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Abstract. This paper describes a methodology for developing and verifying a class of distributed systems in which
the state space may be discrete or continuous. Our focus is on systems where changes are local in that a small
number of components change state while the remainder of the system is unchanged. A proof methodology is
developed that ensures global properties, such as invariants and convergence, by guaranteeing local properties
within subsystems. This methodology is used to prove the correctness of concrete examples. We present a PVS
library of theorems and proofs that can be used to reduce the work required to develop and verify programs in
this class. A transformation of these libraries to Java is also outlined.
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1. Introduction

Verifying correctness of distributed systems is difficult due to the large state space of the system and inherent
nondeterminism. Model checkers and test suites are intractable when the system has unbounded data structures,
such as stacks or queues, or has real-valued variables. Systems, such as sensor networks and autonomous vehi-
cle systems have continuous state spaces and continuous transitions that are not easily represented by model
checkers. This paper presents an approach to verification of distributed systems, with continuous or discrete state
spaces, that addresses some of these challenges.

Some progress properties are expressed as either convergence to, or termination in, a particular system state.
Informally, a system converges to a desired value if the state gets arbitrarily close to the desired value as time, or the
number of steps in a computation, tends to infinity [Lue79]. Termination is a related property which states that the
desired state is reached in a finite number of steps. These properties are formalized using Linear Temporal Logic
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[Pnu77]. Proof obligations regarding convergence appear in many continuous state problems, including distrib-
uted control algorithms for tracking [OS07], pattern formation [OSFM07] and flocking [BHOT05], while proof
obligations about termination appear in many distributed computing problems such as consensus [Lyn96, AW04].
The model-based approach [Tau05, Hor03] develops algorithms at an abstract mathematical level and then refines
models to actual implementations in a provably correct manner by a process known as stepwise refinement. A
great deal of work has been carried out on stepwise refinement over almost 40 years including sequential program-
ming [Dij68, Dij76, Wir71, Mor87], and concurrent systems [LT87, Spi08, Spi07, Abr96, BS96, CM88, LS91].

The contribution of this paper is to propose a verification method for convergence or termination of con-
tinuous or discrete-state systems. This builds upon the earlier work on reuse and refinement. Our method uses
properties of interactions among small numbers of agents, or between an agent and a message channel, to prove
global properties of systems—we define these properties as local–global. We use local–global properties in con-
junction with standard techniques, such as proving invariants and demonstrating the existence of variant functions
or Lyapunov functions [CS77, BHOT05, Lib03], for proving correctness of distributed systems. As an example of
such a system, consider a collection of analog sensors that use continuous dynamics to converge to the average of
their initial values [JLM03]. A faulty mechanism within the system may partition the set of sensors into multiple
connected components. In this case, the dynamics of each connected component is independent of the dynamics
of other connected components. However, by ensuring that the dynamics for each connected component main-
tains the average and reduces the variance of that component, we ensure that the global dynamics maintains the
average and reduces the variance of the entire system. Furthermore, local–global properties are used to prove that
if the sensor network is not permanently partitioned (though it can be temporarily partitioned) then the mean
values for all sensors in the network converge to the global mean. The sensor network is an example of a larger
class of problems in which local–global properties are used to verify systems. Our methodology is also applied
to message passing systems in which messages may be lost, delayed and reordered. As an example we present a
message passing algorithm, and its proof of correctness, for solving systems of linear equations that extends the
work of [GM80, CM69, CMP08].

We encode theorems, specifications, and property abstractions in the theorem prover PVS [ORS92], develop-
ing refinement libraries for proving convergence and termination of distributed systems. Our general theory for
convergence and termination builds on the PVS formalization of I/O automata [LT89, AHS98] and its extensions
to timed and hybrid I/O automata [KLSV06, MA05, Mit07]. These theories formalize reachable states, invariant
properties, acceptance conditions, and abstraction relations. Convergence and termination of general sequences
has been formalized in the PVS and Isabelle libraries for differential calculus [Got00], real-analysis [Har98], and
topology [Les], along with programs and recursive functions [BKN07, RP96]. Proof hierarchies within a theorem
prover has been studied for specific cases [Jac00, dJvdPH00, MB97].

Finally, our PVS library is transformed into a library of Java classes. Using our methodology, we derive
correctness of our programs from the correctness of the PVS specification. Our proof obligation is to show that
operators implemented in Java are equivalent to their corresponding PVS operators. For example, a step from
PVS to Java might be the implementation of the arithmetic max. In this case, our proof obligation is to show that
the function max defined in PVS and implemented in Java are equivalent. We employ JML [BCC+05] to help
with such checks.

The paper is organized as follows. Section 2 presents basic definitions for automata and proves sufficient
conditions for termination and convergence. Section 3 provides a formal definition of local–global properties
and how they are used to prove correctness. Section 4 applies local–global properties to two applications from
control theory, proving their termination and convergence, respectively. Section 5 extends our theory to message
passing systems with bounded delay. Section 6 discusses our PVS meta-theory for convergence and termination.
Section 7 presents a Java implementation of our examples. We conclude with Sect. 8.

2. Preliminary theory

In this section we provide basic definitions for automata, reachability, stability, and convergence and state suf-
ficient conditions for proving the latter properties. We refer to [AHS98, Arc00, LKLM05, GMPJ09] for their
corresponding PVS meta-theories.
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2.1. Automata, executions, and invariants

We denote the set of Boolean constants by B � {true, false}, the set of natural numbers by N � {0, 1, . . . , }, and
the set of reals by R. For a set A, Aω is defined as the set of infinite sequences of elements in A indexed by N. We
denote by [N ] with N ∈ N the set {0, 1, . . .N − 1}; n,m ∈ N denote arbitrary natural numbers.

An automaton A is a nondeterministic state machine or a labeled transition system defined as follows.

Definition 1 An automaton A is a quintuple consisting of:

(a) a nonempty set of states S ,
(b) a nonempty set of actions A,
(c) a nonempty set of start states S0 ⊆ S ,
(d) an enabling predicate E : [S ,A → B], and
(e) a transition function T : [S ,A → S ].

For s ∈ S and a ∈ A, E (s, a) holds if and only if the transition labeled by a can be applied to s . In this case,
a is said to be enabled at s . At any state s , multiple actions may be enabled. However, once an enabled action a
is fixed the post-state of the transition s ′ is uniquely determined. Specifically, s ′ � T (s, a), if a is enabled at s .
The set of actions can be uncountably infinite. We refer the reader to [LKLM05] for models of timed and hybrid
systems in this formalism.

Hereafter, A denotes an automaton with parameters 〈S ,A,S0,E ,T 〉; s, ŝ ∈ S , s0 ∈ S0 denote arbitrary
(initial) states of the automaton; Ŝ a nonempty subset of S ; a ∈ A an arbitrary action of the automaton. The
semantics of an automaton A are defined in terms of its executions. An execution fragment of A is a possibly
infinite alternating sequence of states and actions s0, a0, s1, a1, s2, . . ., such that for each i , E (si , ai ) holds and
si+1 � T (si , ai ). An execution fragment is an execution if s0 is a starting state. The length of a finite execution is
the number of actions it contains. Given an execution, we denote by s (n) the state of the automaton after n steps
of that execution. Finally, an execution is complete if and only if (a) the execution is infinite, or (b) the execution
is finite and terminates in a state in which no action is enabled.

Given two states si , sj , we say that si is reachable from sj , denoted by reach(si , sj ), if there exists a finite,
possibly empty, sequence of actions a0, a1, . . . , an which when applied to sj , result in si . We denote reach(s, s0)
with s0 ∈ S0 by reachable(s). We define ReachFrom(Si ) with Si ⊆ S as the set of states reachable from states in
Si ; more formally,

ReachFrom(Si ) � {s : ∃s1 ∈ Si reach(s, s1)}.
The following theorem formalizes Floyd’s induction principle for proving invariants predicates.

Theorem 2.1 (Floyd’s Induction Principle [Flo67]) Let G : [S → B] be a predicate on S . Then G is invariant if the
following holds:

A1. ∀s ∈ S0: G(s), and
A2. ∀s ∈ S , a ∈ A: G(s) ∧ E (s, a) ⇒ G(T (s, a)).

This theorem has been employed for verifying safety properties of untimed [AHS98], timed [LKLM05], and
hybrid automata [UL07]. Features of this verification method that make it attractive are: (a) It suffices to check
that the predicate G is preserved over individual actions, and hence, the check breaks down into a case analysis
of actions. (b) This structure facilitates partial automation of proofs using customized proof strategies [Arc00].

When proving convergence or termination, we consider executions in which certain important actions occur
(infinitely often). Fairness conditions give us a way of restricting the class of executions.

Definition 2 A fairness condition F for the set of actions A is a finite collection {Fi}ni�1, where each Fi is a
nonempty subset of A. An infinite sequence of actions a0, a1, . . . ∈ Aω is F-fair if

∀F ∈ F , ∀n, ∃m, m > n, such that am ∈ F .

An infinite execution α � s0, a0, s1, a1, . . . is said to be F-fair if the corresponding sequence of actions a0, a1, . . .
is F-fair.

An execution is not F-fair if there exists F ∈ F such that no action from F ever appears in some suffix of
that execution. Most models of distributed systems assume weak fairness whereby certain actions are executed
infinitely often. The model presented in Definition 2 is weaker. We use this model because we wish to prove
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(a) (b) (c)

Fig. 1. A system consisting of three agents, u , v , and w . The fairness criteria is that the system is never permanently partitioned into non-com-
municating subsets. Note that any computation, where the communication links in π occur infinitely often, is not allowed in weak fairness.
a Communication links of the system. b The fairness condition F , and a set of communication links π occurring infinitely often according
to Definition 2. Although there are only two communication links in π , all F ∈ F are represented. c The fairness condition Fw , and a set of
communication links πw occurring infinitely often according to weak fairness

properties of networks of agents that are never partitioned permanently. For example, consider a network of
three agents u, v and w (see Fig. 1a). Communication links between any pair of agents may be created and
deleted in a nondeterministic manner. The network is permanently partitioned if an agent is permanently cut off
from the others. For example, the network is not permanently partitioned if a communication link between u
and v exists infinitely often, and a link between v and w exists infinitely often, even though there is never a link
between u and w (see Fig. 1b). A fairness criterion that specified that every communication link exists infinitely
often (Fig. 1c) is too strong because it would rule out computations in which there is never a link between u and
w . The fairness criterion that specifies that u is not permanently cut off from the other agents is that at least one
of the links {u, v} or {u,w} exists infinitely often.

2.2. Stability, convergence, and termination

The concepts of stability, convergence and termination have been introduced by Lyapunov [Lya66] and used for
describing the behavior of dynamical systems. In this subsection, we formalize these concepts and define stability,
convergence and termination of automata. In [Tsi87] sufficient conditions for stability and convergence have
been provided for dynamical systems. Our contribution is to extend these conditions to automata. In [MC08],
the authors present an analogous formalization together with the corresponding PVS implementation.

