM03] describes a complete and relatively efficient method for solving the constraint systems that arise
for a special class of transition systems.

We briefly describe one possible incomplete solver that has been found to work in practice. Consider the
bilinear constraint system γ . Let each Lagrangian multiplier λ that appears in a bilinear term λ p range over a
fixed set, say {0, 1} (this set {0, 1} is sufficient in some cases [SSM03]). Then execute a search. Let γi be the current
constraint system.

1. If the conjunction of the subset of linear constraints of γi is unsatisfiable, then return unsatisfiable.
2. Choose a multiplier λj that is unassigned and that appears bilinearly in γi . If no such λj exists, return

satisfiable.
3. Try each value v in λj ’s possible solution set:

(a) Let γi+1
def� γi{λj �→ v}.

(b) Recurse on γi+1, returning satisfiable if the recursive call returns satisfiable.

Step 1 offers an early detection of unsatisfiability.
For solving the intermediate linear constraint systems, our implementation uses a rational solver [Avi98], thus

avoiding a loss of soundness from floating point errors [Cou05].

6. Experiments

In this section, we report on our practical experiences with incremental invariant generation on finite-state
systems. Unfortunately, we were not able to run all experiments that one might desire because of limited access
to computational resources. However, the evidence nonetheless suggests the value of the incremental approach.

6.1. Implementation

We implemented our analysis in O’Caml. We discuss important elements of our implementation.

6.1.1. SAT solver

We instrumented Z-Chaff version 2004.11.15 Simplified [MMZ+01] to return original unit clauses that are
leaves of the implication graph to aid in computing minimal implicates. We also refined its memory usage to
allow tens of thousands of incremental calls. For parallel executions, we tuned Z-chaff to randomize some of its
choices. Conversion to CNF is minimized by caching the CNF version of the transition system within the SAT
solver.

6.1.2. Depth-first or breadth-first search

If the invariant generation procedure fails to find an inductive clause excluding a counterexample to induction,
the top-level analysis has several options. It can take a depth-first approach in which it focuses on this subgoal
before again considering the rest of the given assertion. Alternately, it can continue to consider the assertion
and all subgoals simultaneously. We implemented both strategies and indicate which strategy we use to analyze
various benchmarks.

6.1.3. Parallel algorithm

Each process works mostly independently, relying on the randomness of the SAT solver to focus on different
regions of the possible state space of the system. Upon discovery of an inductive clause, a process reports it to a
central server and receives all other inductive clauses discovered by other processes since its last report.

In the depth-first treatment of counterexample states, a process can report that a clause is inductive under the
assumption that subgoal states are unreachable. If this assumption is incorrect, the process eventually discovers a
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counterexample trace. Otherwise, it eventually justifies this assumption with additional inductive clauses. How-
ever, other processes may finish before receiving these additional clauses. Hence, because only the last process to
terminate receives all clauses, it is the only process that is guaranteed to have an inductive strengthening of the
safety property.

In the breadth-first strategy, processes share both inductive clauses and subgoals.

6.1.4. k -Induction

We have recently implemented a k -induction [SSS00] strategy. The case k � 1 corresponds to normal induction;
for larger k , the transition relation is unrolled k times. k -induction provides two advantages: it allows the analysis
to search deeper in the state space for counterexamples to induction; and it can allow the invariant generation
procedure to find clauses that are k -inductive for some k > 1, but not for lower k . However, the resulting
satisfiability queries are more difficult to solve.

The strategy we employ is to use k � 1 for most of the analysis. However, when a counterexample to induction
does not yield an inductive clause, the analysis increments k temporarily; as soon as an inductive clause is again
discovered, it decrements k . Globally, a maximum of k � 5 was allowed in our experiments.

One difficulty in using k -induction in our context is that the disjunction of two k -inductive clauses is not
k -inductive for k > 1. Hence, while the forward analysis works with little modification, the backward analysis is
no longer complete: it may fail to find a k -inductive clause when k > 1. A full search is prohibitively expensive;
therefore, we take a heuristic approach: preferably, a literal is dropped in the backward analysis only if it is satisfied
in each of the k steps of (consecution); but if no such literal exists, then some satisfied literal is dropped. This
heuristic approach is guaranteed to find a 1-inductive clause if it exists, but it may miss a k -inductive clause when
k > 1.

