
DOI 10.1007/s00165-008-0092-5
BCS © 2008
Formal Aspects of Computing (2009) 21: 187–223

Formal Aspects
of Computing

Trace-based derivation of a scalable
lock-free stack algorithm
Lindsay Groves1 and Robert Colvin2

1 School of Mathematics, Statistics and Computer Science, Victoria University of Wellington,
P.O. Box 600, Wellington, New Zealand. E-mail: lindsay@mcs.vuw.ac.nz
2 ARC Centre for Complex Systems, School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

Abstract. We show how a sophisticated, lock-free concurrent stack implementation can be derived from an
abstract specification in a series of verifiable steps. The algorithm is based on the scalable stack algorithm of
Hendler et al. (Proceedings of the sixteenth annual ACM symposium on parallel algorithms, 27–30 June 2004,
Barcelona, Spain, pp 206–215), which allows push and pop operations to be paired off and eliminated without
affecting the central stack, thus reducing contention on the stack, and allowing multiple pairs of push and pop
operations to be performed in parallel. Our algorithm uses a simpler data structure than Hendler, Shavit and
Yerushalmi’s, and avoids an ABA problem. We first derive a simple lock-free stack algorithm using a linked-list
implementation, and discuss issues related to memory management and the ABA problem. We then add an
abstract model of the elimination process, from which we derive our elimination algorithm. This allows the basic
algorithmic ideas to be separated from implementation details, and provides a basis for explaining and comparing
different variants of the algorithm. We show that the elimination stack algorithm is linearisable by showing that
any execution of the implementation can be transformed into an equivalent execution of an abstract model of a
linearisable stack. Each step in the derivation is either a data refinement which preserves the level of atomicity,
an operational refinement which may alter the level of atomicity, or a refactoring step which alters the structure
of the system resulting from the preceding derivation. We verify our refinements using an extension of Lipton’s
reduction method, allowing concurrent and non-concurrent aspects to be considered separately.

Keywords: Refinement; Derivation; Lock-free algorithms; Concurrency; Stack; Elimination; Reduction,
Linearisability; Atomicity

1. Introduction

Concurrent algorithms designed to provide good performance under a wide range of workloads typically do not
use locks, and use a variety of mechanisms to reduce contention on shared memory and increase the potential
for parallel execution. This is illustrated clearly in the case of concurrent implementations of stacks. Michael and
Scott [MS98] describe a simple linked-list implementation of a concurrent stack, attributed to Treiber [Tre86],
which relies only on a compare and swap (CAS) instruction to synchronise access to the stack. Hendler et al.
[HSY04] extend this implementation by allowing processes that detect interference while accessing the stack to
pair off so that push and pop operations can “eliminate” each other, leaving the central stack unchanged. The

Correspondence and offprint requests to: L. Groves, E-mail: lindsay@mcs.vuw.ac.nz

188 L. Groves, R. Colvin

resulting implementation is scalable, since under high workloads, multiple pairs of push and pop operations can
be performed in parallel without increasing contention on the central stack.

Although the basic idea underlying this elimination mechanism is quite simple, the description given in
[HSY04] is presented directly in terms of a concrete implementation. The lack of an abstract description of the
elimination mechanism makes it hard to separate the essential ideas from the particular implementation, and
to explore and compare alternative implementations. In previous work [CG07], we have verified a simplified
version of Hendler, Shavit and Yerushalmi’s algorithm which we discovered while attempting to verify their
algorithm. That proof was based on simulation between input–output automata (IOAs) [Lyn96, LV95] and is
fully mechanised in PVS [COR+95], but it too is encumbered with low-level details, related more to the IOA
formalism than to the algorithm being verified.

Our aim in this paper is to give a more illuminating presentation of the elimination stack algorithm, showing
how our simplified version can be derived from an abstract specification. We are primarily concerned with
showing that the algorithm is linearisable with respect to an abstract specification of a concurrent stack; we will
also argue that the algorithm is lock-free. Linearisability [HW90] is the standard safety property for concurrent
data structures, and requires that each operation appears to occur atomically at some point between its invocation
and its response, and is thus equivalent to a legal sequential execution. Lock-freedom is a progress property which
ensures that the system as a whole makes progress, even though individual operations may never terminate. More
precisely, a system is lock-free if some operation will always complete within a finite number of steps of the
system.1

By taking a constructive approach, we are able to clearly separate essential ideas from implementation
detail, and identify points at which alternative implementation approaches might be considered, leading to
a deeper understanding of the algorithm. We begin with a highly non-deterministic model, which allows us
to focus on the essential behaviour of the algorithm, and gradually introduce the algorithmic decisions that
ensure that the algorithm can be implemented in a lock-free manner on the intended architecture. We make
a clear separation between the underlying stack implementation and the elimination mechanism, allowing eli-
mination to be used with any concurrent stack implementation. We also use a simpler data structure for the
elimination mechanism than the one in [HSY04], and thereby avoid an ABA problem which arises with their
implementation.

Whereas formalisms such as IOAs and Action Systems [BKS88] require algorithms to be expressed as
sets of actions or transitions, our derivation works with algorithmic descriptions in a more familiar procedu-
ral form, making it easier to relate correctness conditions to the original algorithm. Our derivation approach
separates reasoning about the sequential behaviour of each process, which is based on standard refinement tech-
niques [Mor94, BvW98, dRE98], and the interaction between processes, which uses a trace reduction approach
similar to that of Lipton [Lip75] and Lamport and Schneider [LS89]. This approach appears to lead to proofs that
are closer to the way we think about lock-free algorithms, and to give greater insight into why they are correct,
than simulation proofs. To keep the paper to a reasonable length, we take a semi-formal approach, describing
each model formally, giving semi-formal justifications for the correctness of each step, and identifying correctness
conditions that would need to be verified in order to obtain a more formal proof.

We begin in Sect. 2 by outlining the language we use and our derivation approach. In Sect. 3, we present
an abstract specification for a concurrent stack and take an initial step towards refining this to a lock-free stack
implementation, and then in Sect. 4 we refine this to a simplified version of Treiber’s algorithm using a lin-
ked list representation, and consider issues to do with reuse of heap space, including the ABA problem—these
sections serve to introduce some of the basic ideas underlying lock-free algorithms and linearisability, and to
illustrate our trace-based derivation approach in the context of a simple algorithm. Section 5 then extends the
simple stack implementation by adding the elimination mechanism, starting with an abstract specification of
elimination and deriving its implementation. Section 6 presents our conclusions, and discusses related and future
work.

This paper is a revised and extended version of [GC07]. In this version, our derivation approach is explained in
more detail, the derivations are given in more detail, and a simpler abstract model of the elimination mechanism
is used in Sect. 5.

1 Early papers often called this property non-blocking. Current usage treats “non-blocking” as a more general term encompassing other
progress properties such as wait-freedom [Her91] and obstruction-freedom [HLM03]. This should not be confused with the (non)blocking
interpretation of preconditions, as used for example in [DB03].

Trace-based derivation of a scalable lock-free stack algorithm 189

Fig. 1. Specification of CAS

2. Preliminaries

We begin by describing the basic features of the language we use for our derivation—some other notation will be
introduced later as needed. We then outline the basis for the approach taken in our derivation.

2.1. A wide-spectrum language

We wish to start with an abstract specification of a concurrent stack, and derive a lock-free algorithm that can be
executed on a typical modern architecture which supports atomic read and write operations on shared variables,
and also allows shared variables to be conditionally updated using a CAS instruction. To do this, we express
our algorithms in a wide-spectrum language based on the refinement calculus [Mor94, MV93, BvW98], with a
number of extensions and variations.

Our stack specification and implementation are assumed to be packaged as modules (e.g. as in [Mor94,
Chap. 16]) which export procedures implementing the stack operations and encapsulate the variables used to
represent the stack so that they can only be modified by the procedures declared in that module. Thus, we can
regard the stack as a closed system where we know what actions can be performed by other processes.

We assume procedures and type declarations essentially as in [Mor94], but we use in, out and in out to describe
parameter modes, rather than Morgan’s more verbose value, result and value result; for example, see Fig. 1. As in
Morgan, parameters are treated as local variables within the procedure, whose initial value is provided in the call
(in the case of in and in out) and whose final value is copied to the caller at the end of execution of the procedure
body (in the case of out and in out). Call by reference parameters could be used instead, but may introduce the
possibility of processes being able to see intermediate states that should not be observable if shared variables are
passed as parameters.

We also use value-returning procedures and name the return value so that it can be constrained in specification
statements. It is straightforward to transform a value-returning procedure into an equivalent procedure with an
additional out parameter, so we can reason about value-returning procedures in the same was as non-value-
returning procedures. For example, in the definition of CAS in Fig. 1, r can be declared as an out parameter, and
an assignment r :� CAS (c, a, b), as in the example in Sect. 2.2, can be replaced by CAS (c, a, b, r). Similarly, an
if statement of the form if CAS (c, a, b) then S else T fi (as in Figs. 22, 24) can be replaced by CAS (c, a, b, r);
if r then S else T fi, where r is a new local Boolean variable. We will see in Sect. 2.3 why these transformations
are safe.

We use specification statements of the form w :
[
P

/
R

]
with their usual meaning (postcondition R must be

established, altering only variables in the frame w , assuming that precondition P holds initially), and write x0
in the postcondition to refer to the initial value of a variable x . All statements are required to preserve the
relevant state invariant, however, we usually leave invariants in preconditions implicit and write w :

[
R

]
when

there is no precondition other than the state invariant (cf. [Mor94]). Parts of a postcondition that only refer
to initial variables act as guards, and if they fail cause the program to block (i.e. the statement is not enabled).
For example, c :

[
c � c0 + 1

]
specifies an operation that increments a variable c, and is always enabled, while

c :
[
c � c0 + 1 ∧ c0 > 0

]
specifies an operation that decrements c provided that it is positive, and is disabled

when c is not positive. Since blocking must be avoided in lock-free algorithms, in a demonic choice (written as
[]) we must always ensure that at least one branch will be enabled whenever the choice is executed. The only
non-determinism in our language is demonic, so all programs are conjunctive.

In writing specifications and invariants, we mostly use Z’s mathematical notation [Spi92]; in particular, seq T
and iseq T are the sets of finite sequences and injective finite sequences (i.e. sequences containing no repeated
elements) over T , #s is the length of the finite sequence s , A �→ B is the set of partial functions from A to B ,
dom f is the domain of function f , f ⊕ {x �→ y} is the function which is the same as f except at x where its value

190 L. Groves, R. Colvin

Fig. 2. A lock-free algorithm to increment a shared counter

is y , s � f is the function obtained from f by restricting its domain to elements of set s , and s −� f is the function
obtained from f by restricting its domain to elements not in set s . We also use labelled tuple types, of the form
(f1 : T1 ; · · · ; fn : Tn), and access their components using the field names (fi) as selectors; so if r � (v1, . . . , vn)
is a tuple of the aforementioned type, then r .fi � vi .

We write ||p∈P opp for the parallel composition of processes drawn from a finite set P , each executing an
operation opp , and usually omit the p subscript when the operation does not depend on p. Parallel composition is
defined in terms of interleaving of atomic steps, where assignment statements, unrefined specification statements,
and tests are assumed to be atomic. See, for example, the abstract stack specification given in Fig. 3.

We assume a trace semantics similar to that used in [BvW94], except that (following [Lyn96]) we define an
execution to be an alternating sequence of states and actions, starting with a state, and a trace to be the sequence of
actions in an execution, rather than a sequence of states. We take this approach so that we can define refinement in
terms of sequences of actions, as it is for IOAs [Lyn96, LV93], which is consistent with the way that linearisabiity
is defined in [HW90].

2.2. The target language

As usual, our target language is an executable subset of the wide-spectrum language—with the additional requi-
rement that assignments and tests can reasonably be treated as atomic at the hardware level. To this end, we
ensure that assignments and tests contain at most one reference to a shared variable. Also, we use initialisations
in declarations only where variables are initialised to constants.

We use if-then-else statements (as in [BvW98]) rather than Dijkstra’s guarded commands (as in [Mor94]), as
this suits the style of algorithm we are deriving. Since most of our loops involve repeating some action until
it succeeds, we write do A od as an abbreviation for |[var r : bool :� false ; do ¬ r → r :� A od]|, where
A assigns a value to a Boolean variable r ; for example, see Fig. 2. We use similar abbreviations when the loop
body is a more complex statement assigning to r . Thus, A [] B in the body of such a loop is an abbreviation for
r :� A [] r :� B , and A ; B is short for A ; r :� B . Again, we will see in Sect. 2.3 why this is safe.

The only synchronisation mechanism used is a CAS instruction. CAS (loc, old ,new) takes the address of a
memory location (loc), an “expected” value (old), and a “new” value (new). If the location contains the expected
value, the CAS succeeds, atomically storing the new value into the location and returning true; otherwise, the
CAS fails, returning false and leaving the location unchanged. This is formally specified, for an arbitrary type T ,
in Fig. 1.

Compare and swap is typically used to update a shared variable, provided that it has the same value that it was
observed to have at some earlier point. For example, the tryInc operation in Fig. 2 will update a shared integer
counter c provided it has the same value when the CAS is executed at C3 as it had when its value was read at
C1, and set r to indicate whether the update was successful. We can obtain a lock-free algorithm to increment c
by repeating this piece of code until r is true, as illustrated in the inc operation in Fig. 2.

In practice, at hardware level, CAS is untyped and just operates on words or double words. Thus, to obtain
a practical implementation, we have to ensure that CAS is only used on data types that can be represented using
single or double words. For example, it is common to assume that a CAS can operate on integers and pointers,
but not on arbitrary record types. We will discuss this issue further in Sects. 4.4 and 5.7.

When a CAS is used to update an array element, the specification must show the effect on the entire array.
Thus, r :� CAS (A[k], old ,new) is equivalent to the specification:

A, r :
[
A0[k] � old ∧ A � A0 ⊕ {k �→ new} ∧ r � true ∨
A0[k] �� old ∧ A � A0 ∧ r � false

]

Trace-based derivation of a scalable lock-free stack algorithm 191

Fig. 3. Abstract specification for a system involving a concurrent stack

Fig. 4. Abstract specification for stack operations

2.3. Derivation approach

The informal notion of linearisability of a concurrent object O (such as a shared data structure) introduced in
Sect. 1 is formalised in [HW90] by adding invocation and response actions marking the beginning and end of
each execution of an operation on O. A history is defined as the sequence of invocation and response actions
occurring in some execution, and is well-formed if each process alternately performs matching invocations and
responses (so a process only ever performs one operation on the object at a time), sequential if every response
is immediately preceded by a matching invocation by the same process (and concurrent otherwise), and legal if
each matching invocation–response pair satisfies the sequential semantics for O. An implementation of O is then
defined to be linearisable if for every concurrent history there is an equivalent well-formed legal sequential history
which preserves the order of non-concurrent operations (i.e. if operation op1 ends before operation op2 begins in
the concurrent history, this ordering is preserved in the sequential one).