2.2.1. Topology

Stability, convergence, and termination of A to a state ŝ are defined with respect to a topological structure
around ŝ .

Definition 3 For ε > 0 and s the ε-ball around s is the set

Bε(s) :� {s1 ∈ S | d (s1, s) ≤ ε}. (1)

where d : [S ,S → R≥0] is a distance function for ŝ satisfying ∀s �� ŝ : d (ŝ, s) > d (ŝ, ŝ).

The ε-balls around a given state s define a topological structure around s .

2.2.2. Stability

Informally, an equilibrium state ŝ is stable for A if every execution fragment that starts close to ŝ remains close
to ŝ , where closeness is defined in terms of the ε-balls around ŝ . Examples of stable executions are depicted in
Fig. 2.

Definition 4 ŝ is stable for A if

∀ε > 0, ∃δ > 0, ReachFrom(Bδ(ŝ)) ⊆ Bε(ŝ).

From this definition, it follows that δ ≤ ε. Note that stability is independent of the starting states of the autom-
aton. For a nonempty subset of states Ŝ , the definitions for the ε-balls around Ŝ and stability are analogous to
Definitions 3 and 4.

Sufficient conditions for stability. Let f be a function from S to a totally ordered set P . The range of f is denoted
by Range(f ), and its p-sublevel set is defined as Lp :� {s | f (s) ≤ p}. The following theorem gives a sufficient
condition for proving stability of an automaton in terms of a Lyapunov-like function.
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Fig. 2. Stable and convergent (left), stable and non-convergent (middle) and convergent and unstable (right) executions. In the last case, the
execution from s0 converges, but executions starting from the left neighborhood of ŝ diverge
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Fig. 3. A graphical representation of the proof of Theorem 2.2 (left) and of Theorem 2.3 (right)

Theorem 2.2 If there exists f : [S → P ] that satisfies the following conditions:

B1. ∀ε ≥ 0, ∃p ∈ P , such that Lp ⊆ Bε(Ŝ ).

B2. ∀p ∈ P , ∃ε ≥ 0, such that Bε(Ŝ ) ⊆ Lp .

B3. ∀s, a E (s, a) �⇒ f (T (s, a)) ≤ f (s).

Then Ŝ is stable for A .

B1 requires that every ε-ball around Ŝ contains a p-sublevel set Lp . B2 is symmetric—it requires that every
sublevel set contains an ε-ball. B3 states that the value of the function f does not increase if an action a is applied
to state where it is enabled.

Proof. Let us fix an ε > 0. We have to show that there exists a δ > 0, such that any execution fragment that starts
in Bδ(Ŝ ) remains within Bε(Ŝ ).

From B1, ∃p ∈ P : Lp ⊆ Bε(Ŝ ), and from B2, ∃η ≥ 0 : Bη(Ŝ ) ⊆ Lp ⊆ Bε(Ŝ ). We refer to Fig. 3
for a pictorial representation. Set δ � η. From B3, ReachFrom(Lp) � Lp . Since Bδ(Ŝ ) ⊆ Lp , we get that
ReachFrom(Bδ(Ŝ ))⊆Lp ⊆ ReachFrom(Bε(Ŝ )). �

2.2.3. Convergence

An automaton A converges to ŝ , if for every fair infinite execution of A , the automaton gets closer to ŝ . See
Fig. 2 for examples of convergent and divergent executions.

Definition 5 A converges to ŝ , if ∀ε > 0 : ♦� s ∈ Bε(ŝ).

For a nonempty subset of states Ŝ ⊆ S , the definition of convergence to Ŝ is analogous to Definition 5.

Sufficient conditions for convergence. The next theorem gives sufficient conditions for proving convergence of
automaton A in terms of a Lyapunov-like function. Let P be the set of values in P that are reached eventually:
P :� {p ∈ P | ♦ (s ∈ Lp)}.
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Theorem 2.3 Suppose there exists a totally ordered set (P ,<) and a function f : S → P that satisfy the following
conditions:
C1. ∀p, q ∈ P , p < q �⇒ Lp � Lq .

C2. ∀ε > 0, ∃p ∈ P , such that Lp ⊆ Bε(Ŝ ).
C3. ∀s, a, (reachable(s) ∧ E (s, a)) �⇒ f (T (s, a)) ≤ f (s).
C4. ∀p ∈ P , Lp �� Ŝ implies ∃F ∈ F , such that ∀a ∈ F , s ∈ Lp , reachable(s) �⇒ (E (s, a) ∧ f (T (s, a)) < f (s)).
C5. ∀P ′ ⊆ P , if P ′ is lower bounded then it has a smallest element.

Then A converges to Ŝ

Some remarks about the hypothesis of the theorem are in order. C1 implies that every sublevel set of the
function f is distinct. C2 requires that for any ε > 0, there exists a p-sublevel set of f that is contained within
the ε-ball around Ŝ . This is identical to condition B1. C3 requires that the function f is nonincreasing over all
transitions from reachable states. This is a weaker version of B3. C4 requires that for any sublevel set Lp that is
not equal to the convergence set Ŝ , there exists a fair set of actions F ∈ F , such that any action a ∈ F strictly
decreases the value of f —possibly by some arbitrarily small amount. C5 requires that every lower-bounded subset
of P has a smallest element. This is a weaker assumption than requiring P to be well-ordered. Instead of C5 it is
sometimes easier to prove that the set P is well-ordered.

Before proving Theorem 2.3, we state an intermediate lemma used in the proof.

Lemma 2.4 f satisfies C1–5 �⇒ Range(f ) � P .

This lemma follows directly from conditions C1, 4, and 5 on f .

Proof of Theorem 2.3. Let us fix ε ≥ 0, and f satisfying the conditions in the hypothesis.
By C2, ∃p ∈ Range(f ) : Lp ⊆ Bε(Ŝ ). By Lemma 2.4, ♦(s ∈ Lp), see Fig. 3. By C3, ReachFrom(Lp) � Lp .

Hence, ♦� s ∈ Lp , which implies ♦� s ∈ Bε(Ŝ ). �
In certain applications the function d which defines the topological structure around ŝ can itself be used as

the Lyapunov-like function for proving convergence. In which case C2 follows automatically.

Corollary 2.5 Let Ŝ be a nonempty subset of S and F be a fairness condition on A. We define f : S → R≥0

as f (s) :� d (Ŝ , s). Suppose there exists a strictly decreasing sequence p0, p1, . . . ∈ R≥0
ω of valuations of f that

converges to 0, such that:
D1. ∀i , j ∈ N + 1, i > j ⇒ Lpi

� Lpj
.

D2. ∀s, a, i ∈ N (reachable(s) ∧ E (s, a) ∧ s ∈ Lpi
) ⇒ T (s, a) ∈ Lpi

.
D3. ∀i ∈ N, pi �� 0 implies ∃F ∈ F such that ∀a ∈ F , s ∈ Lpi

, reachable(s) ⇒ (E (s, a) ∧ T (s, a) ∈ Lpi+1 ).
Then A converges to Ŝ .

2.2.4. Termination

An automaton A terminates in ŝ , if for every fair execution of A , in a finite number of steps the automaton
reaches and remains in ŝ .
Definition 6 A terminates in ŝ , if ♦� s � ŝ .

For a nonempty subset of states Ŝ ⊆ S , the definition of termination in Ŝ is analogous to Definition 6.

Sufficient conditions for termination. The next theorem gives sufficient conditions for proving termination of
automaton A in terms of a Lyapunov-like function.

Theorem 2.6 Let Ŝ be a nonempty subset of S , and F be a fairness condition on A. We define f : S → R≥0 as
f (s) :� d (Ŝ , s). Suppose there exists a strictly finite decreasing sequence p0, p1, . . . pn ∈ R≥0 of valuations of f that
reaches pn � 0, such that:
E1. ∀i , j ∈ [n + 1], i > j ⇒ Lpi

� Lpj
.

E2. ∀s, a, i ∈ [n + 1] (reachable(s) ∧ E (s, a) ∧ s ∈ Lpi
) ⇒ T (s, a) ∈ Lpi

.
E3. ∀i < n : pi �� 0 implies ∃F ∈ F , such that ∀a ∈ F , s ∈ Lpi

, reachable(s) ⇒ (E (s, a) ∧ T (s, a) ∈ Lpi+1 ).

Then A terminates in Ŝ .
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(a) (b)

Fig. 4. Representations of the line convergence algorithm. a Two transitions in which agents atomically interact and update their location.
b A formal specification

3. Verification of concurrent systems using local–global relations

In this section we present our methodology as applied to concurrent systems. We introduce local–global rela-
tions, a key part of our methodology. These relations describe properties of the global state of the system that are
maintained when local parts of the system interact. They are used to prove system safety and progress properties.

3.1. Automaton formulation

Definition 7 A concurrent system is an automaton with additional structure:

(a) The system has N agents, where N is a positive integer. The agents are indexed j for 0 ≤ j < N .

(b) A state s ∈ S is an array with N elements, where s [j ] is the state of the j -th agent.

We denote by s [J ], J ⊆ [N ] the subarray of s inclusive of indices in J in some predefined order. Associated with
each action a ∈ A is a nonempty set of agents whose states can be read or modified by the occurrence of action
a. We denote this set of agents by agents(a). We use the notation sa for s [agents(a)]. The enabled predicate, E ,
depends only on the states of the agents that participate in the action. We define an enabling condition e for
an action a as ∀s, a : e(sa , a) � E (s, a). The transition function T depends only on the states of the agents
that participate in the action. We define the transition function t of an action a as ∀s, a : t(sa , a) � s ′

a where
s ′ � T (s, a) where the pre-states, s , and post-states, s ′, are restricted to the agents that participate in the action.

An example of a concurrent system is the following.

Example 3.1 We model a distributed algorithm in which a set of N agents start at arbitrary positions on a line
and, through interactions, converge to a point. Specifically, any two agents may interact at any time; when they
do, their positions are atomically updated so that they move towards one another to reduce the distance between
them by the same amount r . The value of r ∈ [L, 1 − L], where L is a real constant such that 2L ∈ (0, 1). The
constant 2L is the lower bound on the overall improvement of the two agents. An iteration of this algorithm can
be seen in Fig. 4a.

Figure 4b provides concrete definitions for the types and the functions for modeling this protocol as an
automaton. Briefly, I is the set of natural numbers from to 0 to N − 1. The states type, S , is an array of R≥0
indexed by I . The state s0 is an arbitrary but constant element of S and denotes the initial starting state. The real
value r regulates the distance a given agent travels. Note that r ∈ [L, 1 − L].