6.2. Benchmarks

6.2.1. PicoJava II set

We applied our analysis to the PicoJava II microprocessor benchmark set, previously studied in [MA03, McM03,
McM05]. Each benchmark asserts a safety property about the instruction cache unit (ICU)—which manages the
instruction cache, prefetches instructions, and partially decodes instructions—but includes the implementation
of both the ICU and the instruction folding unit (IFU), which parses the byte stream from the instruction queue
into instructions and divides them into groups for execution within a cycle. Including the IFU increases the
number of variables in the cone-of-influence (COI) and complicates the combinatorial logic. Hence, for example,
a static COI analysis is unhelpful. Of the 20 benchmarks, proof-based abstraction solved 18 [MA03] (it exhausted
the available 512 MB of memory on problems PJ17 and PJ18), and interpolation-based model checking solved 19
[McM03, McM05], each within their allotted times of 1000 s on 930 MHz machines.

We applied the depth-first strategy without k -induction.

6.2.2. VIS set

The second set of benchmarks are from the VIS distribution [VIS]. We applied the analysis to several valid
properties of models that are difficult for standard k -induction (although easy for standard BDD-based model
checking) [AS06]. k -induction with strengthening fails on Peterson and Heap within 1800 s; but BDD-based
model checking requires at most a few seconds for each [AS06].

We applied the depth-first strategy without k -induction.

6.2.3. Selected benchmarks from HWMCC’07

Several benchmarks were difficult for the participating tools in HWMCC’07 [HWM07]. We applied our analysis
to some of the hardest ones as determined empirically by the outcome of the competition. Unfortunately, we do
not currently have the computational resources to perform exhaustive experiments.

We applied the breadth-first and k -induction strategies, except where noted.
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Fig. 6. Time for multiple processes

Table 1. Results for one process

Name COI Clauses SAT queries Time Mem (MB)

PJ2 306 6 (2) 202 (64) 38 s (3 s) 212 (9)
PJ3 306 6 (3) 201 (78) 37 s (3 s) 213 (9)
PJ5 88 159 (27) 12 K (3.4 K) 30 s (9 s) 50 (3)
PJ6 318 414 (85) 32 K (7.5 K) 1 h 30 min (22 min) 589 (39)
PJ7 67 63 (9) 4 K (1 K) 10 s (2 s) 41 (3)
PJ8 90 70 (8) 3.5 K (.8 K) 13 s (3 s) 43 (3)
PJ9 46 27 (5) 1 K (.2 K) 4 s (1 s) 35 (2)
PJ10 54 6 (3) 213 (110) 6 s (1 s) 48 (1)
PJ13 352 8 (6) 234 (149) 2 min 45 s (1 min 9 s) 379 (15)
PJ15 353 145 (68) 6 K (3.5 K) 30 min (17 min) 493 (79)
PJ16 290 241 (186) 18 K (22 K) 50 min (1 h 10 min) 539 (96)
PJ17 211 1.2K (153) 337 K (51 K) 16 h 20 min (3 h) 1250 (110)
PJ18 143 740 (152) 91 K (23 K) 2 h 40 min (50 min) 673 (83)
PJ19 52 83 (11) 4 K (.4 K) 11 min (5 min) 237 (31)
PC1 93 7 (4) 170 (105) 2 min 48 s (1 min) 360 (12)
PC2 91 3 (0) 42 (1) 51 s (4 s) 335 (1)
PC5 91 3 (0) 42 (1) 53 s (4 s) 335 (1)
PC6 91 9 (4) 229 (109) 3 min 25 s (1 min 18 s) 377 (13)
PC10 91 21 (10) 598 (260) 5 min 35 s (1 min 47 s) 370 (8)
Heap 30 2.6 K (237) 58 K (60 K) 4 h 20 min (45 min) 330 (25)
Pet 16 4 (0) 140 (11) 2 s (0 s) 44 (0)

6.3. Results

Table 1 reports results for executing one process on one processor of a 4×1.8 GHz computer with 8 GB of available
memory. For each benchmark, the analysis was run 16 times: the number of variables in the cone of influence and
the mean and standard deviation (in format mean (std. dev.)) for the number of discovered clauses, the number
of SAT queries made, the required time, and the peak memory usage are reported. Results are reported only for
the nontrivial benchmarks: benchmarks 0, 1, 4, 11, 12, and 14 of the PicoJava II set and benchmarks 3, 4, 7, 8,
and 9 of the VIS PPC60x 2 set are already inductive. The PicoJava II benchmarks are labeled PJx ; the others are
VIS benchmarks. All 20 of the PicoJava II benchmarks are solved, but three require more than 1 h.