A common way to demonstrate linearisability is to identify, for each operation on the concurrent object, a
point, called a linearisation point, at which that operation can be understood to take place. We can then construct
the required sequential history by inserting the required invocation–response pair at the linearisation point. In
many cases, the linearisation point is a step in the code for that operation at which a shared data structure is
updated or read (in the case of operations that do not alter the data structure). In some cases, however, the
linearisation point for one operation may be a step of another process—indeed, this is the case for the elimination
stack algorithm.

We will derive our stack algorithms by constructing a sequence of models of a system in which a finite set
of processes operate on a shared stack. The atomic actions for a given model are the tests, assignments, and
unrefined specification statements. In the initial model, each stack operation is an atomic action (see Figs. 3, 4).
Subsequent models each add more implementation detail, until we arrive at the final implementation model, in
which each test and assignment can be implemented in hardware as an atomic action. Typically, each successive
model will provide implementations of operations that were treated as atomic in the previous model, sometimes
introducing new data structures for this purpose, and in some cases, the new model redefines operations that have
already been defined in the previous model.

The initial model is designed to be trivially linearisable, since each of its executions can be mapped directly
to an equivalent well-formed legal sequential history by replacing each atomic action by the obvious invocation–
response pair. We then wish to show that each subsequent model preserves linearisability, and thus that the final
implementation is linearisable. Since the initial model already requires that each operation should appear to
take place atomically and be correct with respect to the sequential semantics, we only need to ensure that in all
executions of subsequent models, each process performs the same sequence of stack operations and that the order
of non-concurrent operations is preserved.

Since linearisability is a safety property, we only need to consider finite executions (or prefixes of executions),
and do not need to consider termination. Also, we only need to consider executions consisting of completed
executions of the operations used in the current model (push and pop in the initial model). Incomplete executions

192 L. Groves, R. Colvin

can be handled in standard ways in which they are either completed or discarded, according to whether their
linearisation point is present in the history, as described in [HW90]. We therefore ignore incomplete operations
in the rest of this paper.

Thus, we say that a model M is refined by model M ′, or that M ′ is a valid refinement of M , if for every finite
execution of M ′, there is an equivalent execution of M in which each process performs the same sequence of
stack operations and the order of non-concurrent operations is preserved.

When we are discussing the abstract model, two executions are equivalent if, when started in the same state,
they can end in the same set of final states. When discussing more concrete models, we regard two executions
as equivalent if the final states are equivalent under a suitable abstraction relation; i.e. they represent the same
abstract state.

Our derivations involve three kinds of transformation between successive models: data refinement, which
introduces a more concrete data representation; algorithmic refinement, which refines one or more specification
statements to a more concrete form; and refactoring, which alters the structure of the system by changing the
interface to a procedure, combining two procedures into one, or moving an operation out of a loop. Some
refactoring steps also modify data representations, so refactoring steps use a combination of the techniques used
for reasoning about data refinement and algorithmic refinement steps.

Data refinement is performed in such a way that each action on the abstract type is replaced by a single
action on the concrete type. This means that data refinement can be performed using standard data refinement
techniques for sequential programs (e.g. [Mor94, MV93, BvW00, dRE98]), without considering the effects of
concurrency. We use the following definition, from [MG90]:

Program P is data refined by program P ′, using abstraction invariant AI , abstract variables a, and concrete
variables c, if for any formula ψ not containing free occurrences of c, we have:

(∃a • AI ∧ wp(P , ψ)) ⇒ wp(P ′, ∃a • AI ∧ ψ)

Since all of our programs have the same structure (as shown in Fig. 3), this usually amounts to showing that
each operation specified in P is correctly implemented (i.e. refined) in P ′, and implies refinement in the sense
defined above.

Algorithmic refinement is typically more complex because it introduces the possibility of interference between
processes. We perform these refinement steps in two parts. We first refine the specifications to their more concrete
form without formally considering interference, so this can be done using the standard refinement calculus for
sequential programs, and we generally do not justify these steps formally. Next, we show that the refined version
works correctly in the presence of concurrency. This is usually done by showing that any concurrent execution of
the resulting system can be transformed into an equivalent execution in which the actions of the refined operation
are executed without interruption—following [LS89, FQ03, FQ05, FF04, WS06] and others, we call this property
atomicity (note, however, that some authors, e.g. [Lyn96], use atomicity as a synonym for linearisability). The
sequential refinement result then implies that this is equivalent to an execution of the initial system. Of course, we
know that many of the rules of the sequential refinement calculus, such as introducing sequential composition,
will not always work in a concurrent setting, and we take potential interference into account when we apply them,
just as we take performance into account in an informal way in deriving sequential programs.

In most cases, the equivalent sequential execution is obtained by using commutativity properties to rearrange
the actions of the concurrent execution. As a simple example, suppose we have a system S , in which operation
A is treated as atomic, and we wish to refine this to a system S ′, in which A is implemented as a sequential
composition B ; C , where B and C are regarded as atomic. We first show that A � B ; C holds in the sequential
refinement calculus. We then consider the effects of concurrency. An execution of S ′ in which (the implementation
of) A is executed by a process p, will have a trace t of the form α Bp β Cp γ , where α, β and γ are sequences of
actions of S ′ and β does not contain any actions performed by p (which we call “p-actions”). We thus show that
any execution with this trace can be transformed into an equivalent execution in which Bp and Cp are executed
without interruption. We typically do this by showing that Bp can move right over steps of other processes, so we
obtain an execution whose trace is α Bp Cp β γ , or that Cp can move left over steps of other processes, giving
an execution whose trace is α β Bp Cp γ . Since we know that A � B ; C , it follows that there is an equivalent
execution with trace α Ap β γ or α β Ap γ . Repeating this transformation for all completed executions of A, we
can transform any trace of S ′ into an equivalent trace of S . Also note that the position of Ap in the transformed
trace lies between the first and last actions (inclusive) of the implementation of A, which ensures that the order
of non-concurrent operations is preserved. It thus follows that S ′ is linearisable with respect to S .

Trace-based derivation of a scalable lock-free stack algorithm 193

The main technique used in this approach is to show that certain atomic actions in the body of a procedure
commute (either left, or right, or in both directions) with atomic actions that may be performed by other processes.
An actionφ right commutes withψ , andψ left commutes withφ, if for any sequences of actionsα andβ (executions
with), tracesα φ ψ β andα ψ φ β are equivalent. An action that left (right) commutes with all actions of the current
model is called a left (right) mover; an action which is both a left mover and a right mover is called a both mover.
If a given execution of an operation Op consists of atomic actions a1, . . . , an where, for some k with 1 ≤ k ≤ n,
a1, . . . , ak−1 are right movers and ak+1, . . . , an are right movers, then this execution is equivalent to an execution
in which actions a1, . . . , an are executed without interruption, and ak can be taken as the linearisation point.

In reasoning about commutativity of actions, we can use general properties that hold for all programs, such
as:

• An action that only accesses local variables of process p, or heap locations to which p holds a unique pointer,
commutes in both directions with any action of another process.

• An action that reads a shared variable commutes in both directions with any action that does not assign to
that variable.

• An action that assigns to a shared variable commutes in both directions with any action that does not refer
to that variable.

For example, in the shared counter in Fig. 2, b :� a + 1 is a local action and can always be moved over actions
of other processes so that it is executed immediately before the CAS; for this reason we can omit the assignment
to b and write C3 as r :� CAS (c, a, a + 1), even though we know that this is not actually an atomic hardware
action. Similarly, our treatment of value returning procedures and our convention of ignoring loop exit tests can
be justified in the same way, because they only involve a local variable, r .

We may also appeal to assumptions about the effects that other processes may have, for example that they
preserve state invariants or that they can only modify shared variables in particular ways. In the stack implemen-
tation, we are able to verify such properties because we know that the only actions that can affect the variables
used in the stack implementation are other stack operations.

The most interesting cases involve reasoning about CAS operations, where we will use the outcome of the
CAS and other assumptions about the possible effects of other processes to show that a CAS can commute
with other actions. Consider, for example, the shared counter in Fig. 2. If we know that the counter is only ever
increased, then if the CAS succeeds, we can infer that the counter has not been modified since it was read in the
first assignment. We can therefore obtain an equivalent trace in which the three assignments are executed without
interruption, by moving the first two assignments right over any intervening actions to the position of the third
assignment. That is, if there is a trace α C1p β C2p γ C3Sp δ in which C3 succeeds, then this trace is equivalent
to α β γ C1p C2p C3Sp δ.2

If the CAS fails, however, we know that the counter has been modified since it was read in the first assignment,
so we cannot move the first two assignments right. Nor can we move the CAS left over the actions that modified
c, since then the CAS will no longer fail, so we will not get an equivalent trace. In this case we observe that
the actions of a failed attempt to update the counter have no observable effect, and can be deleted. Thus, in an
operation that repeatedly attempts to update the counter until it succeeds in doing so without interference, only
the final, successful attempt needs to be considered in constructing an equivalent sequential execution. That is,
a trace of the form α1C1pβ1C2pγ1C3Fp . . . αnC1pβnC2pγnC3Fpαn+1C1pβn+1C2pγn+1C3Spδ, for n ≥ 0, is
equivalent to α1β1γ1 . . . αnβnγnαn+1C1pβn+1C2pγn+1C3Spδ.

In some cases, we are not able to rearrange the steps of an operation so that they are performed without
interruption; for example, because it is essential that a step of another process occurs between two steps of the
operation. In this case, we are still able to apply the trace–reduction approach by showing that a trace containing
a particular pattern is equivalent to one containing the corresponding abstract operation.

Our trace-reduction approach is similar to the “reduction” method described in [Lip75, LS89], except that
where they are concerned with showing that interference does not occur, and provide reductions that apply for
all executions, we show that interference does not lead to incorrect behaviour, and provide reductions that work
for various classes of executions, according to the outcomes of CAS operations and other tests. Also, in some

2 When describing actions in traces, we append “S” or “F” to indicate whether a test succeeded or failed. For this purpose, an assignment
such as C3, which assigns a Boolean variable to be tested subsequently, is treated as a test since the test is not shown explicitly. Thus, C3Sp

here denotes a successful execution of C3 by process p.

194 L. Groves, R. Colvin

cases, we cannot simply rearrange the steps of the original execution, but may need to insert, delete or modify
steps to obtain the required execution. This form of reduction is discussed in more detail in [Gro07], where it is
used to verify a shared counter and the stack algorithm shown in Fig. 10.

This approach is also reminiscent of Owicki–Gries logic [OG76], where “local correctness” and “global
correctness” (freedom from interference) are checked separately, however, we are not attempting to show that there
is no interference, but rather that any interference that occurs does not lead to incorrect behaviour. Our approach
also has something of the flavour of rely guarantee reasoning [XdRH97], since in proving trace reductions, we
may make assumptions (like rely conditions) about the behaviours of other processes that can occur between the
steps of the operation in question, which must in turn satisfy the assumptions made in designing other operations
(like guarantee conditions).

3. An abstract concurrent stack

In this section, we present an abstract specification for a linearisable concurrent stack. We then take an initial step
towards refining this specification to a lock-free stack implementation by allowing stack operations to fail, and
introducing loops which repeatedly attempt to perform a stack operation until it is performed successfully. We
introduce this refinement before introducing the data representation (see Sect. 4.1) because this pattern is common
to a large number of lock-free algorithms, and it allows us to illustrate our derivation approach in a simple setting.
It also forms the basis for the elimination algorithm discussed in Sect. 5, which is (mostly) independent of the
representation used for the stack.

3.1. Specifying an abstract concurrent stack (STACK 1)

We wish to consider a system consisting of a finite set, P , of concurrent processes which access a shared stack with
elements of some type T . Each process occasionally performs an operation on the stack, and otherwise performs
actions which do not involve the stack. Processes regard stack operations as being atomic and wait for each stack
operation to complete before proceeding with any other action—in particular, a process will never invoke another
stack operation before its previous stack operation is completed. In practical terms, a stack operation can be
thought of as being executed in the same thread of control as its calling process.

We can model such a system by abstracting away from its other behaviour and just considering its stack
operations. Thus, we consider a system in which each process performs a non-deterministically chosen sequence
of stack operations, as shown in Fig. 3, where values to be pushed onto the stack are chosen non-deterministically,
whereas values returned by pop are determined by the contents of the stack at the time and are then discarded.
Clearly, this program can generate any sequence of stack operations that can occur in any application. Since we
have abstracted away from the rest of the program, which would otherwise provide values to be pushed and use
values that are popped, the sequence of stack operations is considered to constitute the observable behaviour of
the program.3

All of our programs will have this high level structure, but will use different versions of push and pop, and
may use different data structures to represent the stack. We use superscripts (e.g. push1(x), pop2(y)) to distinguish
different versions of the stack operations, and we write STACK k to denote a version of STACK using operations
pushk and popk . Unless stated otherwise, any operations not defined explicitly in a given model are assumed to be
defined as in the previous model, but use new components from the current model. For example, in Fig. 7, push3

and pop3 are the same as push2 and pop2, but using tryPush3 and tryPop3 instead of tryPush2 and tryPop2,
respectively.

In our initial model, STACK 1, we treat an abstract stack as a sequence of values of its component type, and
we define the stack operations as shown in Fig. 4. Since we wish to implement a lock-free stack, a pop on an
empty stack (described in the first disjunct) cannot wait for the stack to become non-empty, but instead returns
a distinguished value, ⊥ �∈T , indicating that the stack was empty, and the result type for pop is T⊥ �̂ T ∪ {⊥}.
Note that in the second disjunct, the type of s implies y �� ⊥, so the specification entails y � ⊥ ⇐⇒ s0 � 〈〉.

3 Alternatively, we could store values of x and take the sequence of values of x and y to be observable, or we could consider the pushed
values to be inputs and the popped values to be outputs, and take inputs and outputs to be observable.

Trace-based derivation of a scalable lock-free stack algorithm 195

Fig. 5. Abstract specification for lock-free stack

In this model, push and pop actions are atomic, so a trace is a sequence of push and pop actions which is
valid according to the semantics of these stack operations. This stack is clearly linearisable, since push and pop
are already atomic, so we can show that subsequent versions are linearisable by showing that their traces are
equivalent to traces of STACK 1.

3.2. Allowing operations to fail (STACK 2)

In any realistic implementation of a concurrent stack, a push or pop operation will require more than one access
to a shared location. For example, in the linked list implementation described in Sect. 4, a stack operation needs
to read the value of the top of stack pointer, perform some other steps, and then update the top of stack pointer.
Since this cannot be implemented atomically on the intended architecture, we need to consider the possible effects
that other processes may have between when the top of stack pointer is read and when it is updated.