In this example, two agents can always interact, because the enabling predicate, E (s, a), is always true. For
action a of the form interact(i , j , r ), the state transition function T (s, a) returns a state s ′ that is identical to
s except that the i th and the j th values of s ′ are s [i ] + r (s [j ] − s [i ]) and s [j ] − r (s [j ] − s [i ]), respectively. This
update rule works both if s [i ] < s [j ] and vice-versa. If s [i ] < s [j ], then the difference s [j ] − s [i ] is positive; in this
case, the interact action adds a positive value to s [i ] and subtracts the same amount from s [j ]. In the other case
(s [i ] ≥ s [j ]), s [j ] − s [i ] ≤ 0, hence, the action subtracts a non-negative value to s [i ] and adds the same amount
to s [j ].
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3.2. Local–global Relations

This subsection introduces a relation called local–global which is a central concept for our methodology. A
local–global relation is one that is preserved throughout the execution by the entire concurrent system (globally)
provided it is preserved by the individual agent interactions (locally). Because our system is represented as an
array, we restrict attention to local–global relations that deal with equal-sized arrays. A local–global relation
holds for two equal-sized arrays if it holds for all their equal-sized subarrays. This subsection provides sufficient
conditions for proving that certain relations are local–global; the next subsection applies local–global relations
to concurrent systems. In Sects. 4 and 5 we show how local–global relations can aid in verifying convergence and
termination of specific systems.

For the remainder of this section x and x ′ are equal-sized nonempty arrays of the same type. Let M be the
size of the arrays, and let the array index be j for 0 ≤ j < M . Hereafter J refers to a nonempty set of indices of
array x or x ′. Denote by J̄ the complement of J . Recall that x [J ] is the subarray of the indices in x inclusive of
the values in J , based on some predefined order. For example, consider M � 5 and J � {0, 2, 3} then J̄ � {1, 4},
x [J ] � [x [0], x [2], x [3]] and x [J̄ ] � [x [1], x [4]].

A formal definition is as follows

Definition 8 Let R be a binary relation on equal-sized arrays of agent states. We define R to be a local–global
relation if and only if:

LG1. R is transitive

LG2. ∀x , x ′, J :
(
x [J ] R x ′[J ]

)
∧

(
x [J̄ ] � x ′[J̄ ]

)
⇒ (x R x ′)

Example 3.2 Local–global relations that we use in proving programs include the following. ∀x , x ′ : x R x ′ holds
exactly when

1. In the case where the elements of x are positive integers:

x R x ′ ≡ gcd (x ) � gcd (x ′)

where gcd is the greatest common divisor. Two equal sized arrays satisfy the relation R if their gcds are the
same. The relation R is local–global because it satisfies both conditions of Definition 8: equality is transitive;
and for all sets of indices J , if x [J ] and x ′[J ] have the same gcd, while indices in J̄ remain the same, then
gcd(x ) � gcd(x ′).

2. In the case where the elements of x are in a partial ordering ≤:

x R x ′ ≡ min(x ) ≤ min(x ′)

where min(x ) is the minimum element in the array x . In this case, two equal sized arrays satisfy the relation
R if the minimum element in the first array is less-than, or equal to, the minimum element in the second. The
relation R is local–global because ≤ transitive, and for all sets of indices J , if min(x [J ]) ≤ min(x ′[J ]), while
indices in J̄ remain the same, then min(x ) ≤ min(x ′).

Not all relations satisfy our local–global definition. Consider a relation R defined as

x R x ′ ≡ min(x ) < min(x ′)

Then R is not a local–global relation, as illustrated by the case x � [2, 0], x ′ � [1, 0], and J � {0}.
The operators presented in this example are instances of a larger class of binary operators that obey our

local–global relation. For this reason we define a generic operator ◦, along with a composition function fold.

Definition 9 Let ◦ be an associative, commutative, dyadic operator on some type. For an array x with M > 0
elements define fold ◦ x as:

fold ◦ x �
{

x [0] if M � 1,

x [0] ◦ x [1] ◦ . . . ◦ x [M − 1] otherwise.



Verification of distributed systems with local–global predicates 657

The following theorem gives sufficient conditions for when this binary composability obeys our local–global
relation.

Theorem 3.3 The relation, x R x ′ ≡ (
(fold ◦ x ) � (fold ◦ x ′)

)
, is a local–global relation if ◦ is associative and

commutative.

Proof. For all x , x ′, are equal-sized arrays of some type, and J � [M ]

fold ◦ x � (fold ◦ x [J ]) ◦ (fold ◦ x [J̄ ])

� (fold ◦ x ′[J ]) ◦ (fold ◦ x ′[J̄ ])
� fold ◦ x ′

�
Example 3.4 The following examples are instances of fold that, by Theorem 3.3, are local–global relations:

• Where ◦ is +, and the elements of x are reals,

x R x ′ ≡
∑
j

x ′[j ] �
∑
j

x [j ].

This follows since addition is associative and commutative.
• Where ◦ is min, and the elements of x are in a partial order,

x R x ′ ≡ min
j

x ′[j ] � min
j

x [j ].

This follows since min is associative and commutative.

In addition to Theorem 3.3, local–global relations can be constructed if ◦ is associative, commutative, and
monotonic.

Definition 10 Let u, u ′ and v be members of a partial ordering ≤. The operator ◦ is monotonic exactly when:

∀u, u ′, v : u ≤ u ′ ⇒ u ◦ v ≤ u ′ ◦ v

The operator ◦ is strictly monotonic exactly when:

∀u, u ′, v : u < u ′ ⇒ u ◦ v < u ′ ◦ v

Likewise, monotonicity must be maintained under composition.

Theorem 3.5 Consider arrays x and x ′ whose elements are members of the partial ordering ≤, then

1. x R x ′ ≡ (fold ◦ x ) ≤ (fold ◦ x ′) is a local–global relation if ◦ is associative, commutative and monotonic.
2. x R x ′ ≡ (fold ◦ x ) < (fold ◦ x ′) is a local–global relation if ◦ is associative, commutative and strictly

monotonic.

Proof. For all x , x ′, are equal-sized arrays of some type, and J � [M ]

fold ◦ x � (fold ◦ x [J ]) ◦ (fold ◦ x [J̄ ])

≤ (fold ◦ x ′[J ]) ◦ (fold ◦ x ′[J̄ ])
� fold ◦ x ′

The proof for the strictly monotonic operator is similar. �
Example 3.6 The following examples are instances of fold that, by Theorem 3.5, are local–global relations:

• In the case where the elements of x are reals, since + is associative, commutative and strictly monotonic:

x R x ′ ≡
∑
j

x ′[j ] <
∑
j

x [j ].

• In the case where elements of x are sets since
⋃

is associative, commutative, and monotonic (though not
strictly monotonic) with respect to ⊂:

x R x ′ ≡
⋃
j

x [j ] ⊆
⋃
j

x ′[j ].
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• In the case where elements of x are sets since
⋂

is associative, commutative, and monotonic (though not
strictly monotonic) with respect to ⊂:

x R x ′ ≡
⋂
j

x [j ] ⊆
⋂
j

x ′[j ].

Next we give the predicate versions of the results on sets. We use the predicate versions in proofs.

• In the case where elements of x are Booleans since conjunction is associative, commutative, and monotonic
with respect to implication:

x R x ′ ≡
∧
j

x [j ] ⇒
∧
j

x ′[j ].

• In the case where elements of x are Booleans since disjunction is associative, commutative, and monotonic
with respect to implication:

x R x ′ ≡
∨
j

x [j ] ⇒
∨
j

x ′[j ].

3.3. Correctness of concurrent systems through local–global relations

The previous subsection considers local–global relations over arbitrary arrays. In this subsection, we apply these
relations to the state space of concurrent systems. In this context, local–global relations can be used to reason
about safety and progress properties of concurrent systems.

3.3.1. Sufficient conditions for proving safety

Let A be a concurrent system.

Definition 11 Let R be a binary relation on equal-sized arrays, and let a be an action of A . Let a �⇒ R be a
relation between actions and values of R. Its definition is as follows:

α �⇒ R ≡
(
∀s, s ′ : e(sa , a) ∧ (

s ′
a � t(sa , a)

) �⇒ sa R s ′
a

)
.

The condition α �⇒ R holds when the pre-states and post-states of agents participating in action a satisfy
relation R. This condition deals with a local state transition rather than the global state transition—it does not
deal with the agents that do not participate in action a.

Observation. If R is local–global relation, then if the pre-states and post-states of agents participating in action
a satisfy R it follows that the pre-state and post-state of the global system also satisfy R.

a �⇒ R ≡
(
∀s, s ′ : e(sa , a) ∧ (

s ′
a � t(sa , a)

) ⇒ s R s ′
)
.

We extend the definition of a �⇒ R from a single action a to any set A of actions as follows:

A �⇒ R ≡
(
∀a ∈ A : a �⇒ R

)

Theorem 3.7 Given an automaton A , and a local–global relation R, if A �⇒ R, then for all executions of A

∀y, z ∈ N : y < z ⇒ s (y) R s (z )

Proof. Follows from property L1 of Definition 8 (transitivity of R), and from Definition 11. �
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Corollary 3.8 (Conservation Law) If ◦ is an associative and commutative operator, and

∀a, s : (fold ◦ sa ) � (fold ◦ t(sa , a))

then

∀t ∈ N : (fold ◦ s (t)) � (fold ◦ s (0))

Proof. Follows from Theorems 3.3 and 3.7. �
Corollary 3.9 If ◦ is an associative, commutative, monotonic operator, and

∀a, s : (fold ◦ sa ) ≥ (fold ◦ t(sa , a))

then

∀y, z ∈ N : y < z ⇒ (
fold ◦ s (y)) ≥ (

fold ◦ s (z ))

Proof. Follows from Theorems 3.5 and 3.7. �
Corollary 3.8 is called a conservation law because it gives conditions for conserving fold with respect to any

initial state. For example, if any action by any set of agents conserves the sum of agent values participating in the
action, then the sum of all agent values is constant throughout an execution. Corollary 3.9 provides conditions
for conserving the ≤ relation on the application of fold. For example, if any action by any set of agents does not
increase the error of the agents participating in the action, then the error of the system does not increase with the
execution of any sequence of actions.

3.3.2. Sufficient conditions for proving progress

Let d be a function from arrays of agent states to a partially ordered set P with < ordering, G be an invariant
of the system, and Q be a predicate on (global) states of the system. We are interested in sufficient conditions
for proving that eventually Q holds. The following theorem lays the ground work for this proof, by showing that
there are only two possible outcomes for a given fair execution: Q holds, or d strictly decreases.

