
DOI 10.1007/s00165-008-0089-0
BCS © 2008
Formal Aspects of Computing (2008) 20: 619–635

Formal Aspects
of Computing

Network invariants for real-time systems
Olga Grinchtein1,� and Martin Leucker2,��

1Department of Computer Systems, Uppsala University, Uppsala, Sweden. E-mail: olgag@it.uu.se
2Institut für Informatik, TU München, Munich, Germany. E-mail: leucker@in.tum.de

Abstract. We extend the approach of model checking parameterized networks of processes by means of network
invariants to the setting of real-time systems. We introduce timed transition structures (which are similar in spirit
to timed automata) and define a notion of abstraction that is safe with respect to linear temporal properties. We
strengthen the notion of abstraction to allow a finite system, then called network invariant, to be an abstraction of
networks of real-time systems. In general the problem of checking abstraction of real-time systems is undecidable.
Hence, we provide sufficient criteria, which can be checked automatically, to conclude that one system is an
abstraction of a concrete one. Our method is based on timed superposition and discretization of timed systems.
We exemplify our approach by proving mutual exclusion of a simple protocol inspired by Fischer’s protocol,
using the model checker TLV.

Keywords: Network invariants; Real-time systems; Parameterized systems

1. Introduction

Model checking [CGP99] is a method for verifying concurrent systems: computations of a high-level description
of a system are compared to those formulated by a logical requirement specification to establish that they are
compatible. In linear temporal logic (LTL), which was proposed for specification purposes by Pnueli [Pnu77],
one defines when a single computation meets the specification. A system is then said to satisfy a specification, if
every computation satisfies the specification.

Checking LTL specifications of finite-state systems is well understood [LP85, VW86, Var96]. Faced with
concurrent systems consisting of an arbitrary number of processes working in parallel, however, model checking
is more challenging, since we have to deal with unboundedly many states. A fruitful approach for checking these
parameterized systems, as they are often called, is by use of abstraction and network invariants.

The idea of abstraction is to check a smaller, finite-state system instead of the original one. If the smaller
system has more computations—including those of the original one–every linear temporal logic property it
satisfies, also holds for the original system [Gru05]. For branching-time logics, similar ideas work if we restrict the
logic to a universal fragment [CGL92]. Abstractions of original systems may either be found manually or using
ideas of abstract interpretation. In the first case, one has to prove that the abstract system indeed comprises all
computations of the original one. Basic principles underlying the construction of abstract models are understood
from, e.g., [CC77, CGL92, DGG94].

Verification by means of network invariants was introduced in [WL89] and turned into a working method
in [KM95]. In a nutshell, the idea can be sketched as follows. Suppose we have a finite-state process �, e.g.,
repeatedly requesting and releasing some resource. We want to reason about a setting in which an arbitrary

Correspondence and offprint requests to: M. Leucker, E-mail: leucker@in.tum.de
� Part of this work was done during O. Grinchtein’s stay at Weizmann Institute.
�� This author was supported by the European Research Training Network “Games”.

620 O. Grinchtein, M. Leucker

number of instances of� work in parallel. In other words, we study the system�1 ‖ · · · ‖ �n , where the number
n of instances of� is not known in advance. While for every n, we deal with a finite-state system, it is clearly not
possible to check the system iteratively for all n.

Using the idea of abstraction, it suffices to find a finite-state system �A that satisfies our requirement speci-
fication and that abstracts �1 ‖ · · · ‖ �n for arbitrary n. Similar to induction over natural numbers, the latter
is implied—with some further constraints—if �A is an invariant, i.e., �A is an abstraction of � as well as of
�A ‖ �A. The first item shows that � ‖ · · · ‖ � can be abstracted by �A ‖ · · · ‖ �A, which can further be
abstracted by �A, using the second requirement.

In this way, checking a parameterized system is reduced to finding a possible network invariant that satisfies
the requirement imposed on the parameterized system and proving that it is indeed a network invariant. Finding
a possible invariant is usually carried out manually, and checking whether it satisfies the requirement specification
can be done automatically using model checking. Proving that a system is a network invariant can be reduced to
checking abstraction, which can be done automatically for finite-state systems. This approach is elaborated for
checking linear-time specifications of fair discrete systems in [KP00] where also heuristics for finding invariants
are given.

Traditional techniques for model checking do not admit explicit modeling of time, and are thus unsuitable for
the analysis of real-time systems. Alur and Dill [AD90, AD94] introduced timed automata to model the behavior
of real-time systems. Furthermore, model-checking techniques were developed. See [Alu99] for an overview.

In this paper we study the problem of reasoning about parameterized timed systems. It extends our previous
paper [GL04], in which, to the best of our knowledge, the first approach for studying network invariants in the
sense of [WL89] for networks of timed systems was carried out, in terms of further explanation and full proofs.
We follow the framework given in [KP00], in which networks of fair discrete systems were examined. However,
we enrich the underlying systems with clocks to model timed behavior. We extend the notion of abstraction and
network invariant to the timed setting. A main contribution of the paper is a procedure for checking whether a
given timed transition structure is an abstraction of another one.

We introduce timed transition structures which are similar to timed automata. The main differences are that
we distinguish between private and global variables and that communication is by shared variables instead of
message passing. Thus, our communication model is closer to Java-like concurrent programming languages. We
say that �A is an abstraction of � if �A is comprised of at least the computations of �. The idea is used,
e.g., in [AL91]. We show that our notion of abstraction is safe with respect to linear temporal logic, i.e., linear-
time properties of an abstract system also hold for a concrete one. Provided further environmental behavior is
taken into account, we show that checking whether a system is a network invariant can be reduced to checking
whether �A is an abstraction of � and �A ‖ �A. Note that although clocks can be understood as real valued
variables, they are different from ordinary data variables since time progresses for all clocks synchronously: if
time δ passes for clock x , then it also passes for clock y . Treating clocks just as real valued variables would
disregard this “hidden” correlation of clocks and lead to wrong conclusions. This implicit dependency of clocks
is one of the obstacles to overcome when extending the approach of network invariants to the setting of real-time
systems.

We provide sufficient criteria, which can be checked automatically, to conclude that a system is an abstraction of
a concrete one. Our method is based on superposition [Jon94] but extended to the timed setting. The superposition
of � and �A is a structure similar to a timed transition structure, whose computations can be projected to
computations of � and �A, where as best as possible, �A tries to follow the moves of �. We show that if the
superposition satisfies certain LTL properties, �A is indeed an abstraction of �.

To check whether a superposition satisfies LTL properties, we use the notion of discretization of timed transi-
tion structures, developed by [GPV94] and [ABK+97]. Hereby, the infinite state space of timed transition structure
is reduced to a finite-state systems, maintaining satisfaction of LTL properties. This allows us to use standard
verification tools, like TLV [PS96]. Note that the method of discretization used is just one of many that turned out
to be useful in our practical examples. See [OW03, Gri02] for further results on discretization as well as further
references. Our approach is exemplified by proving mutual exclusion of a simple protocol inspired by Fischer’s
protocol [SBM92], using the model checker TLV [PS96]. We restrict ourselves to finite domains of data variables.
Using predicate abstraction (see [GS97], [KP00]), it should be possible to extend our results to systems with
variables ranging over infinite domains.

Systems similar to our timed transition structures have been studied in [LS00]. The approach is based on
automatic abstraction, but is limited to checking safety properties of timed systems with integer time domain.
A different approach for studying parameterized systems is presented in [AJ99] and [AJ02]. It is based on finite

Network invariants for real-time systems 621

symbolic representation of infinite sets of states and computing pre-images and convergence. It was shown that
reachability for such systems is decidable if each process has a single clock. Our method is also applicable for
verifying liveness properties of systems with an arbitrary number of clocks.

Since we develop our theory in the setting of LTL, our notion of abstraction is based on set inclusion of
computations. When considering branching-time logics, simulation becomes natural for defining abstraction.
This approach was studied for timed systems [TAKB96] and it was shown that simulation is decidable. The
question of network invariants, however, was not addressed. Note that simulation is a stronger relation than
language inclusion, i.e., it might be easier to find a network invariant when abstraction is based on language
inclusion rather than on simulation.