Figure 6 reports results as a log-log plot for analyzing PicoJava II benchmarks 6, 17, and 18 and VIS benchmark
heap with multiple processes on a cluster of computers with 4×1.8 GHz processors and 8 GB of memory. Results
for one processor are the means from Table 1. Times for 32 processes are as follows: PJ6, 8 min; PJ17, 70 min;
PJ18, 9 min; and heap, 6 min. PJ17 completes in 50 min with 60 processes. All benchmarks complete within 1 h
with some number of processes.
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Table 2. Results on selected HWMCC’07 benchmarks
1 Process 8 Processes

Name COI Clauses Time Mem/proc (MB) Clauses Time Mem/proc (MB)

intel 005 69 150 10 s 15 190 2 s 15
intel 006 182 1150 3 min 5 s 66 1350 35 s 45
intel 007 608 1720 21 min 122 1660 2 min 40 s 80
intel 026 349 3060 2 h 20 min 420 4150 33 min 320
intel 037 3196 384 39 min 540 460 8 min 380
amba 09 52 330 2 h 20 min 1.4 K 580 31 min 1 K
amba 10 58 – – – 710 1 h 10 min 1.9 K
nusmv.reactor^2 76 2620 18 min 20 2900 2 min 10 s 15
nusmv.reactor^6 76 3340 30 min 22 3140 2 min 45 s 16

The plot suggests that time decreases roughly linearly with more processes, but only heap trades processes for
time almost perfectly, possibly because it requires the most clauses. Suboptimal scaling results from generating
redundant clauses.

Table 2 reports performance on several empirically difficult benchmarks from HWMCC’07 [HWM07] on
an 8-core computer with 8 × 2.8 GHz processors and 16 GB of memory. Benchmarks intel 005 and intel 037
were solved during the competition each by one participant in 12 and 9 min, respectively. The other benchmarks
were not solved by any participant in the allotted 15 min on one processor. We do not report data in one case:
the single-process analysis failed to analyze amba 10 in a reasonable time. The single-process analysis did not
converge on other unsolved benchmarks from HWMCC’07 in a reasonable time, and limited computational
resources prevented us from exploring the benchmarks further with the parallel analysis.

Interestingly, the analysis performed well on the nusmv.reactor benchmarks only with depth-first han-
dling of subgoals. Conversely, the amba benchmarks required a breadth-first strategy. The k -induction strategy
was applied to all benchmarks except the numsmv.reactor benchmarks. A possible explanation of the poor
performance of the depth-first strategy on the amba instances is that depth-first search can follow an unnecessarily
long path backwards to an informative counterexample to induction that is actually only a few steps from violat-
ing the safety assertion. Sometimes, however, as is perhaps the case in the nusmv.reactor benchmarks, certain
counterexamples to induction must be encountered that are many steps away from violating the safety assertion.

7. Related work and concluding remarks

7.1. Mathematical programming-based analysis

For constructing witnesses to properties of systems in the form of polynomial functions, mathematical program-
ming was first applied to synthesize Lyapunov functions of continuous systems [BY89] (see also [PP02] for a more
recent mathematical programming-based approach). Lyapunov functions are a continuous analog of ranking
functions of programs. A ranking function of a program maps its states into a well-founded set, thus proving that
the program always terminates. Construction of affine and polynomial expressions for verification purposes was
first studied extensively in the context of ranking function synthesis. Early work in this area looked at the genera-
tion of constraint systems over loops with linear assertional guards and linear assignments for which solutions are
linear ranking functions [KM75]. More recently, it is observed that duality of linear constraints achieves efficient
synthesis of linear ranking functions [CS01, CS02, PR04] and lexicographic linear ranking functions [BMS05].
The approach generalizes (with loss of completeness) to polynomial transition systems through semidefinite
programming [Cou05].

Synthesizing invariant properties of systems is more complex because they are fixpoints of the (initiation) and
(consecution) conditions. Of course, invariants are often necessary for proving termination, so that termination
analysis can be just as complex; however, the synthesis of ranking functions (or Lyapunov functions) alone does
not require solving for a fixpoint. As for synthesizing linear ranking functions, duality of linear constraints and
nonlinear constraint solving is used to generate affine invariants [CSS03, SSM04]. The technique is specialized
to apply to Petri nets, for which the problem is efficiently solvable [SSM03]. The continuous analog of invariants,
barrier certificates, are synthesized in a similar fashion [PJ04].
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7.2. Safety analysis of hardware

7.2.1. Qualitative comparisons

We compare the characteristics of several safety analyses: bounded model checking (BMC) [BCCZ99],
interpolation-based model checking (IMC) [McM03, McM05], k -induction (kI) [SSS00, dMRS03, AFF+04,
VH06, AS06], predicate abstraction with refinement (CEGAR) [CGJ+03, JKSC05], and our analysis (IIG). These
analyses are fundamentally based on computing an inductive set that excludes all error states; they consider the
property to prove during the computation; and they use a SAT solver as the main computational resource.