Theorem 3.10 If the following hold

D1. ∀a, s : G(s) ∧ E (s, a) �⇒ d (s) ≥ d (T (s, a))
D2. ∃F ∈ F : ∀a ∈ F : G(s) ∧ ¬Q(s) �⇒ E (s, a) ∧ d (s) > d (T (s, a))

then for all complete executions:

E1. either the execution is infinite, and for all p ∈ P , if d (s) � p at any point in an execution, then there is an
infinite suffix of the execution where d (s) < p for all states in the suffix:

∀p : �
(
d � p ⇒ ♦� d < p

)

or
E2. every execution has a suffix where Q holds at every point in the suffix.

♦� Q

Proof. Proof is similar to Theorem 2.3. �
Condition D1 implies that d is monotone nonincreasing as an execution proceeds. Therefore, for any w , if

d (s) � w at any point in an execution then d (s) ≤ w forever thereafter in that execution. Condition D2 implies
that in an infinite execution, an action that reduces d is executed infinitely often. From the two conditions, if
d (s) � w at any point in the execution then d (s) < w at a later point in the execution. Theorem 3.10 is extended
to deal with local–global relations:

Theorem 3.11 If the following hold

H1. ∀a, s : G(s) ∧ e(sa , a) ⇒ d (sa ) ≥ d (t(sa , a))
H2. ∃F ∈ F : ∀a ∈ F : G(s) ∧ ¬Q(s) ⇒ e(sa , a) ∧ d (sa ) > d (t(sa , a))
H3. d (s) ≥ d (s ′) and d (s) > d (s ′) are local–global relations

then for all complete executions either E1 or E2 holds.



660 K. M. Chandy et al.

Proof. Follows from the following equalities,

∀a, s :
(
e(sa , a) � E (s, a)

)
∧

(
(d (sa ) ≥ d (t(sa , a)) ⇒ (d (s) ≥ d (T (s, a))

)

∧
(

(d (sa ) > d (t(sa , a)) ⇒ (d (s) > d (T (s, a))
)
,

which follow from the definition of e, and since d (s) ≥ d (s ′) and d (s) > d (s ′) are local–global relations �
The following corollaries give sufficient conditions for proving progress. We denote by Range(d ) the range ofd .

Corollary 3.12 If Range(d ) is a well-founded set and Conditions H1–3 hold, then eventually Q .

Proof. Since d is well-founded, d (s) does not decrease infinitely often. �
Corollary 3.13 If d (s) � fold ◦ s where ◦ is associative, commutative, and strictly monotonic, then Conditions H1
and H3 hold.

Proof. Proof follows from Theorem 3.5. �

3.4. Discussion on verification methodology

This section has introduced local–global relations and applied them to concurrent systems. When applied to such
systems, local–global relations are relations on states that can be used to express safety and progress properties
(Theorems 3.7 and 3.11, respectively). Local–global relations are at the root of a hierarchy of system properties.
The abstract mathematical operator ◦, and its composition function fold, are used to specialize local–global
relations. Property correctness is maintained because ◦ fits the local–global definition (Corollaries 3.8 and 3.9).
As an example, consider a collection of analog sensors that use continuous dynamics to converge to the average
of their initial values. A safety property of the system could be that, for the execution of any action, the sum of
sensor values does not change. In this case, the addition operator is an instance of ◦, and equality is the relation
between the summation on states. From Theorem 3.3, we know that such a relation is local–global, and therefore,
the safety property holds.

Our methodology allows for systems with both discrete and continuous state spaces. This section has presented
our methodology for discrete time systems, however it is possible to extend local–global relations to continuous
time systems as well. In the next section, we present two examples of discrete time systems. Section 5 presents a
continuous state space system operating over continuous time.

4. Application of local–global relations in verification

This section considers two examples motivated by distributed consensus protocols. In these examples, the system
consists of N agents, each storing a real number. The first example fits the local–global layer in that we express
properties of the system as local–global relations. This example focuses on convergence and describes a continu-
ous state space system operating over discrete time. The second example fits the operator layer in that we express
properties of the system using fold and ◦; this example focuses on termination. By representing their action sets
as predicates, these two examples describe classes of protocols. At the end of each subsection we present specific
instances from the literature [OSFM07, BHOT05, JLM03].

4.1. Distributed average without failures

The system A consists of N agents, each storing a real number. The goal of the system is to converge to the average
of its initial values. This means that the global state should eventually get arbitrarily close to the state ŝ where

∀j ∈ [N ] : ŝ [j ] � 1
N

∑
k∈[N ]

s0[k ]

where s0 is an arbitrary initial state of the system.
Next, we prove that the system converges to ŝ for a very general class of protocols. This class includes all

group-based algorithms with the following property: the execution of an action maintains the average of the
group, and decreases the group’s mean square error (i.e., the variance of the group), by at least a fixed percentage.
In this class of algorithms each group takes actions to solve its own local problem independent of agents outside
the group, but local–global ensures that though each group follows a myopic strategy, the global problem is solved.
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We model the automaton A as follows

States. The state of each agent i consists of the real-valued variable s [i ]. Initially, s [i ] stores an arbitrary real
value.

Actions. The set A of all feasible actions of the system is defined as

A � {a | ∀s : average(sa ) � average(t(sa , a)) ∧ MSE(sa ) ≥ MSE(t(sa , a)) }
where

average(sa ) � 1
Na

∑
j∈agents(a)

s [j ]

and

MSE(sa ) � 1
Na

∑
j∈agents(a)

(s [j ] − average(sa ))2

and Na is size of the agent set: Na � | agents(a) |.
The set A includes all group actions which keep the average of the group constant and do not increase the

mean square error of the group. The enabled condition of action a ∈ A for the state s is that the mean square
error of s [agents(a)] is positive; that is e(sa , a) � (MSE(sa ) > 0). For example, for j , k ∈ [N ] and 0 ≤ r ≤ 1, the
interact(j , k , r ) action (defined in the Example 3.1 and shown in Fig. 4b) belongs to the set A. This is because it
maintains a constant average,

average(t(sinteract(j ,k ,r ), interact(j , k , r ))) � s [i ] + r (s [j ] − s [i ]) + s [j ] − r (s [j ] − s [i ])
2

� average(sinteract(j ,k ,r ))

and does not increase the mean square error,

MSE(t(sinteract(j ,k ,r ), interact(j , k , r )))

� (s [i ] + r (s [j ] − s [i ]) − average(s))2 + (s [j ] − r (s [j ] − s [i ]) − average(s))2

2
� MSE(sinteract(j ,k ,r )) − (s [j ] − s [i ])2 · r · (1 − r )
≤ MSE(sinteract(j ,k ,r ))

since, by assumption on r , r · (1 − r ) ≥ 0.

Fairness. We assume that the system cannot be permanently partitioned into non communicating subsets. This
ensures that for any nonempty sets J and J̄ , eventually an action is executed in which agents from J and J̄
participate. After the execution of this action, the MSE of the group decreases by a factor lower bounded by
some constant � > 0. Formally, for every non empty J ⊂ [N ], we define

FJ � {interact(j , k , r ) | j ∈ J , k ∈ J̄ , r ∈ [L, 1 − L], L ∈ (0, 0.5]}
where L as the unique solution of the equation x · (1 − x ) � � in the interval (0, 0.5]. The fairness condition F is

F � {FJ | J ⊂ [N ] ∧ J �� ∅}.
Informally, under this fairness criteria the system cannot be permanently partitioned into non-communicating
subsets. Furthermore, when agents from complementary sets interacts the MSE of the group decreases by a factor
lower bounded by L · (1 − L).

The state ŝ stores the average of the initial values of the agents, and MSE(ŝ) � 0. To show correctness, we
are obligated to prove that the automaton A converges to ŝ . The first step is to identify a local–global relation
between states of the system. Then we use this relation to prove safety and progress.

Definition 12 For all x , x ′ ∈ R
N

x R x ′ ≡
(

average(x ) � average(x ′)
∧

MSE(x ) > MSE(x ′)
)

where average(x ) is the average of the value in x , and MSE(x ) is the mean square error of x .
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Lemma 4.1 R is a local–global relation.

Proof. By definition, LG1 of Definition 8 holds for R; it is left to show that LG2 (of the same definition) holds.
Consider arbitrary x , x ′ ∈ R

N and J not empty subset of [N ]. Since + is associative and commutative, LG2 holds
for average

(average(x [J ]) � average(x ′[J ])) ⇒ (average(x ) � average(x ′))

Next, we prove Condition LG2 for MSE. We want to show that

(MSE(x [J ]) > MSE(x ′[J ])) ⇒ (MSE(x ) > MSE(x ′))

In order to do so, we show the following sequence of equalities

| J | · (MSE(x [J ]) − MSE(x ′[J ]))
� { by definition }
∑
j∈J

(
x [j ]2 − x ′[j ]2 − 2x [j ] · average(x [J ]) + 2x ′[j ] · average(x ′[J ]) + average(x [J ])2 − average(x ′[J ])2

)

� { since average(x [J ]) � average(x ′[J ]) }∑
j∈J

(
x [j ]2 − x ′[j ]2

)

� { since average(x ) � average(x ′)} }∑
j∈[N ]

(
x [j ]2 − x ′[j ]2 − 2x [j ] · average(x ) + 2x ′[j ] · average(x ′) + average(x )2 − average(x ′)2)

� { by algebraic manipulation }
N · (

MSE(x ) − MSE(x ′)
)

�
Given that R is local–global, we can apply Theorem 3.7 to show that the average of the system is maintained

and mean square error is reduced.

Lemma 4.2
(∀t : average(s (t)) � average(s (0))

) ∧ (∀y, z : y < z ⇒ MSE(s (y)) > MSE(s (z ))
)

Proof. By definition, the set of actions

A � {a | a ⇒ R}
The lemma directly follows from Lemma 4.1 and Theorem 3.7. �

This result states that if the mean square error is positive then it will decrease eventually. It remains to be
shown that the mean square error will converge to 0. To do so, we provide a positive fraction, α (0 ≤ α < 1),
such that the mean square error decreases by at least α eventually.