In the next section we define timed transition structures. Then, in Sect. 3, we recall the syntax and semantics
of LTL (in the timed setting). In Sect. 4 we develop the verification scheme using network invariants, we define
discretization of timed transition systems and prove that our discretization is correct with respect to LTL pro-
perties. We illustrate our approach in terms of an example in Sect. 5. We conclude the paper by summing-up our
results.

2. Timed transition structures

A time domain I is a totally ordered monoid with a least element equal to the neutral element. Usually, we
consider I � R+, the set of nonnegative reals (including 0), and I � N, the set of natural numbers (including 0).

A clock, denoted by x , x1, . . . , is a variable which is interpreted over a time domain. Given a finite set of
clocks C � {x1, . . . , xn}, a clock valuation is a function v : C → I that assigns to every clock x ∈ C a time. The
set of clock valuations is, as usual, denoted by IC . If I � R+, we denote by �v (x)� (respectively frac(v (x))) the
integer (fractional) part of x with respect to a given clock valuation v . Thus, v (x) � �v (x)� + frac(v (x)). For a
clock valuation v and a time t ∈ I, let v + t denote the clock valuation that is obtained from v after an elapse of
time t , that is, the clock valuation that satisfies (v + t)(x) � v (x) + t for all clocks x ∈ C . For a clock valuation
v and some clocks reset ⊆ C , let v↓reset denote the valuation in which exactly clocks in reset have been reset
to 0, that is, (v↓reset)(x) � 0 for x ∈ reset and (v↓reset)(x) � v (x) for x 	∈ reset holds.

If C is a set of clocks, the set XC of clock constraints is the set of Boolean combinations of atomic formulae
of the form x ∼ c, where ∼∈ {<,≤,>,≥} and c ∈ N. In other words, in clock constraints, clocks are compared
strictly or non-strictly to natural numbers.

Before defining the model of timed transition structures formally, let us describe the rational of the model
briefly. Our goal is to verify systems running several copies of the same process � in parallel. A timed transition
structure should thus be defined to capture such a process� as well as its interaction within the parallel product.
As usual, we take � to have variables and a state of � is an assignment of its variables, i.e., a valuation. To keep
things simple, we only consider variables ranging over a finite domain and clocks. Thus,�’s state space is infinite
only because of clock variables. A transition of � is given, as usual, as a predicate relating current and future
assignments of variables. However, clocks can only be reset to 0. Furthermore, a transition can be guarded by
a clock constraint. In simple words, � is a kind of finite-state system, except that its transitions are dependent
on the elapse of time. To ensure progress of the system, we also define a progress condition, which identifies for
every state a clock constraint that limits the time spend in this particular state.

As mentioned before, a process � is running parallel with other processes, often termed �’s environment. To
foster communication, some of �’s variables are designed for (shared variable) communication. Therefore, we
distinguish the following kinds of variables:

• observable or global variables, which may be used by processes running in parallel to depend their behavior
on

• owned variables, which can only be modified by the process itself but not by any other process
• shared variables, which are variables that are not owned by any process, but are observable to all processes,

and can thus be modified by any process
• local variables which are variables that are owned by some process and not observable by other processes.

We have now all the ingredients to define our model of processes precisely.

622 O. Grinchtein, M. Leucker

Fig. 1. Example

Definition 2.1 A tuple � � (D,C ,W ,O,�, λ,�) is a timed transition structure (TTS) where

• D � {d1, . . . , dr } is a finite set of discrete variables ranging over finite domains. Let D be the set of (data)
valuations where a (data) valuation maps the variables in D to their domain.

• C � {x1, . . . , xn} is a finite set of clocks, each ranging over R+. Clocks cannot be data variables.
• Additional to the clocks in C , a TTS has a master clock, denoted by now, which is not modified by any

transition. We denote by C̄ the union of C with now.

• We call V � D
 C̄ the set of system variables1 and S � D × R
C̄
+ the set of states of �. Thus, a state is of

the form (κ, v) where κ is a valuation and v is a clock valuation, which assigns to every clock in C̄ a time. We
denote s(d) and s(c) the value of variable d and value of clock c in state s .

• W ⊆ V is a finite set of owned variables, which cannot be modified by the environment.
• O ⊆ V is a finite set of variables that the environment can observe. We require V � W ∪ O . Furthermore,

we require now to be observable and owned, i.e., now ∈ O and now ∈ W .
• � is the initial condition, which is a set of assertions (quantifier-free first-order formula) over states characte-

rizing the initial states. It is required that at initial states all clocks are equal to 0.
• λ ⊆ D × D × XC × 2C is the transition table. An entry (κ, κ ′, g, reset) ∈ λ should be read as: move from

state with valuation κ to a state with valuation κ ′ if the guard g is satisfied, and reset the clocks listed in reset .
Note that g is over C only.

• � � ∧
κ∈D ϕκ → pκ is the time-progress condition, where ϕκ is an assertion, which holds at the state with

valuation κ and pκ ∈ XC for κ ∈ D.

We call variables in O also global variables, the ones in O − W shared, and the elements of W − O local
variables. Global, shared, and local clock and data variables are defined in the expected manner. Note that we
require V � W ∪ O , implying that every non-owned variable is observable, because we do not want to deal with
variables that are not owned by some process yet not visible to others. Furthermore, note that now is required to
be observable, which is crucial for our further developments.

Example 2.2 A simple example of a TTS is shown in Fig. 1. We have (data) variables d and s . Variable d indicates
that a resource is busy and might also be changed by other processes running in parallel while s just identifies
whether the system is in the initial phase or has started. We set d as observable while s is assumed to be local.
We have a single clock x . From the initial state where s and d equal 0, the system can proceed to the next state,
if at least one time unit has elapsed. Sometimes, we add a label like s :� 1 to an edge to stress that exactly the
variable s has changed when taking this transition. In the second state, the system can remain until time reaches
2, or, it moves to the third state where the value of d is flipped.

Let us fix a TTS � � (D,C ,W ,O,�, λ,�) (with |C̄ | � n) for the rest of this section. For a TTS, we

distinguish two types of transitions,
λ−→RT and

tick−→RT , both subsets of S × S. We write s � (κ, v)
λ−→RT s ′ �

(κ ′, v ′) iff there exists (κ, κ ′, g, reset) ∈ λ such that v |� g , v ′ |� �, and v ′ � v↓reset . In other words, we move
from s to s ′ if the time progress condition of κ ′ and the transition’s guard is satisfied and reset the clocks listed in

reset . In this case, we speak of a λ-transition and call s ′ a λ-successor of s . We write s � (κ, v)
tick−→RT s ′ � (κ ′, v ′)

iff the transition is caused by some time delay δ, that is, if κ ′ � κ and there is a δ > 0, such that v ′ � v + δ and
∀ 0 ≤ t ≤ δ : v + t |� �. In this case, we speak of a t ick-transition and call s ′ a t ick-successor of s . Thus, a timed
transition structure � induces an infinite-state transition system, denoted by [�]RT � (S,−→RT) with states S
and transition relation −→RT � λ−→RT ∪ tick−→RT .

1 X
 Y denotes the disjoint union of X and Y .

Network invariants for real-time systems 623

A run of� is a finite or infinite sequence of states π � s0s1 . . . such that s0 � � (initiality) and for each j ≥ 0
sj−→RT sj+1 (consecution). If furthermore the value of now grows beyond any bound (time divergence), we call π
a computation of �. Formally, in every computation we require that for every c ∈ R+ there is a j ∈ N such that
sj (now) > c.

When comparing computations of two timed transition structures, we are usually only interested in observable
variables. For state s � (κ, v), let s |O denote the pair of mappings (κ |O , v |O), where κ |O and v |O denote the
restrictions of κ and respectively v to domain O , as usual. Now, let ocomp(�) � {π|O | π is a computation of �}
be the set of observable computations of�, where for a computation π � s0s1 . . . we denote by π|O the sequence
s0|O s1|O . . .

