
DOI 10.1007/s00165-009-0107-x
BCS © 2009
Formal Aspects of Computing (2010) 22: 83–104

Formal Aspects
of Computing

Algebra and logic for access control
Matthew Collinson and David Pym
Hewlett-Packard Laboratories, Long Down Avenue, Stoke Gifford, Bristol BS34 8QZ, UK.
E-mail: matthew.collinson@hp.com; david.pym@hp.com

Abstract. The access control problem in computer security is fundamentally concerned with the ability of
system entities to see, make use of, or alter various system resources. We provide a mathematical framework
for modelling and reasoning about (distributed) systems with access control. This is based on a calculus of re-
sources and processes together with a Hennessy–Milner-style modal logic, based on the connectives of bunched
logic, for which an appropriate correspondence theorem obtains. As a consequence we get a consistent account
of both operational behaviour and logical reasoning for systems with access control features. In particular, we
are able to introduce a process combinator that describes, as a form of concurrent composition, the action of
one agent in the role of another, and provide a logical characterization of this operator via a modality ‘says’. We
give a range of examples, including analyses of co-signing, roles, and chains of trust, which illustrates the utility
of our mathematical framework.

Keywords: Access control, Role, Systems modelling, Process calculus, Resource, Logic

1. Introduction

Access control is one of the fundamental issues in information security.
In computer systems of almost all levels of scale, certain behaviours will be desirable and certain others

undesirable. A great many of these behaviours involve the ability of entities (users, programs, processes) in the
system to access some other entity (resource, program, process). The denial of undesirable, and the permission
of desirable behaviours is thus reduced to the access control problem.

Access control is, of course, one of the main issues in computer security, with work in the area extending back
over many years (for example by Lampson [Lam71] and by Saltzer and Schroeder [SS75]) and gaining ever greater
prominence until the present day. One strand of work in this area concerns the development of logical languages,
sometimes called security languages, for reasoning about and making access control decisions, as exemplified in
work by Abadi et al. [Aba03, ABL93, LAB92] and DeTreville [DeT02].

Important challenges for logical security languages are the representation of co-signing, of roles and of
chains-of-trust. The security language in [ABL93] introduces novel connectives for co-sigining and roles and
this is sufficient to allow formal inferences to be made, in particular for chains-of-trust. However, the mathemat-
ical semantics of such languages, where they exist, are often not transparently related to operational behaviour.
Furthermore, there is a hint in [ABL93] that such connectives correspond to concurrent behaviour—as indeed
they must.

The lack of a suitable semantics means that, given an existing system in which we care about access control,
it is difficult to see how most existing security languages can be used to capture access control behaviour in a

Correspondence and offprint requests to: M. Collinson and D. Pym, E-mail: matthew.collinson@hp.com; david.pym@hp.com

84 M. Collinson, D. Pym

provably sound way. Of course, by design, access-control systems can be implemented which closely conform with
policies and protocols embodied in security languages.

In this paper, we show that process calculus can be used to give a semantics for a security language, thus
giving a meaningful account of (suitably defined) connectives for security languages, including both co-signing
and roles. Chain-of-trust arguments arise naturally from the underlying semantics.

Our ultimate concern is to produce models of real systems in which security is critical [BCG08, BGS08,
BBC08]. Thus the models we are concerned with will often be descriptive, in the sense that they describe the
behaviour of existing or imagined systems. We therefore need to be able to model systems with both secure and
insecure behaviours. This is in contrast to much formal work in security, where authors are often concerned
primarily with normative models, in which only desired, secure behaviour is allowed. We retain the ability to place
normative constraints upon system behaviour (in models) through the use of the logical security language.

The modelling framework we propose is based on resources, processes, and modal bunched logic developed by
Pym, Tofts, and Collinson [PT06, PT07, CPT07, CP09]. The present paper presents an application of that earlier
work to give an account of security languages and security-related problems. The basic idea is that resources R
and processes, in the sense of (synchronous) process algebra, E co-evolve,

R,E a→ R′,E ′,

according to the specification of a partial function, µ : (a,R) �→ R′, that determines how an action a evolves E
to E ′ and R to R′. The base case of the operational semantics is given by action prefix:

R, a : E a→ R′,E
(µ(a,R) � R′).

The theory of this calculus of resources and processes (SCRP) has been explored in detail in [PT06, PT07,
CPT07, CP09], but a brief review of the process definitions is included.

In the security literature, the entities which act within systems are often referred to as principals. A key step
for us is the representation of principals as processes. A similar approach has been taken by a number of authors,
particularly regarding security protocols, see for example [AG97, SMR06, Sch96].

The SCRP calculus comes with a Hennessy–Milner (modal) logic [HM85] called MBI for the specification
and verification of properties of systems (resource-process states). MBI is simultaneously a resource logic in
the sense of bunched logic, BI [OP99, Pym99, POY04, Pym02], and its cousin Separation Logic [IO01, OHe07,
Rey02].

A key aspect of SCRP and MBI is the relationship between concurrent composition and multiplicative (‘sep-
arating’) conjunction. This exploits an underlying resource semantics, based on that of BI, in which resources
carry monoidal structure:

R,E |� φ1 ∗ φ2 iff R1,E1 |� φ1 and R2,E2 |� φ2

for some R1,R2 and E1,E2 such that R � R1 ◦ R2 and R,E ≈ R,E1 × E2.
In our setting, the multiplicative conjunction can be used, for example, to describe a co-signing requirement

for resource access. The principals who must co-sign are E1 and E2. The resources R1 and R2 represent, respec-
tively, E1 and E2’s separate access rights, together with the shared resource to be accessed. The composite resource
R1 ◦ R2 represents the appropriate combination of access rights and shared resource. Each φi can be used as
(a proxy for) some certificate that each Ei holds (in order, say, to sign). A more detailed illustration of this is
found in Example 6.3 in Sect. 6.

In order to describe the roles of principals of the form ‘E in the role of F ’, we introduce an additional binary
process constructor, ∝, into SCRP. Thus, a resource-process state

R,E ∝ F .

represents a principal E in the role F , together with resources R. Note that the role F is itself represented by a
process and that it is intended to have fewer abilities than E . Along with this construct comes a logical modality,
given by the following forcing definition:

R,G |� {E }φ iff ∃F s.t. R,G ≈ R,E ∝ F and F � E and R,F |� φ.

Here � (respectively ≈) is the notion of simulation (respectively bisimulation). Thus a logical assertion {E }φ,
read ‘E says φ’, is used to describe properties that may hold of some role of a process, rather than the process
itself: for example, often the reduced ‘user’ role of some ‘administrator’ process has additional safety properties.
Example 6.6 in Sect. 6 is of this kind.

Algebra and logic for access control 85

The intention of this work follows the tradition of using process calculus as a modelling tool. This paper is
intended to serve as a foundation for the modelling of certain existing security situations. In practice, this will take
place in the Demos2k tool [Bir79, Dem] and a variant thereof (LD2k , [CMP08a, CMP08c]), which is particularly
tailored towards event-modelling and performance analysis in distributed systems, and which is closely related
to the calculus we have presented here.

There are a number of dedicated calculi for the formal analysis and specification of access control systems. In
contrast, the calculus we present here is designed for modelling systems that may include access control features;
specifically, a notion of role. Perhaps the most successful such calculus of recent years has been RBAC [CFS96],
and the analysis of this has been refined over the years; see, for example, [KYM06].

There has been a recent upsurge of interest in access control calculi for situations in which access decisions
may change over time; for example, as permissions are granted or revoked [BN07, GRS04]. The semantics of such
calculi often features notions of state that capture just the information required for access decisions (for example,
current permissions). Model-checking techniques can be used to reason about intended response to requests; for
example, as in [GRS04].

There have been some interesting recent developments in access control and security policy design. Specif-
ically, a degree of attention is being given to ‘separation of duty’ in security policy, in which it is mandated
that some task must be undertaken by two (or more) separate entities. This is not new [SS75], but there have
recently been attempts to construct logical calculi for such policies. In [LW08], such a calculus is presented that
contains a connective ⊗ for expressing policies with separation of duty. This connective is given a semantics that
makes it essentially identical to the ‘separating conjunction’ ∗ of Separation Logic [IO01, Rey02]. This in turn
is a particular instance of the multiplicative conjunction ∗ of BI [OP99, Pym99, POY04, Pym02] and so a close
relative of the connective ∗ used in the present work. Indeed, it is noted in Example 6.3 below that separation
concerns can easily be represented in the logic MBIa that accompanies the process calculus SCRP. It seems
that the collection of connectives employed in [LW08] is more closely related to BI than to Linear Logic.

Section 2 contains a brief review of SCRP. Section 3 describes how this is modified to deal with compound
principals that include roles. Section 5 gives the associated modal resource logic and some basic results. Section 6
gives a range of examples:

• First, a basic example in which access is performed by a resource guard on behalf of a general agent;
• Second, a similar example, in which a guard authorizes an agent to access a resource;
• Third, a joint-access request, in which two agents must both request access, and in so doing must combine

their permission resources;
• Fourth, exclusive access, a variant of joint access, in which two agents may mutually exclusively access a

resource;
• Fifth, authorization by delegation, in which a guard must consult a second authority within which resides the

access control list, so establishing a chain of trust;
• Sixth, reduction to role, in which we have an agent together with a role for that agent which has reduced access

rights;
• Last, modelling access with assertion-based control, in which access control decisions are based on a logical

language rather than just ACLs (cf. Binder [Aba03]), giving another example of a chain of trust, formed by
the trust agents have in others’ public statements.

