
DOI 10.1007/s00165-008-0101-8
BCS © 2009
Formal Aspects of Computing (2009) 21: 571–588

Formal Aspects
of Computing

Model-checking user behaviour using
interacting components
Thomas Anung Basuki, Antonio Cerone, Andreas Griesmayer, Rudolf Schlatte
International Institute of Software Technology, United Nations University, Macau SAR, China.
E-mail: anung@iist.unu.edu

Abstract. This article describes a framework to formally model and analyse human behaviour. This is shown by a
simple case study of a chocolate vending machine, which represents many aspects of human behaviour. The case
study is modelled and analysed using the Maude rewrite system. This work extends a previous work by Basuki
which attempts to model interactions between human and machine and analyse the possibility of errors occurring
in the interactions. By redesigning the interface, it can be shown that certain kinds of error can be avoided for some
users. This article overcomes the limitation of Basuki’s approach by incorporating many aspects of user behaviour
into a single user model, and introduces a more natural approach to model human–computer interaction.

Keywords: Human–computer interaction; Interacting components model; Rewrite systems; Model-checking

1. Introduction

Formal methods and user-centred design are two alternative methodologies aiming at reducing the likelihood of
system failure. In user-centred design analysing and foreseeing user’s behaviour in interacting with the computer,
as well as possible human errors, is a fundamental concern of designers, who also have to test the validity of their
assumptions in the real world, with actual users. Formal methods have been originally applied to system design
and analysis with the perspective that human errors are outside their scope.

However, this perspective started gradually to change during the 1980s. Firstly, more and more importance is
given to the formal analysis of user interfaces. Chi [Chi85] compares four algebraic techniques in the analysis of
a commercial user interface, manually proving a number of not trivial properties of the interface, which however
do not involve the interaction with the user. Secondly, it is understood that a user model should be included in the
design process, separately from the model of the interface. Cognitive complexity theory (CCT) [KP85] clearly sep-
arates the description of the user’s goals from the description of the device with which the user interacts. Another
interesting approach is the Executable Cognitive Architecture developed by Newell, Laird and Rosembloom,
which was then implemented in the SOAR system [LNR87]. This cognitive architecture inspired the definition
of the programmable user model (PUM) defined by Young, Green and Simon [YGS89], which envisage an exe-
cutable model of the user within a psychologically constrained architecture which allows a predictive evaluation
of the interface design.

In the 1990s, the catastrophic consequences of human errors experienced in safety-critical systems, includ-
ing for example plant/process control, traffic control (air, road, rail, sea), medical devices and defence, gave a

Correspondence and offprint requests to: T. A. Basuki, Email: anung@iist.unu.edu

572 T. A. Basuki et al.

stronger impulse to the application of formal methods to interactive systems [Dix91]. The aim is no longer just
modelling, but becomes the application of formal verification techniques, such as model-checking and theorem
proving, to the verification of interactive systems. Works in this direction include the model-checking analysis of
interfaces in absence of user models [PS01, LH03, DCH97, DT04], and the description of expected effective user
behaviour [Lev97, PBP97] or errors performed by the user as reported by accident analysis [Joh97].

However, the emergence of the ubiquitous computing paradigm has modified the traditional relationships
between users and computational services by extending the computational interface into the user’s environment.
Providing computational services throughout the physical environment without making the user aware of the
presence of the computer requires extreme rigour in the application of principles of user-centred design and needs
to be supported by the study of human errors. The informal user-centred design approach appears insufficient
when computational services are concealed within everyday objects and activities, which are freely manipulated,
often in a physical sense, by a wide range of users. Analysing and foreseeing the behaviour of users with so
many degrees of freedom and covering all ranges of expertise, including novices, becomes unpractical. The use
of formal methods becomes then a very attractive option, but their scope needs to be broadened compared to
the early applications to interactive systems. In fact, users do not necessarily behave as expected while designing
the interface, as assumed in previous work [Lev97, PBP97, Joh97], and errors are actually the very result of an
unexpected user behaviour that emerges during the interaction.

To best capture such an emergent behaviour, we definitely need an explicit model of the user, which, however,
must specify the cognitively plausible behaviour, which is all the possible behaviours that can occur, and that
involve different cognitive processes [BBD00]. The model must take into account all relationships between user’s
actions, user’s goals and the environment. Following this approach, a number of researchers have explored the use
of formal models to understand how cognitive errors can affect user performance. Mode confusion is often blamed
for human errors in interactive systems, whereby the user’s mental model of how the system works gets out of
step with how the system is actually working. This phenomenon has been analysed by developing a plausible (but
simplified) mental model such as might represent the user’s understanding of the system and comparing it with a
user interface model, to look for sources of cognitive dissonance [BMPC98, Rus02]. Rushby [Rus02] models the
behaviour of a forgetful user who follows a warning display light or a non-forgetful user working in absence of
warning lights, and checks for emergent mode confusion. Curzon and Blandford [CB00b, CB00a, CB01] focus
on goal-based interactions and use a chocolate machine case study to build a rational user model and formally
prove the absence of several classes of user errors:

• assuming all tasks completed when the goal is achieved, but forgetting to complete some important subsidiary
tasks (post-completion error);

• given a list of communication-goals that must be communicated to the machine, without knowledge of the
right order of communication permitted by the machine, performing information communication in a wrong
order (order error);

• leaving the interaction whenever a delay occurs and no feedback is given by the machine (device-delay error).

Cerone and Elbegbayan [CE06] model a non-expert user interacting with a web-based application. They use the
CSP process algebra [Hoa85] and the CWB-NC model-checker [CLS00] to detect user errors related to security
issues and progressively improve the interface design.

Basuki [Bas07] formalises a variant of Curzon and Blandford’s chocolate machine case study within Cerone
and Elbegbayan’s framework and models the interaction of two kinds of users, goal-based user and reactive
user, with the machine. He uses temporal logic to define all different classes of errors considered by Curzon and
Blandford [CB00b, CB00a, CB01]. The CWB-NC model-checker is then iteratively used to find the cause of a
specific error and improve the design to remove that error. Basuki uses a goal-based user as a general user model
and applies a constraint to it through the parallel composition operator of the process algebra in order to define
a reactive user. However, the addition of a constraint to a process algebra model reduces the set of possible
system behaviours, and in Basuki’s case study leads to the loss of the goal-based part of the user behaviour. As
a result, different behavioural attitudes that normally coexist within the same user behaviour are modelled in
Basuki’s approach as separate users: a goal-based user and a reactive user. Therefore Basuki’s approach cannot
be applied to more complex case studies in which goal-based attitude and reactive attitude are both essential in
the completion of the same user’s task.

Model-checking user behaviour using interacting components 573

In this article, we overcome the limitations of Basuki’s approach by using interacting components to model
human–computer interaction, and show how to implement it by using the Maude rewrite system [CDE+07] to
model the chocolate machine case study. With the new framework, rather than adding a constraint for each new
set of user behavioural attitudes, we add new rules to the user model. In this way, the existing behaviour can
coexist with the newly added one. A rewrite system is suitable for implementing these ideas, because adding new
set of rules to refine a user model in a rewrite system is easier than in a process algebra. In a rewrite system, we
can start by defining a simple user model, and refine the model by adding more rewrite rules. On the contrary in
process algebra we will have to start with the complex user model from the beginning.