If a TTS is running in parallel with an environment (for example other instances of the same process), the
environment might change shared data variables or reset shared clocks. We therefore study also the computations
of a TTS when put into an arbitrary environment, i.e., an environment that arbitrarily changes variables that
are not owned: let λenv � {(κ, κ ′, true, reset) | κ(d) � κ ′(d) for all d ∈ W and reset ∩ W � ∅} denote possible

changes due to a fully nondeterministic environment respecting owned variables. We write s � (κ, v)
λenv−→RT s ′ �

(κ ′, v ′) iff there exists (κ, κ ′, true, reset) ∈ λenv with v ′ � v↓reset . In this case, we speak of an env-transition and
call s ′ an env-successor of s . Note that sometimes, s ′ can be considered an env-successor as well as a λ-successor.

For our further development, it turns out to be useful to remember for a state of a run, whether it is reached by
either a λ-transition, env-transition, or a tick-transition. We call such an annotated run modular. More precisely,
a modular run of � is a finite or infinite sequence π � (s0, λ)(s1,m1) . . . of states and markers in {λ, env, tick}
such that s0 � � (initiality) and for each j ≥ 0

• sj
λ−→RT sj+1 and mj+1 � λ, denoting that we have a λ-transition,

• sj
λenv−→RT sj+1 andmj+1 � env and not sj

λ−→RT sj+1, meaning that we have an env-transition but noλ-transition,

• or sj
t ick−→RT sj+1 and mj+1 � tick.

Note that we arbitrarily added λ as a marker in the initial state and that we give preference to λ-transitions,
whenever a transition can be explained by both a λ-transition as well as an env-transition. We call π a modular
computation, if furthermore time diverges.

We denote by mocomp(�) � {π|O | π is a modular computation of �} the set of modular computations
restricted to observable variables. That is, for a modular computation π � (s0,m0)(s1,m1) . . . , we denote by π|O
the sequence (s0|O ,m0)(s1|O ,m1) . . .

Let us now elaborate on the parallel composition of two timed transition structures. Let us first discuss when
two TTSs �1 and �2 can be put in parallel: clearly, clock variables of one system must not be data variables of
the other system and vice versa. Furthermore, if one process claims to own a variable, the other one cannot
do the same. Furthermore, a local variable of one process must have different name than an observable variable
of the other system to make sure that local variables do not become observable in the parallel system. Observable
variables, on the other hand, may be present in both systems, facilitating communication. However, if one process
owns an observable variable, we not only require that it is an at most observable and non-owned variable of
the other process, but that the other process actually does not modify the this variable to respect that it is
owned by some other process. Note that, something like a semaphore would typically by modelled as share
variable that no process owns but that both process can modify to use it. Let us make our intuition precise: let
�1 � (D1,C1,W1,O1,�1, λ1,�1) and �2 � (D2,C2,W2,O2,�2, λ2,�2) be two TTSs. We say that �1 and �2
are composable if

• D1 ∩ C2 � D2 ∩ C1 � ∅, (“data is data and clocks are clocks”)
• W1 ∩ W2 � ∅, (“there are not two owners”)
• (V1 \ O1) ∩ O2 � ∅ and (V2 \ O2) ∩ O1 � ∅, where V1 � O1 ∪ W1 and V2 � O2 ∪ W2, (“local remains local”)

and
• for i ∈ {1, 2}, for every d ∈ Wi ∩ Oi and (κ, κ ′, g, reset) ∈ λ3−i we have κ(d) � κ ′(d), and for every

c ∈ Wi ∩ Oi and (κ, κ ′, g, reset) ∈ λ3−i , c 	∈ reset (“respect ownership”).

The parallel composition of �1 and �2, denoted by �1 ‖ �2, is defined if �1 and �2 are composable and
is the TTS � � (D,C ,W ,O,�, λ,�), where D � D1 ∪ D2, C � C1 ∪ C2, W � W1 ∪ W2, O � O1 ∪ O2
� � �1 ∧�2, and� � �1 ∧�2. Thus, the variables are joined in the expected manner. As the initial conditions
of�1 and�2 are predicates ranging over variables of respectively D1 and D2, we can simply take the conjunction

624 O. Grinchtein, M. Leucker

to obtain initial states that are initial states of both �1 and �2 when projecting to the respective variables.
A similar observation holds for the progress condition. The transition table λ is defined following the idea of
asynchronous execution, which is that the combined system can make a transition if one of its components can
make a transition. Let λ ⊆ D × D × XC × 2C be defined by (κ, κ ′, g, reset) ∈ λ iff there is an i ∈ {1, 2} and
(κi , κ ′

i , gi , reset i) ∈ λi with κ|Di
� κi , κ ′|Di

� κ ′
i , κ|D\Di

� κ ′|D\Di
, gi � g, and reset i � reset . In other words,

every entry (κi , κ ′
i , gi , reset i) ∈ λi gives rise to an entry in λ by extending the domain of κi and κ ′

i to D , yet
requiring that values of variables not present in Di are maintained. Note, while variables not present in Di must
not be changed, not all variables of the other process D3−i are maintained as �1 and �2 typically have shared
observable variables. Actually, communication by shared variables means exactly that one process changes (some)
variables of the other. Note that the parallel composition is commutative, i.e., �1 ‖ �2 � �2 ‖ �1.

To simplify our presentation, we silently assume in the following that whenever we build the parallel compo-
sition of two TTSs, they are composable. This implies that sometimes local variables have to be renamed before
a parallel composition is possible.

3. Linear temporal logic

As a requirement specification language we use a version of LTL [Pnu77], which offers boolean and temporal
connectives over atomic propositions.

Here, atomic propositions, denoted by p, . . . , consists of propositions stating properties of observable data
and time variables, where the latter are restricted to clock constraints, and the Boolean operators ¬ and ∨. Such
an atomic proposition is also called a state formula and the set of state formulae is denoted by AP .

A temporal formula is constructed out of state formulae to which we apply the Boolean operators and the
temporal operator U (until). As opposed to general LTL, we do not consider a next-state operator, since the
notion of next state is not clear in the setting of (dense) timed systems: clearly, there is a next state when looking
at a single computation. However, when time passes by δ � t1 + t2, this can be a single timed transition of amount
δ or two timed transitions, one taking time t1, the other taking time t2. We do not allow that formulae distinguish
these two computations. Thus, we use a so-called stutter-invariant fragment of LTL.

To sum up, the set of LTL formulae considered here is inductively defined by the following grammar:

ϕ ::� p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ (p ∈ AP)

A model for a temporal formula ϕ is an infinite sequence of states π � s0s1 . . . , where each state s provides
an interpretation for the variables in ϕ.

Given a model π � s0s1 . . . , we present an inductive definition for the notion of a temporal formula ϕ holding
at a position j ≥ 0 in π , denoted by (π, j) |� ϕ:

• (π, j) |� p ⇔ sj |� p,
• (π, j) |� ¬ϕ ⇔ (π, j) 	|� ϕ,
• (π, j) |� ϕ ∨ ψ ⇔ (π, j) |� ϕ or (π, j) |� ψ ,
• (π, j) |� ϕ Uψ ⇔ ∃k ≥ j with (π, k) |� ψ and for every i such that j ≤ i < k , (π, i) |� ϕ.

As usual, additional temporal operators can be defined, such as ♦ϕ � true Uϕ and �ϕ � ¬♦¬ϕ, meaning
that ϕ eventually and, respectively, ϕ globally holds.

If (π, 0) |� ϕ, we say that π satisfies ϕ and write π |� ϕ.
Given a TTS � and a temporal formula ϕ, we say that ϕ is �-valid, denoted by � |� ϕ, if ϕ holds on all

models that are computations of �.

4. Verification by network invariants

In this section, we define the concept of network invariants for parameterized systems built-up from timed
transition structures. We first work out requirements a TTS should satisfy to serve as a network invariant. Then,
we reduce the problem of checking these requirements to model checking certain formulae of the superposition of
two timed transition structures. For the latter, we show how to construct discretized systems that can be checked
using a standard LTL model checker.

Network invariants for real-time systems 625

Fig. 2. Example

4.1. Network invariants and continuous time

Let us elaborate on a notion of abstraction for TTSs suitable for the developments to come. Let us fix two TTSs
� � (D,C ,W ,O,�, λ,�) and �A � (DA,CA,WA,OA,�A, λA,�A) for the remainder of this section. We
say that� and�A are comparable, if O � O ′, O ∩W � O ′ ∩W ′. That is, they have the same observable variables
and have the same set of owned observable variables.