We now consider their differences.
Abstraction. IMC and CEGAR compute successively finer approximations to the transition relation. Each

approximation causes a certain set of states to be deemed reachable. When this set includes an error state, IMC
increments the k associated with its postcondition operator, solving larger BMC problems, while CEGAR learns
a separating predicate. In contrast, BMC, kI, and IIG operate on the full transition relation. kI strengthens by
requiring counterexamples to induction to be ever longer paths. In a finite-state system, there exists a longest loop-
free path that ends in an error state. When kI’s k is longer than this path, k -induction succeeds. IIG generalizes
from counterexamples to induction to inductive clauses to exclude portions of the state space.

Use of SAT Solver. BMC, IMC, and kI pose relatively few but difficult SAT problems in which the transition
relation is unrolled many times. CEGAR and IIG pose many simple SAT problems in which the transition relation
is not unrolled.

Intermediate Results. Each major iteration of IMC and CEGAR produces an inductive set that is informative
even when it is not strong enough to prove the property. Each successive iteration of IIG produces a stronger
formula that excludes states that cannot be reached without previously violating the property. Intermediate
iterations of BMC and kI are not useful, although exceptions include forms of strengthening, which we discuss
in greater depth below [dMRS03, AFF+04, VH06, AS06].

Parallelizable. Only IIG is natural to make parallel. The difficulty of subproblems grows with successive
iterations in BMC, IMC, and kI so that parallelizing across iterations is not useful. Each iteration of CEGAR
depends on previously learned predicates. For these analyses, parallelization must be implemented at a lower
level, perhaps in the SAT solver.

Differences suggest ways to combine techniques. For example, the key methods of IIG and kI can be combined,
and IIG can serve as the model checker for CEGAR.

7.2.2. Other related work

Blocking clauses are used in SAT-based unbounded model checking [McM02]. Their discovery is refined to
produce prime blocking clauses, requiring at worst as many SAT calls as literals [JS05]. Our minimal algorithm
requires asymptotically fewer SAT calls.

It has been brought to our attention that Junker described an algorithm like minimal in the context of
constraint solving [Jun01]. A similar algorithm has also been described for “delta debugging” [Zel99], but it
handles only sets containing precisely one minimal satisfying subset.

Strengthening based on under-approximating the states that can reach a violating state s is applied in the
context of k -induction [dMRS03, AFF+04, VH06, AS06]. Quantifier-elimination [dMRS03], ATPG-based com-
putation of the n-level preimage of s [VH06], and SAT-based preimage computation [AS06] are used to perform
the strengthening. Inductive generalization can eliminate exponentially more states than preimage-based ap-
proaches.

8. Conclusion

We described a method of generating strong invariants that are sufficient for proving the invariance of given
safety assertions. Unlike other methods, our approach is based on computing a sequence of simple assertions,
each of which is inductive relative to those appearing before it. Computing each assertion is relatively inexpensive;
and several assertions can be computed in parallel. We use counterexamples to induction to guide the invariant
generation procedure to produce assertions that are relevant for proving a given safety assertion. We have observed
that when our method works in practice, it produces relatively short proofs.
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Our ongoing work on hardware analysis focuses on three related problems. First, we continue to refine the
clause domain and operations. Second, we are searching for other useful domains for analyzing hardware. Third,
we are developing a generalization of this approach to address general LTL and CTL model checking of finite-state
systems.

For addressing other temporal properties of infinite-state systems, we must combine the incremental method
with synthesizing ranking functions. Earlier work suggests generating supporting invariants simultaneously
with the ranking function [BMS05]; however, this method, like other constraint-based approaches, is limited
to synthesizing very few supporting invariants at a time. We are pursuing an approach based on using both
counterexamples to induction and counterexamples to the existence of a ranking function to direct the genera-
tion of supporting invariants.

Another direction for research is to define domains and incremental analyses for addressing aspects of typical
infinite-state systems other than numerical data, such as memory and data-structures.
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