Section 7 describes changes that must be made to the set-up when additional logical power is required in the
specification language. Finally, Sect. 8 contains a discussion of open problems and further directions that we are
pursuing.

2. Resources and processes

Many access control systems live in an environment in which significant events occur simultaneously. Moreover,
events of the access system itself may occur concurrently and there may be complex interactions between all parts
of the system and the environment. A modelling framework that describes such systems and their environment
must be able to capture concurrency in a natural way.

Process calculus, like Milner’s CCS [Mil80, Mil89], or the more general synchronous calculus SCCS [Mil83],
is an elegant methodology for dealing with such situations. It provides a precise framework for the construction

86 M. Collinson, D. Pym

of models. In particular, it has the important property of compositionality: the description of a large system is
constructed from those of component subsystems.

SCRP is a form of synchronous process calculus. In contrast to standard process calculi, it has an explicit
treatment of resource. SCRP was introduced in the papers [PT06, PT07, CPT07, CP09]. The calculus presented
in this paper is a closely related variant of those calculi.

In this paper, we often use partial functions, writing exp ↓ and exp ↑ to mean that an expression exp is,
respectively, defined or undefined. We also make use of Kleene equality between expressions: the left-hand side
of an equality, lexp
 rexp, is defined if and only if the right-hand side is defined, and when defined they are
equal.

Mild constraints are placed upon the type of resource treated. A resource monoid, modelling the composition
and comparison of resource elements [OP99, Pym02, POY04], is a structure

R � (R, ◦, e,�) .

We do not use a separate notation to distinguish the carrier set R from the structure. We reserve the letters
R,S ,T ,U ,V for resources. The structure has a preorder �, a partial, binary composition ◦, and has a dis-
tinguished element e. The operation ◦ satisfies monoid associativity and commutativity axioms up to Kleene
equality. The unit of ◦ is e. Composition with this unit is always defined. Therefore, the structure satisfies the
unit axiom for a commutative monoid up to actual equality. Resource monoids are further required to satisfy the
bifunctoriality condition:

if R � R′ and S � S ′ and R′ ◦ S ′ ↓ then R ◦ S ↓ and R ◦ S � R′ ◦ S ′

for all R,R′, S ,S ′ in R. For the purposes of this paper, the preorder � is always taken to be the equality relation.
We assume a commutative monoid, Act, of actions. Just as in standard process algebra, these actions cor-

respond to the events of a system. We reserve the letters a, b, c, . . . for actions. Composition is written by jux-
taposition and the unit action is written 1. For the purposes of this paper we assume that the action monoid is
generated freely from atoms, for which we reserve the letter α.

Assume a (partial) function, called a modification, µ : Act × R −→ R, satisfying two coherence conditions:

1. µ(1,R) � R for all R ∈ R;
2. if µ(a,R), µ(b,S) and R ◦ S are all defined then the Kleene equality µ(ab,R ◦ S)
 µ(a,R) ◦µ(b,S) holds.

We define a total operation called hiding, that takes any resource R and any action a and produces an action
νR.a. Any action a may be written uniquely (up to re-ordering) as a product a � ∐{αi | i ∈ I } for some finite
set I . Then we may take

νR.a � ∐{αi | i ∈ I & µ(αi ,R) ↑}. (1)

Recall that the product of an empty set of actions gives the identity action.
There are five basic forms of process in SCRP: prefix, sum, product, hiding, constant. The letters A,B ,C ,D,

E ,F ,G,H are reserved for processes. A state consists of a resource and a process. Operational behaviour is given
by transitions (binary relations) labelled by actions on the set of states. We detail the forms of process and their
operational behaviour within states below. The definition constitutes a structural operational semantics [Plo04].

A prefix process is of the form a : E where E is any process and a is any action. The operational rule for
this is

R, a : E a→ µ(a,R),E
(µ(a,R) ↓)

where R is any resource. When µ(a,R) is defined we say that a is enabled at R.
A sum is of the form

∑
i∈I Ei , where I is an arbitrary index set and each Ei is a process. We often use the infix

notation E + F when the cardinality of the index set is 2. The rule

R,Ei
a→ R′,E ′

i

R,
∑

i∈I Ei
a→ R′,E ′

i

gives the operational behaviour for sums. The zero process, 0, is the special case of a sum that arises when the
index set I is empty. A state with 0 as its process component makes no state transitions.

Algebra and logic for access control 87

A (synchronous) product is of the form E × F , where E and F are processes. The rule

R,E a→ R′,E ′ S ,F b→ S ′,F ′

R ◦ S ,E × F ab→ R′ ◦ S ′,E ′ × F ′
(R ◦ S ↓)

describes the evolution of states formed from product processes. The idea is that the two component processes
should bring together their resources in order to agree a simultaneous step forward.

A hiding (or just hide) is of the form νR.E where E is a process and R is a resource. The operational rule is

R ◦ S ,E a→ R′ ◦ S ′,E ′

R, νS .E νS .a→ R′, νS ′.E ′
(µ(νS .a,R) � R′).

The idea of hiding is that the process νS .E carries private, local resource S that is hidden from external processes,
and that it may use this resource to evolve into a new process νS ′.E ′. Furthermore, the action νS .a through
which this happens does not exhibit the atomic actions enabled by S .

A constant is defined through the use of a recursive definition. They are a way of introducing recursive process
terms into the calculus. An alternative is to use fixed points, as described in [PT06, PT07, CPT07, CP09]. A
recursive definition takes the form

X1 : � E1
...

...
Xn : � En

for some integer n, where each Xi is a process variable and each Ei may contain any of the X1, . . .Xn but no
other process variables. We usually write a tuple of processes as E and the i th component as Ei . Each of these
systems of simultaneous equations uniquely specifies a canonical (least) solution, that is, a sequence of processes
C satisfying the equations. Each Ci is a constant. We often write X :� E for the tuple of specifications, and C :� E
to associate particular constant names to the canonical solution. Suppose that each Ci is Ci . The operational
rule for such a constant Ci is

R,Ei [C/E]
a→ R′,G ′

R,Ci
a→ R′,G ′ ,

where E are the defining expressions for the sequence C. For example, the special process 1, that can only tick, is
defined by the equation X :� 1 : X . We usually abbreviate definition by constants by writing the names of the
constants rather than variables, so for example 1 :� 1 : 1.

3. An extended calculus for principals

In this section, we present a process calculus ACCRP which is tailored to describing systems formed from prin-
cipals. Thus the kinds of principals which arise in access control problems in computer security are to be described
as process terms in SCRP. Our approach has some common ground with work that uses process calculus for
the formal analysis of security protocols [AG97, RSG01, Sch96], but this will not be our main concern.

The tailoring of the calculus reflects the fact that there are certain compound principals which occur time-
and-again in the security literature. In particular, there are conjunctions of principals, which may perform some
access just if both principals do so together—we use the synchronous product (in a particular way) for such
processes, as in Example 6.3 below. There are also principals which are formed by adopting roles with fewer
capabilities. We introduce a dedicated new connective ∝ for roles. Further discussions of compound principals
may be found in the papers by Abadi et al. [Aba03, ABL93, LAB92] which have strongly influenced the present
work.

To form the calculus ACCRP the grammar of SCRP is extended with the role constructor, so that

E ::� · · · | E ∝ E .

88 M. Collinson, D. Pym

The operational rule for the constructor introducing a principal ‘E in the role of F ’, where F is a principal
with reduced capacity (at a reduced resource), is

R,F a→ R′,F ′ R ◦ S ,E a→ R′ ◦ S ′,E ′

R ◦ S ,E ∝ F a→ R′ ◦ S ′,E ′ ∝ F ′ (F � E) (2)

where � is defined below. As is usual the operational semantics describes all possible traces of states that systems
may travel. Examples of traces of events in access control decisions are given in Sect. 6, the simplest being those
of Examples 6.1 and 6.2. An example of the use of the role constructor is given in Example 6.6.

We define notions of equivalence and inequivalence for states and processes. We define

R,E � S ,F (3)

if R � S and, whenever R,E a→ R′,E ′, there is some F ′ with R,F a→ R′,F ′ and R′,E ′ � R′,F ′. In such
circumstances, we say that S ,F simulates R,E .

We write R,E ≈ R,F iff R,E � R,F and R,F � R,E both hold, and say that R,E is (locally) bisimilar
to R,F . We write E � F or E ≈ F , when, respectively, R,E � R,F or R,E ≈ R,F for all resources R.

We note that � is defined by mutual recursion with processes since the role constructor uses � as a side-
condition. This is somewhat unusual for a process calculus. In order to make this work, we do not allow process
variables to occur inside role constructors (note also that they are not required conceptually). That is, we restrict
the form of the recursive equations used to define constants.

We introduce a syntactic complexity measure, h(E), of the height of the tower of ∝ connectives used to define
each process E :

h(X) � 0
h(a : E) � h(E)

h(E × F) � max{h(E), h(F)}
h(E ∝ F) � max{h(E), h(F)} + 1

h(
∑

i∈I

Ei) � max({h(Ei) | i ∈ I } ∪ {0})

h(Ci) � max{h(E1), . . . , h(En)}
where, in the final clause above, E1, . . . ,En are the components of E defining the constants C1, . . . ,Cn in C :� E.
Notice that the processes in the side-conditions of the role rule have lower complexity than the role that is the
source of the transition.