To simplify our presentation, let us assume that � and �A are comparable for the remainder of this section.
We start by defining the notion of abstraction for timed transition structures.

Definition 4.1 We say that �A is an abstraction of �, denoted by � �RT �A, iff ocomp(�) ⊆ ocomp(�A) and
call � the concrete system and �A the abstract system.

Thus, �A is an abstraction of �, if for every computation of the concrete system projected to observable
variables, there is a computation of the abstract system with the same projection. It is easy to see that the
abstraction relation is transitive.

Example 4.2 The TTS shown in Fig. 2 is an abstraction of the one defined in Example 2.2. We recall that d was
the only observable variable in the previous example and that the only observable computation is (d � 0)(d �
0)(d � 1)(d � 0)(d � 1) . . . This is obviously contained in the set of observable computations of the TTS shown
in Fig. 2.

As �A has more computations than �, it is clear that the abstraction relation is safe in the following sense:

Proposition 4.3 Let ϕ be an LTL formula. If �A |� ϕ and � �RT �A then � |� ϕ.

Note that the other direction is not true in general, i.e., if �A does not satisfy a property ϕ, � still might do
so.

The basic idea of network invariants is to find an abstraction�A that has more computations than an arbitrary
number of copies of � running in parallel. Given a candidate �A, this can be proven to hold if �A has more
computations than� and�A ‖ �A, also when both are running in parallel to an arbitrary TTS. This is captured
by the following theorem:

Theorem 4.4 If � and �A satisfy

(I1) � �RT �A,
(I2) for all TTSs � we have � ‖ � �RT �A ‖ �,
(I3) �A ‖ �A �RT �A, and
(I4) for all TTSs � we have (�A ‖ �A) ‖ � �RT �A ‖ �,

then � ‖ · · · ‖ � �RT �A.

Proof. � ‖ · · · ‖ � can be abstracted by �A ‖ � ‖ · · · ‖ � due to (I2). Because of commutativity this is equal to
� ‖ �A ‖ � ‖ · · · ‖ �. This can, again because of (I2), be abstracted by �A ‖ �A ‖ � ‖ · · · ‖ �. Iterating this
argument and using transitivity of the abstraction relation, we get that � ‖ · · · ‖ � �RT �A ‖ · · · ‖ �A. Note
that we silently assumed to have more than one copy of�. For a single copy (I1) gives the same argument. Using
(I3) and (I4), it can be easily seen that �A ‖ · · · ‖ �A �RT �A. Altogether, this means � ‖ · · · ‖ � �RT �A. �

Note that the previous theorem can be simplified in the following way: take � to be the “empty” process
that has not observable variables and does not offer any transition. Then, ocomp(� ‖ �) � ocomp(�) and
ocomp(�A ‖ �) � ocomp(�A). Thus (I2) implies (I1) and (I4) implies (I3).

626 O. Grinchtein, M. Leucker

Theorem 4.4 suggests the following strategy to verify properties of a network: find an abstraction �A, check
whether it satisfies the properties in question and prove (I1)–(I4). However, (I2) and (I4) are not constructive in
the sense that it requires to check for all TTSs �. Therefore, we are after a stronger abstraction relation making
the approach effective. The idea is to consider not only computations based on λ- and t ick-transitions but also
those with additional env-transitions catering for the behavior induced by processes running in parallel. Recall
that mocomp(�) denotes the set of �’s modular computations.

Definition 4.5 We say that�A is a modular abstraction of�, denoted by� �M �A, iff mocomp(�) ⊆ mocomp(�A).

Modular abstraction is what we are looking for:

Theorem 4.6 If � �M �A then for all TTSs � we have

� ‖ � �RT �A ‖ �
Proof. The idea of the proof is as follows: given a computation of � ‖ � for an arbitrary system �, we can
construct a modular computation by marking transitions of � as environmental moves. Modular abstraction
states that there is one modular computation of �A that agrees on observable variables. A careful study now
shows that with transitions of � this sequence can be concretized to a computation of �A ‖ �. Let us be more
precise:

Consider a computation π � s0s1 . . . of� ‖ � with si � (κi , vi). We have to show that there is a computation
πA of�A ‖ � that agrees with π on the observable variables of� and�. To do so, we set πe � (s0, λ)(s1,m1) . . .
where mi � λ, mi � env, or mi � tick depending on whether si−1−→RT si is a λ�-, a λ�-, or a t ick-transition.
Since � �M �A, there is a computation πe

A � (se
0A, λ)(se

1A,m1) . . . of �A that agrees with πe on observable
variables. We now show that πe

A can be extended to a computation πA of�A ‖ � with the required features. Let
πA � s0As1A . . . with siA � (κiA, viA) such that κiA|�A

� κe
iA|�A

, κiA|�� κi|� , and, viA|�A
� ve

iA|�A
, viA|�� vi|� .

Thus, the values of variables of �A are taken from πe
A and the ones of � are taken from π . By construction it is

clear that the sequences π and πA restricted to observable variables agree. It remains to show that πA is indeed
a computation of �A ‖ �. It is evident that s0A is an initial state. For a siA to s(i+1)A we distinguish three cases
according to the transition se

iA to se
(i+1)A:

• Suppose it is a tick-transition that increments all clocks by δ ≥ 0. Thus, this incrementation is not restricted
by �A. Due to observability of now, all systems �, �A, and � take indeed the same delay δ.
Hence, it is neither restricted by �. Therefore, it is a t ick-transition of �A ‖ �.

• For a λ�A
-transition, nothing needs to be shown.

• For a λ�-transition, we note that�A agrees on observable variables with�. Thus, we have a λ�-transition in
�A ‖ � iff we have one in � ‖ �. Since we have the latter, the former holds.

Thus, πA is a computation of �A ‖ � that agrees on all observable variables with � ‖ �. �

Although the previous theorem seems straightforward, it only holds because we required clock now to be
observable, as can be seen in the next example.

Example 4.7 Consider the TTSs �,�A, and � shown in Fig. 3 without the implicit observable clock now. Both
systems start initially in the state identified by d � 0 and can loop in this state. Both systems also have a state
given by d � 1, to which both systems can be put by a process running in parallel that sets d to 1. And both
systems have a local (non-observable) clock x .

In all modular computations of � and �A restricted to observable variables we observe that 0 is assigned to
d by taking the loop in the initial state or by taking the transition from d � 1 to d � 0. We would conclude that
� �M �A.

However, �A can make the latter move only when clock x � 1. � is now designed to make use of that: one
computation of � ‖ � is d � 1; d � 0, by first making sure that x > 1 and taking the transition in � and
then one in �. This is, however, not possible in �A ‖ � as x > 1 conflicts with x � 1. Requiring now to be
observable reveals that � 	�M �A: if now is observable, the computations of � and �A contain the information
when transitions are taken, which shows that the transitions of � and �A from d � 1 to d � 0 cannot be taken
at the same time.

Network invariants for real-time systems 627

(a) (b) (c)

Fig. 3. � distinguishes � and �A

Using Theorem 4.6, we can now formulate our main theorem for timed network invariants:

Theorem 4.8 If � and �A satisfy

(NI1) � �M �A, and
(NI2) �A ‖ �A �M �A

then � ‖ · · · ‖ � �RT �A.

Proof. By Theorem 4.6, condition (NI1) implies conditions (I1) and (I2) and condition (NI2) implies conditions
(I3) and (I4) of Theorem 4.4, so that the results follows by Theorem 4.4. �

4.2. Superposition

How to show that� �M �A? Using results from timed automata [AD94], it is easy to see that this question is unde-
cidable, unlike in the case for untimed systems. We therefore concentrate on sufficient conditions. We use the idea
of superposition [Jon94]. We then extend this idea to the timed setting and follow this up with discretization of time.