Lemma 4.3 There exists α (0 ≤ α < 1) such that

∀v : �
(
MSE � v ⇒ ♦� MSE ≤ v · α

)

with

α � 1 − 2L · (1 − L)
N · (N − 1)2

Proof. At least one element of the array is greater than or equal to the average of the array

∃j : (s [j ] − average)2 ≥ MSE (2)

with MSE � v . Without loss of generality, we restrict attention to the case where s [j ] − average < 0 (proofs of
the other case are symmetric).
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Under this assumption, Eq. (2) becomes

− s [j ] + average ≥ RMSE (3)

where RMSE denotes the root mean square error RMSE � √
MSE

Let x be the array s sorted in increasing order. Hence,

x [0] ≤ s [j ] (4)

Since at least one element of x is greater than or equal to the average

x [N − 1] ≥ average (5)

From Eqs. (3), (4) and (5)

x [N − 1] − x [0] ≥ RMSE (6)

For 0 < k < N , define �[k ] as the difference between x [k ] and x [k − 1]

∀0 < k < N : �[k ] � x [k ] − x [k − 1]

For all k , �[k ] ≥ 0, and

x [N − 1] − x [0] �
N−1∑
k�1

�[k ] (7)

From Eqs. (6) and (7)
N−1∑
k�1

�[k ] ≥ RMSE

Hence, because for all k , �[k ] ≥ 0,

∃i : �[i ] ≥ RMSE
N − 1

(8)

Let F be the partition of the set of agents into two sets: set J of agents whose value is greater than or equal to
x [i ] and its complement J̄

J � {j | s [j ] ≥ x [i ]}
Then from Eq. (8)

∀u ∈ J , v ∈ J̄ : s [u] − s [v ] ≥ RMSE
N − 1

(9)

From the fairness requirement, an interact action between some agent u in J and agent v in J̄ occurs infinitely
often. For completeness, we present the algebra for concluding that the mean square error after the interaction
of u and v is at most α times the mean square error before the interaction. When the action interact(u, v , r ) is
executed (with r ∈ [L, 1 − L]), we have

s ′[u] � s [u] − r · (s [u] − s [v ])
s ′[v ] � s [v ] + r · (s [u] − s [v ])

Hence,

s ′[u]2 + s ′[v ]2 � s [u]2 + s [v ]2 − 2r · (1 − r ) · (s [u] − s [v ])2

Applying Eq. (9)

s ′[u]2 + s ′[v ]2 ≤ s [u]2 + s [v ]2 − 2r · (1 − r ) · MSE
(N − 1)2

Therefore, the MSE of the new state s ′, which we denote by MSE′, is such that

MSE′ ≤ MSE − 2r · (1 − r ) · MSE
N · (N − 1)2

� MSE ·
(

1 − 2r · (1 − r )
N · (N − 1)2

)
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Since L ≤ r ≤ 1 − L, and r · (1 − r ) ≥ L · (1 − L)

MSE′ ≤ MSE ·
(

1 − 2L · (1 − L)
N · (N − 1)2

)

≤ v · α

� MSE · α

where

α �
(

1 − 2L · (1 − L)
N · (N − 1)2

)

with α ∈ [0, 1). �
We now have the tools to show system convergence.

Theorem 4.4 A converges to ŝ .

Proof. Follows from Lemma 4.3 and Corollary 2.5 on convergence since the sequence α, α2, α3, . . . , αn is decreas-
ing and converging to 0. �

Moving to the average protocol. In this section we have proved that group-based algorithms with certain prop-
erties converge to the average of the initial system values. Any action of the system maintains the average of the
group, and does not increase the group error. As an instance of this class, we consider the protocol in [JLM03].
In this group-based protocol, the state space, and fairness criteria, are inherited from the automaton A , while
the set of actions in the system is define as follows,

A′ � { a | ∀j ∈ agents(a) : s [j ] :� average(sa ) }.
All agents participating in the action, set their value to the average of the group. It is straightforward to show
that this protocol is an instance of the class. The actions in A′ are a subset of the parent layer, as A′ ⊂ A.

4.2. Distributed consensus without failures

The system consists of N agents where the state of each agent is a real number. The goal of the system is to
eventually reach and remain in a state ŝ in which

∀j ∈ [N ] : ŝ [j ] � fold ◦ s0,

where s0 is an arbitrary initial state of the system. This is a generic task; for example, if ◦ is instantiated with the
min operator, then the system is required to eventually reach and remain in a state where all agent values are the
minimum of the initial state. We provide a protocol that applies the ◦ operator to pairs of agents. In Theorem 4.10,
we prove that this protocol solves the task in that the system terminates in ŝ . Our results apply provided that the
operator is associative, commutative, and idempotent.

Components of the concurrent system A are as follows

States. The state of agent j consists of the real-value variable s [j ]. Initially, s [j ] � s0[j ].

Actions. The set A is

A � {(j , k ) | s [j ] :� s [j ] ◦ s [k ], j , k ∈ [N ]}
The action s [j ] :� s [j ] ◦ s [k ] is represented by the ordered pair (j , k ). The pair is ordered because in action (j , k )
agent j reads the value s [k ] of agent k and sets the state of agent j to s [j ] ◦ s [k ] while leaving the state of agent k
unchanged.

Fairness. The fairness criterion is that for every nonempty subsets J , J̄ of agents, infinitely often some agent j
in J updates its own state with the state of some agent k in J̄ .

FJ � {(j , k ) | j ∈ J ∧ k ∈ J̄ }
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The fairness condition becomes

F � {FJ | J ⊆ [N ]}
Given this system, we would like to show that A terminates in ŝ . Following the strategy from Sect. 4.1, we

first identify a local–global relation between states and use it to show safety and progress. In this example, safety
and progress imply termination and the local–global relation is a relation on fold.

Definition 13 For all y, y ′ ∈ R
N , y R y ′ ≡

(
(fold ◦ y) � (fold ◦ y ′)

)

Lemma 4.5 R is a local–global relation.

Proof. Follows from Theorem 3.3 and assumptions on ◦. �
Lemma 4.6 ∀t : (fold ◦ s (t)) � (fold ◦ s (0))

Proof. Follows from Theorem 3.7. �
This result states that the executions of the actions in A maintain (fold ◦ s) constant and equal to (fold ◦ s (0)).

For example, if ◦ is the min operator, this lemma implies that throughout the execution of A the min of the system
does not change.

We prove progress of the system by applying Theorem 3.11. Recall the theorem requires an invariant of the
system G , a distance function d on the state space of A , and a predicate Q on the global state of the system. For
this reason, we introduce an auxiliary variable x that is an array of length N . The variable x is not included in
the automaton because it plays no role in the algorithm. Each entry of the array stores a set of indices (⊆ [N ]),
where the entry x [j ] keeps track of the indices of the agents used by agent j to update its own state. Initially each
agent know its own value, hence for all j the variable x [j ] is initialized as x [j ] � {j }. When an action (j , k ) is
executed, the set x [j ] is updated as follows

x [j ] :� x [j ]
⋃

x [k ] (10)

After executing the action (j , k ), the set x [j ] contains the index k , along with all indices used by k to compute its
own state. Since indices are never removed from x , it is always the case that

Lemma 4.7 �(∀j : j ∈ x [j ]).

Proof. Follows by construction. �
Using the auxiliary variable x , we define the following two predicates

Definition 14 Predicates G and Q on the state space of the system, are defined as follows

G(s) ≡ ∀j : s [j ] � fold ◦ s (0)[x [j ]]
Q(s) ≡ ∀j : (x [j ] � [N ])

The predicate G holds in state s if the state of each agent can be obtained as the application of fold to the restric-
tion of s (0) on the indices stored in x . The predicate Q holds in s if in state s the auxiliary variable x contains all
agent indices.

The variable x plays an important role in the definition of these predicates and in the proof of correctness
of the system. In Lemma 4.8, we prove that G is an invariant of the system; while, in Lemma 4.9, we define a
distance function d using x and prove using Theorem 3.11 that eventually Q . Combining these two lemmas and
Lemma 4.6, the proof of the main theorem follows. We start by proving the following.

Lemma 4.8 The predicate G is an invariant of the system.

Proof. From the initialization of x , G is true initially.
Consider an arbitrary j ∈ [N ]. By definition, we know that s ′[j ] � s [j ] ◦ s [k ] for all action (j , k ) where s ′ denotes
the post-state of action (j , k ). Since the invariant holds for s [j ], s [k ], we have that

s ′[j ] � (fold ◦ s (0)[x [j ]]) ◦ (fold ◦ s (0)[x [k ]])

� fold ◦
(

s (0)[x [j ]]
⋃

s (0)[x [k ]]
)



666 K. M. Chandy et al.

Since ◦ is idempotent

∀j : s ′[j ] � fold ◦ s (0)[x ′[j ]].

where x ′, that denotes the vector x in the state s ′, has been computed using Eq. (10). �
Eventually all agents update their own states using the values of all agents.

Lemma 4.9 The predicate Q eventually-always holds.

Proof. For each k ∈ [N ], and state s , we define Jk as the set of agents j where x [j ] does not include k

Jk (s) � {j | k �∈ x [j ]}
Then, by construction, it follows that for all actions of the system, where execution of the action takes the system
from state s to s ′, Jk (s ′) ⊆ Jk (s).

For agent k , we define the predicate Qk on the state space of the system, as

Qk (s) ≡ ∀j : (k ∈ x [j ]) (11)

which is true if k is a member of x [j ] for all j .
From the definition of Qk , ¬Qk ≡ (Jk �� ∅). Consider the case where ¬Qk holds. For this case, partition

the set of agents into Jk , and its complement. From Lemma 4.7, it follows that J̄k �� ∅; and by definition of
¬Qk , Jk �� ∅. Let Fk be the set of actions

Fk � {(i , j ) | i ∈ Jk ∧ j ∈ J̄k }
Execution of any action in Fk strictly decreases the cardinality of Jk .

From Theorem 3.11 with dk (s) defined to be the size of Jk (s), ♦� Qk . Since ♦� is conjunctive

(∀k : ♦� Qk ) � ♦� (∀k : Qk ), and
(∀k : Qk ) ⇒ (∀j : x [j ] � [N ]).

The progress property follows. �
We are now able to show system termination.

Theorem 4.10 If ◦ is associative, commutative and idempotent, A terminates in ŝ .

Proof. The theorem follows from the above safety and progress properties—Lemmas 4.6, 4.8 and 4.9,
respectively. �

Consensus using non-linear operators. As concrete examples, we consider the protocols in [OSFM07, BHOT05],
where the ◦ operator is instantiated with non-linear operators such as max and min. We present the protocol for
min. This concrete instantiation has the same state space and fairness criteria as the generic protocol presented
above. The set of actions is refined as follows,

A′ � { (j , k ) | s [j ] :� min(s [j ], s [k ]), j , k ∈ [N ] }.
In this case, agent j takes on the minimum value of itself and the value of agent k . This protocol is a valid
instantiation of the generic protocol because the min operator satisfies the assumptions on ◦: associativity, com-
mutativity, and idempotence. In this example the state space of the system is discrete in that the set of values each
agent can contain is finite, dictated by the initial values in the system.

5. Faulty message passing systems with continuous state spaces

In this section, we discuss local–global relations, stability, convergence and termination for systems where agents
interact by sending messages. In this class, agents interact by exchanging messages, which can be lost, delayed or
arrive out-of-order. A key assumption of these systems is that messages are either lost or delivered in finite but
unknown time.

We present results for proving convergence of these systems and present examples. One of the examples con-
siders the message passing version of the Gauss algorithm, an iterative scheme used to solve systems of linear
equations. We show that this algorithm is correct in that it recovers the solution of the system. We are interested
in this specific problem because many pattern formation algorithms are instances of the general problem; for
example, agents forming a straight line [CMP08].
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5.1. Automata formulation

We give a formal description of a message passing system with bounded delay. A message passing system consists
of N agents that use a communication medium to interact. We first describe the agents and then the communi-
cation layer.