2. Interacting components model

In this section we show a way to model multiple components (“peers”) involved in human–computer interaction.
Human actors and machine actors are both peers. In addition to the interacting peers, we explicitly define an
interface component for communication among the peers. The interface allows us to describe the peers indepen-
dently of each other and to concentrate on realistic models of different kinds of users and machines. Without
using the interface, the two models of user and machine behaviour would have to be combined by hand. Peers do
not communicate with each other directly. They have their own internal states and can perform their own internal
actions. Communications between peers are performed through the interface by actions that affect the state of
the interface. This change of state can be observed by other peers and trigger local actions. For example, to model
a customer inserting a coin into a chocolate selling machine, we have a rule that simultaneously decreases the
number of coins of the customer and “fills” the coin slot of the interface. This rule only involves the customer
and the interface. A second rule, involving only the interface and the chocolate machine itself, removes the coin
from the interface and increments the number of coins held by the machine.

We represent the components using labelled transition systems (LTS) and distinguish between the interface
I � 〈�I , ρI ,SI 〉 and the set of peers Pk � 〈�Pk , ρPk ,SPk 〉 with 0 ≤ k < n for n peers and� being the alphabet,
ρ the transition relation and S the disjoint set of states. The literals in the alphabet resemble actions the peers
can perform. We abbreviate the set of all actions as �̂P � ⋃

0≤k<n �Pk
. Communication between the peers can

only occur through a change of state in the interface I . Moreover, the state of the interface may change only
through a synchronisation with one of the peers. Thus �I ⊆ �̂P . We write si for states in SI and spk

for states in
SPk

. Combination of all components in respect to the interface gives us the total system M � 〈�M , ρM ,SM 〉 as
follows:

�M � �̂P (1)

SM �SI × SP0 × · · · × SPn−1 (2)

ρM � {((si , sp0 , . . . , spk
, . . . , spn−i

), σ, (s ′
i , sp0 , . . . , s

′
pk
, . . . , spn−i

)) |
(3)

σ ∈ (�I ∩�Pk
) ∧ (si , σ, s ′

i) ∈ ρI ∧ (spk
, σ, s ′

pk
) ∈ ρPk

}
∪ {((si , sp0 , . . . , spk

, . . . , spn−i
), σ, (si , sp0 , . . . , s

′
pk
, . . . , spn−i

)) |
(4)

σ �∈ �I ∧ (spk
, σ, s ′

pk
) ∈ ρPk

}
A state si ∈ SM in M represents the internal states of all participants. The set of transitions ρM consist of the

union of two parts: Set (3) represents interface actions, which change the state of the interface and of one peer
at the same time. They represent the means of communications between the peers. This form of communication
is asynchronous: one peer changes the state of the interface to a state where another peer can continue. To stay
in our running example: the chocolate machine can change the state of the interface by putting a coin into the
return slot, which in turn can be removed by the user. After these two steps the interface is in the same state as
before, while the machine progresses to a state that reflects that the change was given and the user has received
the return money. Set (3) describes state changes by actions that are not part of the interface. Note that each
transition changes exactly the state of a single peer; there are no direct synchronisations between peers.

It is easy to see that the combined system M is able to perform exactly the intersection of the behaviour of the
peers, synchronised by the interface. In other words, M models the interaction between the peers.The complete

574 T. A. Basuki et al.

Fig. 1. The static parts of the machine model. The Attribute constructors “wrap” terms of sorts MState and Nat, respectively

system resembles a labelled transition system and therefore is amenable for model checking. Accordingly, we
state the properties to check as LTL formulae.

Linear temporal logic (LTL) [Pnu77, CGP99] is a temporal logic built from the actions in �, their negations,
the temporal modalities X (next), U (until), and R (releases), and Boolean conjunction and disjunction. An LTL
formula defines a set of words. Intuitively, Xφ holds for a given word if φ holds in the suffix of the word starting
from the second position, φUψ holds ifψ holds on some position and φ holds on every position before that point,
and φRψ holds if either ψ holds on all positions, or φ ∧ ψ holds on some position and ψ hold in all positions
before. We use the usual abbreviations ♦ϕ � true Uϕ (eventually) and �ϕ � false Rϕ (always). Intuitively, ♦ϕ
states that any path in the model eventually will reach a state in which ϕ will be true, while �ϕ states that ϕ is
true now and for all reachable states in the model.

2.1. Implementation

The model above can easily be implemented in any formalism supporting LTS or automata. A number of such
formalisms and tools exist for, e.g. designing hardware or as input languages for model checking tools. A well
suited formalism used in previous work [Bas07] is CSP [Hoa85]. Most of these tools, however, are centered
on the development of single components (processes), which then are explicitly synchronized. The events for
synchronization have to be chosen carefully and kept consistent while implementing the single components. A
more direct way for modelling in our setting is to concentrate on the actions and implement the transitions given
in Formula (3) and (3) directly.

The formalism most suitable for the approach in this paper is the rewriting system Maude, which allows
us to model the transitions for the actions in � directly. The flexibility of Maude also allows us to adjust the
syntax to simplify modelling. Maude [CDE+03] is a language based on equational and rewriting logic. It can be
used to model systems in an algebraic style (via equations) as well as in a state-based fashion (via rewrite rules).
Maude also supports an object-oriented programming paradigm and model-checking capabilities. We only show
the subset of the language that is necessary for our modeling purposes; for further information, see the Maude
manual [CDE+07].

Maude code is organized in modules, which may import and/or extend other modules. Contained inside a
module are sort definitions, operators that are used to construct terms, equations specifying term equivalences
and rewrite rules describing state changes.

An example that shows the syntax of Maude is given in Fig. 1. Module CHOC MACHINE is defined by including
module INTERFACE (keyword inc), defining sort MState (keyword sort) and several operators (keyword op for single
and ops for multiple definitions), which are all constructors (keyword ctor), which means that their occurrence
creates an instance of sort MState or Attribute, respectively. The Attribute constructors take one argument each,
so each attribute will contain a value of the specified sort; the MState constructors do not take an argument. The
sorts not explicitly defined in this and subsequent examples (Cid, Attribute,. . .) are pre-defined by Maude and
directly or indirectly inherited in the modules we define.

The start of the CHOC-MACHINE module, shown in Fig. 1, defines the attributes necessary to give the state of
the chocolate machine. The constructors Euro:, 50cent: and Choc: represent data attributes and hold the amount
of money and items (chocolate) in store. All these data attributes are constructed from a value of type Nat,
a natural number. In addition to the data attributes, we use a state machine to store the state of interaction
the machine is in. This state machine has the control statesReady,CoinAccepted,ChocSelected,Delayed,ChangeGiven

Model-checking user behaviour using interacting components 575

Fig. 2. Rewrite rule for receiving a coin through the interface. Unused attributes are subsumed in the attribute lists A and A’ and left unchanged
by the rule

andStopping, which are given as constructors for the sort MState. The constructor State: produces an attribute to
hold the machine state.