Rather than taking the traditional approach of preventing interference by using mutual exclusion mechanisms
based on locks or semaphores, lock-free algorithms must operate correctly in the presence of interference. A
common way to achieve this is to detect interference, using a CAS, and retry the operation. Following this
approach, we will implement push and pop by repeatedly attempting to perform the operation until it is performed
successfully. Thus, we define push and pop in terms of new operations tryPush and tryPop, as shown in Fig. 5,
which attempt to perform a push or pop, respectively, and either “succeed”(returning true) or “fail” (returning
false). Introducing tryPush and tryPop as separate operations is helpful for expository purposes—it is also
important in developing the elimination algorithm in Sect. 5, since it allows a process attempting to perform a
stack operation to chose an alternative action if the operation fails. At this stage we do not impose any progress
requirement, so every invocation of tryPush or tryPop could fail—we will address the lock-freedom requirement
in the way that subsequent refinements resolve non-determinism.

In this model, we regard tryPush and tryPop as being atomic, so a trace of STACK 2 is a sequence of
these operations. As indicated in Sect. 2, we distinguish successful and failed occurrences of these operations by
appending “S” and “F”, respectively.4

To show that STACK 2 is a valid refinement of STACK 1, we show that for any trace t of STACK 2 there
is an equivalent trace of STACK 1. Now, every trace of STACK 2 is produced by running a set of processes,
each executing a sequence of stack operations, and each stack operation consists of a sequence of tryPush2 and
tryPop2 actions, possibly interleaved with tryPush2 and tryPop2 actions performed by other processes. We will
show, firstly, that every execution of STACK 2 is equivalent to one in which each push2 and pop2 operation is
executed without interruption, and secondly, that the trace of this sequential execution is equivalent to a trace
consisting of push1 and pop1 operations.

From the semantics of loops, any execution of STACK 2 containing a completed push2(x) operation by pro-
cess p has a trace containing zero or more failed occurrences of tryPush2

p(x), followed by one successful occur-
rence, interleaved with actions of other processes; i.e. trace t has the form α1 tryPushF 2

p (x)α2 . . . tryPushF 2
p (x)

4 Recall that we are eliding the assignment and test on r , which we can do because r is a local variable. Thus, tryPushS 2(x) is equivalent to
s, r : [s � 〈x 〉 � s0 ∧ r � true], and tryPushF 2(x) is equivalent to s, r : [s � s0 ∧ r � false].

196 L. Groves, R. Colvin

αn tryPushS 2
p (x)αn+1, for some n ≥ 1, where α1, . . . , αn+1 are (possibly empty) sequences of tryPush2 and

tryPop2 actions containing no p-actions, and any p-action in α1 is part of a completed operation contained
within α1.5

The unsuccessful tryPush operations have no effect on s , so they can be deleted. Thus, trace t is equivalent
to α1 . . . αn tryPushS 2

p (x)αn+1. But tryPushS 2
p (x) is precisely the trace obtained when push2(x) is executed

without interruption, so this demonstrates that push2 is atomic. Moreover, push(x)2 is equivalent to push1(x) in
a sequential context, so we have sequential correctness. Thus, t is equivalent to α1 α2 . . . αn push1

p(x)αn+1; i.e.
the observable effect is the same as if activation of the push had been delayed until after αn and then completed
without interruption.

Similarly, any execution of STACK 2 containing a completed pop(y)2 operation by process p has a trace t of the
form α1 tryPopF 2

p (y)α2 . . . tryPopF 2
p (y)αn tryPopS 2

p (y) αn+1, for some n ≥ 1 and α1, . . . , αn+1 as above. Again,
the unsuccessful operations have no effect and can be deleted, so t is equivalent to α1 . . . αn tryPopS 2

p (y) αn+1.
But tryPopS 2

p (x) is precisely the trace obtained when pop2 is executed without interruption, so this demonstrates
that pop2 is atomic. Moreover, pop2 is equivalent to pop1 in a sequential context, so we have sequential correctness.
Thus, t is equivalent to α1 α2 . . . αn pop1

p(x)αn+1; i.e. the observable effect is the same as if activation of the pop
had been delayed until after αn and then completed without interruption.

We have shown that any execution containing a complete execution of an operation of STACK 2 (i.e. either
push2 or pop2) is equivalent to an execution in which that operation is executed without interruption, and that
sequential execution is equivalent to the corresponding operation of STACK 1. By induction on the number of
completed stack operations, any trace of STACK 2 can be transformed into an equivalent trace in which each
stack operation is executed without interruption, which is equivalent to a trace of STACK 1. Moreover, this
reduction preserves the order of non-concurrent operations, as required for linearisability.

In showing linearisability, we can assume that each “try” operation chooses non-deterministically whether
to succeed or fail; we can also ignore the issue of whether the loops in push and pop terminate. At this stage,
however, our algorithm is not lock-free because it is possible for tryPush2 and tryPop2 to always fail, in which
case no operation would ever complete. In Sect. 4, we will refine these specifications so that a “try” operation
only fails if it detects interference, which will then allow us to show that the resulting implementation is lock-free.

4. Deriving a simple lock-free stack

We now introduce a linked list data structure to represent the stack, and derive implementations of the stack ope-
rations using this representation. We first describe the data representation used, then data refine the specifications
for tryPush2 and tryPop2 using this representation, and further refine these to implementations that can be exe-
cuted on an architecture supporting atomic load, store and CAS operations. Our initial implementation does not
recycle popped heap nodes. We then discuss memory management issues and perform a further data refinement
which gives us an implementation which is identical to Treiber’s lock-free stack, as described in [MS98].

4.1. Data representation (STACK 3)

To describe a linked list representation for a stack, we define two new types: Ptr , which models a set of pointers
(or heap locations) containing a distinguished value called null ; and Node, which models a set of labelled pairs
(or records) each comprising a val field of type T and a next field of type Ptr . We model the heap, as seen by the
stack implementation, explicitly as a partial function h from non-null pointers (denoted by NPtr) to nodes, and
use a pointer variable, Top, to record the top of the stack. The relevant declarations are shown in Fig. 6.

5 In justifying subsequent refinements, we will usually assume these constraints without mentioning them explicitly. The constraint on α1
ensures that we are reducing a complete execution of tryPush2

p .

Trace-based derivation of a scalable lock-free stack algorithm 197

Fig. 6. Concrete data declarations

To be a valid representation of a stack, the linked list must be finite and contain no cycles. We express this
as a state invariant, Inv , which postulates the existence of a finite sequence of unique pointers corresponding to
Top followed by the values in the next fields of the nodes in the linked list:

Inv (Top, h) �̂ ∃ f : iseq Ptr •
f (1) � Top ∧ last(f) � null ∧
(∀i : 1 . . #f − 1 • f (i) ∈ dom h ∧ h(f (i)).next � f (i + 1))

We now define an abstraction relation, Abs , showing how the abstract and concrete states are related, in terms
of a function, abs , which returns the abstract stack represented by the linked list and is well-defined provided that
Inv (Top, h) holds:6

Abs(s,Top, h) �̂ s � abs(Top, h) ∧ Inv (Top, h)

abs(Top, h) �̂ if Top � null then 〈〉
else 〈h(Top).val〉 � abs(h(Top).next, {Top} −� h)

Clearly, Abs(〈〉,Top, h) implies Top � null , so initialising Top to null , as shown in Fig. 6, correctly represents
the empty stack. Initialising h to the empty function is also correct, though not actually required.

Using the data refinement calculation techniques from [MG90] along with simple properties of sequences, we
can data refine tryPush2 to:

Top,
h,
r

:

⎡

⎢
⎣ Inv (Top, h)

/ Inv (Top, h) ∧ Top �� null ∧ h(Top).val � x ∧
(h(Top).next, {Top} −� h) ≈ (Top0, h0) ∧ r � true ∨
(Top, h) ≈ (Top0, h0) ∧ r � false

⎤

⎥
⎦

where the relation ≈ is defined as:

(Top1, h1) ≈ (Top2, h2) �̂ Inv (Top1, h1) ∧ Inv (Top2, h2) ∧ abs(Top1, h1) � abs(Top2, h2),

i.e. (Top1, h1) and (Top2, h2) are both valid representations of the same abstract stack. Since Inv (Top0, h0) follows
from the precondition, and so does Inv (h(Top).next, {Top} −� h) when Top �� null , the interesting part of
(Top, h) ≈ (Top0, h0) is abs(Top, h) � abs(Top0, h0).

This specification allows a tryPush operation to restructure the entire heap—for example, it may construct
an entirely new linked list to represent the new stack. This freedom is important for universal constructions
which automatically convert a sequential data structure into a lock-free or wait-free one [Her91], but that is
very inefficient. To obtain a more efficient implementation, we choose to leave the rest of the heap unchanged
when a successful tryPush2 is performed, and establish (h(Top).next, {Top} −� h) ≈ (Top0, h0) by requiring
h(Top).next � Top0 and {Top} −� h � h0.

Next, we observe that Inv (Top, h) is equivalent to Inv (h(Top).next, {Top} −� h) when Top �� null , and we
have already seen that Inv (h(Top).next, {Top}−�h) follows from the precondition in this case. Finally, we rewrite
h(Top).val � x ∧ h(Top).next � Top0 ∧ {Top} −� h � h0 as Top �∈ dom h0 ∧ h � h0 ∪ {Top �→ (x ,Top0)},
highlighting the important requirement that Top be a new heap location. Leaving the precondition implicit,
we obtain specification for tryPush3 shown in Fig. 7. Note that we have left the weak requirement, (Top, h) ≈
(Top0, h0), in the second disjunct—we will see in Sect. 4.2.1 why this is important.

6 Recall that {Top} −�h is h with Top removed from its domain.

198 L. Groves, R. Colvin

Fig. 7. Concrete stack specification

Calculating the data refinement of tryPop2 in a similar way gives:

Top,
h,
y,
r

:

⎡

⎢
⎢
⎢
⎢
⎣

Top0 � null ∧ (Top, h) ≈ (Top0, h0) ∧ y � ⊥ ∧ r � true ∨
Top0 �� null ∧ y � h0(Top0).val ∧
(h0(Top0).next), {Top0} −� h0) ≈ (Top, h) ∧ r � true ∨
(Top, h) ≈ (Top0, h0) ∧ r � false

⎤

⎥
⎥
⎥
⎥
⎦

Again, this allows the entire heap to be restructured by each operation. To obtain a more efficient implemen-
tation, we choose to always leave the heap unchanged, giving the specification for tryPop3 shown in Fig. 7. This is
an important design decision which simplifies the implementation, but means that popped heap locations remain
as part of the heap and cannot be recycled. We will revisit this decision in Sect. 4.4.

We have shown that any occurrence of tryPush3(x) or tryPop3(y) can be reduced to tryPush2(x) or tryPop2(y),
respectively, so STACK 3 is a valid refinement of STACK 2. Note that this data refinement replaces a single
“abstract” action (tryPush2 or tryPop2) by a single “concrete” action (tryPush3 or tryPop3), so there is no
possibility of introducing interference.

4.2. Implementing tryPush3 and tryPop3 (STACK 4)

We now wish to refine tryPush3 and tryPop3 so that they are lock-free and can be implemented using atomic
instructions on a standard computer architecture. We will assume that a new heap node can be allocated in an
atomic action, and that a single field of a node can be read or assigned in an atomic action. These actions are
defined as follows:

n :� new node() �̂ n, h :
[
n ∈ dom h ∧ {n} −� h � h0

]

n.val :� x �̂ h :� h ⊕ {n �→ (x , h(n).next)}
n.next :� y �̂ h :� h ⊕ {n �→ (h(n).val , y)}

In writing code, we assume implicit dereferencing of pointers, and thus also abbreviate h(n).val and h(n).next
in expressions to n.val and n.next .

We assume that there is no other way of accessing or inspecting the heap, so the only nodes that are visible
to any stack operation are those it can reach by starting from Top, or a pointer stored in a local variable, and
following next pointers. Any dynamic storage used by the rest of the program is disjoint from the heap used to
represent the stack.

4.2.1. Implementing tryPush3

We first consider the specification of tryPush3 shown in Fig. 7. The first disjunct says that a successful tryPush3

has to allocate a new node (Top �∈ dom h0) and initialise its fields (h � h0 ∪ {Top �→ (x ,Top0)}). Since Top has
to point to a node whose next field is the previous value of Top, we need to introduce a local variable to point to
the new node and assign its value to Top after the next field has been initialised. In a sequential setting we would
implement this part of tryPush in the obvious way, as:

Trace-based derivation of a scalable lock-free stack algorithm 199

var n : Ptr ;
n :� new node() ;
n.val :� x ;
n.next :� Top ;
Top :� n

In a concurrent environment, however, this would not be linearisable. Between assigning Top to n.next and
assigning n to Top, other processes may change the stack, so the next field of the new node may no longer point
to the top of the stack and the rest of the stack may be completely different. Following the pattern illustrated in
the shared counter example in Sect. 2.2, we will take a snapshot of the shared state, and use it to check whether
interference had occurred before updating Top. However, since the shared state consists of h as well as Top,
copying and comparing the entire heap would be prohibitively expensive. Thus, we should attempt to identify a
smaller part of the shared state to serve as a snapshot, which can be copied and compared more efficiently, but
is also sufficient to determine whether the abstract value of the stack has changed.

We first introduce an existentially quantified variable to denote the new pointer value and use it in place of
Top in the first two conjuncts:

Top,
h,
r

:

⎡

⎢
⎢
⎢
⎣

(∃n : Ptr •
n �∈ dom h0 ∧ h � h0 ∪ {n �→ (x ,Top0)} ∧
Top � n ∧ r � true) ∨

(Top, h) ≈ (Top0, h0) ∧ r � false

⎤

⎥
⎥
⎥
⎦

Next, we observe that (Top, h) ≈ (Top0, h0) can be established by leaving Top unchanged and augmenting h
in the same way as in the first disjunct (i.e. n �∈ dom h0 ∧ h � h0 ∪{n �→ (x ,Top0)} ∧ Top � Top0 ⇒ (Top, h) ≈
(Top0, h0)). So we can move the quantifier and the first two conjuncts out of the disjunction, further refining
tryPush3 to:

Top,
h,
r

:

⎡

⎣
∃n : Ptr •

n �∈ dom h0 ∧ h � h0 ∪ {n �→ (x ,Top0)} ∧
(Top � n ∧ r � true ∨ Top � Top0 ∧ r � false)

⎤

⎦

and then introduce n as a local variable:

var n : Ptr ;

n,Top,
h, r

:
[
n �∈ dom h0 ∧ h � h0 ∪ {n �→ (x ,Top0)} ∧
(Top � n ∧ r � true ∨ Top � Top0 ∧ r � false)

]

Next, we wish to split this specification into a sequential composition where the first component addresses the
first two conjuncts and the second component addresses the last conjunct. However, we have to ensure that the
disjunct Top � n ∧ r � true is only chosen if the abstract stack is the same as it was when the first component
was executed, which is where the snapshot is needed. Since we do not want to copy and compare the heap, our
only other option is to use Top as the snapshot, but it is not obvious at this stage that this will work. So, we will
pursue the idea of taking snapshots of both Top and h just far enough to be able to justify only using Top as the
snapshot.