Agent automata. Each agent j can be formalized as an automaton. Its state s [j ] contains (1) a clock variable
nowj , which stores agent j local time and is initially set to 0, and (2) a vector C [j , ·], which stores in C [j , k ] the
last message received from k for each k �� j , each entry of the vector is initially set to ⊥. Each agent can store
other problem specific state variables. Agents have input, output and internal actions. They must implement a
send and receive action. When agent j executes a send action, it sends the pair (j , v ), i.e. its sends its identifier
and the current value of some variable v of interest (stored in s [j ]). The agent executes the send action infinitely
often; however, the number of messages sent within a finite time interval is finite. The input action receive delivers
messages to the agent. It is controlled by the communication channel described below.

Communication channel. The communication layer is a broadcast channel M allowing for lost, delayed or
out-of-order messages. We make the following assumptions that formalizes our fairness requirement on agent
communication:

• messages remain on the channel for a finite, but unknown, amount of time, denoted by T ; and
• for all pair of agents (i , j ), i receives messages from j infinitely often.

Under these assumptions, messages can either get lost or received in bounded, but unknown, time. It is not
possible that all messages between two agents are lost; rather, it is always the case that eventually some message
from i is delivered to j .

The state of M consists of a two-dimensional array buf of size N × N . Each entry (j , k ) contains the set of
time stepped messages in transit from j to k . Initially, each entry is empty. We assume that buf [j , j ] is always
empty. The communication medium has a real time variable called now, initially set to 0. The actions include

• sendj (m). This is a input action where agent j broadcasts message m. This action adds the time message (m, t)
to all the out channels of j with t � now + T . The value t is called the deadline of m. Message m must be
delivered by real-time t .

• dropj ,k (m). It is an internal action and models the loss of message m in transit from j to k .
• receivej (m). This is an output action where agent j receives message m. The receive action is enabled only

when the deadline of message m is not violated. This means that the current real-time is not larger than the
message deadline. The message m is deleted from the channel.

A detailed description of this automaton is presented in [CMP08]. Readers interested in its implementation
are referred to our PVS code [GMPJ09]. Further, the complete partially synchronous system is modeled as an
automaton B that is obtained by composing N agent automata and the broadcast channel automaton.

5.2. Proofs of stability and convergence using local–global relations

This section discusses the concepts of stability, convergence, termination and local–global relations for partially
synchronous systems. These properties can only be shown for un-timed systems, because the values of real-time
related variables diverge along any admissible execution of the automaton. Given a timed system, the corre-
sponding un-timed one is obtained by removing the real-time variables from the states of the system. Hence,
the un-timed automata for a message passing system has the same variables of the timed one, except the time
variables.

The definitions of stability, convergence and termination for un-timed message-passing systems are analo-
gous to the ones given in Sect. 2. In [CMP08] (Theorem 2), the authors present sufficient conditions for proving
convergence of B (the message passing system automaton) in terms of the convergence proof of the correspond-
ing shared state system A . A synchronous system is a concurrent system, where the execution of any action
a can change only the state of one agent in agents(a) (the state of all remaining agents is unchanged). These
results rely on establishing the existence of a (Lyapunov) function that is non-increasing along all executions of
the system (see [Tsi87]). This Lyapunov function is usually described in terms of a collection of level sets of the
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system state space. The sufficient conditions presented in [CMP08] have two assumptions. First, level sets of the
Lyapunov function are rectangular. The second assumption pertains to the communication medium: for each
communication channel, the receiver eventually receives at least one message from the sender. In [CMP08], the
authors do not allow for out-of-order messages.

The definition of local–global relation can be extended to message passing system. We represent the state of
the system as an array of length 2 ·N 2; the first N 2 entries contain the values of the matrix C , while the remaining
N 2 entries correspond to the buf variable and contain the set of messages in transit between any pair of agents.
Hence, the definition of local–global relations for message passing systems is analogous to Definition 8.

5.3. Distributed consensus with messages

In this subsection, we extend the example in Sect. 4.2 to message passing systems. Each agent j stores a real value
in s [j ] and sends the pair (j , s [j ]) infinitely often. When agent j receives a message m from m.sender (which
stores the identifier of the sender of m), it sets its value to

s [j ] :� s [j ] ◦ m.value

where m.value is the content of the message. Theorem 4.10 proved that the system reaches consensus under per-
fect communication. The theorem also holds under partial synchronous communication, however. If we denote
by B the partially synchronous (un-timed) automaton, we have the following;

Theorem 5.1 If ◦ is associative, commutative and idempotent, B terminates in ŝ .

Proof. The proof of Theorem 4.10 applies to message passing systems as well since fold is assumed to be idem-
potent. �

5.4. Solving systems of linear equations

In this section, we consider an iterative scheme for solving systems of linear equations. In partially synchronous
systems, each agent is responsible for solving one equation of the system (i.e. finding the value of one variable
in the system). Agents update their variables using the received messages; these messages contain values of the
other variables which are potentially old and computed at different times.

We show convergence for this iterative scheme. This is an example where the state space is continuous and
the system operates over continuous time. We are interested in this algorithm, because many iterative schemes
for pattern formations of robots (for example [OSFM07, CMP08]) are instances of this algorithm. In the end
of this section, we discuss a specific pattern formation algorithm where agents want to form a straight line. The
results presented in this Section extend the work of [GM80] in the linear case, the work of [CMP08] allowing for
out-of-order messages and the work of [CM69] relaxing some assumptions on the equations of the system.

The system we consider is as follows.

Linear systems of equations. The system consists of N agents that communicate via wireless messages. Each agent
j ∈ {0, . . . ,N − 1}, has a real-valued state variable denoted by x [j ]. Let A be an invertible N × N matrix of
reals and b be a vector of real numbers with N elements indexed by {0, . . . ,N − 1}. Let x̂ be the solution to the
equations A · x � b, that is, x̂ � A−1b. The goal of the algorithm is for the states of the individual agents to
converge to x̂ by exchanging messages.

Restrictions on A. We assume that A is invertible, weakly diagonally dominant, N × N matrix with diagonal
elements equal to unity; that is, ∀k :

∑
j ��k | A[k , j ] | ≤ 1. We make the additional assumption that:

∃i :
∑
j ��i

| A[i , j ] | < 1. (12)

The incidence graph (V ,E ) of matrix A is defined as follows: V is the set [N ], and a directed edge (j , k ) is in E ,
if A[j , k ] �� 0. For any i and j in [N ], j is said to be a neighbor of i if (i , j ) is an edge in E . We denote the set
of neighbors of i by Ni . A vertex i ∈ [N ] is said to be a root if it satisfies Eq. (12). For the remainder of this
section, we restrict our attention to the matrices where there is a directed path from all vertices to a root. Our



Verification of distributed systems with local–global predicates 669

assumption on the matrix A relaxes the assumption in [CM69] where the authors consider strictly diagonally
dominant matrices.

Given the incidence graph, we define a rooted forest as a collection of disjoint trees rooted at root vertices.
Given a rooted forest F and a vertex j ∈ F, we denote by ancestors[j ] the set of ancestors of j in the forest. This
set includes j itself, and for any vertex k is in ancestors[j ], if k has a parent k ′, then k ′ also in ancestors[j ].

Agent states. Associated with each agent j ∈ [N ] are the following state variables:

• x [j ] is a real-valued variable and is called the location. Initially, x [j ] is arbitrary.
• z [j ] is also a real-valued variable and is called the target. Initially, z [j ] is equal to the initial value of x [j ].
• C [j , ·] is an array of length N with elements of type R ∪ {⊥}. For all k �� j , C [j , k ] contains the last message

received by j from k ; if no such messages exists then C [j , k ] � ⊥. C [j , j ] � x [j ].

Agent actions. The state of an agent changes through the performance of three types of actions. In what follows,
we describe the state transitions brought about by these action.

• A sendj (m) action models the sending of message m by agent j . A message sent by j is a pair (j , x [j ]). We
denote by m.sender the first component, j in this case, and by m.value the second component x [j ], of message
m. Agent j sends messages to the channel infinitely often; however, the number of messages sent within a
finite time interval is finite.

• A receivej (m) action models the receipt of message m by agent j . When receivej (m) occurs, it sets
C [j ,m.sender ] to be m.value. If agent j has received a message from all of its neighbors, that is, for all
k ∈ Nj : C [j , k ] �� ⊥, then the target z [j ] is set as

z [j ] :� b[j ] −
∑
k ��j

A[j , k ] · C [j , k ].

Notice that the right hand side is the solution of the j th equation in the system of linear equations, with
C [j , k ] in place of x [k ].

• A movej (dt) models the movement of agent j towards z [j ] over the finite time interval dt . This action updates
the values of x [j ] and of the global clock now as follows

x [j ] :� fj (z [j ], dt)
now :� now + dt

where the function fj represents the dynamics of agent j . We only allow dynamics where

x ′[j ] ∈ [x [j ], z [j ]]

with x ′ being the value of x [j ] in the post-state of the action. In particular, we allow agents to be stationary in
the interval dt . As described in the next paragraph, agents will eventually move because of fairness constraints.
It should be noted that the action does have a pre-condition: it can be executed only if the value of now in the
post-state does not violate messages deadlines. In other words, the deadlines of all messages in M are greater
than now + dt .

Fairness. Given agent j , we denote by x (t)[j ] and z (t)[j ] the values of x [j ], z [j ] at time t . These variables are not
well-defined at points in time where multiple discrete actions happen at the same real time. In this case, we assume
their values to be the ones stored in the post-state of the last action executed at time t .

Denote by L the position of agent j at real time t . In the case when for all t ′ ≥ t , z (t ′)[j ] > L, we make the
following fairness assumption: agent j will either move to reach its destination, or it will move to its right by at
least some constant amount �. Formally,

∀j ∈ [N ], t ∈ R≥0, (L � x (t)[j ]) ∈ R :(
L < z (t)[j ]

)
∧

(
∀t ′ ≥ t : L < z (t ′)[j ]

)
⇒

(
∃t ′ ≥ t : x (t ′)[j ] � z (t ′)[j ] ∨ x (t ′)[j ] ≥ L + �

)

The condition where the agent destinations are to the left of the agents location is symmetric.
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Our goal is to show that the corresponding untimed automaton A converges to Ŝ which is the set of all final
state of the system. This set consists of all states where

∀j : x [j ] � x̂ [j ] ∧ z [j ] � x̂ [j ] ∧ ∀k : C [k , j ] � x̂ [j ] ∧ ∀m ∈ M : (m.sender � j ⇒ m.value � x̂ [j ])

i.e., for each agent j , all occurrences of j stores the value x̂ [j ].
This formulation is very general. This is an iterative scheme, where agent j solves the j th equation of the

system using values received from its neighborhood. In our model, agent j has two variables to represent the
solution to its equation, location and target. Using two variables allows us to model system dynamics, which are
common in real-world applications such as robotics. For example, if location represents the current position of
agent j and target represents its destination position, then the move models the movement of agent j as a function
of time. If only one variable is used to represent the solution, this action would be instantaneous.