The superposition of two TTSs � and �A is a TTS assuring that �A tries best in simulating �. Intuitively,
the states of the superposition of � and �A are formed using the common and local variables of � and �A.
A transition is possible whenever, restricting to the variables of �, the transition can be taken according to �’s
transition table. If, restricting to the variables of�A, the transition can also be taken according to�A’s transition
table, both system will take the step. If, on the other hand, �A cannot follow, we have encountered a mismatch
and the system moves to a kind of sink state. As we have to check for a modular abstraction, the combined
system has to cater for environmental steps as well. Moreover, to make the approach more flexible, we allow extra
determinization conditions to be provided by the user. To signal a mismatch, we add a Boolean data variable mis,
which is true iff it was not possible for �A to follow � or the user’s determinization condition is too limiting.
Thus, sink states are the ones in which mis � true. This is formalized below.

Definition 4.9 For two comparable timed transition structures � � (D,C ,W ,O,�, λ,�) and �A � (DA,CA,
WA,OA,�A, λA,�A) we define their superposition sp(�,�A,�d , λd) to be the timed transition structure
�S � (DS ,CS ,WS ,OS ,�S , λS ,�S) where

• DS � D ∪ DA
 {mis}, CS � C ∪ CA,
• WS � W ∪ WA ∪ {mis}, OS � O ∪ {mis} � OA ∪ {mis},
• �S � (� ∧�A ∧�d ∧ (mis � f alse)) ∨ (� ∧ (¬�A ∨ ¬�d) ∧ (mis � true)), �S � � ∨�A,
• �d is an assertion over DS , such that � → �d|D ,
• λd ⊆ DS × DS × XCS

× 2CS , such that (κ, κ ′, g, reset) ∈ λ implies that there is (κ̂, κ̂ ′, ĝ, r̂ eset) ∈ λd with
κ̂|D� κ, κ̂ ′|D� κ ′, g → ĝ , and r̂ eset|D� reset ,

• λS � λ̂S ∩ λd where λ̂S ⊆ DS × DS × XCS
× 2CS with (κ, κ ′, g, reset) ∈ λ̂S if one of the following holds:

1. if κ(mis) � f alse no mismatch has occurred yet. We distinguish:

(a) if there is a g ′ such that (κ |D , κ ′|D , g ′, reset |C) ∈ λ, let g� be the disjunction of all such g ′. Let g�A

be the disjunction of all g ′ such that (κ|DA
, κ ′|DA

, g ′, reset |CA
) ∈ λA, where the empty disjunction is

f alse. Then we require g � g� ∧ g�A
and κ ′(mis) � f alse, stating that both guards of the systems

are satisfied and no mismatch is found, or, g � g� ∧ ¬g�A
and κ ′(mis) � true describing the case that

� could move but not �A, so that a mismatch is found

628 O. Grinchtein, M. Leucker

(b) or, taking an environmental transition, we require g � true, κ(d) � κ ′(d) if d ∈ WS , reset ∩WS � ∅,
and κ ′(mis) � f alse

2. if κ(mis) � true then we require g � true, κ � κ ′, and reset � ∅.

Let us explain the previous definition in detail: the superposition unites the variables of both structures but
adds the aforementioned fresh variable mis. To avoid changing of mis by an environmental step (which are
incorporated in the definition of λS), we require mis to be an owned variable. Somewhat arbitrarily, we have
chosen mis to be observable. The progress conditions are combined in a disjunctive manner catering for tick-
transitions that are possible by any of the two systems. Thus, a timed transition may take place if one of the
system allows this, while the other system does not allow this. We check below that timed transitions of � are
not restricted by those of �A. The initial condition of �S combines the initial conditions of both systems in a
conjunctive way. Initially, mis is set to f alse (no mismatch has been observed), unless there is an initial state
witnessed by θ for which no corresponding one is possible by θA or θd , in which case a mismatch of the initial states
is signalized by mis. Using θd , one can (manually) restrict the initial states of θA to be considered. Similarly, λd is
used to focus on certain transitions of �A and consequently must not restrict λ-transitions. Therefore, λd must
contain entries that basically coincide with entries of λ when projected on �’s variables. Then λd is intersected
with λ̂S , which is defined to describe the simultaneous transitions of� and�A: if no mismatch has occurred yet
(item 1), we distinguish a λ-transition (item 1(a)) and an environmental step (item 1(b)). The latter can be taken
unconstrained (g � true) but has to maintain owned variables and keeps mis � f alse. In item 1(a), we check
whether�A can follow�’s λ-transitions: given two states of the combined system, we consider the restriction to
�’s variables. Furthermore, we collect in g� and g�A

the guards for which a transition could be taken according
to λ and, respectively, λA. If both guards can be satisfied, both systems can do the considered step and there is no
mismatch. Otherwise, we have a step that is possible according to λ but not to λA (g� is satisfied but g�A

is not).
Thus, we have encountered a mismatch, which we record by setting mis � true. Once a mismatch is observed,
we stay in this state (item 2).

To a obtain a modular abstraction, it must not be possible to reach a state in which a mismatch encounters.
Moreover, it must be checked that a timed transition of the concrete system is not restricted by the abstract
system. The following theorem shows that checking for both conditions is satisfactory to indeed obtain a modular
abstraction:

Theorem 4.10 Let � and �A be two comparable timed transition structures. Let λd and �d be user-defined
determinization conditions. If �S � sp(�′,�A,�d , λd) satisfies

�S |� �((¬� ∨�A) ∧ mis � f alse) (1)

then � �M �A.

Proof. Assume equation (1) holds. We have to show that for every modular computation of� there is a modular
computation of�A that agrees on observable variables. We show instead a stronger property: whenever a transition

is possible in� then also in�A. This is shown as follows: let s
λ−→RT s ′ be a transition of�. We show that there is

a transition sS
λ−→RT s ′

S of�S and that this can be projected to a transition of�A. Note that observable variables
of � and �A are identical in �S and thus have the same value.

If the transition from s to s ′ is a λ�-transition, there is a corresponding entry in the transition table of
�. When consulting Definition 4.9, we see that there is at least one entry in λS that projected to � coincides
with the data valuations of s and s ′. Furthermore, since equation (1) holds, we can assume that this entry is
according to item (1). That means, restricted to �A, there is an entry in λ�A

for a suitable guard g ′. However,
since the guard g (of the λS -entry, using the notation of Definition 4.9) implies g ′,�A can make a corresponding
move.

For an environmental transition, the statement is obvious.
For a t ick-transition, we mention that the implication of the progress condition is checked in equation (1).
It remains to check that both� and�A have an initial state: the definition of�S says that either both� and

�A are fulfilled or not. In the latter case, mis � true, a contradiction to (1). Note that � implies �d , so that�d

does not restrict �. �

It now remains to check �S |� �((¬� ∨ �A) ∧ mis � f alse). To be able to use a standard LTL model
checker, we employ discretizations of TTSs.

Network invariants for real-time systems 629

4.3. Discretization of timed transition structures

In this subsection we associate to a timed transition structure a finite state transition system satisfying the same
LTL properties. This allows us to use LTL model checkers for finite-state machines for analyzing timed transition
structures. We use the discretization given in [GPV94] and [ABK+97], though our presentation is adapted to
TTSs.

First, let us prepare the definition of Alur’s region equivalence [Alu99]. Let K denote the greatest constant
appearing in guards and invariant conditions of the timed transition structure and let n � |C | be the number of
clocks. Given a valuation v : C → I, let ≺v : C × C be defined only for clocks x , y ∈ C with v (x) ≤ K and
v (y) ≤ K by x ≺ y iff frac(v (x)) < frac(v (y)). In other words, we order the clocks with value not exceeding
K according to their fractional values. Note that ≺ is a partial order as even two clocks with value less than or
equal to K but having the same fractional value are unordered. We define the rank of x ∈ C with respect to v by
rankv (x) � |{y | y ≺ x }| as the number of clocks with a smaller fractional part. Clearly, the rank of each clock
with respect to any valuation is in {0, . . . ,n − 1}. Note that the rank is only defined for clocks with value not
exceeding K .