We therefore take a snapshot of the stack representation, recording the values of Top and h as ss and
ssh, and then set Top to the new node only if the abstract stack is that represented by the snapshot (i.e. if
(Top0, h) ≈ (ss, ssh) holds). This gives us:

var n, ss : Ptr ; ssh : Ptr �→ Node ;

n, ss, ssh, h :
[
n �∈ dom h0 ∧ ss � Top ∧ ssh � h0 ∧
h � h0 ∪ {n �→ (x ,Top)}

]
; (A)

Top, r :
[

(Top0, h) ≈ (ss, ssh) ∧ Top � n ∧ r � true ∨
Top � Top0 ∧ r � false

]
(B)

200 L. Groves, R. Colvin

Fig. 8. Initial implementation of tryPush

Now, consider how we can avoid copying and comparing the entire heap. First, we observe that A is the only
action that modifies h, and it only changes h by augmenting it. Second, we observe that Top can only be modified
by a process executing B or tryPop: B will make Top point to the newly added node, whose next field points to
the previous head of the list; tryPop will may make Top point to the next field of the node currently pointed to
by Top. It follows that all nodes that are reachable from Top contain the val and next values they were given
when they were added to the heap. This means that if Top1 and h1 are the values of Top and h at one point in
the program execution, Top2 and h2 are their values at a later point in the program execution, and Top1 � Top2,
then (dom h1) � h2 � h1, from which we can infer (Top1, h1) ≈ (Top2, h2). Intuitively, if Top has the same value
at two points in an execution, then the abstract stack is the same at both points—if the stack is changed between
these two points, it can only be by pushing elements onto the stack and then popping them off again, leaving the
rest of the stack unchanged. Notice that this argument relies critically on the assumption that tryPop3 does not
remove pointers from dom h, so heap locations are never recycled; as indicated earlier, we will revisit this decision
in Sect. 4.4.

The above argument shows that we can replace the test (Top0, h) ≈ (ss, ssh) by the simpler test Top0 � ss .
We can now also remove ssh completely, and use ss in place of Top in updating h, giving:

var n, ss : Ptr ;

n, ss, h :
[
n �∈ dom h0 ∧ ss � Top ∧
h � h0 ∪ {n �→ (x , ss)}

]
; (A′)

Top, r :
[
Top0 � ss ∧ Top � n ∧ r � true ∨
Top � Top0 ∧ r � false

]
(B ′)

We can now refine A′ to a sequence of assignments to allocate and set n to a new location, initialise its fields,
and store the snapshot of Top in ss . In doing this, we first perform the assignments that do not depend upon
Top, so as to reduce the opportunity for other processes to interfere with this operation, and use ss in place of
Top to initialise the new node. Finally, we can strengthen the second disjunct of B ′ so that it is only taken when
Top0 �� ss , which allows us to implement B ′ using a CAS (cf. Fig. 1). Strengthening B ′ in this way also means
that tryPush will now only fail when interference is actually detected, which ensures that the implementation
is lock-free. The complete implementation of tryPush is shown in Fig. 8, where P1–P4 implement A′ and P5
implements B ′.

To show that this is a valid refinement, we show that any complete execution of tryPush4 can be reduced to
an equivalent execution of tryPush3.

Now, any execution of STACK 4 containing a completed tryPush operation by process p has a trace t of
the form α P1p β P2p γ P3p δ P4p ε P5p ζ , where P5p may succeed or fail. Note that, at this stage, we have
not provided an implementation for tryPop4, so we use tryPop3 instead; i.e. we consider tryPop operations to
be performed atomically. We can assume that α, β, γ , δ, ε and ζ preserve Inv (Top, h), since this is part of the
postcondition of tryPush3 and tryPop3, and must be preserved by all of the atomic steps in their implementations.

Allocating a new node (P1) adds a new location to the heap, which by definition cannot be seen by any other
process. This action is non-deterministic, since we do not know what location will be allocated, only that it will
not be a location that has previously been allocated. If a and b are both P1 actions (by different processes), then
changing the order of a and b does not lead to any observable difference in the resulting state, since if a allocates

Trace-based derivation of a scalable lock-free stack algorithm 201

l1 and b allocates l2, there is also a possible execution in which a allocates l2 and b allocates l1. If a is a P1 action
and b is any action other than P1 occurring immediately after a, then b cannot depend on whether the location
allocated by a is in the heap, so ab and ba are indistinguishable. Thus, we can treat P1 as a both mover.

The new heap node allocated by P1 only becomes visible to other processes when n is assigned to Top by
a successful CAS at P5. Thus, when P2 and P4 are executed, n is a unique pointer to a node which cannot be
seen by any other process, so changing the order of P2 or P4 and an action of another process cannot affect the
resulting state. So we can also treat P2 and P4 as both movers.

Actions P3 and P5 require more careful consideration as they access Top. If P5 succeeds, we can move
P3 right over δ and ε, since it will still read the same value. In this case, since P1, P2 and P4 can move right,
t is equivalent to α β γ δ ε P1p P2p P3p P4p P5Sp ζ , and our discussion above shows that this is equivalent
to α β γ δ ε tryPushS 3

p(x) ζ . The observable effect is the same as if execution of the tryPush had been delayed
until after ε and then completed without interruption. If P5 fails, we cannot justify moving either P3 or P5,
since we know that they read different values of Top, which means that Top must be changed by δ or ε. Thus,
if we moved P3 and P5 together, the CAS would then succeed and lead to a different execution. Although
we cannot reduce the execution of tryPush4 to a sequential execution in this case, we can still show that it is
equivalent to an execution of tryPush3. The fact that P1, P2 and P4 are both movers means that t is equivalent
to α β γ P1p P2p P3p P4p δ ε P5Fp ζ , and it is easy to see that this is equivalent to α β γ tryPushF 3

p (x) δ ε ζ . The
observable effect is the same as if execution of the tryPush had been delayed until after γ and then completed
without interruption—although this is not a behaviour that tryPush4 can produce when executed atomically, it
is allowed by tryPush3.

Thus, we have shown that any complete execution of tryPush4 can be reduced to an equivalent execution of
tryPush3, as required.7

It is also easy to see that tryPush4 preserves Inv (Top, h). We have already shown thatP5 preserves Inv (Top, h),
and P2–P4 do not affect either Top or any node in h that is reachable from Top, so cannot affect the invariant.
P1 adds a node to the heap, but it is not reachable from Top, so does not affect the invariant (more formally,
Inv (Top, {n} −� h) ∧ n ∈ dom h ⇒ Inv (Top, h)).

4.2.2. Implementing tryPop3

Next, we consider the specification of tryPop3 shown in Fig. 7. The first two disjuncts say that a successful tryPop3

must either set y to ⊥ and leave Top unchanged, if Top is null (Top � Top0 � null ∧ y � ⊥), or else set y to the
value in the first node of the list and Top to the next field of that node (Top0 � null ∧ h(Top0) � (y,Top)). In a
sequential setting, we would implement this in the obvious way as:

if Top � null then
y :� ⊥

else
y :� Top.val ;
Top :� Top.next

fi

In a concurrent environment, however, this would not be linearisable, because between testing Top and updating
it, other processes may change the stack. As with tryPush, we address this problem by taking a snapshot of Top,
and using a CAS to update Top only if it is equal to the snapshot, which implies that the abstract stack is equal
to its value at the point where the snapshot was taken. Again, we also use the snapshot to test whether the stack
is empty and to access the element at the top of the stack.

We thus declare a local pointer variable ss and split the body of tryPop3 into a sequential composition in
which the first component initialises ss to Top, with the intention of refining the second component to an if
statement. In forming the second component of the sequential composition, we need to consider carefully how to

7 In [GC07], we introduced a weak form of CAS, which could fail when loc � old holds, and used that to justify treating a failed CAS as a
left mover. The approach adopted here provides a simpler justification for this case.

202 L. Groves, R. Colvin

adjust the disjuncts of tryPop3, since Top0 plays two different rôles: holding the value of Top at the point where
the snapshot was taken, and stipulating that Top is not changed. When the specification is split into a sequence,
these rôles need to be considered separately.

• In the third disjunct, Top0 is only used to ensure that Top is not changed. This disjunct will remain unchanged
for now, so it can always be taken—we will see later when this option should be avoided.

• In the second disjunct, Top0 is used to refer to the snapshot value, and this disjunct should only be chosen
if Top has not changed since the snapshot was taken. We thus strengthen this disjunct with Top0 � ss and
replace the other occurrences of Top0 in the disjunct with ss ; the statement will fail via the third conjunct
when Top0 � ss does not hold.

• The first disjunct is more interesting, since Top0 is used both to refer to the snapshot value when determining
whether this disjunct may be chosen (Top0 � null), and to ensure that Top is not changed (Top � Top0).
Thus, the first occurrence is replaced by ss , while the second remains unchanged. This decision is crucial to
the correctness of the final algorithm and determines the location of the linearisation point for this case.

This gives us, as the body of tryPop:

var ss : Ptr ;
ss :� Top ;

Top, y, r :

⎡

⎣
Top � Top0 ∧ ss � null ∧ y � ⊥ ∧ r � true ∨
Top0 � ss ∧ ss �� null ∧ h(ss) � (y,Top) ∧ r � true ∨
Top � Top0 ∧ r � false

⎤

⎦

In preparation for introducing an if statement, we strengthen the specification so that the third disjunct can
only be selected when ss is not null . This disjunct was introduced to allow the operation to fail when interference
is detected, which is not relevant when ss is null . We can now combine this with the second disjunct, leaving two
disjuncts which will become the branches of the if statement:

Top, y, r :
[
ss � null ∧ Top � Top0 ∧ y � ⊥ ∧ r � true ∨
ss �� null ∧ (Top0 � ss ∧ h(ss) � (y,Top) ∧ r � true ∨ Top � Top0 ∧ r � false)

]

We now introduce the anticipated if statement, using ss � null as the test. Since ss is local, its value cannot
change between the test and the selected statement, so we can now omit ss � null from the then part and ss �� null
from the else part. We also expand the record equality, giving:

if ss � null then
Top, y, r :

[
Top � Top0 ∧ y � ⊥ ∧ r � true

]

else

Top, y, r :
[
Top0 � ss ∧ y � h(ss).val ∧ Top � h(ss).next ∧ r � true ∨
Top � Top0 ∧ r � false

]

fi

The first branch can now be implemented with two assignments, setting y to ⊥ and r to true ((Q3) and (Q4)
in Fig. 9).

In the second branch, we can strengthen the second disjunct to assign y the same value as in the first disjunct,
giving:

Top, y, r :
[
Top0 � ss ∧ y � h(ss).val ∧ Top � h(ss).next ∧ r � true ∨
Top � Top0 ∧ y � h(ss).val ∧ r � false

]

Now, since y is local and we know that h(ss).val cannot be changed, this can be refined to:

y :� ss.val ;

Top, r :
[
Top0 � ss ∧ Top � h(ss).next ∧ r � true ∨
Top � Top0 ∧ r � false

]

Trace-based derivation of a scalable lock-free stack algorithm 203

Fig. 9. Initial implementation of tryPop

Finally, we can strengthen the second disjunct of the remaining specification statement so that it is only taken
when Top0 �� ss , which allows this specification to be implemented as r :� CAS (Top, ss, ss.next) (cf. Fig. 1).
As in the implementation of tryPush, this means that tryPop will now only fail when interference is actually
detected, which ensures that the implementation is lock-free. The resulting implementation of tryPop is shown
in Fig. 9.

To show that this is a valid refinement, we show that any complete execution of tryPop4 can be reduced to an
equivalent execution of tryPop3. Let t be a trace containing a completed execution of tryPop4 by process p. We
need to consider three possible execution paths for tryPop4, according to the outcomes of Q2 and Q6.

If Q2 succeeds, trace t is of the form αQ1p β Q2Sp γ Q3p δQ4p ε. Since ss , y and r are local (recall that
we treat an out parameter as a local), Q2, Q3 and Q4 are both-movers. However, we cannot move Q1, since
it reads a shared variable and we have no way to check whether its value has changed, so we take Q1 as the
linearisation point in this case. Moving Q2, Q3 and Q4 left over β, γ and δ, we see that t is equivalent to
αQ1p Q2Sp Q3p Q4p β γ δ ε, which is equivalent to α tryPopS 3(y)β γ δ ε. The observable effect is the same as
if the operation completed without interruption as soon as it began, and Q1 is the linearisation point since it is
only at that point that we know the stack was empty. It does not matter whether the stack is still empty when
the tryPop returns—tryPop can return ⊥ as long as the stack was observed to be empty at some point in its
execution.

If Q2 fails and Q6 succeeds, trace t is of the form αQ1p β Q2Fp γ Q5p δQ6Sp ε. Since Q6S updates Top, it
cannot be moved and will be the linearisation point. Since ss is local, Q2 is a both mover, and since y and ss are
local and no process can modify the val field of a node accessible from Top, we can treat Q5 as a both mover.
Also, since Q6 succeeds, we can move Q1 right over β, γ and δ, because we know it will still read the same value
and this implies that the abstract stack is the same as it was when the snapshot was taken. Thus, t is equivalent
to α β γ δQ1p Q2Sp Q5p Q6Sp ε, which is equivalent to α β γ δ tryPopS 3(y) ε. The observable effect is the same
as if execution of the tryPop had been delayed until after δ and then completed without interruption.

IfQ2 andQ6 both fail, trace t is of the formαQ1p β Q2Fp γ Q5p δQ6Fp ε.Q2 andQ5 are again both movers,
as explained above. However, Q1 and Q6 both read Top, and we cannot move either of them as we know that Top
is changed by the intervening actions. Thus, we can show that t is equivalent to αQ1p Q2Sp Q5p β γ δQ6Sp ε,
which is equivalent to α tryPopF 3(y)β γ δ ε. The observable effect is the same as if execution of the tryPop3 had
been completed without interruption as soon as it began, with p choosing to fail. As with the failure case in
tryPush4, although this is not a behaviour that tryPop4 can produce when executed atomically, it is allowed by
tryPop3.

Thus, we have shown that any complete execution of tryPop4 can be reduced to an equivalent execution of
tryPop3.

It is also easy to see that each step of tryPop4 preserves Inv (Top, h), since tryPop does not alter h and the
only action that alters Top is the CAS in P6, which has already been shown to preserve Inv (Top, h).