The rewriting part of Maude uses rewrite rules to rewrite a term to a different term of the same sort. An
example of a rewrite rule is given in Fig. 2. We see two objects representing the interface and the machine on
the left hand side of the rewrite rule and the corresponding objects as result of a rewrite, where Interface and
Machine are the classes of the objects, and int and machine are the unique object identifiers (Oids). We do not need
to reason about the actual names; in fact, the occurrence of the same identifier in the left- and right hand side
ensure that both sides refer to the same object. The set of attributes that are not of concern for the rewrite rule
(like the number of chocolate bars still present in the machine) are contained in variables A and A’ and are not
changed by the rewrite rule. The objects are changed synchronously, if there is a coin in the interface (InCoin =
true), the control state of the machine is changed from Ready to CoinAccepted and the number of Euro coins is
increased by one (Euro attribute).

We implement interacting component models in terms of rewrite rules. All rewrite rules for a peer Pk are
grouped in one Maude module. Each rewrite rule relates to an action σ and changes the state of Pk and option-
ally the state of the interface. A state is defined in terms of attributes. An attribute can represent a control state
as well as data values. Although not relevant for computation, this distinction allows for better understanding of
the meaning of a model and simplifies the modelling process.

It is easy to see that each of the modules implements the transition relation ρ̄k ⊆ (si × spk
) × σ × (s ′

i × s ′
pk

),
with si � s ′

i for actions that do not involve the interface. A rewrite rule is performed atomically, and states not
changed by the rewrite rule remain unchanged. Therefore

ρM � {((si , sp0 , . . . , spj
, . . . , spn−i

), σ, (s ′
i , sp0 , . . . , s

′
pj
, . . . , spn−i

)) | ((si , spj
), σ, (s ′

i , s
′
pj

)) ∈ ρ̄Pj
}

This modular structure allows for exchanging single components by local changes to a single module. There-
fore, we can easily check the effects of changing the user behaviour by adjusting the rules for the user and its
interaction with the interface which are in the same module. The description of other peers (the machine) can be
left unchanged.

3. Modelling human–computer interaction

In this paper we have two goals that we intend to achieve. First, we intend to explore the capability of interacting
components model to model human–computer interaction. The focus is on user models. We try to incorporate
within a single user model all aspects of user behaviour that in Basuki’s work [Bas07] were actually formalised
by distinct user models. The second goal is to use model-checking to verify a machine interface design. Here the
focus is on the interaction between human and machine.

This section is divided into two parts. The first part of this section describes some general properties of user
behaviour that we want to model. The second part of this section describes how we model these properties using
the interacting components model. In Sect. 4 we use the chocolate machine case study as an example of how we
implement our approach. In Sect. 5, we discuss how we use model-checking to analyse our model.

3.1. User behaviour

When we try to model a user interacting with a machine, it is necessary to make assumptions on the way the user
behaves. In this paper we try to model a rational user. When interacting with a machine, a rational user aims

576 T. A. Basuki et al.

to achieve a goal. The user will try to perform actions in order to achieve the goal. This means that we exclude
random user behaviour from our model.

In this section we give some definitions that characterise specific aspects of the user behaviour.

goal-based A goal-based user aims to achieve a goal through an interaction with the system. The user is likely to
leave the interaction after achieving the goal.

communication goals They are the pieces of information that the user has to communicate to the machine in order
to achieve the intended goal.

reactive behaviour The user decides which action to take in accordance to a set of stimulus-response
pairs. The user selects a response that is associated with the perceived stimulus depending on the current
state of the interaction.

user habituation After interacting with the same machine for several times, a user may become habituated with the
machine behaviour. The user knows a pattern of machine behaviour, as a response to a sequence of user actions.
A habituated user may wish to make use of such knowledge about the machine behaviour to achieve the goal
faster. Since the user knows the order of actions to perform and the response the machine will give, actions
can be performed without waiting for the stimuli given by the machine, hoping the machine will respond faster
so that the goal can be achieved earlier. If this is allowed by a specific machine, it may lead the user to wrong
conclusions, thinking that every machine behaves in that way.

impatience During the interaction with a machine, a user has a tolerance time. Obviously different users may
have different tolerance times. The user is aware of the need to wait for the machine to finish processing and
is prepared to wait provided that the processing time is not longer than the tolerance time. If the processing
time is longer than the tolerance time, the user may suspect that something is wrong with the machine and
may either redo a previous action or leave the interaction.

carefulness We model users who are careful with their possessions. They do not want to lose any of their posses-
sions without achieving any goal. In an interaction with a machine, careful users are only willing to give one
of their possessions to the machine in order to exchange it with another thing that they wish to get from the
machine. In this case the value of the thing they get from the machine is considered equal to the value/price
they have to give away, so that the value of their possessions remains unchanged. Carefulness affects users’
decision when they have to redo an action. Careful users will only consider to redo actions when they believe
that something has gone wrong with the machine. In this case they suspect that one of their previous actions
has failed. Careful users will only redo actions that still preserve the value of their possessions.

3.2. Modelling user behaviour

This subsection explains how we model user behaviour using the interacting components model. We define the
computer and the human user as components with attributes. The attributes and rewrite rules are used to model
all characteristics of user behaviour as listed in Sect. 3.1.

goal-based We define an attribute in the user model to indicate whether the user has achieved the goal. We use
rewrite rules to define how the user leaves the interaction after achieving the goal. In all other rewrite rules for
the user, we include the condition that the user’s goal has not been achieved as preconditions.

communication goals In our approach we model user’s mental state as one of the user’s attributes. The user’s
mental state indicates which communication goals have been communicated to the machine.

reactive behaviour To model reactive behaviour, we must define stimuli as attributes in the interface and define
rewrite rules that define how the user react upon the stimuli.

user habituation We model habituation by using rewrite rules describing user actions based on the user’s mental
state. These rewrite rules ignore stimuli from the interface, and take user’s mental state as preconditions. In this
way we can model a user that is habituated with a kind of interaction pattern and does not react on machine’s
stimuli.

Model-checking user behaviour using interacting components 577

impatience To model user impatience, we must first model user’s tolerance time. Since we work with discrete
formalism and tool, we face a problem to model the tolerance time, which is continuous. Therefore, instead
of modeling exact time, we define an attribute in the interface, that represents the user observation of device
delay. Time delay is now modeled by a rewrite rule that is non-deterministically taken by the machine and
sets the device-delay attribute. Finally we define rewrite rules that have the device-delay attribute as precondi-
tions, representing user reactions to the device-delay. With these rules we can model both impatient users, who
will leave interaction or redo an action upon device delay, and patient users, who will wait until the machine
continues with the next action.

carefulness In our approach we model a careful user who only wants to redo actions which do not involve giving
some of its possessions to the machine. We model this phenomenon by defining rewrite rules for redoing an
action when the user believes that its previous action has failed (which is indicated by device-delay).