Transitions do not increase process height: the proof is the evident induction on derivations.

Lemma 3.1 If R,E a→ R′,E ′, then h(E ′) ≤ h(E).

Therefore the definition of simulation can be re-stated in a stratified way. Thus, to show R,E � R,F we need only
compare transitions into processes in the same or lower strata. Hence the mutual recursion between transitions
and simulation is well-defined.

4. Algebraic and dynamical properties

A number of simple properties of ACCRP-systems hold. As these systems are defined through the use of
structural operational semantics, a critical proof technique is the use of induction on the structure of derivations
of state-transitions. The first property to observe is that the evolution of resource is completely determined by
the choice of action.

Lemma 4.1 If R,E a→ R′,E ′ then R′ � µ(a,R).

Proof Induction on the structure of derivations. The base case is where E is a prefix process; then, for any
R,R′,E ′ as in the statement of the lemma, we have R′ � µ(a,R). The induction hypothesis is that all shorter
derivations satisfy the statement of the theorem. Take, for example, the role definition in rule (2) above. The
induction hypothesis gives R′ ◦ S ′ � µ(a,R ◦ S) using the right-hand premise, but this is precisely the required
property for the conclusion. We omit the other cases, as they are equally straightforward, but note that the product

Algebra and logic for access control 89

case relies upon the second coherence condition on modifications, and that the hiding case uses the side-condition
on the hiding rule. �

The local bisimulation relation is a congruence.

Proposition 4.1 The relation ≈ on processes is a congruence for the process constructors. It is an equivalence relation,
and, in particular, for all E ,F ,G:

1. if E ≈ F then E ∝ G ≈ F ∝ G , and
2. if E ≈ F then G ∝ E ≈ G ∝ F .

Proof The proof of all parts of this follow from the definition of ≈ and by applying the standard methods for
proving that bisimulation is a congruence, see [Mil83] for example. For example, consider the final point in this
lemma. Suppose that E ≈ F and that we have a transition of G ∝ E . This must come from some derivation
ending with a role rule

(E � G)
R,E a→ R′,E ′ R ◦ S ,G a→ R′ ◦ S ′,G ′

R ◦ S ,G ∝ E a→ R′ ◦ S ′,G ′ ∝ E ′ ,

but then we may replace this final rule with

(F � G)
R,F a→ R′,F ′ R ◦ S ,G a→ R′ ◦ S ′,G ′

R ◦ S ,G ∝ F a→ R′ ◦ S ′,G ′ ∝ F ′

with R′,E ′ ≈ R′,F ′, since F ≈ E � G . Thus the set of pairs {〈(R,G ∝ E), (R,G ∝ F)〉 | R,E ≈ R,F } is
closed under transitions of the left-hand component. Similarly, it is closed under transitions of the right-hand
component. �

Interestingly, the second congruence statement above does not hold for (unidirectional) simulation because
of the asymmetry of the role rule. Processes satisfy a number of other equalities and inequalities, including the
following:

Proposition 4.2 The constructor ∝ has the following properties with respect to bisimulation:

1. E ∝ F � E ;
2. E ∝ E ≈ E ;
3. If G � E then G � E ∝ G;
4. If E � F then E ∝ G � F ∝ G;
5. (E1 ∝ F1) × (E2 ∝ F2) � (E1 × E2) ∝ (F1 × F2);
6. (E1 ∝ F1) × (E2 ∝ F2) ≈ (E1 × E2) ∝ (F1 × F2) provided F1 × F2 � E1 × E2 implies F1 � E1 and F2 � E2;
7. E ∝ (F ∝ G) � (E ∝ F) ∝ G provided F � E and G � E ∝ F ;
8. (E ∝ F) ∝ G � E ∝ (F ∝ G) provided G � F .

Proof Again, the proofs of these points are direct uses of the definition of simulation, and we omit most of
them. For example, consider the fifth point. Suppose that we have some transition T , (E1 ∝ F1) × (E2 ∝ F2)

a1a2→
T ′, (E ′

1 ∝ F ′
1)× (E ′

2 ∝ F ′
2). This must come from some derivation ending with a product rule, with premisses each

ending with a role rule. Thus the resources are of the form T � (R1 ◦S1) ◦ (R2 ◦S2) and T ′ � (R′
1 ◦S ′

1) ◦ (R′
2 ◦S ′

2)
and we have some Si ,Fi

ai→ S ′
i ,F

′
i and Ri ◦ Si ,Ei

ai→ R′
i ◦ S ′

i ,E
′
i and Si ,Fi

ai→ S ′
i ,F

′
i for i � 1, 2. We then

have the products T ,E1 × E2
a1a2→ T ′,E ′

1 × E ′
2 and S1 ◦ S2,F1 × F2

a1a2→ S ′
1 ◦ S ′

2,F
′
1 × F ′

2. Hence we have
T , (E1 × E2) ∝ (F1 × F2)

a1a2→ T ′, (E ′
1 × E ′

2) ∝ (F ′
1 × F ′

2), as required. �
The above results tells us that we have a system that formally reconstructs the following natural properties of

roles: any agent acting in one of its roles is no more powerful (has fewer or equal capabilities) than the original
agent; an agent E in the role E is as powerful as the agent E ; if E is no more powerful than F then every role of E
is no more powerful than the corresponding role of F ; a synchronous product of agents acting in roles is no more
powerful than the product of the agents in the role of the product of their roles (and under certain circumstances
this extends to equality); an agent E in the role of ‘F in the role G ’ is equally powerful as the agent ‘E in the role
F ’ in the role G , provided that no roles of greater power are used. The presence of such properties is extremely
important for the logic of the next section.

90 M. Collinson, D. Pym

5. Logic

In Hennessy–Milner logic [HM85, Sti01] a forcing relation is used to relate CCS processes to assertions of their
properties, with the judgement E |� φ being read as ‘process E has property φ’. The language of propositions
typically contains the classical propositional connectives, ∧, ∨, and ¬ , together with the classical action modal-
ities 〈a〉 and [a]. In our setting, the corresponding judgement, R,E |� φ, says that property φ holds of process E
in the presence of resources R; that is, of the system model R,E .

In our synchronous setting, we are able to provide an analysis of various structural aspects of processes. In
particular, we obtain essentially the following logical characterization of the synchronous product: R,E |� φ1∗φ2
iff R1,E1 |� φ1 and R2,E2 |� φ2 for some R1, R2 and E1, E2 such that R � R1 ◦ R2 and R,E ≈ R,E1 × E2.
This characterization stands in contrast to the situation for CCS [Sti01], in which E | F |� φ iff E |� φ/F where
the definition of φ/F involves ‘distributing the process though the formula’. We also obtain a characterization
of hiding in terms of the multiplicative existential quantifier (see below), which exploits also the presence of
resources in the forcing judgement. Both of these structural characterizations are exploited in the access-control
examples presented in Sect. 6.

In general, the logic MBI, introduced in [PT06, PT07, CPT07], admits a range of connectives and quantifiers,
including multiplicative modalities. For the present paper, however, we introduce a logic MBIa for reasoning
about properties of ACCRP systems from which we omit, for technical reasons, the multiplicative implication,
−−∗, and the multiplicative modalities. This logic is able to express some interesting aspects of access control
properties.

Assume a countable set, ActVar of action variables, ranged over by x , and a constant symbol a for each action
a of ACCRP. Let A � ActVar ∪ Act and let a range over this set. We assume a given set of relation symbols on
actions, each with a given arity. Atomic formulae ϕ consist of all instances of relations, that is, if p is a relation
symbol of arity n and a1, . . . , an ∈ A, then p(a1, . . . , an) is an atomic formula.

The formulae of the language MBIa are defined by the grammar

φ :� ⊥ | � | ϕ | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ | I | φ ∗ φ | 〈a〉φ | [a]φ | {E }φ | ∃x .φ | ∃ν x .φ | ∀ x .φ | ∀ν x .φ ,

for a∈A and processes E . The connectives �,¬,∨,∧ and → are the connectives true, negation, disjunction, con-
junction and implication of classical logic. The connectives 〈a〉φ and [a]φ are classical modal connectives, intended
to express properties that hold after, respectively, some or any, instance of a from a state. The connectives I and
∗ are known as the unit and multiplicative conjunction, often pronounced star. The connective ∃ is classical exis-
tential quantification. The connective ∃ν is the multiplicative existential quantifier. The modality {E }φ is read E
says φ, and is intended to express the fact that a process may indirectly witness a fact through the use of a role of
E . The sentences are just the formulae without free variables. For any formula φ, let φ[a1/xn , . . . , an/xn] be the
formula formed by replacing each occurrence of each variable xi by the term ai . More generally, one may want
to allow function symbols on actions, compound action terms, equalities between such terms and further logical
operators.

A valuation V for the language above is fixed by choosing an (n + 1)-ary relation V(p) (between n actions and
one state) for each relation symbol p of arity n. Each set V(p) must be closed under the relation ≈. An assignment,
η, is a function from ActVar to Act. For any η, let η[a/x] be the assignment that is identical to η, except that
η(x) � a. A valuation is extended to an interpretation of formulae by means of a forcing relation �, as in Fig. 1.