We have shown that any complete execution of tryPush4 can be reduced to an equivalent execution of tryPush3,
assuming that tryPop3 is atomic, and that any complete execution of tryPop4 can be reduced to an equivalent
execution of tryPop3. It follows that for any execution of STACK 4 there is equivalent execution of STACK 3,

204 L. Groves, R. Colvin

Fig. 10. Improved concrete stack implementation

and so that STACK 4 is a valid refinement of STACK 3. The assumption that tryPop3 is atomic means that we
reduce all execution of tryPop4 before reducing executions of tryPush4, but we would not have been needed if
we had delayed proving tryPush4 until we had completed the implementation of tryPop4.

This algorithm is lock-free, subject to our assumption that new node is atomic, since a “try” operation will
only fail if another process successfully executes a CAS. Since we assume that there are a finite number of processes,
this can only occur an infinite number of times if an infinite number of operations are completed.

4.3. A small optimisation (STACK 5)

The implementation of push obtained by combining push2 and tryPush4 (Figs. 5, 8) needlessly allocates a new
node for each execution of tryPush, and the nodes allocated in failed attempts are not recycled. It would be better
to allocate a new node and initialise it with x in push, and pass a pointer to it to tryPush, so that only one node
is allocated for each execution of push. Similarly, the implementation of pop obtained by combining pop2 and
tryPop4 (Figs. 5, 9) reads the value of ss.val in every execution of tryPop, which is wasted effort in the case of
failed attempts. It would be better for tryPop to return a pointer to the popped node (or null in the case where
the stack is empty), so the return value is extracted in pop, and this is only done once a node has been successfully
removed from the stack. This suggests an implementation in which the arguments to tryPush and tryPop are
pointers to nodes, rather than values, as shown in Fig. 10.

We could obtain this implementation by redoing the entire derivation so as to introduce the concrete data
representation, and split push and pop into sequential compositions, before introducing the try–retry loops.
Then, the first component of the sequence in push could allocate and initialise the new node, and the second
component of the sequence in pop could extract the return result from the popped node. Taking this approach
initially would require considerable foresight into both the structure of the final algorithm and the reaso-
ning required to obtain it—our reasons for taking the approach we did were explained at the beginning of
Sect. 3.

Rather than redoing the derivation, we can show that this is a correct refinement by showing how to translate
any execution of STACK 5 into an equivalent execution of STACK 4. First, consider an execution containing a
completed execution of push5 by process p. This execution of push5 consists of one execution of P1p and P2p ,
followed by one or more executions of P3p , P4p and P5p , possibly interleaved with steps of other processes. To
obtain an equivalent execution of push4, we simply need to insert new occurrences of P1p and P2p before each

Trace-based derivation of a scalable lock-free stack algorithm 205

occurrence of P3p after the first. The resulting execution is equivalent since it still only adds one node to the
linked list—the other nodes added to the heap have no effect on the abstract stack.

Next, consider an execution containing a completed execution of pop5 by process p. The only difference
between pop5 and pop4 is that where pop4 assigns to y (Q3p and Q5p), pop5 assigns to n (Q3′

p and Q5′
p),

and pop5 has the additional statement Q7. We can thus obtain an equivalent execution of pop4 by replacing
all occurrences of Q3′

p and Q5′
p by Q3p and Q5p , respectively, and deleting Q7p . To see that this preserves

equivalence, notice that Q7 is equivalent to Q3 (i.e. y :� ⊥) when the last assignment to n is Q3′, and to Q5 (i.e.
y :� ss.val) when the last assignment to n is Q5′, and that pop4 reads the same value at Q5 as pop5 reads at Q7
since the val field of a node cannot be changed after it has been assigned in the push operation that added it to
the list.

This implementation is essentially what [HSY04] use as the basis for their elimination algorithm (their
tryPerformStackOp operation incorporates our tryPush and tryPop operations). Expanding tryPush and tryPop
in-line and making a couple of small simplifications gives an algorithm which is the same as Treiber’s stack
algorithm (as given in [MS98]), except for the handling of dynamic memory, which we discuss below.

4.4. Memory management and the ABA problem (STACK 6)

The above derivation relied critically on the fact that heap locations are not recycled. If we allowed pop to free
the node it removes from the stack while another process holds a pointer to it, that process could subsequently
get a memory violation when it attempts to access the node because the storage it occupies is no longer part of
this program’s address space. In terms of our model, the pointer would be removed from the domain of h, and
a subsequent attempt to evaluate h at that point would lead to an undefined result. While ensuring that storage
is never recycled gives us a correct stack implementation, this solution is impractical (except perhaps for short
run programs), because it requires storage proportional to the number of push operations performed—which is
usually regarded as a “memory leak”.

4.4.1. Reusing memory

The ideal solution to this problem is to ensure that a popped node is only freed if no other process holds a pointer
to it in a local variable (in this implementation, no node reachable from Top can contain a pointer to the node
being popped). This can be achieved by modifying the implementation to keep reference counts for all heap
locations, or by using an implementation language that provides automatic garbage collection. In the latter case,
the implementation would be unchanged, but to justify this approach, we would need to modify the derivation
to weaken the specification of tryPush3 in Fig. 7 to require only that the new value of Top is not reachable from
any pointer variable used in the program rather than just Top �∈ dom h0—alternatively, this requirement could
be built into a data refinement mapping non-recyclable nodes to recyclable ones.8 Such an implementation would
only be lock-free if the reference counting mechanism or garbage collector is lock-free. Using automatic garbage
collection is not always applicable—for example, it is not possible to take this approach if one is using the stack
in order to implement such a garbage collector.

A simple alternative is for the implementation to maintain its own free list. Popped nodes are added to the
free list, not released to the system; nodes are then allocated from the free list if possible, only allocating new
nodes if the free list is empty. Since nodes are never freed to the system, this removes the possibility of memory
violations. Memory use is now proportional to the historical maximum stack size, which is a big improvement
on the number of push operations performed.9 Figure 11 shows specifications for a free list with free node and
get node operations—the free list is modelled as a set, since the order in which nodes are added to and removed
from the free list is immaterial.

8 While it is straightforward to formalise the notion of a pointer being reachable from a shared variable, such as Top, to formalise the
notion of being reachable from a local variable we need some way to identify processes that are currently executing a stack operation (e.g.
using explicit program counters or control predicates [Lam88], or using a more explicit storage model mapping process names to their local
variables when the process is executing a stack operation), since the value of a local variable in a procedure is only meaningful while that
procedure is being executed.
9 This should be acceptable in most situations where the stack grows and shrinks in a somewhat uniform way. It is still not ideal, however,
and may be unacceptable—for example, if the stack grows to a very large size early in the execution and is thereafter always very small.

206 L. Groves, R. Colvin

Fig. 11. Specification for free list

Fig. 12. Implementation for free list

The free list can be implemented using code very similar to that shown in Fig. 10, where free node is like push,
except that it takes a node to be added to the free list (so P1 and P2 are deleted), and get node is like pop, except
that it returns the node it removes from the free list if there is one (so Q7 is deleted), and allocates a new node if
there is not (so Q3′ is replaced by P1). This code is shown in Fig. 12. We can verify the free list implementation
in much the same way that we verified the stack implementation above.

We can introduce a free list into the stack implementation as a data refinement which partitions the domain
of h into those nodes that are reachable from Top and those that are not, with the latter being represented by
free. The representation invariant says that free contains all pointers in that are not reachable from Top, and the
abstraction relation maps elements of dom h \ free in the new model to elements of dom h in the previous model,
so the data refined version of new node is able to return a pointer from free. In Fig. 10, we then replace the call
on new node in P1 by a call on get node, which satisfies this weakened specification. To maintain the invariant
on free, we also insert a call on free node in pop, in the else part of Q7. These changes are incorporated in Fig. 13.

4.4.2. The ABA problem

If we attempt to verify the code obtained by adding memory reuse to STACK 5, as described above, we get stuck.
We can no longer guarantee that n in tryPush is the only pointer to the new node, since another process may
hold a pointer to it in a local variable, which invalidates our assumption that the fields of a node are not modified
once they become reachable from Top.

Moreover, we can no longer determine whether the stack has the same value when a CAS is attempted that it
had at an earlier point, just by comparing the value of Top with the saved snapshot ss . This was an essential part
of our reasoning in the preceding derivation, and relied critically on the fact that heap locations are not recycled
to infer that the stack has the same value at two points in the program execution from the fact that Top has the
same value at these points.

Once we allow popped nodes to be recycled, it becomes possible, between a tryPush taking a snapshot and
performing its CAS, for the node at the top of the stack to be popped by another process and then pushed again
by another process, after the rest of the stack has changed. In this case, we cannot infer that the stack value is the
same just by comparing Top and ss—we really want to know whether Top has changed, not just whether it has
the same value that it had before.

Trace-based derivation of a scalable lock-free stack algorithm 207

Fig. 13. Stack implementation with modification counts

This kind of situation is called an ABA problem, because it arises when it is possible for a variable being updated
using a CAS to change from one value (A) to another value (B) and then back to its former value (A), and we
really want to know whether the variable has been changed. CAS can only tell whether the value of a variable is
different from the previous value, not whether it has changed in between. Note, however, that the possibility of
a variable changing back to an earlier value does not always constitute an ABA problem: for example, it is not a
problem for a stack when storage is not recycled, or for the shared counter discussed in Sect. 2.2.

One way to avoid the ABA problem when reusing heap locations is to avoid using CAS and instead use
the Linked-Load/Store-Conditional (LL/SC) pair of instructions, in which an SC succeeds only if the variable
it operates on has not changed since it was last loaded by that process using an LL. Unfortunately, suitable
LL/SC instructions are not widely available on current architectures, though they can be simulated using CAS
(see [Moi97]).

A popular response to the ABA problem, adopted in many lock-free algorithms, including Treiber’s stack
and Michael and Scott’s queue [MS98], is to associate a modification count with each pointer variable for which
changes need to be detected. If the modification count is incremented every time the variable is modified, an
ABA situation can detected by comparing the modification count along with the pointer value—if the poin-
ter has changed back to its prior value, this change will be detected because the modification count will have
changed.

In the stack implementation in Fig. 10, the only pointer variable for which we need to detect changes is Top.
So we change the type of Top to a new “counted pointer” type CountedPtr , which packages a pointer and a
modification count into a single value. We then ensure that the pointer component is extracted in places where
it is required, and that the counter component is updated every time Top is modified. Thus, if a node is released
to the free list and later returned to the head of the linked list, the snapshot stored in ss will be different from
Top because its modification count has changed. The resulting code is shown in Fig. 13, which is essentially the
same as the version of Treiber’s algorithm given in [MS98]—the latter does not separate out tryPush and tryPop,

208 L. Groves, R. Colvin

which leads to a little simplification in the logic for handling pop on an empty stack, and it has unnecessary
modification counts on list nodes and a redundant assignment in push.10

To show that STACK 6 is a valid refinement of STACK 5, we must show that any complete execution of
tryPush6 or tryPop6 can be reduced to an equivalent execution of tryPush5 or tryPop5, respectively. To do this,
we must show that a completed execution of get node can be treated as a right mover, and that a completed
execution of free node can be treated as a left mover. This can be done using reasoning similar to that used
earlier. In this case, however, we may need to swap the order of CAS operations updating Free, but the results will
still satisfy the specifications for get node and free node. We also need to show that if Top.ptr changes from one
value to another and back to its previous value, then the value of Top in the two states is different, because the
modification count has changed. With this reasoning, we see that in fact we only need to update the modification
count when a push occurs, since a pop alone cannot return a former node to the top of the stack.

This “verification” relies on the assumption that repeatedly increasing a modification count will never lead
to an earlier value being repeated, which is only valid if modification counts are unbounded. To be practical,
however, we must assume that a pointer and its modification count can be tested and assigned atomically using
a CAS—for example, if a pointer requires 32 bits and a CAS operates on 64-bit values. In that case, however, we
only have 32 bits for the modification count, so it is still possible for the modification count to wrap around and
return to the same value as the snapshot. The chance of this actually occurring can be shown to be extremely
small, and is generally assumed to be small enough to make this solution acceptable for practical purposes, and
can be eliminated with a small cost overhead [Moi97]. At this stage, we should also introduce a “concrete” pointer
type, with a finite range, to reflect the fact that heap space is also finite, and allow new node to fail (e.g. returning
null) if the heap is exhausted.

Efficient management of dynamic storage in lock-free algorithms is the subject of on-going research and
further discussion is beyond the scope of this paper (see, for example [DMMS01, DHLM04, HLMM05]).

5. The elimination stack

The stack implementation presented in Sect. 4 works well at medium loads, but does not scale well [HSY04].
When a large number of processes access the stack concurrently, they all compete to read and update the shared
Top location, resulting in a large amount of interference. Also, since all operations must update a single shared
location, Top, all stack operations must be performed in a strictly sequential fashion—there is no possibility of
operations running on separate processors actually being performed in parallel. To obtain better performance
under high loads, while maintaining good performance under low to medium loads, Hendler et al. [HSY04]
propose an algorithm, building on a central stack implementation like the one in Sect. 4, which incorporates two
key ideas.

Firstly, if a process fails in its attempt to apply an operation, it waits for a while before trying again. This
kind of “backoff” mechanism is a common way to reduce contention in concurrent systems. For example, with
exponential backoff, a process doubles its delay time each time it retries its operation. This reduces contention,
and can improve throughput in many cases; but it can also result in processes waiting too long, which then reduces
throughput.

Secondly, a push and a pop can be paired and eliminated, passing the pushed value to the pop operation, and
leaving the stack unchanged. The elimination does not create interference with any operations on the central stack,
and multiple eliminations may occur in parallel. This can be combined with the backoff mechanism described
above, so that a process which is waiting to retry an operation looks for a complementary operation to eliminate
with. If each process has its own processor, this will be done while the processor would otherwise be idle.

The description presented in [HSY04] focuses on the two arrays used to implement their elimination mecha-
nism and on its performance characteristics. Here, we attempt to give a more illuminating account of the elimi-
nation algorithm by starting with an abstract model of elimination in which the different rôles of the processes
involved in an elimination are described separately. We then show how these rôles can be combined, and how
the treatment of push and pop can be combined, and refine the resulting specification to pseudocode that can be

10 The code Treiber gives in [Tre86] is written in System/370 assembler and provides a stack-like implementation of a free list, similar to that
given in Fig. 12 but with a modification count for Free. It does not include the storage management operations shown in Michael and Scott’s
version. It only keeps a modification count on the head of the free list, and this is only incremented when an element is added to the list.
Treiber also uses a form of CAS instruction which, when it fails, replaces old (which must be a local variable) with the current value of the
shared location—this means that Top does not need to be read into ss each time a tryPush is attempted.

Trace-based derivation of a scalable lock-free stack algorithm 209

Fig. 14. Introducing elimination (tryPush7 ≡ tryPush2 and tryPop7 ≡ tryPop2)

executed on an architecture supporting atomic load, store and CAS operations. Our derivation initially assumes
only that the central stack implementation provides tryPush and tryPop operations, as in Fig. 5; in Sect. 5.7, we
introduce an optimisation which relies on the Node type used in Sect. 4. The resulting code differs from [HSY04]’s
in a number of ways, and we conclude the section by discussing these differences.