4. Chocolate machine case study

To demonstrate the applicability of our approach, we model the interaction between a user and a vending machine
selling chocolate. Although this is a simple case study, it allows us to show many typical kinds of human–com-
puter interactions and errors in interface design. To keep the model understandable, while still being realistic, we
introduce some simplifications that reduce the state space, but preserve the main behaviour. Therefore, the user
is required to select the item to buy although the machine only provides one kind of item (chocolate bar), and
the machine always gives the same amount as change.

In this section, we introduce the model of the chocolate machine interface, a basic model of the vending
machine itself, and a model of the user who wishes to buy a chocolate bar. In Sect. 5, we will demonstrate how
to check for correctness of the system, and how to improve the machine in terms of usability.

4.1. The interface model

Figure 3 shows a graphical representation of the user interface of our vending machine. The interface module
in Fig. 4 follows the physical interface. It models the six visible items on the machine: two lights (CoinLight for
coin insertion and ChocLight for chocolate selection), one button (ChocButton), and three slots (InCoin, OutCoin and
OutChoc slots). The lights can be turned on by the machine to instruct the user to perform actions. The InCoin slot
is the place where the user can insert (and the machine can remove) a 1 e coin. The OutCoin slot is the place for
the user to take the 50 cent coin, after the machine has placed it there. Similarly, the OutChoc slot is the place from
where the user can take the chocolate bar.

In addition to the physical features, the Maude model of the interface also encompasses other, more intangible
features of the machine. The MchDelay attribute does not represent any object that is visible on the interface, but
rather models the user observation of a device delay which is needed by the machine to process information
received from the user. If its value is true, it represents the case that the user can observe a device delay, otherwise
its value is false.

4.2. The chocolate machine model

We give an initial model of a simple machine that only allows the user to perform actions in a strict order. The
machine will first accept the coin from the user. Then it will accept the chocolate selection. The user cannot per-
form actions in a different order. The machine uses the coin light and chocolate light of the interface to indicate
which action can be accepted. If the user performs an action before the machine is ready to accept it, this action
will be ignored by the machine. We have the following control states:

Ready the machine is ready to accept coins
CoinAccepted the machine has accepted one coin and is ready to process chocolate selection
ChocSelected the machine has processed chocolate selection
ChangeGiven the machine has given a coin as change
Stopping the machine has stopped working because it has no more chocolate bars or it has no more 50 cent coins.

578 T. A. Basuki et al.

Fig. 3. The chocolate machine

Fig. 4. Maude model of the interface

The automaton for the control states of the machine is given in Fig. 5. Changes of data attributes are annotated
on the transitions in curly brackets. The machine initially is in the Ready state and is prepared to accept one coin.
After a coin is inserted, the machine switches to CoinAccepted where it can delay some time before accepting the
selection of a chocolate bar which triggers a transition to ChocSelected. When the change is given, the machine
is in state ChangeGiven and either proceeds to Ready, or to Stopping if there is no more stock of chocolate bars or
change coins.

Data attributes Euro, 50cent and Choc hold as a value the number of 1e coins and 50 cent coins and chocolate
bars respectively. The Maude code defining these attributes is shown in Fig. 1. The actions to change the control
state depend on the current state- and data-attributes as well as on the state of the interface:

acceptcoin There must be a 1 e coin in the InCoin slot as a precondition. The effect of this action is to move the
e coin from the InCoin slot into the machine (Fig. 2).

acceptcoin-not-ready A coin was inserted while the machine was not expecting it. The coin is accumulated to the
possessions of the machine, but no other action is triggered (the machine “swallows” the coin).

delaying After accepting the coin, the machine is ready to accept the chocolate selection. The machine needs some
time to process the information communicated by the user (chocolate selection) and this causes a device-delay.
We model this device-delay by setting the MchDelay attribute of the interface model to true.

selection-accepted This action releases the chocolate button that has been pressed by the user.

Model-checking user behaviour using interacting components 579

Fig. 5. Machine model (* represents the action acceptcoin-not-ready{Euro++})

givechange The machine gives the change and decreases the number of 50 cent coins by 1. A 50 cent coin is
released to the OutCoin slot.

givechoc The machine is designed to give chocolate after giving the change coin. By doing this, the number of choc-
olate bars in the machine is decreased by 1 and a chocolate bar is released to the chocolate slot. The machine
state changes to state Ready only if the machine still has chocolate bars and 50 cent coins in it. Otherwise it
changes to the Stopping state.

The givechoc action is implemented as three rewrite rules. One rule is taken when the machine still has enough
chocolate and 50 cent coin after giving chocolate. This rule changes the machine state to Ready. The other two
rules are taken if there is no more chocolate or there are no more 50 cent coins in the machine after giving
chocolate. In these cases the machine changes to the Stopping state.

Figure 2 shows an example of a Maude rule that represents the accepting coin action. In the left hand side of
the rule we show the precondition in which this rule is applicable: there is a coin in the InCoin slot, the CoinLight

is on, the ChocLight is off, and the machine is in the Ready state. On the right hand side we show the effect of the
application of this rule: changing the machine state into CoinAccepted, increasing the number of e coins, turning
off the CoinLight and turning on the ChocLight. The ChocButton is turned off to indicate that user actions other
than inserting coin are ignored.

The rewrite rule defining the delaying action does not change the machine state, so the delaying action could
also be defined in the accepting coin rule as a side effect. However we have chosen to define it separately for
emphasis and for debugging purposes (the name of the rewrite rule is shown in the trace of Maude execution).

rl [delaying] :
< int : Interface | CoinLight: false, ChocLight: true, MchDelay: false, A >
< machine : Machine | State: CoinAccepted, A’ >

=>
< int : Interface | CoinLight: false, ChocLight: true, MchDelay: true, A >
< machine : Machine | State: CoinAccepted, A’ >.

580 T. A. Basuki et al.

rl [selection-accepted] :
< int : Interface | ChocLight: true, InCoin: false, ChocButton: true, MchDelay: C, A >
< machine : Machine | State: CoinAccepted, A’ >

=>
< int : Interface | ChocLight: false, InCoin: false, ChocButton: false,

MchDelay: false, A >
< machine : Machine | State: ChocSelected, A’ >.

We model non-determinism by allowing the machine not to take the delaying action. The rewrite rule for
selection-accepted does not have a device-delay as a precondition (the expression “C” in “MchDelay: C” is a boolean
variable). After accepting the coin, the machine may take the delaying action before selection-accepted, or may
take selection-accepted directly. This non-determinism corresponds to the fact that time tolerance for each user
may be different. Some users may notice this device-delay and some may not.