All of the clauses, except for {E }, in Fig. 1 have been previously studied in the context of SCRP. In particular,
notice how ∗ specifies that a state is (up to bisimilarity) a synchronous product with suitably sub-divided resource,
and how ∃ν specifies a hiding. In Example 6.3 below ∗ is used to characterize joint-access requests. In Example 6.5
∃ν is used to characterize an agent which may grant access to others, but does so by first consulting a private
resource. In Example 6.7 ∃ν is used to characterze an agent which uses private beliefs to grant access in a system
where there are public statements by agents about which accesses should be granted. The ‘says’ modality {E }φ
specifies a state that is a role (up to bisimilarity) and that the role it takes satisfies φ. Thus in Fig. 1 the role F of
E witnesses φ for G (even when E itself does not). Example 6.6 demonstrates the use of the role constructor and
‘says’.

The Hennessy–Milner-style result given below holds. This shows that algebraically equivalent processes satisfy
the same logical specifications.

Algebra and logic for access control 91

Fig. 1. Interpretation of Logical Formulae

Theorem 5.1 If R,E ≈ R,F and R,E , η � φ then R,F , η � φ.

Proof The proof is by induction on the structure of φ. The base of the induction is assumed because the inter-
pretation of atomic formulae is assumed to be closed under ≈. Most of the other steps are contained in the
proof of the analogous result in [PT06, PT07]. Now consider the step for {E }φ. Suppose that R,E ≈ R,F and
R,E , η � {G}φ. Then there is some H with R,E ≈ R,G ∝ H and R,H , η � φ. Since ≈ is transitive, we also
have R,F ≈ R,G ∝ H , and so R,F , η � {G}φ. �

The converse to the above theorem holds, so that logically equivalent states are algebraically equivalent. The
proof for the analogous result in [PT06, PT07, CPT07] suffices.

Theorem 5.2 R,E ≈ R,F whenever R,E , η � φ iff R,F , η � φ for all φ.

A number of important reasoning principles are justified in this context. The first of these reveals part of the
intended meaning, that if some process has a property then any process that uses it as a role also has a version of
that property, but guarded by a use of the ‘says’ modality.

Proposition 5.1
1. If R,G, η � φ and G � F then R,F ∝ G, η � {F }φ.
2. If R,G, η � {E }φ and E ≈ F then R,G, η � {F }φ holds.
3. R,E , η � φ iff R,E ∝ E , η � φ.
4. If R,E , η � φ then R,E , η � {E }φ.
5. If R,G, η � ({E1}φ1) ∗ ({E2}φ2) then R,G, η � {E1 × E2}(φ1 ∗ φ2).

Proof

1. If R,G, η � φ and G � F , then by definition of the interpretation R,F ∝ G, η � {F }φ, since R,F ∝ G ≈
R,F ∝ G .

2. If R,G, η � {E }φ then there is some H such that R,G ≈ R,E ∝ H and R,H , η � φ. If E ≈ F then
E ∝ H ≈ F ∝ H by Proposition 4.1. Therefore R,G, η � {F }φ.

3. By Proposition 4.2 we have E ≈ E ∝ E and so the third point holds by Theorem 5.1.
4. The fourth point follows from the third and the interpretation of ‘says’.
5. Suppose R,G, η � ({E1}φ1) ∗ ({E2}φ2). Then there are R1, R2, G1, G2 such that R � R1 ◦ R2, R,G ≈

R,G1 × G2, and Rj ,Gj , η � {Ej }φj for j � 1 and j � 2. Then there are F1 � E1 and F2 � E2 such

92 M. Collinson, D. Pym

that Rj ,Gj ≈ Rj ,Ej ∝ Fj and Rj ,Fj , η � φj holds. By Proposition 4.2 we have (E1 ∝ F1) × (E2 ∝
F2) ≈ (E1 × E2) ∝ (F1 × F2). By transitivity of ≈ we have R,G ≈ R, (E1 × E2) ∝ (F1 × F2). We also
have F1 × F2 � E1 × E2 as a scholium of Proposition 4.2. Furthermore R,F1 × F2, η � φ1 ∗ φ2. Therefore
R,G, η � {E1 × E2}(φ1 ∗ φ2). �
Many other semantic reasoning principles hold; see [CP09] for a discussion and a deductive system, in the

absence of roles and ‘says’.

6. Examples

The examples of this section are intended to illustrate some of the most common access control situations, how
they may be modelled in resource-based process algebra, and which logical specifications they satisfy. They are not
intended to give complete formal renderings of existing protocols, although we believe that this could certainly
be done for many protocols, as SCRP has at least the same expressive power as CSP [Hoa85, Sch96, RSG01].
Similarly, we do not claim that our logical language is the only logical language that can express each of the
properties below. Rather our goal is to describe, specify and reason about models of systems in which security
concerns are critical. Here we demonstrate that the foregoing calculus is a practical semantic foundation for such
work, with sufficient richness to capture structural properties of composite agents, for example co-signing and
roles, but also with well-specified operational behaviour.

In each of the following examples we specify a modification on atomic actions only. The fact that this extends
uniquely to a modification (on all actions) is a consequence of a mild generalization of a previous result (Prop-
osition 17 in [CP09]). The generalization allows one to work with resource monoids that are not required to be
total, and such that cancellation exists only as a partial function (∀R,S ,T . R ◦ S � R ◦ T �⇒ S � T).

Let 2 be the resource monoid {0, 1} with composition +, such that 0 + 0 � 0, 0 + 1 � 1, and 1 + 1 ↑. This
kind of resource is often used to represent a semaphore. We use these, and the positive integers, as channels to
communicate and moderate interaction between processes: the approach in modelling languages like Demos2k
is essentially the same.

Fig. 2. A guarded resource

Example 6.1 (Access by proxy).
Consider the situation in Fig. 2, with a principal A attempting to access a resource r via a guard C . Assume

that the way this works is that A makes a request to access r and then C either implements this or does not
depending on whether it believes A has the right to perform this act.

This can be modelled through the use of a synchronous product

A×C

where A and C are defined by the equations,

A � 1 : A + a : A C � 1 : C + c : C

and where a is the access request and c performs that access on behalf of A.
In order for this to make sense, we must define an appropriate resource monoid and modification function.

These should ensure that certain sequences of actions may occur and certain others may not. In this example,
and those that follow, this sequencing will be controlled through the use of semaphores which form part of the
resource.

For example, consider the situation in which r is intended to hold an integer and a makes a request to
increment r . We could take resources to be triples of the form

〈m,n,L〉,
where m is an integer, n ∈ 2 and L is a set of actions of C that are allowed access to r . The integer m represents
the contents of r . The integer n represents a resource component (like a semaphore or buffer) used to commu-
nicate the access request from A to C . The set L represents an access control list. Indeed, we adopt the informal
convention of calling such a set an ACL.

Algebra and logic for access control 93

A meaningful choice of resource monoid composition takes pointwise addition on the first two components
and non-overlapping disjoint union for the third component. That is,

〈m,n,L〉 ◦ 〈m ′,n ′,L′〉 �
{ 〈m + m ′,n + n ′,L ∪ L′〉 if L ∩ L′ � ∅

↑ otherwise

for all suitable m,m ′,n,n ′,L,L′. The unit of this monoid is 〈0, 0,∅〉.
Let the set of atomic actions contain just the actions a and c. We choose the modification so that

µ(a, 〈m,n,L〉) � 〈m, 1,L〉

µ(c, 〈m,n,L〉) �
{ 〈m + 1, 0,L〉 if n � 1, c ∈ L

↑ otherwise.

We find a sequence of access events of the form

〈0, 0, [c]〉,A × C a→ 〈0, 1, [c]〉,A × C
c→ 〈1, 0, [c]〉,A × C

for example. On the other hand, the increment of r only takes place after a request has been issued and the
corresponding action of C found in the list L. Thus we see that C increments r on behalf of A.

Note that the choices of resource, resource composition and modification function are tied to significant
aspects of operational behaviour, and that here we are just taking a simple example.

Many variations on this first simple example are easily expressed:

1. In the above example, an access c is not necessarily granted immediately after any request a, or indeed
before any other request a. This is a simple choice, and it is easy to modify this to give more sophisticated
interactions.

2. In the above example, accesses come in pairs 〈a, c〉 consisting of the request a and the requested action c. If
two different agents wish to perform the same access upon r , but they have different permissions, we must
have two distinct actions (a1 and a2, say, with corresponding c1 and c2) representing the two different access
requests. For some situations, an alternative would be to use an ACL containing the access requests ai , for
then the same c may result from both ai .

3. The resource and modification can be changed so that the action c may occur arbitrarily often after a single
instance of a. An additional agent (and action) which stops access may then be added, if desired.

4. The modification can be changed so that permission to access can only be exercised once: theµ can be chosen
to remove c from L following an action of c.

5. If L is a multiset, then µ can be chosen so that units of permission are consumed. Again, c removes an
instance of c from L. It may be natural then to have an additional agent that creates permissions (by adding
to the ACL).

6. A blacklisting approach is easily modelled by taking L to be a ‘blocked-list’: this is achieved by changing the
modification so that µ is defined at c when c �∈ L, instead of c ∈ L.