5.1. An abstract model of elimination (STACK 7)

The basic idea of elimination is that, instead of immediately retrying a failed operation on the central stack, as
we did in Fig. 5, a process may try to find another process performing a complementary operation. This can be
likened to a service, such as an employment or accommodation service, where customers who are either offering
or seeking some resource are normally served by a clerk.11 However, if the clerk is busy, instead of waiting
to be served, customers may resort to some other way of meeting their requirements, for example by directly
approaching other waiting customers, or by posting or inspecting notices on a notice board. We will use the latter
analogy in developing an abstract model of elimination.

In [HSY04], a process p performing a stack operation first attempts its operation on the stack, as described
in Sect. 4. If this attempt fails, however, instead of immediately retrying, p attempts to match up with a process
attempting a complementary operation so that both operations can be eliminated. If the elimination attempt fails,
p tries its operation on the stack again. This strict alternation between attempting the operation on the stack and
attempting to eliminate may not give optimal performance under all conditions, so it may be better to use an
adaptive scheme to determine, for each attempt, whether to try on the stack or to try to eliminate (this approach
is taken in [MNSS05] to implement a scalable lock-free queue).

In proving linearisability, we can simply treat elimination as an alternative way in which an operation
may satisfy its specification, ignoring for now that elimination operations have to occur in pairs, and non-
deterministically select which alternative to try each time an operation is attempted. Thus, we obtain STACK 7

(see Fig. 14) from STACK 2 (Fig. 5), by refining the loop bodies in push and pop to a non-deterministic choice
between trying on the stack and trying to eliminate. The new operations, tryPushElim7 and tryPopElim7, have
the same specifications as tryPush7 and tryPop7 (except that tryPopElim7 will never return ⊥), but will be
implemented differently.12

This modification is clearly a valid refinement, since at this level tryPushElim is equivalent to tryPush and
tryPopElim refines tryPop, so occurrences of tryPushElim and tryPopElim can be transformed in the same way
that occurrences of tryPush and tryPop were transformed in Sect. 3.2.

Throughout this discussion, we will assume that tryPush7 and tryPop7 are atomic actions operating on
the abstract stack, as in tryPush2 and tryPop2. No interference is possible between these operations and the
elimination mechanism, since the latter does not access s . Once the derivation is complete, we can insert suitable
implementations for tryPush and tryPop (e.g. those in either Figs. 10 or 13). In the initial implementation, which

11 To make the analogy work for a stack, we assume that all resources are interchangeable, and that the clerk simply keeps a pile of (descriptions
of) available resources, adding resources offered to the top of the pile and always handing out the resource at the top of the pile.
12 Although tryPopElim7 cannot return ⊥, because the value it returns will always the result of a successful elimination, it will be convenient
later to keep the type of the returned values as T⊥.

210 L. Groves, R. Colvin

is completed in Sect. 5.6, there is still no possibility of interference, because the elimination mechanism uses
separate data structures from the central stack (in particular, it makes no use of heap storage). The final version
of the elimination mechanism, discussed in Sect. 5.7, is specialised to use the same node type as in the central
stack representation, at which point we will revisit this issue.

5.2. Distinguishing active and passive elimination (STACK 8)

To describe elimination more precisely, we need to consider the rôles of the two processes involved. We will
assume, as in [HSY04], that an elimination is initiated by one of these processes.13 Thus, continuing with our
notice board analogy, a process attempting to find a matching process to eliminate with may proceed in either of
two ways:

• A passive approach, in which the process places a request on the notice board describing the resource it is
offering or seeking, waits for a while, then removes its request from the notice board and checks to see if its
request has been fulfilled.

• An active approach, in which the process looks on the notice board for a request that matches its requirements,
and if it finds one, marks that request as being completed and transfers the offered resource to the seeking
process.

Thus, the notice board can be viewed as a set of requests, each describing an operation which is either waiting
to be performed or has already been performed. A waiting request must describe the operation to be performed,
i.e. whether it is a push or a pop, and for the former the value to be pushed. A completed pop request must specify
the value to be returned.

We will model requests using a Z-like discriminated union type (using the notation of [Mor94, Chap. 15]),
wherePush(T) andPop describe waiting requests, andPushDone andPopDone(T⊥) describe completed requests:

Request �̂ None | Push(T) | Pop | PushDone | PopDone(T⊥)

Since there can be at most one request associated with each process, we will model the notice board (N) as a
function from processes to requests, with None indicating that a process currently has no request on the notice
board. So, initially, N (p) � None for every process p.

We will assume, again following [HSY04], that each process performing an operation may take either an active
or a passive approach.14 At this level of abstraction, we can regard this as a non-deterministic choice, giving the
description in Fig. 15—we will examine this choice more closely in Sect. 5.4.

In tryActivePush8 and tryActivePop8, the first disjunct describes successful active elimination as outlined
above: q is some process attempting a complementary operation (and so must be distinct from p), and its request
is modified to show that it has been fulfilled. The second disjunct allows an active elimination attempt to fail if a
suitable partner is not found—again, we treat this as a non-deterministic choice and do not specify at this stage
the conditions under which an elimination attempt may fail, in particular, we do not insist that elimination only
fail if there is no suitable partner available.

To model a passive eliminator p waiting, we split a tryPassive operation into two actions, so that an arbitrary
number of actions of other processes can occur between them—there is no need to model the waiting explicitly.
In tryPassivePush8 and tryPassivePop8, the first specification statement adds p’s request to the notice board,
while the second describes p’s behaviour after its delay. The elimination attempt will succeed if p’s request has
changed to the corresponding completed request (first disjunct), and will fail if the request is unchanged (second
disjunct). In both cases, p removes its request from the notice board.15

To show that this is a valid refinement, we show that any trace of STACK 8 can be transformed into an
equivalent trace of STACK 7.

13 In a more expressive semantic model, we could treat elimination as a (synchronous) atomic action involving two processes. Alternatively,
we could use an internal operation, or a separate set of dedicated “match maker” processes, to select pairs of processes for elimination.
14 We could consider other alternatives, for example, having either push or pop always active and the other always passive. This would
simplify the code, but it is not clear how it would affect performance.
15 Note that the tryPassive operations depend on the identity of the current process (p), or some equivalent mechanism, to identify this
process’s request.

Trace-based derivation of a scalable lock-free stack algorithm 211

Fig. 15. Abstract description of elimination

We first consider successful elimination—this is the most interesting case because we have to reduce a suc-
cessful active elimination attempt and a complementary successful passive elimination attempt at the same time,
emphasising the fact that elimination should really be thought of as a single action involving two processes.

A successful tryPassivePush by process p consists of two actions: Cp , which adds a request to N , and Dp ,
which later finds that p’s request has been changed to its “completed” counterpart. Since a process can only
add or remove its own request and can only modify another process’s request (this is easy to verify—recall that
in tryActivePush and tryActivePop, q must be distinct from p), this must be the same request that was posted
by Cp , and the modification can only have occurred because a successful tryActivePop by another process,
say q , has occurred between Cp and Dp . Thus, an execution containing a successful tryPassivePushp has a
trace t of the form αCp β tryActivePopSq γ Dp δ, where this occurrence of tryActivePopSq modifies N (p). The
fact that tryActivePopq and Dp both succeed implies that β and γ do not affect N (p), so t is equivalent to
α β Cp tryActivePopSq (x) Dp γ δ. We cannot move the Cp and Dp together, since tryActivePopSq must occur
between them; instead we will reduce these actions together. The combined effect of Cp , tryActivePopSq and Dp ,
executed consecutively, is equivalent tryPushElimS 7

p(x) tryPopElimS 7
q (x). In both cases, the combined effect is to

set q ’s output variable (y) to p’s input variable (x) and leave the shared variables (N and s , respectively) unchanged.
Placing these operations in the position of the successful tryActivePop ensures that both actions occur during the
execution of both eliminating operations, and thus preserves the order of non-concurrent operations. Conversely,
since we only consider completed operations, a successful tryActivePop must occur between the Cp and Dp

actions of a successful tryPassivePush, so is covered by this translation. We can similarly reduce a successful
tryActivePush8 and a successful tryPassivePop8 to a tryPushElim7 followed by a tryPopElim7.

We next consider unsuccessful elimination. An unsuccessful tryActivePush8 or tryActivePop8 has no obser-
vable effect, and can be reduced to a tryPushElimF 7 or tryPopElimF 7, respectively. An execution containing
an unsuccessful passive elimination attempt is either of the form αCp β Dp γ or αC ′

p β D ′
p γ . In either case,

212 L. Groves, R. Colvin

Fig. 16. Combining push and pop elimination

the first specification (C or C ′) adds a request to N , while the second specification (D or D ′) ensures that this
request is no longer present. Thus, the execution is equivalent to α tryPushElimF 7

p β γ , or α tryPopElimF 7
p β γ ,

respectively.
We have shown that completed executions of successful elimination attempts must occur in matching pairs

which can be jointly translated to a tryPushElim7 immediately followed by a tryPopElim7, and that unsuccessful
elimination attempts can be translated into the corresponding unsuccessful elimination attempts in STACK 7. It
therefore follows that any execution of STACK 8 can be transformed into an equivalent execution of STACK 7,
so STACK 8 is a valid refinement of STACK 7.

5.3. Combining push and pop elimination (STACK 9)

At this point, we observe that there is considerable similarity between tryActivePush and tryActivePop, and
between tryPassivePush and tryPassivePop. We thus combine them by introducing procedures tryActive and
tryPassive, which take an additional parameter describing the operation to be attempted, and redefine
tryPushElim and tryPopElim to call these versions, as shown in Fig. 16. The second parameter of tryActive
and tryPassive is used to return the result when the request is Pop, and otherwise returns a meaningless value
(actually ⊥) which is ignored by the caller.

To specify these procedures, we introduce three auxiliary functions, as shown in Fig. 17:

• opp determines whether two requests are complementary (i.e. one is a push and the other is a pop);
• done maps a waiting request into the corresponding completed request (i.e. Push(x) to PushDone and Pop

to PopDone(y)), its second argument provides the value to be returned when the first argument is Pop; and
• val returns the value being pushed for a push request and ⊥ for a pop request.

It is easy to verify that done and val are only applied to waiting requests, i.e. Push(x) or Pop, so these definitions
are sufficient.

To show that this step is a valid refinement, we show that we can reduce any occurrence of tryActive9 or
tryPassive9 to an equivalent operation of STACK 8. Instantiating the first argument and expanding the definitions
of opp, done and val , we see that:

• tryActive9(Push(x), y) is equivalent to tryActivePush8(x) ; y :� ⊥, and y :� ⊥ can be discarded as y is local
to tryPushElim9.

• tryActive9(Pop, y) is equivalent to tryActivePop8(y).

Trace-based derivation of a scalable lock-free stack algorithm 213

• tryPassive9(Push(x), y) is equivalent to tryPassivePush8(x) ; y :� ⊥, since if N0(p) is not Push(x), it must
be PushDone, and y :� ⊥ can be discarded as y is local to tryPushElim9.

• tryPassive9(Pop, y) is equivalent to tryPassivePop8(y), since if N0(p) is not Pop, it must be PopDone(y),
where y is the value pushed by the active elimination partner.

Thus, we can transform any execution of STACK 9 into an an equivalent execution of STACK 8, which shows
that STACK 9 is a valid refinement of STACK 8.

Fig. 17. Functions used in defining tryActive

Fig. 18. Combining active and passive elimination (i)

5.4. Combining active and passive elimination (STACK 10)

We have so far described active and passive elimination as separate actions, because this allowed us to analyse
these rôles independently. However, there is no reason why a process should have to choose at the beginning of
an elimination attempt which approach to try. A process may post its request on the notice board, and then,
instead of waiting idly before checking to see if its request has been fulfilled, proceed to look at other requests
in the manner of an active eliminator. If it finds a matching request, the process should then check to see if its
request has already been fulfilled before proceeding with the elimination. This essentially means that the process
tries both approaches, and goes with whichever of them (if either) succeeds, while ensuring that at most one of
them can succeed. To capture this idea, we will combine tryActive and tryPassive, to give a single tryEliminate
procedure, and we redefine tryPushElim and tryPopElim again to make a single call on tryEliminate, as shown
in Fig. 18.

Our initial specification for tryEliminate is just a demonic choice between tryActive and tryPassive, i.e.
r :� tryActive10(req, y) [] r :� tryPassive10(req, y), which we now refine to follow the strategy outlined above.

We can refine the specification of tryActive to a sequential composition with TP1 as its first component,
provided that the second component only succeeds if N0(p) is still equal to req , and resets N (p) to None. We
can then move TP1 out of the choice in the definition of tryEliminate (since S ; T [] S ; U ≡ S ; (T [] U)) and
expand the remaining demonic choice into a single specification statement.

Following [HSY04], we will assume that an active eliminator only tries one potential elimination partner (q)
before giving up. Clearly, we could consider other options, but this choice means that we can move the selection
of q out of the specification statement, and introduce an if statement testing opp(req,N0(q)) to determine whether
to continue with an active elimination attempt or revert to the passive approach. The resulting code, following
some simplifications to remove redundant disjuncts in the specifications, is shown in Fig. 19.

The first two disjuncts of TE4 are identical to tryActive9, with the selection of q removed and modified to
ensure that they are only taken when N0(p) � req and that N (p) is reset to None. The third disjunct of TE4
completes a passive elimination if p’s request has been completed by another process (as indicated by N0(p) �� req).
Specification TE5 is identical to TP2, the second part of tryPassive9, and so continues with a passive elimination
attempt when the test for opp(req,N0(q)) fails.

214 L. Groves, R. Colvin

Fig. 19. Combining active and passive elimination (ii)

Statements TE1 and TE2 can be performed in either order—doing TE1 first gives greater opportunity for
this request to be selected for elimination by another process.

To confirm that this step is a valid refinement, we show that any trace of STACK 10 can be transformed into an
equivalent trace of STACK 9. Suppose t is a trace of STACK 10 containing a completed tryEliminate by process p.
We need to consider five cases, corresponding to the disjuncts in TE4 and TE5.

If opp(req,N (q)) succeeds, trace t is of the form: αTE1p β TE2p γ TE3Sp δTE4p ε.
In the first disjunct of TE4p , p’s request has not been changed and p completes an elimination with process q .

The request that TE1 added to N is still there when p executes TE4, which then removes it, so β, γ and δ are
indifferent to its presence—they may modify N , but do not change N (p). Therefore, since TE2 only has local
effect, trace t is equivalent to α β γ δTE1p TE2p TE3Sp TE4p ε, which is equivalent to α β γ δ tryActiveS 9

p ε.
The second disjunct of TE4p corresponds to the second disjunct of tryActive. By similar reasoning, in this

case, trace t is equivalent to α β γ δTE1p TE2p TES3p TEF4p ε, which is equivalent to α β γ δ tryActiveF 9
p ε.