We want to prove that the automaton B converges to Ŝ . First we introduce definitions to capture the evolution
of the errors of the system. These definitions are used to create a local–global relation.

Definition 15 We define the following error variables and functions in the system

• localError is an array of length N . For each agent, it stores the difference between agent desired location and
its current location,

∀j : localError[j ] � | x̂ [j ] − x [j ] |
• destinationError is an array of length N containing the error of the target location z ,

∀j : destinationError[j ] � | x̂ [j ] − z [j ] |
• receivedError[j , ·] is an array of length N storing the errors of the values of C [j , ·]. For all k ,

C [j , k ] � ⊥ �⇒ receivedError[j , k ] � 0
C [j , k ] �� ⊥ �⇒ receivedError[j , k ] � | x̂ [k ] − C [j , k ] |

• the function msgError : M → R computes the error of the messages in M. If m is a message in transit,

msgError(m) � | x̂ [m.sender ] − m.value |
• error is a array of length N . For each agent, it contains the maximum error of the agent in the system. For

all j

error[j ] � max
(

localError[j ],

destinationError[j ],
max
k ��j

receivedError[k , j ],

max
m∈M∧m .sender�j

msgError(m)
)

• E is the maximum error over all agents

E � max
j

error[j ]

The following inequality relates agent destination and received errors.

Lemma 5.2 For all j ∈ [N ],

(∀k ∈ Nj : C [j , k ] �� ⊥) ⇒
⎛
⎝destinationError[j ] ≤

∑
k ��j

| A[j , k ] | · receivedError[j , k ]

⎞
⎠

Proof. Assume that ∀k ∈ Nj , agent j has received at least one message from k . Under this assumption, agent j
sets its destination variable z [j ] to

z [j ] � b[j ] −
∑
k ��j

A[j , k ] · C [j , k ]
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By definition,

x̂ [j ] � b[j ] −
∑
k ��j

A[j , k ] · x̂ [k ]

The difference of the two above expression is given by

(x̂ [j ] − z [j ]) � −
∑
k ��j

A[j , k ] · (x̂ [k ] − C [j , k ])

Hence,

destinationError[j ] ≤
∑
k ��j

| A[j , k ] | · receivedError[j , k ]

�
We next define a local–global relation on the state of the system

Definition 16 For all s, s ′ ∈ R
2·N 2

, we define R as follows

R(s, s ′) ≡ (
E (s) ≥ E (s ′)

)

where E (s) is the maximum error of the system at state s .

We want to show that R is local–global.

Lemma 5.3 R is a local–global relation.

Proof. It follows from the definition of E . �
Using this local–global relation, we show that the error of the system does not increase.

Lemma 5.4 ∀u, v ∈ R : 0 ≤ u ≤ v : E (s (u)) ≥ E (s (v ))

In this lemma s (u) denotes the state of the system at time u.

Proof. We first prove that the set of action A of the automation B implies the relation R, i.e. A �⇒ R. This is
equivalent to showing that the maximum error E does not increase when any action is executed.

The proof is straightforward when the system executes a send action. This is because no new values are added
to the system. The proof of the case when a receive action is executed follows from Lemma 5.2. It holds when
the system executes a move action. In this case, by assumptions on the dynamics, the error of the location in the
post-state is upper bounded by the maximum of the destinationError and localError of the pre-state.

Using the generalization to continuous time system of Theorem 3.7, the proof follows. �
Next we find some factor α, 0 ≤ α < 1, for which the error of the system, E , decreases (eventually) by α

while remaining positive. We fix an arbitrary rooted forest F of the incidence graph of the matrix A, and give the
following recursive definition:

Definition 17 For each agent j , we define p[j ] as follows

p[j ] �
{∑

k ��j | A[j , k ] | if j is a root in F,

| A[j , parent(j )] | · p[parent(j )] +
∑

k �∈{j ,parent(j )} | A[j , k ] | otherwise.

where parent(j ) denotes the parent of j in the forest F.

The p values are constants in [0, 1):

Lemma 5.5 ∀j : 0 ≤ p[j ] < 1

Proof. Proof follows by induction on the trees within the forest using the restriction on A in Eq. (12). �
Using the p values, we define the following family of predicates.

Definition 18 For any real number W , and j ∈ [N ] ∪ ⊥,

Zj ≡
{

E ≤ W if j � ⊥,(
∀k ∈ ancestors[j ] : error[k ] ≤ W · p[k ]

)
∧ E ≤ W otherwise.
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For all non-root vertices j , the predicate Zparent(j ) is well defined. When i is a root of F, we assume Zparent(i) ≡ Z⊥.

For each agent k the predicate Zj gives an upper bound on its error in the system. This upper bound is p[k ] · W
if the agent is an ancestor of j and it is W otherwise. Note that p[k ] · W < W , as shown in Lemma 5.5.

We now show stability and progress results for this family of predicates. We first prove that if the predicate Zj

(with j ∈ [N ] ∪ ⊥) holds at any point in an execution, then this predicate continues to hold forever thereafter.

Lemma 5.6 For any real number W , for any j ∈ [N ] ∪ ⊥, � (Zj ⇒ ♦� Zj )

Proof. The proof is straightforward when executing a send or a move action. When executing a receive action,
we consider two cases.

Case 1: We assume that j ∈ [N ], k ∈ ancestors[j ] and k executes a receive action. The interesting case is when k
updates its destination z [k ]. We want to show that Zj holds for k . From Lemma 5.2,

destinationError[k ] ≤
∑
l ��k

| A[k , l ] | · receivedError[k , l ]

From the above equation, it holds that, if k is a root of F,

destinationError[k ] ≤ W · p[k ].

This follows from the definition of p[k ] and since ∀l : receivedError[k , l ] ≤ W (from Zj ). When k is not a root,
rewriting the above equation, we get

destinationError[k ] ≤ | A[k , parent(k )] | · receivedError[k , parent(k )]

+
∑

l ��{k ,parent(k )}
| A[k , l ] | · receivedError[k , l ]

Using Zj and the recursive definition of p[k ], we get

destinationError[k ] ≤ | A[k , parent(k )] | · W · p[parent(k )] +
∑

l ��{k ,parent(k )}
| A[k , l ] | · W

≤ W · p[k ]

Case 2: We assume that j � [N ] ∪ ⊥ and agent k executes the receive action. We also assume that if j ∈ [N ], then
k �∈ ancestors[j ]. We want to show that Zj holds for k when k updates its destination z [k ].

Using Lemma 5.2, the assumption on Zj and weakly diagonally dominant assumption on A, we get

destinationError[k ] ≤
∑
l ��k

| A[k , l ] | · receivedError[k , l ]

≤
∑
l ��k

| A[k , l ] | · W

≤ W

�
We next show the progress result. If the predicate Zparent(j ) holds at any point in an execution, then the predicate

Zj eventually holds.

Lemma 5.7 For any real number W , for any j ∈ [N ], � (Zparent(j ) �⇒ ♦Zj )

Proof. The proof is by induction on each tree of F.

Base Case. Let j be a root in F. Predicate Zparent(j ) ≡ Z⊥ holds. From Lemma 5.6, we know that once this condi-
tion holds, then it continues to hold forever thereafter. In order to prove that Zj holds at some point later in
the execution, we only need to show that error[j ] ≤ W · p[j ].
From the fairness criterion on agent communication, j receives messages infinitely often from any k with
A[j , k ] �� 0. Therefore,

∀k : receivedError[j , k ] ≤ W
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Hence, using Lemma 5.2, and the definition of p[i ], eventually

destinationError[j ] ≤ W · p[j ]

From the fairness condition on agent movement, eventually

localError[j ] ≤ W · p[j ]

By assumption on M, all earlier messages will no longer be in transit after some bounded time T . Hence,

∀m ∈ M ∧ (m.sender � j ) : msgError(m) ≤ W · p[j ]

Hence, for any k where A[k , j ] �� 0, eventually

receivedError[k , j ] ≤ W · p[j ]

From the all the above equations, eventually

error[j ] ≤ W · p[j ]

Induction step. By assumption, j is not a root. The proof is very similar to the base case, and we only show the
reduction in error of the destinationError[j ].
Using Lemma 5.2,

destinationError[j ] ≤ | A[j , parent(j )] | · receivedError[j , parent(j )]

+
∑

k ��{j ,parent(j )}
| A[j , k ] | · receivedError[j , k ]

Using Zparent(j ), and the recursive definition of p[j ], eventually

destinationError[j ] ≤ | A[j , parent(j )] | · W · p[parent(j )] +
∑

k ��{j ,parent(j )}
| A[j , k ] | · W

≤ W · p[j ]

�
Using the local–global relation, we have shown that the maximum error of the system does not increase for

any infinite fair trajectory of the system. We still have to show that it will converge to 0. Next we provide some
factor α, 0 ≤ α < 1, for which the error of the system, E , decreases (eventually) by α while remaining positive.

Lemma 5.8 There exists an α where 0 ≤ α < 1, for all W > 0,

�(E > 0 ∧ E ≤ W ⇒ ♦� E ≤ W · α)

Proof. Let α be defined as follows,

α � max
j

p[j ]

Then from Lemma 5.5, α < 1.
Consider the family {Zi }i∈[N ]∪⊥. By assumption, E ≤ W , meaning that Z⊥ holds. It holds forever thereafter,

by Lemma 5.6. Z⊥. Using Lemma 5.7, Zi eventually holds with i being any root of F. From the fairness criterion
on agent communication and agent movement, iterating Lemma 5.6 and Lemma 5.7 for all levels of F, eventually
results in

∀j : error[j ] ≤ W · p[j ]

Hence, eventually

E � max
j

error[j ]

≤ W · max
j

p[j ]

� W · α

Using Lemma 5.6, E ≤ W · α holds forever thereafter. �
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Theorem 5.9 B converges to Ŝ .

Proof. Follows from Lemma 5.8 and Corollary 2.5 on convergence. �

Mobile agent pattern formations. As an instance of the iterative method provided above, we present a pattern
formation algorithm. Consider a system of N agents communicating using a wireless medium. The goal is to
form the following pattern. Assuming 0 and N − 1 stationary, we want to design algorithms for other agents
so that they eventually converge to a straight line joining the locations of agents 0 and N − 1, where agents
are equispaced. In [CMP08], the authors discuss convergence results for the following algorithm. Each agent
j �� {0,N − 1} upon receive a message ml from j − 1 and mr from j + 1, sets its location to the average of the
two received locations,

s [j ] :� ml .value + mr .value
2

In [CMP08], the authors show convergence of the algorithm assuming instantaneous movement (from their
current position to their new position) and not allowing for out-of-order messages.