Now, the region equivalence can be defined as follows: given two valuations v , v ′, we let v � v ′ iff for all
x , y ∈ C ,

• v (x) > K iff v ′(x) > K ,
• if v (x) ≤ K , then �(v (x))� � �v ′(x)� and frac(v (x)) � 0 iff frac(v ′(x)) � 0, and,
• rankv � rankv ′

Thus, two valuations are considered equivalent with respect to �, if, for each clock, either both valuations
assign a value greater than K , or, they agree on the integer value and either both fractional parts are 0 or both
are greater than 0. Furthermore, ordering the clocks according to their rank yields the same order meaning that
the rank functions for v and v ′ are the same.

The equivalence class of a valuation v with respect to � is called a region equivalence class and is denoted by
[v].

We are now after a simple finite data structure for storing equivalence classes of valuations. Let us first consider
the order of fractional values of clocks. They can be stored in an array of slots containing clocks (see Fig. 4a).
As fractional value 0 is of special interest (see definition of region equivalence), the first slot contains all clocks x
with frac(v (x)) � 0. The remaining slots are filled according to the order of the fractional values. In other words,
the clocks (with value not exceeding K) are distributed according to their rank: if there is a clock with fractional
value 0, then the slot number of a clock is exactly its rank, and, otherwise, it is its rank plus 1 (to leave the first
slot empty).

While following this scheme, in general n + 1 slots would suffice, we take 2n slots as it turned out to be
easier to implement in the model checker TLV. We distinguish even and odd slots and follow the convention that
whenever one of the fractional values is 0, we only use even slots, while we use odd slots if all fractional values are
greater than 0, and draw the array in a two dimensional fashion (Fig. 4b). Now, we can define the slot function
slotv : C → {0, . . . , 2n − 1} for clocks not exceeding K by slotv (x) � 2rankv (x), if there is a y ∈ C with
v (y) ≤ K and frac(v (y)) � 0, and slotv (x) � 2rankv (x) + 1, otherwise.

Let us call a collection of 2n slots a block. It is now obvious that all region equivalence classes can be
represented using K blocks plus one slot for clocks with value K and one for clocks with value greater than K .
Figure 4c shows the setup for K � 2 and n � 3. Clock x is stored in slot labelled > K whenever the value of
x exceeds K , it is placed in slot labelled K , if v (x) � K . Otherwise, x is stored in block �v (x)� in slot slotv (x).
Note that two valuations are region equivalent iff their representation is the same.

Using the picture of slots, it is now straightforward to define a discretized semantics of a timed transition
structure. For j ∈ {0, . . . , 2n − 1} we say that clock x occupies slot j if slotv (x) � j and say that x occupies an
even (odd) slot iff j is 0 or even (odd, respectively). Let
 � 1

2n be the discretization step. The discretized time
domain I
 is defined as I
 � {s
 | s ∈ N, 0 ≤ s ≤ 2nK + 1} (see Fig. 4c). Then, every slot j can be understood
to represent the fractional value j
 and vice versa, meaning that a fractional value j
 is assumed to be stored
in slot j . In other words, using the picture of slots, we understand that instead of considering the continuum of
real values, only a finite number of fractional values are of interest when considering a timed system with respect
to region equivalence.

We will now give a discretized semantics of a timed transition using only this finite number of fractional values
that correspond to finitely many slots. An implementation using slots is then straightforward. The discretized

630 O. Grinchtein, M. Leucker

(a) (b) (c)

Fig. 4. Slots and discrete time domain

transition system of� is denoted by [�]DT and is the finite state transition system (SDT ,�DT ,−→DT) where the
set of states is SDT � D × IC̄

 , the initial state condition�DT agrees with�, and −→DT , the transition relation,

is defined as −→DT � λ−→DT ∪ tick−→DT . The latter relations are defined as

• s � (κ, v)
t ick−→DT s ′ � (κ, v ′) iff s tick−→RT (κ, v +
) and v ′ � v �
. Here, v �
 is the mapping that assigns to

clock x the value v (x) �
, where t � t ′ � min{t + t ′,K +
}.
• s � (κ, v)

λ−→DT s ′ � (κ ′, v ′) iff (κ, v)
λ−→RT (κ ′, v ′′) and,

– if there are clocks x with v ′′(x) � 0 and y occupying an odd slot then even and odd slots are used and we
adjust the fractional part to use only even slots: let j ∈ {0, . . . , 2n − 1} be the smallest odd slot which is
not occupied by any clock. For v ′′(x) < K , we set v ′(x) � v ′′(x) +
 if x occupies a slot in {1, . . . , j − 1},
v ′(x) � v ′′(x) −
 if the occupied slot of x is greater than j . If x occupies slot 0 or v ′′(x) ≥ K , we let
v ′(x) � v ′′(x).

– else only even slots and slot 0 are used or all slots are odd, and we let v ′ � v ′′.

Thus, instead of considering arbitrary delays δ, only discrete steps of size
 are considered in timed transitions.
Note that by checking whether delay
 is possible with respect to the real-time semantics, we take care of progress
conditions. Furthermore, the modified sum operator guarantees that only K +
 occurs as largest value. If within
a λ-transition a clock has been reseted (v ′′(x) � 0) yet odd slots have been used, we adjust the fractional values to
use only even slots. It is clear that these adjustments maintain region equivalence. Moreover, it can easily be seen
that by a sequence of tick-transitions indeed all region equivalent states are considered, due to the adjustment
step.

A run of [�]DT is any infinite path of it starting in an initial state. A computation of [�]DT is a run in which
infinitely many tick-transitions are taken.

Let us check that � and [�]DT can be identified with respect to computations. Let (κ, v) ≡ (κ ′, v ′) iff κ � κ ′
and v � v ′. For a computation π : s0s1 . . . of�, let π̄ be the sequence π̄ : s̄0s̄1 . . . which is a subsequence of π in
which subsequent states of π are compressed to a single state when they are equivalent with respect to ≡. That is,
π̄ : si0si1 . . . and satisfies 0 � i0 < i1 < . . ., for k , k ′ ∈ {ij , . . . , ij+1 − 1} we have sk ≡ sk ′ , sij 	≡ sij+1 , and for all j ,
s̄j ≡ sij . We call two computations π, π ′ of � stuttering-equivalent, denoted by π ≡ π ′, iff for π̄1 � s̄0s̄1 . . . and
π̄2 � s̄ ′

0s̄
′
1 . . . and all i ≥ 0 we have s̄i ≡ s̄ ′

i . Note that π̄ is stuttering equivalent to π and that π̄ can be considered
as a minimal element of all sequences stuttering equivalent to π . The notion of stutter equivalence carries over
to computations of discretized timed transition systems in the expected manner. We can now apply the results of
[GPV94] and [ABK+97]. This gives the following lemma.

Lemma 4.11 [�]DT preserves qualitative behavior of �, that is, for each computation π1 of �, there exists a
computation π2 of [�]DT such that π̄1 ≡ π̄2, and vice versa.

Given a TTS � and a temporal formula ϕ, we say that ϕ is [�]DT -valid, denoted by [�]DT |� ϕ, if ϕ holds on
all models that are computations of [�]DT .

It is obvious that stutter equivalent computations satisfy the same LTL formulae.2 Thus, together with
Lemma 4.11, this implies:

2 Recall that LTL is defined here without a next-state operator.

Network invariants for real-time systems 631

Table 1. Verifying a network of processes

Given a system N � � ‖ � ‖ · · · ‖ � and requirement specification ϕ. Goal: show N satisfies ϕ.
Solution:

1. Define possible network invariant �A

(note: �A must be comparable with �)

2. Define determinization conditions �1
d and λd

1

(often no restriction is required)

3. Construct S P1 as discretization of sp(�,�A,�
1
d , λd

1)

4. Model check [S P1]DT |� �((¬� ∨�A) ∧ mis � f alse)
(then � �M �A)

5. Define determinization conditions �2
d and λd

2

(often no restriction is required)

6. Construct S P2 as discretization of sp(�A ‖ �A,�A,�
2
d , λd

2)

7. Model check [S P2]DT |� �((¬� ∨�A) ∧ mis � f alse)
(then �A ‖ �A �M �A, and, with (4), �A is a network invariant)

8. Model check [� ‖ �A]DT |� ϕ (shows � ‖ �A |� ϕ)

Theorem 4.12 For every TTS � and LTL formula ϕ we have

� |� ϕ iff [�]DT |� ϕ

Note that there are different versions for discretizing a timed-transition structure. We found this one, however,
easy to realize in verification tools like TLV. Given a timed transition structure, one can define t ick-transitions
consisting of adding time with possible adjustment in a straightforward manner. A detailed comparison of several
discretization approaches can be found in [Gri02].