In the third disjunct of TE4p , p’s request has been changed by another process (in β or γ), and TE2 and
TE3 have no observable effect. Since TE1 is the same as TP1 and the third disjunct of TE4 is the same as the
first disjunction of TP2, trace t is equivalent to αTP1p β γ δTP2Sp ε, which contains a successful tryPassive9.

If opp(req,N (q)) fails, trace t is of the form: αTE1p β TE2p γ TE3Fp δTE5p ε. Since TE5 does not depend
on the outcomes of TE2 and TE3, they can be ignored, and TE1 and TE5 are equivalent to TP1 and TP2. So
trace t is equivalent to αTP1p β γ δTP2p ε, and so contains a completed tryPassive9

p , which succeeds iff TE5
succeeds.

Thus, we have established that STACK 10 is a valid refinement of STACK 9.

5.5. A concrete elimination mechanism

To implement the elimination mechanism described above, we must introduce a concrete data structure to
represent the notice board, which allows the required operations to be implemented efficiently in a lock-free
fashion. As in the lock-free stack implementation in Sect. 4, we will use CAS to update shared variables, using
local snapshots to detect interference, and allow operations to fail when interference is detected.

Trace-based derivation of a scalable lock-free stack algorithm 215

Fig. 20. Elimination stack data structures

5.5.1. Data refinement (STACK 11)

Since N is a finite function, we can implement it as an array, ops , of requests, indexed by process identifiers of
type ProcId , which is an integer subrange whose values denote processes in P , so ProcId �̂ 1 . .NumProc, where
NumProc is the number of processes. Requests are represented by labelled pairs of type (op : OP , val : T⊥), where
op is either PUSH , POP or NONE , indicating what operation (if any) the process is attempting to perform, and
val is the value to be pushed for a waiting push request, the value to be returned for a completed pop request, and
is disregarded otherwise. Initially, ops [p].op � NONE for all p; the initial values of ops [p].val are immaterial.
The relevant declarations are shown in Fig. 20.

At this point, we observe that the difference between a completed request and the absence of a request is only
significant to the process that posts the request, and once a process posts a request the only way it will be changed
by another process is to mark it as completed. Therefore, it is not necessary to distinguish between a completed
request and the absence of a request—we just need to be able to access the value returned by a completed pop
request.

The relationship between values r of type Request and r ′ of type REQUEST is given by the following relation:

Rep(r , r ′) �̂ ∀v : T⊥ • (r � Push(v) ⇒ r ′.op � PUSH) ∧
(r � Pop ⇒ r ′.op � POP) ∧
(r ∈ {None,PushDone,PopDone} ⇒ r ′.op � NONE) ∧
(r ∈ {Push(v),PopDone(v)} ⇒ r ′.val � v)

and the relationship between the abstract notice board N and its array representation ops (blurring the distinction
between a process and its id, to avoid the notational overhead of adding a mapping between them) is given by:

Rep(N , ops) �̂ ∀p : ProcId • Rep(N (p), ops [p])

We can now calculate the data refinement of STACK 11 using this representation. To construct the data
refinement of STACK 11, we change the interface to tryEliminate, so its first argument is of type REQUEST ,
rather than Request , and modify the calls in tryPushElim and tryPopElim to pass (PUSH , x) instead of Push(x)
and (POP ,⊥) instead of Pop, respectively. In the body of tryEliminate, we replace N by ops and N (p) by ops [p].
We write A[k :� z] to denote the result of replacing element k of array A by z , and write (NONE , ?) to denote
a value of type REQUEST with NONE as its op field when we do not care what value is in the val field. Thus,
N � N0 ⊕ {p �→ None} becomes ops � ops0[p :� (NONE , ?)]. We also rewrite done(req, v) as (NONE , v) and
val (req) as req .val , and define opp(req, req ′) as req .op �� req ′.op ∧ req ′.op �� NONE (this will only ever be used
when req .op is not NONE , so we do not need to check that case). The resulting code is shown in Fig. 21.

As with our other data refinements, each “abstract” action (TE1–5 in Fig. 19) is replaced by a single “concrete”
action (TE1′–5′ in Fig. 21). We can thus translate any execution of tryElimination11 into an equivalent execution
of tryElimination10 by making a one-to-one substitution, and there is no possibility of introducing interference.

It follows that STACK 11 is a valid refinement of STACK 10.

5.5.2. Algorithmic refinement (STACK 12)

We will now consider how to refine TE1′ to TE5′ to code. In doing this, we will assume that a REQUEST value
is stored in a single (or perhaps double) word, and so can be tested and updated atomically using a CAS . When
we do not care what the val field is, we will leave it unchanged.

216 L. Groves, R. Colvin

Fig. 21. Data refinement of tryEliminate

Specification TE1′ is easily encoded as an assignment, and TE2′ can be written as q :�?, which assigns an
arbitrary value to q . We simplify TE3′ by defining a function opp from OP to OP such that opp(PUSH) � POP ,
opp(POP) � PUSH and opp(NONE) � NONE .

The first two disjuncts of TE4′ must change the op field of p’s request to NONE , provided that it has not
already been changed. We therefore use CAS (ops [p], pinfo, (NONE , pinfo.val)) to attempt to update ops [p].

If this CAS succeeds, we wish update ops [q], provided that opp(pinfo, ops [q]) still holds. To check this, we
declare a new variable qinfo in tryEliminate and assign ops [q] to it immediately after selecting a value for q . We
then use qinfo in place of ops [q] in the test at TE3, and attempt the update using CAS (ops [q], qinfo, (NONE ,
pinfo.val)). If this CAS succeeds, we set y to ops [p].val and r to true, to complete the first disjunct of TE4′;
otherwise, we set r to false, to complete the second disjunct of TE4′

If the CAS on ops [p] fails, we know that ops0[p].op is already equal to NONE , since that is the only way it
can be changed by another process. In this case, we just need to set y to ops [p].val and r to true, to complete
the third disjunct of TE4′. Setting y can be done safely after the CAS, since no other process can alter ops [p].val
once ops [p].op has been set to NONE .

The second conjunct of TE5′ needs to set the op field of p’s request to NONE , provided that it has not already
been changed. Again, we attempt to do this using CAS (ops [p], pinfo, (NONE , pinfo.val)). If this CAS succeeds,
we just need to set r to false to complete the second conjunct of TE5. If the CAS fails, we have the same situation
as in the third conjunct of TE4′. We know that p’s request has been completed and ops0[p].op has been set to
NONE , so it remains to set y to ops [p].val and r to true to complete the first disjunct of TE5′.

The resulting code is show in Fig. 22, where we have added a delay statement in the second branch to indicate
where this would appear in a practical implementation. We have also negated the final CAS so that the order of
cases is preserved.

To show that this is a valid refinement, we show that any trace of STACK 12 can be transformed into an
equivalent trace of STACK 11. To do this, we have to show that any completed execution of tryEliminate12 by
process p can be translated into an equivalent execution of tryEliminate11

p .

Trace-based derivation of a scalable lock-free stack algorithm 217

Fig. 22. Algorithmic refinement of tryEliminate

The assignments ops [p] :� pinfo and q :�? are replaced by TE1′
p , TE2′

p , respectively. The assignment
qinfo :� ops [q] and the test pinfo.op � opp(qinfo.op) are replaced by either TE3S ′

p or TE3F ′
p , according to

the outcome of the test, at the position of qinfo :� ops [q], since the test only refers to local variables and can be
moved over steps of other processes.

It remains to consider the sequences of actions that can occur after the test pinfo.op � opp(qinfo.op). These
correspond to the five execution paths leading to assignments to r , which are numbered in Fig. 22. In describing
these cases, we will write TE4′.i to denote the i th disjunct of TE4′, and similarly for TE5′.

• On path (1), p performs a successful active elimination. Since no other process can change ops [p] once p has
set its op field to NONE , we can move CAS1 right, and the assignments to y and r are local, so can also be
moved. Thus, path (1) is equivalent to an uninterrupted execution of TE1′

p , TE2′
p , TE3S ′

p , TE4′.1p at the
position of CAS2.

• On path (2), p’s active elimination attempt fails because q ’s request has been fulfilled since it was checked
at TE3. Since CAS2 fails, it can be moved left to the position of CAS1, as can the local assignment to r .
Thus, path (2) is equivalent to an uninterrupted execution of TE1′

p , TE2′
p , TE3S ′

p , TE4′.2p at the position
of CAS1.

• On path (3), p performs a successful passive elimination, detecting the successful elimination just as it is about
to attempt an active elimination. Since another process has set ops [p].op to NONE , no other process can
change ops [p] again, so the actions on this path can all be moved to the position of CAS1. Thus, path (3) is
equivalent to an uninterrupted execution of TE1′

p , TE2′
p , TE3S ′

p , TE4′.2p at the position of CAS1.

218 L. Groves, R. Colvin

• On path (4), p performs a successful passive elimination, detecting the successful elimination after abandoning
its active elimination attempt and waiting. By similar reasoning to the previous case, the actions on this path
can all be moved to the position of CAS3. Thus, path (4) is equivalent to an uninterrupted execution of TE1′

p ,
TE2′

p , TE3S ′
p , TE5′.1p at the position of CAS3.

• On path (5), p’s passive elimination attempt fails because its request is unfulfilled. The local assignment to r
can be moved to the position of CAS3. Thus, path (5) is equivalent to an uninterrupted execution of TE1′

p ,
TE2′

p , TE3S ′
p , TE5′.2p at the position of CAS3.

To show that the implementation is lock-free, we need to show that an operation cannot continually try to
eliminate, and always fail, without ever trying to perform its operation on the stack, since tryPushElim and
tryPopElim can fail without another stack operation being completed. To do this, we need to either assume that
the non-deterministic choice in push and pop is implemented as a fair choice, or replace it with an if statement
which invokes a function to decide which alternative to choose (as is done in [MNSS05]) which must then be
shown to have the desired property.

5.6. Selecting a potential elimination partner

We still have to determine how a process p selects another process q as a potential elimination partner. An
interesting aspect of this algorithm is that, from the point of view of linearisability, it does not matter how q is
chosen! Thus, we could just choose q to be an arbitrary value in ProcId and inspect ops [q] to see if q is attempting
to perform a complementary operation, as we have done in Fig. 22. In order to get good performance, however,
we would like to choose q in a way that makes it likely that q is attempting to perform a complementary operation.
We could search through ops looking for a suitable candidate, but this imposes a linear cost which is too expensive.

The approach taken in [HSY04] uses a second array, called collision, which is indexed by integers and whose
values are process ids. The size of the collision array does not affect the correctness of the algorithm, but will
affect its performance [HSY04] suggest dynamically adjusting the size of the array to optimise performance under
varying workloads; we will assume an arbitrary fixed size, M , for collision. The initial contents of collision also
do not matter, for example, all locations may be initialised to the same value.

A process attempting an elimination chooses an arbitrary location in collision, takes the process whose id is
in that location as its potential partner, q , and writes its own id into that location, making this process available
for other processes to select for elimination. A process never removes its id from collision, so if it makes several
elimination attempts, its id may occur in several locations in collision. This means that overwriting q does not
stop another process selecting q as a potential partner, but does reduce the likelihood of this happening. When q
is read from the selected element of collision, we know that q has at some stage attempted an elimination—unless
this is the first time that this element of collision has been selected, but that just means that the elimination will
probably fail and will only happen once for each location in collision.

Formally, we introduce the collision array as a degenerate data refinement in which no constraints are placed
on collision apart from its type, which ensures that its elements are valid process ids, and data refine q :�? to:

q, collision :
[∃pos : 1 . .M •

collision0[pos] � q ∧ collision � collision0[pos :� p]

]

This can now be refined operationally to introduce pos as a local variable, select its value, and then save the
value of collision[pos] into q and replace it by p. We will implement the selection of pos with a non-deterministic
assignment, pos :∈ 1 . .M , which assigns pos an arbitrary value in the specified range, which is all that is required
to establish correctness; [HSY04] call an unspecified function, GetPosition, which may be tailored to implement a
strategy intended to improve performance. Saving and replacing the value of collision[pos] could be implemented
very simply using two assignments (q :� collision[pos] and collision[pos] :� p), however, [HSY04] use a retry
loop with a CAS to do this—presumably because, if collision[pos] has changed, the more recent value is more
likely to be the id of a process currently attempting to eliminate. This code is incorporated in Fig. 24.

To verify this step, we show that any completed execution of these statements is equivalent to an execution of
q :�?. As usual, we discard failed executions of the loop, since they have no observable effect. We can then move
pos :∈ 1 . .M , because it only involves local variables, and we can move q :� collision[pos] to the position of the

Trace-based derivation of a scalable lock-free stack algorithm 219

Fig. 23. Final implementation (i)

remaining successful CAS , because we know it will read the same value from collision[pos] (because the CAS
succeeds), and it does not matter whether collision[pos] has changed in the meantime, so there is no ABA problem.
Thus, we have pos :∈ 1 . .M , q :� collision[pos] and CAS (collision[pos], q, p) executed without interruption,
which correctly implements the above specification.

In order to show that the elimination algorithm is lock-free, we have to show that a process cannot continue
forever in the retry loop used to save and replace the value of collision[pos] with no other process completing
an operation. To show that this cannot happen, we observe that if the CAS in this loop fails an infinite number
of times, it must be because other processes perform this CAS successfully an infinite number of times and
therefore (because we have a finite number of processes) complete their elimination attempt. Thus, provided that
a process cannot continually try (unsuccessfully) to eliminate without ever trying to perform its operation on the
central stack (as discussed at the end of Sect. 5.5), the lock-freedom of the elimination algorithm follows from
the lock-freedom of the central stack implementation.

5.7. Specialising the implementation for a linked-list central stack (STACK 13)

Our implementation so far assumes that a CAS can operate on a record containing a value of type T⊥ along
with an OP value, which will be the case, say, if T is a 32-bit integer and CAS operates on 64-bit words. If T is
a large value, however, this will not be possible, so we would need to replace the val field in a REQUEST by a
pointer. This could just be a pointer to the required T value—however, since the final versions of push and pop
in Sect. 4 (Figs. 10, 13) already handle nodes containing T values, it is convenient instead to use pointers to such
nodes.

Thus, we modify the definition of REQUEST so that its second element is a pointer to a Node (Fig. 6). We
also change the interface to tryEliminate so that its first parameter is an OP , and its second parameter is a
pointer to a Node as we did to tryPush and tryPop in Fig. 10. The latter is now an in out parameter, and is used
both to provide the value to be pushed when the first argument is PUSH and to return the value popped when
the first argument is POP . The resulting version of tryEliminate is shown in Fig. 24, and the revised versions
of push and pop are shown in Fig. 23, where tryPush13 and tryPop13 are the same as tryPush5 and tryPop5

(Fig. 10) or tryPush6 and tryPop6 (Fig. 13) according to the assumptions we wish to make about memory
management.