4.3. The user model

The model of the user maintains 4 data attributes: the number of 1 e and 50 cent coins is recorded in the UEuro

and U50cent attributes. UChoc represents the number of chocolate bars the user has, and WantChoc indicates that the
user wants more chocolate. The Maude representation of a user who wants a chocolate, has 5 Euros but has no
chocolate bars looks like this:

< user : User | UState: Idle, UEuro: 5, U50cent: 0, UChoc: 0,
WantChoc: true >

The goal of the user interacting with a chocolate machine is to get a chocolate bar. The user knows that a
1 e coin has to be inserted and the chocolate has to be selected to achieve the goal. In general, the user does
not know the order of actions to perform when interacting with the machine. We model this behaviour using the
control states as follows:

Idle The user is not interacting with the machine
Interacting The user has just started the interacion and has not done any action
CoinInserted The user has inserted the 1 e coin but has not pressed the chocolate button
ChocPressed The user has pressed the button to select chocolate but has not inserted a coin
BothDone The user has inserted one coin and selected chocolate
BothDone2 The user has redone the chocolate selection
ChocTaken The user has taken the chocolate bar from the machine
ChangeTaken The user has taken the 50 cent change coin from the machine

We model a user, who tries to achieve the goal by performing the obvious actions to insert the money and
press the button, but can also choose to react to a machine output when the signal light indicates a required
action. In detail, the user can perform the following actions:

approaching the machine The user who wishes to have chocolate and has money approaches the machine. After
performing this action the user’s control state is changed to Interacting.

inserting coin The user must have money to perform this action. The number of user’s e coin is decreased by 1.
If the user has not pressed the chocolate button, this action changes the control state to CoinInserted. If the
user pressed the chocolate button before inserting the money, the user’s mental state changes to BothDone.

pressing chocolate button The user may perform this action either before or after inserting a 1 e coin. The state
is changed to ChocPressed or BothDone, depending on whether the 1 e coin was already inserted.

getting chocolate bar The user can take the chocolate bar any time after the machine has dispensed it to the
chocolate slot.

getting 50 cent coin The user can take the 50 cent coin any time the machine has released it to the change coin
slot.

redoing an action The only action a user will redo is pressing the chocolate button, since this action will not reduce
user’s possessions (1 e coin, 50 cent coin and chocolate bar). The user can redo chocolate selection only after
observing device-delay and seeing the chocolate light still blinking.

Model-checking user behaviour using interacting components 581

leaving the interaction There are two reasons why the user may leave the interaction: goal achievement or
impatience in waiting

wanting chocolate The user may want chocolate again after getting a chocolate bar and may approach the machine
a second time.

In this case study there are two communication goals: inserting a coin and selecting the chocolate. These
actions are the first two actions the user performs after approaching the machine. We model two kinds of user
behaviours that trigger these actions: goal-based user and reactive user. Each user behaviour is modelled as a
set of rules. The rules for goal-based behaviour consider the current state of the user as precondition for each
action the user can take. On the other hand, the rules for reactive behaviour consider stimuli from the interface
as precondition for each action the user can take. Combining both behaviours in one user model results in a
complex user model. We show here the Maude code to model inserting coin action in our combined user model:

crl [insertcoin] :
< int : Interface | InCoin: false, OutChoc: false, OutCoin: false, A >
< user : User | UEuro: N, UState: Interacting, WantChoc: true, A’ >

=>
< int : Interface | InCoin: true, OutChoc: false, OutCoin: false, A >
< user : User | UEuro: sd(N, 1), UState: CoinInserted, WantChoc: true, A’ >

if N > 0.

crl [insertcoin-after-presschoc] :
< int : Interface | InCoin: false, OutChoc: false, OutCoin: false, A >
< user : User | UEuro: N, UState: ChocPressed, WantChoc: true, A’ >

=> < int : Interface | InCoin: true, OutChoc: false, OutCoin: false, A >
< user : User | UEuro: sd(N, 1), UState: BothDone, WantChoc: true, A’ >

if N > 0.

crl [reactive-insertcoin] :
< int : Interface | CoinLight: true, InCoin: false, OutChoc: false,

OutCoin: false, A >
< user : User | UEuro: N, UState: S, WantChoc: true, A’ >

=>
< int : Interface | CoinLight: true, InCoin: true, OutChoc: false,

OutCoin: false, A >
< user : User | UEuro: sd(N, 1), UState: CoinInserted, WantChoc: true, A’ >

if S =/= ChocPressed /\ S =/= CoinInserted /\ S =/= Idle /\ S =/= BothDone /\ N > 0.

The insertcoin and insertcoin-after-presschoc rewrite rules describe inserting a coin as a goal-based action,
that can only be done when the user has not inserted any coins yet (InCoin: false). The OutCoin slot and OutChoc
slot are included in the precondition to prevent the user from inserting another coin after a chocolate bar has
been released by the machine. The reactive-insertcoin rewrite rule describes inserting coin as an action that will
be taken by the user after the coin light is blinking. The additional conditions (checking the user state) is needed
as a result of combining both behaviours. Note how object attributes irrelevant to the action are subsumed in the
placeholders A and A’.

The redoing action is defined as a rewrite rule. This action can only be taken after the user has completed
both communication goals and, during a device-delay can still see the chocolate light blinking.

rl [reactive-presschoc-after-BothDone] :
< int : Interface | ChocLight: true, ChocButton: C, MchDelay: true, A >
< user : User | UState: BothDone, WantChoc: true, A’ >

=>
< int : Interface | ChocLight: true, ChocButton: true, MchDelay: true, A >
< user : User | UState: BothDone2, WantChoc: true, A’ >.

This rewrite rule changes the user state from BothDone to BothDone2. In this way the user can only redo an
action once. Since we do not model real time, we must bound the redoing action, otherwise this action can be

582 T. A. Basuki et al.

taken infinitely often and the machine cannot continue. If we model real time, we can define the duration of
device-delay and we do not need to bound the number of redoing actions taken by the user.

The leaving action is implemented as three rewrite rules. Each rule is used to model a different reason for the
user to leave the interaction. Under normal circumstances, a user would leave the interaction after achieving the
intended goal. This is indicated by the value of attribute UState (UState: ChocTaken). Alternatively, a user may
leave the interaction due to impatience during a device-delay. This is implemented by two more rewrite rules. As
stated in Sect. 4.1, we assume that the user has a tolerance time while waiting for the result of the last action.
However, in order to model this tolerance time explicitly we would need a tool that supports real-time modelling.
In this paper we choose not to take that approach. We have used non-determinism to model user impatience. If
a device delay occurs (indicated by the MchDelay: true) the user may perform one of these actions:

• leave the interaction,
• redo the chocolate selection action,
• do not perform any action and wait until the machine shows any result.

We assume that if a user chooses to leave the interaction upon device-delay, it means the delay is longer than the
user’s tolerance time. The following Maude code shows how we implemented the leaving action.

rl [leaving-after-goal-achieved] :
< user : User | UState: ChocTaken, A >

=>
< user : User | UState: Idle, A >.

rl [leaving-on-delay] :
< user : User | UState: BothDone, A >
< int : Interface | MchDelay: true, Wait: false, A’ >

=>
< user : User | UState: Idle, A >
< int : Interface | MchDelay: true, Wait: false, A’ >.

rl [leaving-on-delay-after-retry] :
< user : User | UState: BothDone2, A >
< int : Interface | MchDelay: true, Wait: false, A’ >

=>
< user : User | UState: Idle, A >
< int : Interface | MchDelay: true, Wait: false, A’ >.