To cope with our notion of computation, which requires t ick-transitions to be taken infinitely often, we added
a binary data variable dt to the underlying system, which is flipped whenever a t ick-transition is taken. Adding
as fairness-constraint that infinitely often dt must be 0 as well as 1, the notion of a fair run coincides with our
notion of computation.

4.4. The final approach

We sum-up our approach in Table 1. Steps 1, 2, and 5 have to be carried out manually, while the remaining items
can be done automatically.

5. Example

We construct a network invariant for a simple protocol in the spirit of Fischer’s protocol [SBM92] but modi-
fied to illustrate the particular features in finding invariants. Fischer’s protocol is used to guarantee mutual
exclusion in a concurrent system consisting of an arbitrary number of processes by using clocks and a shared
variable.

Our protocol consists of an arbitrary number of instances of the process shown in Fig. 5. Placeholders α and
β are two arbitrary integer values satisfying α ≤ β. Processes�1 and�2 can be distinguished from� :� �3 and
we study the network N � �1 ‖ �2 ‖ � ‖ · · · ‖ �. Each process i has a local clock xi and an owned variable
loci ∈ {1, . . . , 7} indicating the current control location. Location loci � 5 is the initial location. The processes
communicate via a shared variable d . Control locations 1–4 are patterned after Fischer’s protocol, while locations
5–7 are added to show that it is sometimes necessary to add further clocks when looking for an abstraction, as
we will point out below.

When a process is in location 1, it may proceed to location 2 when d equals 0, indicating that no process
requested to enter the critical section. If so, it resets its clock xi . It may remain in location 2 at most α time units.
The process can proceed to location 3 by setting d to ī , which is i for processes 1 and 2, and 3 for the other
processes, hereby requesting the critical section. In the original protocol, i would be assigned to d . However, we

632 O. Grinchtein, M. Leucker

Fig. 5. An adaption of Fischer’s protocol

have to make this modification to get equal processes �3,�4, . . . The process can stay in location 3 waiting to
reach time bound β, unless a different process sets d � i , hereby requesting the critical section for itself. If a
different process has requested the critical section, the current process can only proceed to location 1. If no other
process requests the critical section and the given time bound β exceeds, the process can enter the critical section
(location 4).

Locations 5, 6, and 7 are added to show an example of the hidden dependencies between clocks. Location 7
is only reachable if another process in parallel sets d � 4 (and moves from location 5 to 6), enabling the guard of
the current process to move from location 5 to location 7). However, since clocks increment simultaneously, this
cannot happen, as we will prove.

We would like to show that neither process �1 nor �2 can reach location 7 and that both of them are never
together in location 4, a standard mutual-exclusion property. It can be formalized by

ψ � �(loc1 ≤ 6 ∧ ¬(loc1 � 4 ∧ loc2 � 4))

Our goal is to construct a network invariant �A satisfying � ‖ · · · ‖ � �M �A and �1 ‖ �2 ‖ �A � ψ .
Let us elaborate on �A. We first try to avoid using a dedicated owned location variable and, as it will turn

out, we can do so. As �A should be an abstraction of �, it needs to have the observable variable d and should
allow the alteration of d from 2 to 3 and from 3 to 0.

Assume that �A does not constrain the time when switching d from 2 to 3 is performed, let us say by some
clock xA. Then a possible run of �1 ‖ �2 ‖ �A is

(d � 0 , loc1 � 5 , loc2 � 5 , x1 � 0 , x2 � 0 , xA � 0) (initial state)
→ (d � 0 , loc1 � 1 , loc2 � 5 , x1 � 0 , x2 � 0 , xA � 0) (�1 moves to location 1)
→ (d � 0 , loc1 � 1 , loc2 � 1 , x1 � 0 , x2 � 0 , xA � 0) (�2 moves to location 1)
→ (d � 0 , loc1 � 1 , loc2 � 2 , x1 � 0 , x2 � 0 , xA � 0) (�2 moves to location 1)
→ (d � 2 , loc1 � 1 , loc2 � 3 , x1 � 0 , x2 � 0 , xA � 0) (�2 requests critical section)
→∗ (d � 2 , loc1 � 1 , loc2 � 3 , x1 > β , x2 > β , xA > β) (time passes)
→ (d � 2 , loc1 � 1 , loc2 � 4 , x1 > β , x2 > β , xA > β) (�2 enters critical section) (∗)
→ (d � 3 , loc1 � 1 , loc2 � 4 , x1 > β , x2 > β , xA > β) (�A sets d to 3 requesting �’s

critical section)
(∗∗)

→ (d � 0 , loc1 � 1 , loc2 � 4 , x1 > β , x2 > β , xA > β) (�A resets d to 0)
→ (d � 0 , loc1 � 2 , loc2 � 4 , x1 � 0 , x2 > β , xA > β) (�1 goes for critical section)
→ (d � 1 , loc1 � 3 , loc2 � 4 , x1 � 0 , x2 > β , xA > β)
→∗ (d � 1 , loc1 � 3 , loc2 � 4 , x1 > β , x2 > β , xA > β)
→ (d � 1 , loc1 � 4 , loc2 � 4 , x1 > β , x2 > β , xA > β) (�1 enters critical section)

Then ψ does not hold, since both�1 and�2 are in the critical section. To avoid this computation, we have to use
xA for constraining the change of d from 2 to 3 or from 3 to 0 (lines (∗) and (∗∗)). If we require that �A sets d
from 3 to 0 only if xA ≤ β, then� 	�M �A: observe that� can proceed from location 3 to location 1 via location
4, setting d from 3 to 0, when clock x > β. As time for clocks x and xA passes simultaneously, xA ≤ β is too
strong. Thus, the only choice that remains is to require that �A sets d from 2 to 3 only if xA ≤ β. Then it should
be possible for �A to reset xA if d � 0 as otherwise � 	�M �A, for a similar reason.

Network invariants for real-time systems 633

(a) (b)

Fig. 6. Possible network invariants

The discussion above and further arguments along the same line lead to a natural possible network invariant,
denoted by �A , shown in Fig. 6a. Its state space consists of all possible values of d and the transitions set d
according to the destination state. Since �A should abstract �, states d � 1 and d � 2 (which are shown as a
single state to simplify the presentation) are only reachable by environmental moves. We add to �A a clock xA

to follow the timing constraints imposed by � when moving to states d � 3 or d � 4.
We can check automatically that � �M �A. However, if we try to show that �A ‖ �A �M �A we obtain a

counterexample: consider the modular computation of �A[1] ‖ �A[2] given by3

(d � 0, xA[1] � 0, xA[2] � 0)
→∗ (d � 0, xA[1] > β, xA[2] > β)
→ (d � 0, xA[1] � 0, xA[2] > β)
→ (d � 2, xA[1] � 0, xA[2] > β)
→ (d � 3, xA[1] � 0, xA[2] > β) (∗)
→ (d � 4, xA[1] � 0, xA[2] > β) (∗∗)

The interesting thing to observe in this computation is that transition from (∗) to (∗∗) can be taken as there is one
xA with value greater than β. Let us now consider�A [3]. There is a run s0 . . . si . . . of�A [3] such that si (d) � 2
and si+1(d) � 3, however requesting xA ≤ β. Then it is not possible to take a transition from si+1 to si+2 such
that si+2(d) � 4, which is however possible in the computation shown above. Therefore �A is not a network
invariant.

We obtain a network invariant�A by, for example, adding a clock yA to�A which is never reset and modified
by �A such that transitions which set d � 4 depend only on the new clock. This invariant is shown in Fig. 6b.
We can check successfully that � �M �A and �A ‖ �A �M �A, using the approach developed in the previous
section.

We have examined this example using the model checker TLV. We have proven that �A is indeed a network
invariant using the superposition approach outlined in the previous section, however using further determinization
conditions.