Apart from the expansion of q :�?, which we have already discussed, STACK 13 (as shown in Figs. 23 and 24,
along with the appropriate versions of tryPush and tryPop) is simply a data refinement, in which there is a one to
one correspondence between atomic actions in the two versions. To show that this refinement is correct, it is easiest

220 L. Groves, R. Colvin

Fig. 24. Final implementation (ii)

to introduce an intermediate version in which the in out parameter n is replaced by an in parameter, nin and an
out parameter nout . All occurrences of n in tryEliminate13 become nin , except the three occurrences on the left of
assignment statements, which become nout . We then observe that the value of nin .val in tryEliminate13 is the same
as pinfo.val in tryEliminate12, and so (op,nin .val) in tryEliminate13 is the same as pinfo in tryEliminate12, and
since no process can alter nin .next while tryEliminate13 is running, operations involving nin in tryEliminate13

are equivalent to operations involving pinfo.val in tryEliminate12. Similarly, we show that the value of y in
tryEliminate12 is the same as nout .val in tryEliminate13. A simple data flow analysis will then demonstrate that
nin is never read after nout has been assigned, so we are able to combine the two parameters. The alternative to
this two stage proof is to use an abstract relation requiring that n.val in tryEliminate13 be equal to pinfo.val
until it is assigned, after which it is equal to y in tryEliminate12.

This step introduces a dependency between the data representation used for the central stack, as discussed
in Sect. 4, and that used for the elimination mechanism, so we need to revisit the interaction between these
components. To show that no interference is introduced, we observe that the node values passed to or returned

Trace-based derivation of a scalable lock-free stack algorithm 221

from tryEliminate, and stored in the node fields of REQUEST values, are all node values that have been allocated
in push but are not part of the linked list used to represent the central stack. Thus, the steps of the elimination
mechanism still commute with those of the central stack in the same way as before we made this modification.

The resulting code is very similar to that presented in [HSY04]. The most obvious differences are that we
use some different notation and have structured the algorithm differently. More importantly, in [HSY04], ops is
an array of pointers to REQUEST nodes (which they call ThreadInfo), and they remove p’s request from the
notice board by setting the ops [p] to null . Since these nodes must then be allocated dynamically, their algorithm
is susceptible to another form of the ABA problem. We avoid this problem by making ops an array of Request
nodes and allowing the op field to take on a third value (NONE)—this approach also lessens contention, since
it does not matter if q completes its operation and begins another one between when ops [q] is read and when it
is updated at CAS2. A more detailed comparison is presented in [CG07].

6. Conclusions

We have shown how a sophisticated concurrent stack implementation can be derived from an abstract specification
in a series of verifiable steps. We have not given fully formal proofs for these steps, but have stated the correctness
conditions that need to be established and have attempted to provide sufficient formality for our proofs to be
convincing without overwhelming the reader with an excess of technical minutiae.

In doing this, we have provided an abstract description of the elimination mechanism which makes it easier
to describe our algorithm, and to compare it with that in [HSY04]. We have restructured their algorithm in a way
that makes a clearer separation between the elimination mechanism and the underlying stack and, we believe,
makes it easier to understand—we did that before attempting the derivation presented here, and it is pleasing to
see that the same structure could be arrived at in this derivation. This structure also allowed the algorithm to be
simplified—for example, handling elimination for push and pop in a uniform way. More importantly, we have
avoided an ABA problem by using a simpler data structure. We have also identified a number of points at which
alternative implementations might be considered.

We have previously verified this algorithm (using three different memory management regimes for the central
stack) using simulation between IOAs [CG07]. That proof also involved showing that any trace of the implemen-
tation can be transformed into an equivalent trace of an abstract specification. The main differences between that
proof and the one outlined here are: that we did the simulation proof in just two steps (one for the central stack
and one for the elimination mechanism); and, more importantly, that while a simulation proof between a concrete
machine C and an abstract machine A translates one step of C at a time (i.e. it uses induction on the length of
the concrete execution), the operational refinement proofs here translate the entire execution of an operation of
A at a time (i.e. it uses induction on the number of completed operations, rather than on the number of atomic
actions performed).

The derivation approach used here allowed us to present the various stages of our algorithm in a familiar
procedural form, rather than as sets of actions or transitions, which we believe would become very hard to
follow through the number of versions involved in this derivation. It also allowed us to present a rigorous proof,
highlighting the reasons why the algorithm works, with far fewer technical details than would be required for
simulation proofs at a similar level of rigour. Although we have previously verified the algorithm using simulation
between IOAs, we now understand many subtleties of the algorithm better as a result of this exercise.

In future work, we intend to mechanise a fully formal proof of the derivation presented here using PVS, so that
we can make a more direct comparison with our earlier proof. We will also explore other implementations that can
be derived from our abstract model, and attempt to use our abstract model to derive elimination algorithms for
other data structures, such as the queue algorithm described in [MNSS05]. We also intend to apply this derivation
approach to other concurrent algorithms, such as the queue implementations described in [CG05, MS98]. The
latter will allow valuable comparisons with the simulation proof reported in [DGLM04] and the derivation
described in [AC05], which is the only other comparable published derivation of a lock-free algorithm that we
know of. Finally, we intend to examine more closely the relationships between the trace reduction approach used
in our derivation and other formalisms, such as Back’s atomicity refinement [Bac89] and Dingel’s refinement
calculus [Din02], to see if they can be adapted to support this kind of derivation, and to investigate the extent to
which the correctness conditions arising from these proofs can be verified using static analysis or model checking
techniques.

222 L. Groves, R. Colvin

Acknowledgments

We are grateful to Sun Microsystems Laboratories for financial support, and to Mark Moir for helpful discussion
relating to our work.

References

[AC05] Abrial J-R, Cansell D (2005) Formal construction of a non-blocking concurrent queue algorithm. J Univ Comput Sci
11(5):744–770

[Bac89] Back R-J (1989) A method for refining atomicity in parallel algorithms. In: PARLE’89 conference on parallel architectures and
languages Europe, vol 366 of lecture notes in computer science, Eindhoven, the Netherlands. Springer, New York, pp 199–216

[BKS88] Back RJR, Kurki-Suonio F (1988) Distributed cooperation with action systems. ACM Trans Program Lang Syst 10(4):513–554
[BvW94] Back R-J, von Wright J (1994) Trace refinement of action systems. In: International conference on concurrency theory,

Uppsala, Sweden, August 22–25, pp 367–384
[BvW98] Back R-J, von Wright J (1998) Refinement calculus: a systematic introduction. Graduate texts in computer science. Springer,

New York
[BvW00] Back R-J, von Wright J (2000) Encoding, decoding and data refinement. Formal Asp Comput 12(5):313–349
[CG05] Colvin R, Groves L (2005) Formal verification of an array-based nonblocking queue. In: ICECCS ’05: Proceedings of

the internation conference on engineering of complex computer systems, New York, NY, USA. ACM Press, New York,
pp 92–101

[CG07] Colvin R, Groves L (2007) A scalable lock-free stack algorithm and its verification. In: 5th IEEE international conference on
software engineering and formal methods (SEFM 2007), London, UK, 10–14 September 2007. IEEE Computer Society, Los
Alamitos, CA, USA, pp 339–348

[COR+95] Crow J, Owre S, Rushby J, Shankar N, Srivas M (1995) A tutorial introduction to PVS. In: Workshop on industrial-strength
formal specification techniques, Boca Raton, Florida

[DB03] Derrick J, Boiten E (2003) Relational concurrent refinement. Formal Asp Comput 15(2):182–214
[DGLM04] Doherty S, Groves L, Luchangco V, Moir M (2004) Formal verification of a practical lock-free queue algorithm. In: de

Frutos-Escrig D, Núñez M (eds) FORTE2004: formal techniques for networked and distributed systems, vol 3235 of lecture
notes in computer science. Springer, New York, pp 97–114

[DHLM04] Doherty S, Herlihy M, Luchangco V, Moir M (2004) Bringing practical lock-free synchronization to 64-bit applications. In:
PODC ’04: proceedings of the twenty-third annual ACM symposium on principles of distributed computing, New York, NY,
USA. ACM, New York, pp 31–39

[Din02] Dingel J (2002) A refinement calculus for shared-variable parallel and distributed programming. Formal Asp Comput
14(2):123–197

[DMMS01] Detlefs DL, Martin PA, Moir M, Steele GL Jr (2001) Lock-free reference counting. In: Proceedings of the 20th annual ACM
symposium on principles of distributed computing, Newport, Rhode Island, USA, August 26–29

[dRE98] de Roever W-P, Engelhardt K (1998) Data refinement model-oriented proof methods and their comparison. Cambridge
University Press, London (with the assistance of J. Coenen, K.-H. Buth, P. Gardiner, Y. Lakhnech, F. Stomp)

[FF04] Flanagan C, Freund S (2004) Atomizer: a dynamic atomicity checker for multithreaded programs. In: Proc. 31st ACM
SIGPLAN-SIGACT symposium on principles of programming languages (POPL), Venice, Italy, January 14–16, pp 256–267

[FQ03] Flanagan C, Qadeer S (2003) A type and effect system for atomicity. In: Proc. ACM SIGPLAN conference on programming
language design and implementation, San Diego, California, USA, June 9–11, pp 338–349

[FQ05] Freund SN, Qadeer S (2005) Exploiting purity for atomicity. IEEE Trans Softw Eng 31(4):275–291
[GC07] Groves L, Colvin R (2007) Derivation of a scalable lock-free stack algorithm. Electron Notes Theor Comput Sci 187:55–74
[Gro07] Groves L (2007) Reasoning about nonblocking concurrency using reduction. In: ICECCS ’07: proceedings of the 12th IEEE

international conference on engineering complex computer systems (ICECCS 2007), Washington, DC, USA. IEEE Computer
Society, pp 107–116

[Her91] Herlihy M (1991) Wait-free synchronization. ACM Trans Program Lang Syst 13(1):124–149
[HLM03] Herlihy M, Luchangco V, Moir M (2003) Obstruction-free synchronization: double-ended queues as an example. In:

ICDCS ’03: proceedings of the 23rd international conference on distributed computing systems. IEEE Computer Society,
Los Alamitos, CA, USA, p 522

[HLMM05] Herlihy M, Luchangco V, Martin P, Moir M (2005) Nonblocking memory management support for dynamic-sized data
structures. ACM Trans Comput Syst 23(2):146–196

[HSY04] Hendler D, Shavit N, Yerushalmi L (2004) A scalable lock-free stack algorithm. In: SPAA 2004: proceedings of the sixteenth
annual ACM symposium on parallel algorithms, 27–30 June 2004, Barcelona, Spain, pp 206–215

[HW90] Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans Program Lang Syst
12(3):463–492

[Lam88] Lamport L (1988) Control predicates are better than dummy variables for reasoning about program control. ACM Trans
Program Lang Syst 10(2):267–281

[Lip75] Lipton RJ (1975) Reduction: a method of proving properties of parallel programs. Commun ACM 18(12):717–721
[LS89] Lamport L, Schneider FB (1989) Pretending atomicity. Technical Report TR89-1005, DEC, SRC
[LV93] Lynch NA, Vaandrager FW (1993) Forward and backward simulations—part I: untimed systems. In: 135, Centrum voor

Wiskunde en Informatica (CWI), ISSN 0169-118X, p 35
[LV95] Lynch NA, Vaandrager FW (1995) Forward and backward simulations: I. Untimed systems. Inf Comput 121(2):214–233
[Lyn96] Lynch NA (1996) Distributed algorithms. Morgan Kaufmann, Menlo Park

Trace-based derivation of a scalable lock-free stack algorithm 223

[MG90] Morgan C, Gardiner PHB (1990) Data refinement by calculation. Acta Informatica 27(6):481–503 (reprinted in [MV93])
[MNSS05] Moir M, Nussbaum D, Shalev O, Shavit N (2005) Using elimination to implement scalable and lock-free fifo queues. In: Proc.

17th annual ACM symposium on parallelism in algorithms and architectures (SPAA 2005), Las Vegas, Nevada, USA. ACM
Press, New York, pp 253–262

[Moi97] Moir M (1997) Practical implementations of non-blocking synchronization primitives. In: Proceedings of the 15th annual
ACM symposium on the principles of distributed computing, Santa Barbara, CA, pp 219–228

[Mor94] Morgan C (1994) Programming from specifications, 2nd edn. Prentice Hall, Englewood Cliffs
[MS98] Michael MM, Scott ML (1998) Nonblocking algorithms and preemption-safe locking on multiprogrammed shared memory

multiprocessors. J Parallel Distrib Comput 51(1):1–26
[MV93] Morgan C, Vickers T (eds) (1993) On the refinement calculus. Springer, New York
[OG76] Owicki S, Gries D (1976) An axiomatic proof technique for parallel programs I. Acta Informatica 6:319–340
[Spi92] Spivey M (1992) The Z notation: a reference manual, 2nd edn. Prentice-Hall, Englewood Cliffs
[Tre86] Treiber RK (1986) Systems programming: coping with parallelism. RJ5118. Technical report, IBM Almaden Research Center.

http://domino.watson.ibm.com/library/cyberdig.nsf/
[WS06] Wang L, Stoller SD (2006) Runtime analysis of atomicity for multithreaded programs. IEEE Trans Softw Eng 32(2):

93–110
[XdRH97] Xu Q, de Roever WP, He J (1997) The rely-guarantee method for verifying shared variable concurrent programs. Formal Asp

Comput 9(2):149–174

Received 18 January 2007
Accepted in revised form 12 August 2008 by B.K. Aichernig, E.A. Boiten, M.J. Butler and J. Derrick
Published online 31 October 2008

http://domino.watson.ibm.com/library/cyberdig.nsf/

	1 Introduction
	2 Preliminaries
	2.1 A wide-spectrum language
	2.2 The target language
	2.3 Derivation approach

	3 An abstract concurrent stack
	3.1 Specifying an abstract concurrent stack (STACK1)
	3.2 Allowing operations to fail (STACK2)

	4 Deriving a simple lock-free stack
	4.1 Data representation (STACK3)
	4.2 Implementing tryPush3 and tryPop3 (STACK4)
	4.3 A small optimisation (STACK5)
	4.4 Memory management and the ABA problem (STACK6)

	5 The elimination stack
	5.1 An abstract model of elimination (STACK7)
	5.2 Distinguishing active and passive elimination (STACK8)
	5.3 Combining push and pop elimination (STACK9)
	5.4 Combining active and passive elimination (STACK10)
	5.5 A concrete elimination mechanism
	5.6 Selecting a potential elimination partner
	5.7 Specialising the implementation for a linked-list central stack (STACK13)

	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