To put together machine, interface and user in an interaction, we define a configuration of these three ob-
jects and initialise their attributes. We then define properties that we are interested to check on the interaction
and use the Maude LTL model-checker to check them. Figure 6 shows the Maude module that defines this
interaction. HCI-TEST-PREDS-1 is the module that contains the definition of all the LTL predicates used for
model- checking.

5. Checking errors

This section gives details on the result we got from model-checking errors occurring in the interaction between
a user and a machine. Since Maude supports LTL model-checking, we define LTL properties and use Maude to
verify them. The first property we are interested to verify specifies that the interaction is completed successfully.
The interaction is successful when the user can achieve his goal during the interaction.

Property 1 (Success): Every time a user starts an interaction, the intended goal will eventually be achieved.
This property is defined in LTL as follows.

�(Approaching → ♦GoalAchieved)

Predicate Approaching indicates that the user has approached the chocolate machine. Implicitly it means that
the user has a goal (wants chocolate) and has enough money. Predicate GoalAchieved indicates that the user has
achieved the intended goal. We use the WantChoc attribute to check this predicate. We assume that before getting
the chocolate the user will always want chocolate (WantChoc = true) and only after getting the chocolate the user
does not want chocolate anymore.

Model-checking user behaviour using interacting components 583

Fig. 6. Maude model of the interaction

The following Maude code specifies this predicate.

eq < user : User | WantChoc: false, A > C |= GoalAchieved = true .
eq C |= GoalAchieved = false [owise].

Property 1 only states that every approaching user will eventually achieve the intended goal, but does not say
when the user achieves it. The user may approach the machine, leave temporarily and then return to be involved
in a new interaction and finally achieve the intended goal. The next property is a stronger version of Property 1.

Property 2 (Success Before Leave): Every time a user starts an interaction and the machine works properly,
the user will always achieve the intended goal before leaving the interaction. This property is defined in LTL as
follows.

�((Approaching ∧ Enabled) → (∼ UserLeft U GoalAchieved))

Predicate Enabled states that the machine can work properly. Predicate Enabled is true when the machine still
has chocolate and 50 cent coins. There are cases in which the user approaches the machine but the machine is
not ready (for instance there is no chocolate left in the machine). In theses cases it is impossible for the user to
achieve the intended goal. To exclude these cases from Property 2, we add predicate Enabled in the formula above.
Predicate UserLeft indicates that the user has left the interaction.

When we model-check this property, we get a counter-example that shows that the property is not satisfied
by our model. It means that some errors may occur in the interaction. By analysing the counter-example, we can
find out that the error is caused by the strict behaviour of the machine. When the order of actions that a user
performs is different from the order of actions allowed by the machine, an order error occurs. To capture our
observation of this error more explicitly, we define the following property.

Property 3 (Order Error): If the user performs the chocolate selection as the first action, then only a redo (of
the chocolate selection) allows the user to continue the interaction. This property is formally defined as follows.

�((∼ ChgGiven ∧ (Ready U ChocPressed) ∧ Ready) → (∼ ChgGiven U (Redo ∨ UserLeft)))

In this property, ChgGiven is used to show that the machine accepts any order of actions, since the 50 cent coin
is only released after the machine accepts all communication goals. Predicate Ready indicates that the machine
is ready to accept user’s first action, and ChocPressed is used to indicate that the user has pressed the chocolate
button. Predicate Redo indicates that the user has redone chocolate selection action.

The model-checking analysis shows that this property is satisfied. Another property that is related with order
error is flexibility of accepting user actions.

Property 4 (Flexibility): If the machine works properly, then all communication goals given by the user will
eventually be accepted. This is defined by the following LTL formula.

�((Enabled ∧ BothDone) → ♦ChgGiven)

584 T. A. Basuki et al.

Predicate BothDone states that the user believes all communication goals have been performed. Again we use
ChgGiven to show machine’s acceptance of user’s communication goals.

This property not only shows freedom of order error, but also freedom of another kind of error. The user
can perform both actions (inserting coin and selecting chocolate) before the machine is ready, which will violate
property 4. This user behaviour may possibly be caused by user habituation. In our user model, the behaviour of
a habituated user can be seen as a subset of a goal-based user. The goal-based user knows that in order to achieve
the goal, two actions have to be performed. If the user is already habituated to a machine behaviour, these two
actions can be performed without waiting any signal from the machine that indicates that the machine is ready.
Model-checking this property on this model also gives a counter-example, meaning that both errors may occur.

Besides order error, there are two more errors that Basuki has successfully modelled in his previous work
[Bas07], post-completion error and device-delay error. Post-Completion error occurs after the user achieves the
goal, but forgets to complete a subtask. In our case study (i.e. after getting the chocolate bar), the user may
forget taking 50 cent coin after achieving the goal. We define a property to check whether a machine is free of
post-completion error.

Property 5: A user who achieves the intended goal will not leave the interaction before taking the change coin.
We call this property Post-Completion Error Free property. It is formally defined as follows.

�((Enabled ∧ Approaching ∧ (∼ UserLeft U GoalAchieved)) → (∼ UserLeft U ChgTaken))

Predicate ChgTaken indicates that the 50 cent coin has been taken by the user.
We now define a property to check whether device-delay may inhibit the user to achieve the intended goal.
Property 6: A user who starts an interaction and later experiences a device-delay, will eventually achieve the

intended goal before leaving the interaction. We call this property Device-Delay Error Free property. It is formally
defined as follows.

�((Enabled ∧ Approaching ∧ (∼ UserLeft U Delayed)) → (∼ UserLeft U GoalAchieved))

Predicate Delayed indicates a device-delay is occurring in the machine. We model this by making use of the MchDelay

attribute of the interface.
The model-checking analysis shows that Property 5 and 6 are not satisfied in this model. The counter-example

for property 5 shows that although the machine releases the change coin before releasing the chocolate bar, the
user may still take the chocolate bar and leave the interaction. In the case of property 6, the counter-example
shows that upon device-delay, the user may leave the interaction immediately.

5.1. Chocolate machine with flexible ordering

We try to modify the machine design step by step. At each step we attempt to remove one kind of error. The
first error we try to avoid is the order-error (detected when Property 3 is true). We design a new machine which
allows flexible order of actions. In the initial state both lights blink to indicate that both actions (inserting coin
and selecting chocolate) are enabled. After doing one action, the user must wait until the action is accepted and
the machine is ready to accept another action. If the user performs the action before the machine becomes ready,
the machine will ignore the action. In this case the user may either redo this action or leave the interaction.

To implement the flexibility in the order of actions, we add one more control state to the machine. Control
state BothAccepted expresses that the machine has accepted both communication goals. This control state can be
reached from CoinAccepted by accepting chocolate selection, or from ChocSelected by accepting coin insertion.
This new control state differs from BothDone control state. The difference lies on whose point of view the control
states represent. Control state BothDone represents user’s belief of having given both communication goals, while
control state BothAccepted represents machine’s acceptance of these two communication goals.

The model-checking analysis shows that Property 3 is not satisfied by the model, indicating that the order-error
no longer occurs using the modified machine. However, Property 4 is not satisfied indicating that every action
performed by the user before the machine is ready will be ignored. The other properties are also not satisfied
indicating that post-completion error and device-delay error still occur in the interaction.