Example 6.2 (Direct access).
This example modifies the previous one so that A itself performs an action upon r after requesting and

receiving permission from C .
We consider a system with process component A×C again, but with

A � 1 : A + a : A′
A′ � 1 : A′ + i : A
C � 1 : C + c : C

where this time a is the access request sent to C , c is the response sent back to A and i is the incrementation
action on r .

Resources are taken to be of the form 〈m,n, p,L〉 where m ∈ N, n, p ∈ 2 and L is a list of actions. The
component p is used to represent the signal from C to A. Composition of resources is defined pointwise using
the resource monoids defined above.

94 M. Collinson, D. Pym

We choose the modification with:

µ(a, 〈m,n, p,L〉) � 〈m, 1, p,L〉

µ(c, 〈m,n, p,L〉) �
{ 〈m, 0, 1,L〉 if n � 1 and c ∈ L

↑ otherwise

µ(i , 〈m,n, p,L〉) �
{〈m + 1,n, 0,L〉 p � 1
↑ otherwise.

Then we find, for example, that with c ∈ L, the system 〈0, 0, 0,L〉,A × C makes transition sequences . . .
a→

. . .
c→ . . .

i→ . . . , where each access i must be preceded by some response c and that must be preceded by some
request a.

It is straightforward to extend the above to situations in which there are multiple agents A1, . . . ,An attempt-
ing to access multiple resources via multiple guards. We take a synchronous product of all the agents Ai and all
the guards. More interesting situations arise when there are assumptions about concurrent accesses.

Example 6.3 (Joint-access requests).
In this example, there are two principals (processes) A1 and A2 that can only access some basic resource r via

some guard process C after they have both made requests.
We take the process part of the system to be A1 × A2 × C with

A1 � 1 : A1 + a1 : A′
1 A′

1 � 1 : A′
1 + i : A1

A2 � 1 : A2 + a2 : A2 C � 1 : C + c : C

and resources of the form 〈m,n1,n2, p,L〉, where m is an integer, n1,n2, p ∈ 2 and L is an ACL represented by a
set of actions. Take composition of resource to be pointwise addition. Take each access request aj to increment
nj (undefined if nj � 1); c to increment p and set both nj � 0 just when n1 � n2 � 1 (otherwise undefined) and
c ∈ L; let the access i resulting from a1, a2 increment m and set p � 0, when p � 1 (otherwise undefined). More
precisely,

µ(a1, 〈m,n1,n2, p,L〉) � 〈m,n1 + 1,n2, p,L〉
µ(a2, 〈m,n1,n2, p,L〉) � 〈m,n1,n2 + 1, p,L〉

µ(c, 〈m,n1,n2, p,L〉) �
{ 〈m, 0, 0, 1,L〉 if n1 � n2 � 1 and c ∈ L

↑ otherwise

µ(i , 〈m,n1,n2, p,L〉) �
{ 〈m + 1,n1,n2, 0,L〉 if p � 1

↑ otherwise

for all m ∈ N and n1,n2, p ∈ 2.
Then we have transition sequences of the following forms:

· · · a1→ · · · a2→ · · · c→ · · · i→ · · ·

· · · a2→ · · · a1→ · · · c→ · · · i→ · · ·

· · · a1a2→ · · · c→ · · · i→ · · ·
amongst the possible system behaviours.

Let φj be the property that the resource-component at nj is 1. From the point of view of MBIa, we have that
the judgement relation

〈m, 1, 1, p,L〉,A1 × A2, η � φ1 ∗ φ2

Algebra and logic for access control 95

holds for any m, p, η, because 〈m, 1, 0, p,L〉,A1, η � φ1 and 〈0, 0, 1, 0,∅〉,A2, η � φ2 both hold and

〈m, 1, 0, p,L〉 ◦ 〈0, 0, 1, 0,∅〉 � 〈m, 1, 1, p,L〉.
Thus, this judgement expresses the fact that both access requests have been made. From this it may be inferred
that the response c may grant permission for the joint requests aj to perform the access action i . To summarize:
the ∗ connective describes co-signing situations in a particularly natural way.

There are important variants of the joint-access pattern.

1. This kind of example can be further refined so that the use of ∗ also requires that two signatories must hold
disjoint permissions. This is closely related to the notion of separation of duty [LW08] and to Separation Logic
[IO01, Rey02].

2. In the example above access can be granted after the two requests are made in any order, or simultaneously.
This can be modified so that access is only granted if the two agents make their request simultaneously.
Indeed, it is a particular version of a concurrent handshaking situation, as described in [PT06, PT07, CPT07].

3. The two authorizing agents must both give authorization in some chosen sequence. This can be captured in
SCRP by a specific use of resource-transfer as exposed in [PT06, PT07, CPT07].

4. These examples extend to situations requiring agreement between multiple parties.

Example 6.4 (Exclusive access).
We suppose that we are in a situation in which we have two agents A1 and A2 that both wish to access r via C ,

but that only one of the agents Ai must be able to access r at any time. This is a classic concurrent mutual-exclu-
sion situation and is modelled in SCRP through the use of a resource that can only be used by one process at a
time.

We take resources to be of the form

〈m,n1,n2, p1, p2, q,L〉,
where m is the integer-valued content of r , the ni , pi , q ∈ 2 and L is an ACL. We take the composition of resources
to be defined pointwise with the operations indicated above.

We choose atomic actions a1, a2, c1, c2, i and a modification as follows:

µ(a1, 〈m,n1,n2, p1, p2, q,L〉) � 〈m, 1,n2, p1, p2, q,L〉
µ(a2, 〈m,n1,n2, p1, p2, q,L〉) � 〈m,n1, 1, p1, p2, q,L〉

µ(c1, 〈m,n1,n2, p1, p2, q,L〉) �
{ 〈m, 0,n2, 1, p2, q,L〉 if n1 � 1 and c1 ∈ L

↑ otherwise

µ(c2, 〈m,n1,n2, p1, p2, q,L〉) �
{ 〈m,n1, 0, p1, 1, q,L〉 if n2 � 1 and c2 ∈ L

↑ otherwise

µ(i , 〈m,n1,n2, p1, p2, q,L〉) �
{ 〈m,n1,n2, p1, p2, q,L〉 if q � 1, and p1 � 1 or p2 � 1

↑ otherwise.

We define the processes

A1 � 1 : A1 + a1 : A′
1

A′
1 � 1 : A′

1 + i : A1
A2 � 1 : A2 + a2 : A′

2
A′

2 � 1 : A′
2 + i : A2

C � 1 : C + c1 : C + c2 : C

where a1, a2 are the respective requests by A1 and A2 to perform i .
We take L � {c1, c2} and consider any system

〈m,n1,n2, p1, p2, q,L〉,A1 × A2 × C .

96 M. Collinson, D. Pym

There are transition sequences of the three forms

· · · a1→ · · · c1→ · · · i→ · · ·
· · · a1→ · · · c1→ · · · i→ · · ·
· · · a1→ · · · a2→ · · · c1→ · · · c2→ . . .

i→ . . .
i→

amongst others, but not of the form

. . .
ii→ . . .

because q ∈ 2. That is, requests a1 and a2 can be made, possibly simultaneously, the responses c1 and c2 can come
back, possibly simultaneously, and incrementations i can be made, but not simultaneously.

Fig. 3. Guarded resource with delegation

Example 6.5 (Authorization by delegation).
Consider a situation in which the guard C must now consult some other principal B who owns an ACL, L,

that says that the requested access should be granted. This is a simple version of the situation described in Fig. 3.
Such a situation can be modelled using resources of the form 〈m,n, p, q, k ,L〉 where m is an integer, n, p, q, k

are copies of the semaphore 2, and L is a list of actions. Composition is defined pointwise from the operations on
components considered in the previous examples. Let L0 � {a} and consider the resource RL0 � 〈0, 0, 0, 0, 0,L0〉.

We use agents

A � 1 : A +a : A0
A0 � 1 : A0+ i : A
B � 1 : B +bb ′ : B
C � 1 : C + c : C +d : C

in a product

A × C × νRL0 .B

featuring a hiding. The modification is defined by:

µ(a, 〈m,n, p, q, k ,L〉) � 〈m, 1, p, q, k ,L〉

µ(b, 〈m,n, p, q, k ,L〉) �
{ 〈m,n, 0, 1, k ,L〉 if p � 1 and a �∈ L

↑ otherwise

µ(b ′, 〈m,n, p, q, k ,L〉) �
{ 〈m,n, p, q, k ,L〉 if a ∈ L

↑ otherwise

µ(c, 〈m,n, p, q, k ,L〉) �
{ 〈m,n, 1, q, k ,L〉 if n � 1

↑ otherwise

µ(d , 〈m,n, p, q, k ,L〉) �
{ 〈m,n, p, 0, 1,L〉 if q � 1

↑ otherwise

µ(i , 〈m,n, p, q, k ,L〉) �
{ 〈m + 1,n, p, q, 0,L〉 if k � 1

↑ otherwise.

Algebra and logic for access control 97

Thus: a is an access request made by A to B , using the channel n; c represents C asking B , using the channel p,
if the request should be granted; b ′ represents B consulting its private ACL, L0; b is the signal from B to C , using
the channel q , that the access should be granted; d is the signal from C to A, using the channel k , that the access
has been granted; i is the actual incrementation action that takes place, given that all the above have happened.