6. Conclusion

In this paper, we presented a method for checking linear-time temporal logic properties of networks of timed
systems. Our approach is based on network invariants, which have previously only been studied for untimed
systems [WL89, KM95]. We have extended Pnueli’s transition structures [KP00] by real-valued clocks and then

3 We use the postscript [i] to distinguish local variables of instances of �.

634 O. Grinchtein, M. Leucker

developed a corresponding framework of network invariants for these timed systems. The main technical insight
is the use of a reference clock now to relate concrete and abstract computations of timed transition structures.
Furthermore, we use the idea of superposition, now formulated in the timed setting, to check whether some
abstract system is more general than some concrete one. Finally, we employ discretization of the superposition
to allow the use of standard LTL model checkers for checking whether a network of processes can be abstracted
by a single timed system.

As the example shows, finding abstractions is a tedious job. Thus, it would be interesting to find network
invariants automatically, if they exist. While this has been studied in the untimed setting [LHR97, GLP06],
corresponding developments in the timed setting are left as future work.

Acknowledgments

We thank Bengt Jonsson, Yonit Kesten, Amir Pnueli, and Elad Shahar for inspiring us to study this problem, for
fruitful discussions, and for hints on using TLV.

References

[ABK+97] Asarin E, Bozga M, Kerbrat A, Maler O, Pnueli M, Rasse A (1997) Data structures for the verification of timed automata.
In: Maler O (ed) Hybrid and real-time systems. Lecture notes in computer science, Grenoble, France, vol 1201. Springer,
Heidelberg, pp 346–360

[AD90] Alur R, Dill D (1990) Automata for modeling real-time systems. In: Automata, languages and programming. Springer, Hei-
delberg, pp 322–335

[AD94] Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235
[AJ99] Abdulla PA, Jonsson B (1999) On the existence of network invariants for verifying parameterized systems. In: Correct system

design-recent insights and advances. Springer, Heidelberg, pp 180–197
[AJ02] Abdulla PA, Jonsson B (2002) Model checking of systems with many identical timed processes. Theor Comput Sci 290(1):241–

264
[AL91] Abadi M, Lamport L (1991) The existence of refinement mappings. Theor Comput Sci 82(2):253–284
[Alu99] Alur R (1999) Timed automata. In: Proceedings of 11th international computer aided verification conference. Lecture notes

in computer science, vol 1633. Springer, Heidelberg, pp 8–22
[CC77] Cousot P, Cousot R (1977) Abstract interpretation: a unified model for static analysis of programs by construction or approxi-

mation of fixpoints. In: Proceedings of 4th ACM symposium on principles of programming languages, pp 238–252
[CGL92] Clarke E, Grumberg O, Long D (1992) Model checking and abstraction. In: Proceedings of the 19th annual ACM symposium

on principles of programming languages. ACM, New York, pp 342–354
[CGP99] Clarke EM, Grumberg O, Peled DA (1999) Model checking. The MIT Press, Cambridge
[DGG94] Dams D, Grumberg O, Gerth R (1994) Abstract interpretation of reactive systems: abstractions preserving

∀ CTL∗, ∃CTL∗ and CTL∗. In: Proceedings of IFIP working conference on programming concepts, methods and calculi
(PROCOMET’94), pp. 573–592

[GL04] Grinchtein O, Leucker M (2004) Network invariants for real-time systems. In: Fifth international workshop on verification of
infinite-state systems. Electronic notes in theoretical computer science, vol 98. Elsevier, Amsterdam, pp 57–74

[GLP06] Grinchtein O, Leucker M, Piterman N (2006) Inferring network invariants automatically. In: Proceedings of the 3rd interna-
tional joint conference on automated reasoning (IJCAR’06). Lecture notes in artificial itelligence, vol 4130

[GPV94] Gollu A, Puri A, Varaiya P (1994) Discretization of timed automata. In: Proceedings of the 33rd IEEE conferene on decision
and control, pp 957–958

[Gri02] Grinchtein O (2002) Dense-time analysis with fractional adjustment steps. Master’s thesis, The Weizmann Institue of Science,
Rehovot 76100, Israel, July

[Gru05] Grumberg O (2005) Abstraction and refinement in model checking. In: de Boer FS, Bonsangue MM, Graf S, de Roever WP
(eds) FMCO. Lecture notes in computer science, vol 4111. Springer, Heidelberg, pp 219–242

[GS97] Graf S, Saidi H (1997) Construction of abstract state graphs with PVS. In: Proceedings of 9th international conference on
computer aided verification, Haifa, Israel, vol 1254. Springer, Heidelberg, pp 72–83

[Jon94] Jonsson B (1994) Compositional specification and verification of distributed systems. ACM Trans Program Lang Syst
16(2):259–303

[KM95] Kurshan RP, McMillan KL (1995) A structural induction theorem for processes. Inf Comput 117(1):1–11
[KP00] Kesten Y, Pnueli A (2000) Control and data abstraction: the cornerstones of practical formal verification. Softw Tools Technol

Transf 2(4):328–342
[LHR97] Lesens D, Halbwachs N, Raymond P (1997) Automatic verification of parameterized linear networks of processes. In: Procee-

dings of 24th ACM symposium on principles of programming languages
[LP85] Lichtenstein O, Pnueli A (1985) Checking that finite state concurrent programs satisfy their linear specification. In: Proceedings

of the twelfth annual ACM symposium on principles of programming languages. ACM, New York, pp 97–107
[LS00] Lesens D, Saı̈di H (2000) Abstraction of parameterized networks. In: Moller F (ed) Infinity’97, second international workshop

on verification of infinite state system. Electronic notes in theoretical computer science, vol 9. Elsevier, Amsterdam

Network invariants for real-time systems 635

[OW03] Ouaknine J, Worrell J (2003) Revisiting digitization, robustness, and decidability for timed automata. In: Proceedings of the
18th annual IEEE symposium on logic in computer science (LICS’03). IEEE Computer Society, New York

[Pnu77] Pnueli A (1977) The temporal logic of programs. In: Proceedings of the 18th IEEE symposium on the foundations of computer
science (FOCS-77), Providence, Rhode Island, October 31–November 2, 1977. IEEE Computer Society Press, New York,
pp 46–57

[PS96] Pnueli A, Shahar E (1996) A platform combining deductive with algorithmic verification. In: Alur R, Henzinger TA (eds)
Proceedings of the eighth international conference on computer aided verification CAV, New Brunswick, NJ, USA, July/August
1996. Lecture notes in computer science, vol 1102. Springer, Heidelberg, pp 184–195

[SBM92] Schneider FB, Bloom B, Marzullo K (1992) Putting time into proof outlines. In: de Bakker, Huizing, de Roever, and Rozenberg
(eds) Real-time: theory in practice. Lecture notes in computer science, vol 600, pp 618–639

[TAKB96] Taşıran S, Alur R, Kurshan RP, Brayton RK (1996) Verifying abstractions of timed systems. In: Montanari U, Sassone V
(eds) CONCUR ’96: concurrency theory, 7th international conference. Lecture notes in computer science, Pisa, Italy, 26–29
August 1996, vol 1119. Springer, Heidelberg, pp 546–562

[Var96] Vardi MY (1996) An automata-theoretic approach to linear temporal logic. Lecture notes in computer science, vol 1043.
Springer, New York, pp 238–266

[VW86] Vardi MY, Wolper P (1986) An automata-theoretic approach to automatic program verification. In: Symposium on logic in
computer science (LICS’86), Washington, D.C., USA. IEEE Computer Society Press, New York, pp 332–345

[WL89] Wolper P, Lovinfosse V (1989) Verifying properties of large sets of processes with network invariants. In: Proceedings of
the international workshop on automatic verification methods for finite state systems. Lecture notes in computer science,
Grenoble, France, vol 407. Springer, Heidelberg, pp 68–80

Received 2 July 2004
Accepted in revised form 1 August 2008 by P. K. Pandya
Published online 7 October 2008

	1 Introduction
	2 Timed transition structures
	3 Linear temporal logic
	4 Verification by network invariants
	4.1 Network invariants and continuous time
	4.2 Superposition
	4.3 Discretization of timed transition structures
	4.4 The final approach

	5 Example
	6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