5.2. Fully flexible chocolate machine model

This new design aims to provide full flexibility in user actions. In this machine, the user can perform all commu-
nication goals without waiting for the machine to be ready. The machine still processes the coin insertion before

Model-checking user behaviour using interacting components 585

the chocolate selection but it does not ignore the chocolate selection action. By designing this machine we expect
to avoid order error and enable habituated users to perform their actions correctly.

To implement the full flexibility, we only need to slightly modify the model by omitting the ChocButton attribute
from the accepting-coin rewrite rule.

rl [acceptcoin] :
< int : Interface | InCoin: true, CoinLight: true, ChocLight: false,

A >
< machine : Machine | Euro: N, State: Ready, A’ >

=>
< int : Interface | InCoin: false, CoinLight: false, ChocLight: true,

A >
< machine : Machine | Euro: N + 1, State: CoinAccepted, A’ >.

The model-checking analysis shows that an interaction between a user and this machine satisfies Flexibility
property. However other kinds of error still occur in this model, as shown by the failure of model-checking
Properties 1, 2, 5 and 6.

5.3. Avoiding post-completion error

The simplest way to avoid post-completion error is by forcing the user to take the 50 cent coin before taking the
chocolate bar. We design a machine that has a mechanism to check whether the user has taken the 50 cent coin,
and only gives the chocolate bar when the check succeeds. With this mechanism, we can force the user to take
the 50 cent coin before taking the chocolate bar.

This mechanism is modelled by checking the OutCoin attribute of the interface. The rewrite rule for giving
chocolate action has OutCoin: false as one of its preconditions.

crl [givechoc] :
< int : Interface | OutChoc: C, InCoin: false, OutCoin: false,

CoinLight: C’, A >
< machine : Machine | Choc: N, 50cent: M, State: ChangeGiven, A’ >

=>
< int : Interface | OutChoc: true, InCoin: false, OutCoin: false,

CoinLight: true, A >
< machine : Machine | Choc: sd(N, 1), 50cent: M, State: Ready, A’ >
if N > 1 /\ M > 0.

The model-checking analysis shows that an interaction between a user and this machine satisfies the Flexi-
bility and the Post-Completion Error Free properties. However Properties 1,2 and 6 are still not satisfied by this
machine.

5.4. Avoiding device-delay error

To avoid device-delay error we must design a machine that prevents the user from leaving the interaction when
device-delay occurs. We assume that the user leaves the interaction without achieving the intended goal believing
that there is something wrong with the machine. We design a final machine that has a wait light that blinks to
inform the user to wait for a moment when a device-delay occurs. We assume that when the wait light blinks, the
machine needs some time to process information, and will eventually gives the change coin. Therefore, the user
has to wait until the change coin is given. To model this, we must modify the interface. We add a new attribute
Wait, that represents a waiting light that warns the user to wait. We remove the delaying rule and change it into a
new rewrite rule that warns the user to wait.

rl [informing-delay] :
< int : Interface | CoinLight: false, ChocLight: true, MchDelay: false, Wait: C’, A >

=>
< int : Interface | CoinLight: false, ChocLight: true, MchDelay: true, Wait: true, A >.

586 T. A. Basuki et al.

We also modify our user model, especially for the redo and leaving action. In the new model, these actions
are taken only when the user observes device-delay and the waiting light is off.

rl [reactive-presschoc-after-BothDone] :
< int : Interface | ChocLight: true, ChocButton: C, MchDelay: true, Wait: false, A >
< user : User | UState: BothDone, WantChoc: true, A’ >

=>
< int : Interface | ChocLight: true, ChocButton: true, MchDelay: true,

Wait: false, A >
< user : User | UState: BothDone2, WantChoc: true, A’ >.

rl [leaving-on-delay] :
< user : User | UState: BothDone, A >
< int : Interface | MchDelay: true, Wait: false, A’ >

=>
< user : User | UState: Idle, A >
< int : Interface | MchDelay: true, Wait: false, A’ >.

rl [leaving-on-delay-after-retry] :
< user : User | UState: BothDone2, A >
< int : Interface | MchDelay: true, Wait: false, A’ >

=>
< user : User | UState: Idle, A >
< int : Interface | MchDelay: true, Wait: false, A’ >.

Interaction in the new model satisfies Flexibility, Post-Completion Error Free, Device-Delay Error Free, Success
and Success Before Leave property.

6. Conclusion and future work

In his previous work [Bas07], Basuki used a process algebra based approach to model human–computer inter-
action. The chocolate machine case study from Curzon and Blandford [CB00b, CB00a, CB01] is used to reason
about human-errors and to show how to avoid these errors by modifying the machine interface.

In this article, we have extended Basuki’s work and overcome some of its limitations. We describe a framework
to model human–computer interaction based on the interacting components model. Using this framework we
can incorporate distinct user behavioural attitudes, within the same user model. This could not be achieved by
Basuki’s previous work, in which distinct user behavioural attitudes could not coexist within a single user model.

In Basuki’s previous approach the design starts with a basic user model which is defined as a process, and is
then extended by adding a set of constraints defined as additional processes, in order to model a more complex
user. Each constraint process is composed in parallel with the basic user process through a set of synchronising
events. The resultant process is then composed in parallel with the machine model. In this approach the behaviour
of a complex user model is a subset of the behaviour of the basic user model. This implies that the basic model
needs to be designed in such a way to incorporate all user attitudes that may potentially lead to errors. However,
such attitudes are not all known while designing the basic model; some of them are actually identified only after
interpreting the results of the model-checking analysis performed on an initial version of the basic model. A first
problem with Basuki’s approach is that the basic user model has to be redesigned every time such a situation
occurs.

In the approach presented in this article, we can start by defining a simple user model that has only a few
simple actions. Gradually we add new rules that introduces new actions and define a more complex behaviour.
In fact, by introducing new actions in the user model, we enrich the behaviour rather than constraining it. In
this way we can include new user’s attitudes without any change to modules and rules already designed. The
interacting components model used in our approach also offers decoupling of the user and machine models. The
user and machine models are defined separately, and run asynchronously. The interface is the only medium of
communication between the user and the machine.

A second problem of Basuki’s previous approach is that distinct user behavioural attitudes could not coexist
within a single user model. This is due to the fact that Basuki uses a goal-based user as a general user model and

Model-checking user behaviour using interacting components 587

applies a constraint to it to define a reactive user. However, the addition of this constraint leads to the loss of the
goal-based part of the user behaviour. This could have probably been solved in Basuki’s approach by defining a
more general basic user model which could support a refinement where both the goal-based and reactive behav-
iours could cohexist. However, the complexity needed to define such a general user model would make it too
difficult to understand the model and, as a consequence, the approach. The coexistence of the two behaviours is
not a problem in our rewrite system approach, since rules added to model one behaviour enrich the behaviour
rather than reducing it.