With the following resources,

R0 � 〈0, 0, 0, 0, 0,∅〉 R1 � 〈0, 1, 0, 0, 0,∅〉
R2 � 〈0, 0, 1, 0, 0,∅〉 R3 � 〈0, 0, 0, 1, 0,∅〉
R4 � 〈0, 0, 0, 0, 1,∅〉 R5 � 〈1, 0, 0, 0, 0,∅〉

we have, for example, the system evolutions

R0,A × C × νRL0 .B
a→ R1,A0 × C × νRL0 .B
c→ R2,A0 × C × νRL0 .B
b→ R3,A0 × C × νRL0 .B
d→ R4,A0 × C × νRL0 .B
i→ R5,A × C × νRL0 .B

making use of

R2 ◦ RL0 ,B
bb ′→ R3 ◦ RL0 ,B

R2, νRL0 .B
b→ R3, νRL0 .B

to give the b-transition.
Let φ be the assertion ‘the q component of the resource is 1’. The relation

R2, νRL0 .B , η � 〈b〉φ
specifies that the system R2, νRL0 .B can signal to C that the access should be granted. In more detail, this happens
because

R2, νRL0 .B , η � ∃ν x .〈bx 〉φ
which holds because the private ACL L0 can be consulted by B using the hidden action b ′.

It is a straightforward matter to extend the preceding example to longer chains of trust: each delegation is
specified in the logic by a suitable ∃ν satisfaction statement. Statements may then be chained together using the
definition of the satisfaction relation to show that appropriate access decisions can be taken.

Example 6.6 (Reduction to a role).
Consider a situation where some process C guards two basic resources r1 and r2, a process A and a role B .

The process A can make an access requests aj to increment the value mj stored at rj for both j � 1 and j � 2.
However, in the role B it can only make the access request a1.

Take resources of the form 〈m1,m2, p1, p2, q1, q2,L〉 where the mj ∈ N, the pj , qj ∈ 2 and L is a set of actions
(representing an ACL containing permitted responses of C). Let

R � 〈0, 0, 0, 0, 0, 0, {c1, c2}〉 S � 〈0, 0, 0, 0, 0, 0, {c1}〉 e � 〈0, 0, 0, 0, 0, 0,∅〉
be resources.

We consider the process terms:

A � νR.A′ + d : (A ∝ B)
B � νS .A′

A′ � 1 : A′ + a1 : A′′ + a2 : A′′

A′′ � 1 : A′ + i1 : A + i2 : A
C � 1 : C + c1 : C + c2 : C .

98 M. Collinson, D. Pym

We take µ as follows:

µ(a1, 〈m1,m2, p1, p2, q1, q2,L〉) � 〈m1,m2, 1, p2, q1, q2,L〉
µ(a2, 〈m1,m2, p1, p2, q1, q2,L〉) � 〈m1,m2, p1, 1, q1, q2,L〉

µ(c1, 〈m1,m2, p1, p2, q1, q2,L〉) �
{ 〈m1,m2, p1, p2, 1, q2,L〉 if p1 � 1 and c1 ∈ L

↑ otherwise

µ(c2, 〈m1,m2, p1, p2, q1, q2,L〉) �
{ 〈m1,m2, p1, p2, q1, 1,L〉 if p2 � 1 and c2 ∈ L

↑ otherwise

µ(d ,R) � R

µ(i1, 〈m1,m2, p1, p2, q1, q2,L〉) �
{ 〈m1 + 1,m2, p1, p2, 0, q2,L〉 if q1 � 1

↑ otherwise

µ(i2, 〈m1,m2, p1, p2, q1, q2,L〉) �
{ 〈m1,m2 + 1, p1, p2, q1, 0,L〉 if q2 � 1

↑ otherwise

The system e,A has transition sequences of the form

· · · a1→ · · · c1→ · · · i1→ · · ·
· · · a2→ · · · c2→ · · · i2→ · · ·
· · · d→ · · · a1→ · · · c1→ · · · i1→ · · ·

amongst others, but not of the form

· · · d→ · · · a2→ · · · c2→ · · · i2→ · · ·
because the permissions associated with B do not include those for the 〈a2, c2〉 request-response pair. Similarly,
the system e,A ∝ B has

· · · a1→ · · · c1→ · · · i1→ · · ·
as a possible behaviour, but not

· · · a2→ · · · c2→ · · · i2→ · · · .
We may express logically the fact that A ∝ B cannot perform all the accesses that A can, given resource e.

Given φ :� 〈a2〉〈c2〉〈i2〉� we find that

e,A, η � φ e,B , η � ¬φ e,A ∝ B , η � {A}¬φ
hold.

Note that we can often use simple resource assertions instead of complex modal assertions: for example, it is
often enough to specify that sufficient resource is present to enable an action to fire instead of specifying that the
action can fire using a modality.

The following example is of a significantly different type. In the foregoing examples, the systems we modelled
were all based on variants of agents with ACLs. The logical language we had was then used to make assertions
about systems. In contrast, in the following example, a security-language is used to govern access decisions. Thus
there are logical formulae in the models, as well as about the models.

Example 6.7 (Modelling access with assertion-based control).
Consider a system with four agents A,C1,C2,C3. The first of these wishes to perform some operation.

However, it only performs this action when it receives permission; it receives permission from the second agent;
the second agent, in turn, receives the information that permission should be granted from the third agent,
which it trusts. The third agent receives the information from the fourth agent, which it trusts. This is a simple
chain-of-trust. The second agent does not explicitly trust the fourth, however it does so implicitly.

Algebra and logic for access control 99

We assume the existence of a simple language of access assertions

p0 ::� mayAcc(A, i , r1)
p ::� p0 | states(Ck , p0) | ¬p0

with 1 ≤ k ≤ 3. That is, for this example, we are only concerned with the ability of A (defined below) to access
some resource r1 with the operation i . This is easily generalized by extending p0 with many atoms. This language
should not be confused with the Hennessy–Milner logic described earlier. Let L be the set of propositions of this
language.

We assume the existence of basic actions with approximate intended meanings:
cp
j Cj states p

bp
j update belief of Cj with p, in the light of trusted statement that p

a request to do some operation (access) on r1

d unlock the requested operation
i do the operation requested

for 1 ≤ j ≤ 3 and p, as above. In addition, for slightly technical reasons, there are also actions d ′, c ′
2
p , bp present.

These are further explained by the modification.
We define a multiset of formulae of L to be consistent when it does not contain both p and ¬p, for any p.

Reserve the letters capital�,� for such multisets. The set of multisets of consistent formulae is a resource monoid
with the operation

� ◦� �
{
� ∪� if the multiset union � ∪� is consistent
↑ otherwise

for any � and �. We write the unit as ∅. When this composite is defined we say that � and � are consistent.
We take the protected resource to be an integer m and the operation that accesses it to be an incrementation

i . The resources for the system we wish to describe are then of the form 〈m,n, k , �〉, where m,n ∈ N, k ∈ 2
and � is a consistent set of formulae. The composition operation acts pointwise on the components of these
quadruples, with the component operations indicated above. The unit is e � 〈0, 0, 0,∅〉. As usual, the letters R,S
stand for such resources. We define the abbreviation R ◦� � 〈m,n, k , � ◦�〉 for any resource R � 〈m,n, k , �〉
and consistent set of formulae �. Similarly, we write p ∈ R as an abbreviation for p ∈ �, where � is the multiset
component of R.

The modification is specified by:

µ(a, 〈m,n, k , �〉) � 〈m, 1, k , �〉
µ(bp

1 ,R) �
{

R if states(C2, p) ∈ R
↑ otherwise

µ(bp
2 ,R) �

{
R if states(C3, p) ∈ R
↑ otherwise

µ(bp,R) � R ◦ [p]

µ(cp
2 ,R) �

{
R ◦ [states(C2, p)] if n � 1
↑ otherwise

µ(c′
2
p
,R) �

{
R if p ∈ R
↑ otherwise

µ(cp
3 ,R) � R ◦ [states(C3, p)]

µ(d , 〈m,n, k , �〉) �
{ 〈m, 0, 1, �〉 if n � 1

↑ otherwise

µ(d ′,R) �
{

R if p ∈ R and n � 0
↑ otherwise

µ(i , 〈m,n, k , �〉) �
{ 〈m + 1, 0, 0, �〉 if k � 1

↑ otherwise

on atomic actions.

100 M. Collinson, D. Pym

We define the resources (multisets)

S1 � e � S2 S ′
1 � e ◦ [p0] � S ′

2.

We consider the process A1 × C1 × C2 × C3, where

A � 1 : A + a : A + i : A
C1 � νS1.D1

D1 � 1 : D1 + dd ′ : D1 + bp0
1 bp0 : D1

C2 � νS2.D2

D2 � 1 : D2 + bp0
2 bp0 : D2 + cp0

2 c ′
2
p0 : D2

C3 � 1 : C3 + cp0
3 : C3

Thus: A requests to perform the operation i using the access a; the guard C1 must decide whether to allow this
access or not, and to do this it consults C2, which in turn consults C3. The fact that C1 trusts C2, which trusts C3
is built into the model.