The algorithm can be translated into a system of linear equations A · x � b where

∀0 ≤ j ≤ N − 1 : A[j , j ] � 1
∀j > 0 : A[0, j ] � 0

∀j < N − 1 : A[N − 1, j ] � 0
∀0 < j < N − 1 : (A[j , j − 1] � A[j , j + 1] � −0.5) ∧ (∀i �∈ [j − 1, j + 1] : A[j , i ] � 0)
∀j �∈ {0,N − 1} : b[j ] � 0

b[0], b[N − 1] : arbitrary values

This matrix satisfies the condition given by Eq. (12). In the rows 0,N −1, the sum of the non-diagonal entries
is 0, while the diagonal entries have value 1.

The solution to this system of equations has all the x [j ] values equispaced between b[0] and b[N − 1]. The
algorithm converges to a straight line, from Theorem 5.9, also in the case of non-instantaneous movement. We
can design algorithms for other formations in a similar way.

6. Verifying distributed systems using PVS

The theorems presented in this paper have also been verified mechanically using PVS. This allowed us to not
only gain confidence in our methodology, but to build a reusable library of theorems for proving correctness of
concurrent systems. Verifying theorems mechanically takes more work than proofs checked by hand, as nothing
can be assumed and small steps must be verified—for example, that min is commutative. One way to alleviate
this burden is to develop libraries of theorems. Most prover libraries deal with mathematics in general, defining
properties of sets, functions, and numbers. Our contribution is a library that deals with concurrent composition,
and distributed systems.

The organization of our library closely follows the organization of this paper, and PVS proves to be an
adequate tool in this regard. Inheritance in PVS is achieved through assumptions and parametrized theories
[MB97, dJvdPH00]. Parametrization within PVS is a means of making abstract types within a package concrete.
Assumptions are theorems that are assumed to be true within a package.1 These theorems must be discharged
once the package is imported by another package. For example, to prove properties of fold we assume that the
operator is commutative, associative, and monotonic—PVS assumptions are a way to force those that inherit
from fold to actually discharge these assumptions. Figure 5 provides an overview of our verification methodology
in PVS. Throughout the section, we represent agents with an uninterpreted type A and the type of their state with
an uninterpreted type T . States of the distributed system are functions from A to T .

Local–global relations are at the root of our theoretic hierarchy (lines 1–9). The package is parametrized with
the types A and T , a function f from states and sets of agents to T , and a transitive relation > over the agent-value
type. This package assumes f to be local–global as denoted by the assumption f local global, which is LG2 of
Definition 8. The fold package (lines 11–26) provides a declaration of fold as outlined in Definition 9. This theory
is parametrized with A, T , a binary operator ◦, and a transitive relation >. The binary operator is a function

1 We use the term “package” to refer to a PVS theory file.
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Fig. 5. A summary of our methodology in PVS for distributed consensus (Sect. 4.2). The model includes the following theories: local global,
fold, ifold, and min

from T × T to T . The assumptions on lines 13 through 17 correspond to Theorem 3.5. By importing the local
global package (line 25), the fold package is required to show f local global, formally proved in Theorem 3.5.
In PVS, like in our hand proof, this is done using the commutativity, associativity, and monotonicity operator
assumptions, along with some algebraic manipulation. The ifold package (lines 28–39) is a specialization of
fold. It accepts the same parameters, but adds a restriction that ◦ be idempotent. This assumption allows us to
prove the correctness of distributed consensus protocol presented in Sect. 4.2. Lines 33–35 are repeated from fold
(lines 13–17) since they cannot be discharged at this level. In our library, the ifold package is instantiated with
several examples, including min, max, gcd, lcm, and convex hull. The min example is presented on line 43; it is
parametrized with an agent type. When importing ifold, the type T is set to real numbers, ◦ is the min operator (a
standard PVS function), and the conservation relation > is equality. When we import ifold, we have to discharge
the commutative, associative, idempotent, and monotonic assumptions with respect to min.

Implementing the entire package required 57 lemmas and approximately 800 proof steps.2 Almost 60% of
our work went into developing a library of relatively simple lemmas that we used repeatedly, such as algebraic
properties about fold. Approximately 15% of work in PVS was devoted to proving that the concrete operators,

2 We use “lemmas” and “steps” to describe PVS metrics. A lemma count gives some idea of the complexity of a proof. Steps are the number
of commands required to discharge a lemma. These are highly subjective metrics; they are intended to provide informal measures of work.
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Fig. 6. A comparison of the PVS library structure (left) and Java object refinement (right). The correspondence between the development
design is one-to-one

such as gcd, satisfied the assumptions made of the abstract operator ◦. Future work will be reduced as these
libraries develop.

The example presented in Sect. 4.1, distributed average, has also been implemented in PVS. We also have
libraries representing automata and concurrent systems as defined in Sects. 2 and 3.1. We proved sufficient con-
ditions for system safety and progress, outlined in Theorems 3.7 and 3.11, respectively. All of the proofs used
for dealing with convergence and stability of continuous systems (Theorems 2.2 and 2.3) were proved in PVS.
Proofs of convergence of mobile agents to the straight-line formation, Sect. 5.4, were carried out in PVS as well.
However, mechanically proving the general problem of solving systems of linear equations using mobile wireless
agents is ongoing.

Although we were confident in our hand-proofs, checking our work in a theorem prover was a valuable exer-
cise. First, it forced us into a very particular kind of thought process. On occasion, we had to rethink our proof
based on an inability to show it in PVS. Often, the result of such rethought was a simplification in our approach.
Complexity in our model comes from simple building blocks, which ultimately made the implementation, and
subsequent debugging during implementation, much easier. The second advantage of working with a theorem
prover was that it provided a tangible representation of our verification methodology. Rather than having several
ideas that were loosely related, when implemented in PVS we had to think about the problem in a more structured
fashion—exactly how fold fit into the local–global idea had to be well defined. Such structure ultimately improved
our methodology.

7. Java implementation

Based on our PVS model, we have transformed the examples from Sect. 4 into executable programs written in
Java. Our goal was to create correct software based on the layering method used in verification. Unlike more
automated efforts [BPH07, DF06, Sac08, Ken08], our transformations were done manually.

In this section we look specifically at our Java implementation of the consensus example from Sect. 4.2. It
consists of three base classes: one representing operators, another for agents, and a third for communication. The
operator class is abstract, refined to obtain specific functions of interest, such as max and gcd. This is analogous the
operators abstract representation in PVS, and its instantiation by concrete operators. As shown in Fig. 6, the corre-
spondence between the PVS library structure and Java object refinement is one-to-one. The agent class represents
a single agent in our system; each is a separate thread, with multiple agents communicating via message passing.

The communication layer is necessary to compose groups of agents. In our case, it also provided agents with
an atomic environment in which to share and update their state. This layer in the implementation is not formally
verified in our model; we refer the reader to the wide body literature which addresses this concern (see, for example,
[Kha04, ADKM92, Rei96, HJR04, JS04]). We assume that the environment—for example the communication
medium—satisfies certain properties and prove that the overall system consisting of agents and the environment
satisfy other properties. In the Java implementation we implemented both the agents and we simulated the envi-
ronment. In our simulation of the communication medium, a group of agents upholds the fairness guarantee
our model requires (recall Definition 2). Groups are created using Java’s random number generator (JRNG):
given the entire set of agents within the system, random agents to are assigned to a single group (agents without
a group assignment are thought of as being in a group consisting of only themselves). Thus, we assume that
over the course of the system lifetime, JRNG will choose each agent at least once. We did not prove that JRNG
satisfies Definition 2.

Our verification methodology produces several modular components whose correctness is well understood—
both in their assumptions and in their execution guarantees. Knowing these components helps to direct the focus
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Fig. 7. Implementation of min in PVS (left) and Java (right). The Java implementation is annotated with JML

of implementation verification. In this example, there are two aspects of the implemented system we must verify:
that the concrete operators in Java are equivalent to their PVS representations, and that fold is conserved in each
state transition (Lemma 4.6). Our Java implementation uses the Java Modeling Language (JML) [BCC+05] to
enforce system verifications. In general, JML is used to specify the behavior of Java objects, and check during
run-time that those specifications are upheld. The tool allows programmers to prepend object methods with pre-
and post-conditions, and annotate arbitrary lines of code with system invariants. An advantage of JML is its
support for abstract programming concepts that are closer to mathematics than standard Java, such as set theory
and quantification. An example of how JML is used to verify the Java min operator is outlined in Fig. 7. The
figure on the left is the PVS representation of min; on the right is its representation in Java (lines 5–7), annotated
with JML (lines 1–4). Based on the min implementation in PVS, a valid functional transform is one that places a
restriction on its return type (left line 1), and whose value is equal one of its input parameters. Both are captured
with the JML post-condition checks on (right) lines 2 and 3, respectively. These assertions alleviate the need to
be concerned with how min is implemented in Java; thus, in the transformation from PVS to correct software,
the crucial step is the JML.

8. Conclusions

In this paper we have proposed a methodology for verifying concurrent systems whose correctness can be expressed
through local–global relations. These properties ensure that when groups of agents take steps that change their
local states, global properties of the system are preserved. We have provided sufficient conditions for proving con-
vergence and termination for these systems. Our proof obligation is to show (1) safety: that local–global relation
is preserved, and (2) progress: there is a set of fair actions whose execution reduces a distance (Lyapunov) function
by at least a constant amount. We have shown how our methodology is applied to three examples: distributed
consensus and average without failure, and multi-agent cooperation in solving systems of linear equations when
agent communication is faulty. The theorems and algorithms presented in this paper have been mechanically
checked using PVS, producing a reusable library of theorems [GMPJ09]. Finally, the PVS algorithms have been
translated into Java.

Our methodology can be applied to systems with both discrete and continuous state spaces, as shown by
our examples. The theory has also been applied to systems that operate in continuous state spaces and over
continuous time intervals. Our examples have focused on distributed control problems where the application
of our methodology allowed us to give a better formalization, and further generalization, of known results in
the field. For example, in the average consensus problem we proved correctness by identifying a local–global
property, namely that average, and a decreasing mean square error, were locally maintained. In the systems of
linear equation example, our methodology allowed us to weaken the strictly diagonally dominant assumption on
the matrix, and to deal with continuous state changes of agents.

An area of further work is to develop algorithms and theory for proving distributed control problems that
operate in adversarial environments. Another area is to extend our PVS library to richer classes of distributed
problems, or even extend the library to another theorem prover entirely. Finally, we would like to automate the
translations of PVS to Java, and PVS lemmas and assumptions to JML.
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