We exploit the capability of our new approach by successfully analysing more properties than in Basuki’s
previous approach. The new framework also allows us to model a new kind of human error, which is caused
by user habituation. This kind of error needs independent modelling of user actions and machine actions and
could not be modelled in Basuki’s approach, where user and machine are tightly coupled. In fact, our use of the
interacting component model led to a more natural way to describe interactive systems than the approach used
in Basuki’s work. The use of an interface model that prevents direct communication between user and machine
better reflects the way this kind of communication happens in reality.

As future work, we would like to explore the capability of our approach by modelling different case studies.
We would also like to investigate the scalability of our approach by modelling a system that includes more than
two components.

Acknowledgments

The authors would like to thank Einar Broch Johnsen for helpful discussions and useful suggestions concern-
ing the Maude rewriting system. A. Griesmayer and R. Schlatte are supported by the EU-project CREDO
(IST-33826).

References

[Bas07] Basuki TA (2007) Model-checking interface design to reduce user errors. In: Curzon P, Cerone A (eds) The pre-proceedings
of the 2nd international workshop on formal methods for interactive systems (FMIS 2007), number RR-07-08 in Technical
Report, pp 1–16. Queen Mary, University of London, September 2007. ISSN 1470-5559

[BBD00] Butterworth R, Blandford A, Duke DJ (2000) Demonstrating the cognitive plausability of interactive systems. Formal Aspects
Comput 12:237–259

[BMPC98] Butler RW, Miller SP, Potts JN, Carreno VA (1998) A formal methods approach to the analysis of mode confusion. In: Proc.
of the 17th Digital avionics systems conference. Washington, Oct 31–Nov 6, 1998

[CB00a] Curzon P, Blandford A (2000) Reasoning about order errors in interaction. In: Aagaard M, Harrison J, Schubert T (eds)
The Supplementary Proceedings of the 13th international conference on theorem proving in higher order logics, pp 33–48,
Portland U.S., August 2000. Oregon Graduate Institute, Oregon

[CB00b] Curzon P, Blandford A (2000) Using a verification system to reason about post-completion errors. In: Palanque PA, Paterno
F (eds) Participants Proc. of DSV-IS 2000: 7th Int. workshop on design, specification and verification of interactive systems,
at the 22nd Int. Conf. on Software Engineering, pp 292–308

[CB01] Curzon P, Blandford A (2001) Detecting multiple classes of user errors. In: Little MR, Nigay L (eds) Proceedings of the 8th
IFIP international conference on engineering for human–computer interaction, pp 57–72

[CDE+03] Clavel M, Durán F, Eker S, Lincoln P, Martı́-Oliet N, Meseguer J, Talcott C (2003) The maude 2.0 system. In: Nieuwenhuis
R (ed) Rewriting techniques and applications (RTA 2003). Lecture notes in computer science, vol 2706. Springer, Berlin,
pp 76–87, June 2003

[CDE+07] Clavel M, Durán F, Eker S, Lincoln P, Martı́-Oliet N, Meseguer J, Talcott C (2007) Maude Manual (Version 2.3), July 2007
[CE06] Cerone A, Elbegbayan N (2006) Model-checking driven design of interactive systems. In: Cerone A, Curzon P (eds) Proceedings

of the first international workshop on formal methods for interactive systems, pp 1–18
[CGP99] Clarke EM, Grumberg O, Peled DA (1999) Model checking. MIT Press, Cambridge
[Chi85] Chi UH (1985) Using model-checking to help discover mode confusions and other automation surprises. IEEE Trans Softw

Eng SE-11(8):671–685
[CLS00] Claveland R, Li T, Sims S (2000) The Concurrency Workbench of the New Century User’s Manual Version 1.2. SUNY at

Stony Brook, Stony Brook, New York, June 2000. http://www.cs.sunysb.edu/cwb
[DCH97] Dwyer MB, Carr V, Hines L (1997) Model checking graphical user interface using abstractions. In: Software engineering ù

ESEC/FSE’97. Lecture notes in computer science, vol 1301. Springer, Berlin, pp 244–261
[Dix91] Dix AJ (1991) Formal methods for interactive systems. Academic Press, New York
[DT04] Dwyer MB, Tkachuk O (2004) Analyzing interaction orderings with model checking. In: Proc. of ASE 2004, pp 154–163
[Hoa85] Hoare CAR (1985) Communicating sequential processes. International series in computer science. Prentice-Hall, Englewood

Cliffs
[Joh97] Johnson C (1997) Reasoning about human error and system failure for accident analysis. In: Howard S, Hammond J,

Lindgaard G (eds) Human–Computer Interaction INTERACT ’97. Chapman and Hall, London, pp 331–338

http://www.cs.sunysb.edu/cwb

588 T. A. Basuki et al.

[KP85] Kieras DE, Polson PG (1985) An approach to the formal analysis of user complexity. Int J Man–Mach Stud 22:365–394
[Lev97] Leveson NG et al (1997) Final report: a demonstration safety analysis of air traffic control software. NASA technical report,

1997. http://sunnyday.mit.edu/papers/dfw2.pdf
[LH03] Loer K, Harrison M (2003) Model-based formal analysis of temporal aspects in human–computer interaction. In: Proceedings

of the HCI2003 workshop on the temporal aspects of tasks
[LNR87] Laird J, Newell A, Rosembloom P (1987) SOAR: an architecture for general intelligence. Artif Intell 33(1):164
[PBP97] Palanque PA, Bastide R, Paterno F (1997) Formal specification as a tool for objective assessment of safety-critical interactive

systems. In: Howard S, Hammond J, Lindgaard G (eds) Human–computer interaction INTERACT ’97. Chapman and Hall,
London, pp 323–330

[Pnu77] Pnueli A (1977) The temporal logic of programs. In: IEEE symposium on foundations of computer science. Providence, RI,
pp 46–57

[PS01] Paterno F, Santoro C (2001) Integrating model checking and HCI tools to help designers verify user interface properties. In:
7th international workshop, DSV-IS 2000 Limerick, Ireland. Lecture notes in computer science, vol 1946. Springer, Berlin,
pp 135–150

[Rus02] Rushby J (2002) Using model-checking to help discover mode confusions and other automation surprises. Reliab Eng Syst
Saf 75(2):167–177

[YGS89] Young RM, Green TRG, Simon T (1989) Programmable users models for predictive evaluation of interface design. In: ACM
CHI 89 Human Factors in Computing Systems Conference. ACM Press, New York, pp 15–19

Received 16 May 2008
Accepted in revised form 30 October 2008 by P. Curzon and D.A. Duce
Published online 8 January 2009

http://sunnyday.mit.edu/papers/dfw2.pdf

	1 Introduction
	2 Interacting components model
	2.1 Implementation

	3 Modelling human--computer interaction
	3.1 User behaviour
	3.2 Modelling user behaviour

	4 Chocolate machine case study
	4.1 The interface model
	4.2 The chocolate machine model
	4.3 The user model

	5 Checking errors
	5.1 Chocolate machine with flexible ordering
	5.2 Fully flexible chocolate machine model
	5.3 Avoiding post-completion error
	5.4 Avoiding device-delay error

	6 Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