There is a transition sequence:

e,A × νS1.D1 × νS2.D2 × C3
a→

〈0, 1, 0,∅〉,A × νS1.D1 × νS2.D2 × C3
c
p0
3→

〈0, 1, 0, [states(C3, p0)]〉,A × νS1.D1 × νS2.D2 × C3
b
p0
2→

〈0, 1, 0, [states(C3, p0)]〉,A × νS1.D1 × νS ′
2.D2 × C3

c
p0
2→

〈0, 1, 0, [states(C2, p0), states(C3, p0)]〉,A × νS1.D1 × νS ′
2.D2 × C3

b
p0
1→

〈0, 1, 0, [states(C2, p0), states(C3, p0)]〉,A × νS ′
1.D1 × νS ′

2.D2 × C3
d→

〈0, 0, 1, [states(C2, p0), states(C3, p0)]〉,A × νS ′
1.D1 × νS ′

2.D2 × C3
i→

〈1, 0, 0, [states(C2, p0), states(C3, p0)]〉,A × νS ′
1.D1 × νS ′

2.D2 × C3
a→

〈1, 1, 0, [states(C2, p0), states(C3, p0)]〉,A × νS ′
1.D1 × νS ′

2.D2 × C3
d→

〈1, 0, 1, [states(C2, p0), states(C3, p0)]〉,A × νS ′
1.D1 × νS ′

2.D2 × C3
i→

〈2, 0, 0, [states(C2, p0), states(C3, p0)]〉,A × νS ′
1.D1 × νS ′

2.D2 × C3
. . .

for example. Thus belief cascades down from C3 to C1 and this allows A to perform the operation requested. In
the present model, belief cannot be revoked, and so the chain-of-trust does not need to be consulted for the second
incrementation. The action c′

2
p0 is used to check if C2 believes p0, whilst the action cp0

2 extrudes information back
into the global resource by making the public statement states(C2, p0). The action d ′ is used to check that C1
believes p0, whilst d extrudes information by unlocking the incrementation. The operational semantics of hiding
means that the actions bi p0 check the current collection of public statements, whilst our usages of the action bp0

update the internal beliefs of C ′
1 and C ′

2 according to those checks.
The intended trust relation

C2 states p0 implies C1 believes p0

Algebra and logic for access control 101

is partially captured by the Hennessy–Milner logic as follows. Let R � 〈m,n, k , �〉 and suppose that � and [p]

are consistent. The relation R,C1, η � states(C2, p0) means that states(C2, p0) ∈ �. Then R,D1
b1

p0bp0→ R,D1 and

so R,C1
b1

p0→ R, νS ′
1 · D1. Let p0 be valued so that T ,G, η � p0 iff p0 lies in the multiset of formulae in T , for

any T ,G, η. The relation R, νS ′
1 · D1, η � ∃ν x · p0 captures the fact that the agent νS ′

1 · D1 believes p0. Hence the
trust relation is described here by the formula

R,C1, η � states(C2, p0) → ∃x .〈x 〉(∃ν y · p0)

which says that if C1 has the public statement from C2 that p0 then C1 can change to become an agent which
believes p0 (it has this as private information). This argument scales up to the whole system because the four
components of the synchronous product defining it may always tick.

We note that the use of formulae-as-resources and hiding gives a simple account of agents with private belief,
and conjecture that more sophisticated versions of this approach could be of use in many other situations.

These examples can be further extended so that longer chains-of-trust and more complex patterns are used
for determining accesses.

7. Global simulation and multiplicative implication

The logical calculus MBIa of Sect. 5 above combines Hennessy–Milner-style modal connectives with a separating
conjunction in the style of BI and Separation Logic. The multiplicative implication, −−∗, of BI was omitted as it
complicates the treatment somewhat. Here, we rectify that omission and also include versions of the multiplicative
modalities 〈a〉ν and [a]ν previously considered for the original version of MBI [PT06, PT07, CPT07].

In order to give such a treatment we must make some alterations to the notion of bisimulation, and so to the
process calculus. We define a modified process calculus ACCRPb together with a new simulation relation ∼.
The new process calculus is formed by replacing the rule for roles with the rule

R,F a→ R′,F ′ R ◦ S ,E a→ R′ ◦ S ′,E ′

R ◦ S ,E ∝ F a→ R′ ◦ S ′,E ′ ∝ F ′ (F � E) (4)

where � is the largest relation on processes such that, if E1 ∼ E2 and R,E1
a→ R′,F1 for any R, R′, F1, then

there is some F2 such that R,E2
a→ R′,F2 and E2 � F2. We call the relation ∼�� ∩ � the global bisimulation

relation. As with ≈, the definition of this relation can be stratified to show that the mutually recursive definition
above makes sense. The relation ∼ is extended to states by taking R,E ∼ S ,F just if R � S and E ∼ F .

The relation ∼ is a congruence and all of the results of Proposition 4.2 are retained, but with � (and ∼)
replacing � (respectively ≈) throughout.

The logical language MBIa is extended as follows

φ ::� . . . | φ −−∗ φ | 〈a〉νφ | [a]νφ

to give a new language MBIb.
The notion of valuation for the logic is changed so that V(p) is closed under the relation ∼ on states. The

interpretation of Fig. 1 is modified so that, wherever some relation R,E ≈ R,F is expressed, it is replaced by
the relation E ∼ F on processes. The use of � for {E }φ is replaced by a use of �. In addition we extend the
interpretation with the clauses in Fig. 4.

Fig. 4. Extended Interpretation of Logical Formulae

We then have that Theorem 5.1 holds with ∼ replacing ≈ throughout and with all formulae, φ, drawn from
MBIb. On the other-hand counterexamples exist to Theorem 5.2 when ∼ is used in place of ≈ (and where µ is
a non-trivial modification function). We conjecture that, in general, under reasonable conditions, Theorem 5.2
using ∼ does not hold. The results of Proposition 5.1 hold with � (resp. ∼) replacing � (resp. ≈) throughout.

102 M. Collinson, D. Pym

The relation ≈ is not used when dealing with MBIb since then the essential result of Theorem 5.1 does not
hold for many non-trivial modification functions. That is, there can be E and F such that R,E ≈ R,F for
all R but some φ such that R,E , η � φ and R,F , η � ¬φ, see [CPT07] for details. Indeed ∼ should be used
whenever we wish to use a logical language that either features the multiplicative modalities or that features both
the multiplicative implication and the additive modalities. To summarize:

1. For the (�, I ,∧,∨,¬,→, 〈−〉, [−], ∃,∀, ∃ν,∀ν)-fragment of the logical language the use of the local simula-
tion, �, throughout will be suitable.

2. For any fragment featuring 〈−〉ν or [−]ν , or −−∗ together with either of 〈−〉, [−] the global simulation, �,
should be used throughout.

The new logical connectives can be used as follows:

(−−∗). Imagine a situation in which there is some component E that is intended to plug into certain types of
system, and imagine that E comes with resources R. Suppose that we wish to guarantee that whenever R,E
is plugged into some suitable system S ,F , that the resulting compound system makes no accesses to some
resource r . This can be expressed by the proposition R,E � φ −−∗ (¬ψ), where ψ is an appropriate ‘access r ’
proposition, as in the previous examples, and φ represents the ‘suitability’ condition.

([a]ν). Let ψ be as in the previous example. Suppose that we have some system R,E satisfying [a]ν(¬ψ). The
resources R often include the permissions of E (as with the ACLs of the earlier examples) and that resource
composition takes the union of permissions. Then the logical formula above guarantees that there is no way
for E to access the resource r , no matter how its permissions are extended.

(〈a〉ν). We may often wish to specify a system that cannot make a particular access, for example with R,E �
¬〈c〉� for some access c, because it lacks permission, but such that it, if granted permission it can make the
access, e.g R,E � 〈c〉ν�.

8. Directions

Mild changes to the rules of SCRP can result in calculi with significantly different properties. For example, it
has been shown [CP09] how the algebraic and logical theories can be considerably strengthened from the original
version presented in [PT06, PT07, CPT07]. The simple changes made were small changes to the coherence con-
ditions on modification and side-conditions on the operational rules. Those changes result in the admissibility of
the following rule:

R,E a→ R′,E ′

R ◦ S ,E a→ R′ ◦ S ,E ′ (R ◦ S ↓)

for all R,R′,S ,S ′,E ,E ′. That is, this rule emerges as a property of systems. We note that it is similar to the frame
rule of Separation Logic, [IO01, Rey02]. When this rule is not admissible, it may be useful to include it explicitly.
In particular, this rule leads to algebraic relations like E × 1 ≈ E and for the role constructor, associativity,
E ∝ (F ∝ G) ≈ (E ∝ F) ∝ G , for all E , F and G . On the logical side, we get logical axioms like φ ∗ I ↔ φ.
It also leads to ({F ∝ G}φ) ↔ ({F }({G}φ)) between the {−} modality and the role constructor. Despite these
useful consequences, we have not chosen to include this frame rule (implicitly or explicitly), since it may not be
applicable to all the situations we wish to model. For example, if resources contain access blacklists, and com-
position joins those lists by non-overlapping union, as above, then the frame rule above would be undesirable.
In such situations, a more subtle treatment using the order of the resource monoid should be used, as with the
intuitionistic version of MBI in [CP09].

A good deal of work remains to be done on the model-checking problems for SCRP-like calculi. These prob-
lems are significantly harder than standard model-checking problems, since they involve searches for resource
decompositions, searches across processes and appropriate (bi)simulation checks. However, the possession of
such model-checking tools would give more powerful reasoning methods for semantically-justified logical access
control, in a manner complementary to that of [ABL93, DeT02].

Together with B. Monahan we have produced a modelling environment, LD2k , for large-scale distributed
systems. This work is ongoing, but summaries of early versions may be found in [CMP08a, CMP08c]. The tool is
an extension of the existing Demos2k tool [Dem] which has firm foundations in the process algebra SCCS. It is
intended that LD2k will have a process calculus semantics in a variant of SCRP. Access control is a property of

Algebra and logic for access control 103

interest in many of the models we wish to consider and the work presented herein is a foundational study related
to such models. However, in the models we wish to consider resources will typically be physically distributed
and it will be pragmatic to have location play a role as fundamental as that of resource. Location should be a
first-class citizen in the underlying process calculus, in the same way that resource is a first-class citizen in SCRP.
The paper [PT07] contains some basic ideas about the embodiment of the location concept in a process algebra
with transitions of the form L,R,E a→ L′,R′,E ′, where L,L′ are locations, R,R′ are resources and E ,E ′ are
processes. These have been further developed in [CMP08b]. Practical security modelling in Demos2k and a new
version of LD2k is ongoing work with colleagues, particularly at HP Labs [BCG08, BGS08, BBC08].

Acknowledgments

We are grateful to Brian Monahan and Jonathan Hayman for their help and suggestions. Guy McCusker sug-
gested a version of the plugging example for −−∗ given in Sect. 7 in a related discussion. We thank also Chris Tofts
for helpful contributions related to this work.

References

[Aba03] Abadi M (2003) Logic in access control. In: Proceedings of LICS’03, pp 228–233
[ABL93] Abadi M, Burrows M, Lampson B, Plotkin G (1993) A calculus for access control in distributed systems. ACM Trans

Progrogram Lang Syst 4(15):706–734
[AG97] Abadi M, Gordon A (1997) A calculus for cryptographic protocols: the spi calculus. In: Proceedings conference Computer

and Communications Security. ACM Press, London, pp 36–47
[BBC08] Baldwin A, Beres Y, Casassa Mont M, Griffin J, Shiu S (2008) Identity analytics: using modeling and simulation to improve

data security decision making. Technical Report HPL-2008-188, HP Labs, 2008. http://www.hpl.hp.com/techreports/2008/
HPL-2008-188.html

[BCG08] Beautement A, Coles R, Griffin J, Ioannidis C, Monahan B, Pym D, Sasse MA, Wonham M (2008) Modelling the human
and technological costs and benefits of USB memory stick security. In: Johnson ME, (ed) Managing information risk and the
economics of security. Springer, Heidelberg

[BGS08] Beres Y, Griffin J, Shiu S, Heitman M, Markle D, Ventura P (2008) Analysing the performance of security solutions to reduce
vulnerability exposure window. In: Proceedings of 2008 annual computer security applications conference (ACSAC). IEEE

[Bir79] Birtwistle G (1979) Demos—discrete event modelling on Simula. Macmillan, New York
[BN07] Becker MY, Nanz S (2007) A logic for state-modifying authorization policies. In: 12th European symposium on research in

computer security (ESORICS), Lecture Notes in Computer Science, vol 4734
[CFS96] Coyne EJ, Feinstein HL, Sandhu R, Youman CE (1996) Role-based access control models. IEEE Comput 29(2):38–47
[CMP08a] Collinson M, Monahan B, Pym D (2008a) Located Demos2k—towards a tool for modelling processes and distributed

resources. Technical Report HPL-2008-76, HP Labs, 2008. http://library.hp.com/techpubs/2008/HPL-2008-76.html
[CMP08b] Collinson M, Monahan B, Pym D (2008b) A logical and computational theory of located resource. Technical Report HPL-

2008-74R1, HP Labs, 2008 (Submitted). http://library.hp.com/techpubs/2008/HPL-2008-74R1.html
[CMP08c] Collinson M, Monahan B, Pym D (2008c) An update to located Demos2k. Technical Report HPL-2008-205, HP Labs, 2008.

http://library.hp.com/techpubs/2008/HPL-2008-205.html
[CP09] Collinson M, Pym D (2009) Algebra and logic for resource-based systems modelling. Technical Report HPL-2009-21,

HP Labs, 2009 (Submitted). http://library.hp.com/techpubs/2009/HPL-2009-10.html.
[CPT07] Collinson M, Pym D, Tofts C (2007) Errata for formal aspects of computing (2006) 18:495–517 and their consequences. Formal

Aspects Comput 19(4):551–554
[Dem] Demos2k. http://www.demos2k.org
[DeT02] DeTreville J (2002) Binder, a logic-based security language. In: Proceedings of 2002 IEEE symposium on security and privacy,

pp 105–113
[GRS04] Guelev DP, Ryan MD, Schobbens P-Y (2004) Model-checking access control policies. In: Seventh information security

conference (ISC’04), Lecture Notes in Computer Science, vol 3225. Springer, Heidelberg
[HM85] Hennessy M, Milner R (1985) Algebraic laws for nondeterminism and concurrency. J ACM 32(1):137–161
[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice-Hall, Englewood Cliffs
[IO01] Ishtiaq S, O’Hearn PW (2001) BI as an assertion language for mutable data structures. In: Proceedings of POPL 2001. ACM,

London, pp 14–26
[KYM06] Kamoda H, Yamaoka M, Matsuda S, Broda K, Sloman M (2006) Access control policy analysis using free variable tableaux.

Information Processing Society of Japan (IPSJ) Digital Courier, vol 2
[LAB92] Lampson B, Abadi M, Burrows M, Wobber E (1992) Authentication in distributed systems: theory and practice. ACM Trans

Comput Syst 4(10):265–310
[Lam71] Lampson BW (1971) Protection. In: Proceedings of fifth Princeton symposium information sciences and systems, pp 437–443
[LW08] Li N, Wang Q (2008) Beyond separation of duty: An algebra for specifying high-level security policies. J ACM 55(3)
[Mil80] Milner R (1980) A calculus of communicating systems, Lecture Notes in Computer Science, vol 92. Springer, Heidelberg
[Mil83] Milner R (1983) Calculi for synchrony and asynchrony. Theor Comput Sci 25:267–310
[Mil89] Milner R (1989) Communication and concurrency. Prentice-Hall, Englewood Cliffs

http://www.hpl.hp.com/techreports/2008/HPL-2008-188.html
http://www.hpl.hp.com/techreports/2008/HPL-2008-188.html
http://library.hp.com/techpubs/2008/HPL-2008-76.html
http://library.hp.com/techpubs/2008/HPL-2008-74R1.html
http://library.hp.com/techpubs/2008/HPL-2008-205.html
http://library.hp.com/techpubs/2009/HPL-2009-10.html
http://www.demos2k.org

104 M. Collinson, D. Pym

[OHe07] O’Hearn PW (2007) Resources, concurrency and local reasoning. Theor Comput Sci 375(1–3):271–307
[OP99] O’Hearn P, Pym D (1999) The logic of bunched implications. Bull Symb Logic 5(2):215–244
[Plo04] Plotkin GD (2004) Structural operational semantics. J Logic Algebraic Program 60:17–139 (Original manuscript 1981)
[POY04] Pym D, O’Hearn P, Yang H (2004) Possible worlds and resources: the semantics of BI. Theor Comput Sci 315(1):257–305
[PT06] Pym D, Tofts C (2006) A calculus and logic of resources and processes. Formal Aspects Comput 18(4):495–517. Errata in

[CPT07]
[PT07] Pym D, Tofts C (2007) Systems modelling via resources and processes: philosphy, calculus, semantics, and logic. In: Cardelli L,

Fiore M, Winskel G (eds) Computation, meaning and logic: articles dedicated to Gordon Plotkin, Electronic Notes in Theo-
retical Computer Science, vol 107. Elsevier, Amsterdam, pp 545–587. Errata in [CPT07]

[Pym99] Pym D (1999) On bunched predicate logic. In: Proceedings of LICS’99, pp 183–192. IEEE, New York
[Pym02] Pym DJ (2002) The semantics and proof theory of the logic of bunched implications, Applied Logic Series, vol 26. Kluwer,

Dordrecht. Errata at: http://www.cs.bath.ac.uk/~pym/BI-monograph-errata.pdf
[Rey02] Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: Proceedings of LICS’02. IEEE, New York,

pp 55–74
[RSG01] Ryan P, Schneider S, Goldsmith M, Lowe G, Roscoe B (2001) The modelling and analysis of security protocols.

Addison-Wesley, Reading
[Sch96] Schneider S (1996) Security properties and CSP. In: IEEE symposium on security and privacy, pp 174–187
[SMR06] Scedrov A, Mitchell JC, Ramanathan A, Teague V (2006) A probabilistic polynomial-time process calculus for the analysis

of cryptographic protocols. Theor Comput Scie 353:118–164
[SS75] Saltzer JH, Shroeder MD (1975) The protection of information in computer systems. Proc IEEE 63(9):1278–1308
[Sti01] Stirling C (2001) Modal and temporal properties of processes. Springer, Heidelberg

Received 9 July 2008
Accepted in revised form 9 February 2009 by J.V. Tucker
Published online 17 March 2009

http://www.cs.bath.ac.uk/~pym/BI-monograph-errata.pdf

	Algebra and logic for access control
	Abstract
	1 Introduction
	2 Resources and processes
	3 An extended calculus for principals
	4 Algebraic and dynamical properties
	5 Logic
	6 Examples
	7 Global simulation and multiplicative implication
	8 Directions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

