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Abstract. Given a finite state machine denoting the specification of a system, finding some short interaction
sequences capable of reaching some/all states or transitions of this machine is a typical goal in testing methods. If
these sequences are applied to an implementation under test, then equivalent states or transitions would be reached
and observed in the implementation—provided that the implementation were actually defined as the specifica-
tion. We study the problem of finding such sequences in the case where configurations previously traversed can
be saved and restored (at some cost). In general, this feature enables sequences to reach the required parts of the
machine in less time, because some repetitions can be avoided. However, we show that finding optimal sequences
in this case is an NP-hard problem. We propose an heuristic method to approximately solve this problem based on
an evolutionary computation approach, in particular river formation dynamics (RFD). Given finite state machine
specifications and sets of states/transitions to be reached, we apply RFD to construct testing plans reaching these
configurations. Experimental results show that being able to load previously traversed states generally reduces
the time needed to cover the target configurations.

Keywords: Testing, Weighted Finite State Machines, Minimum Load Sequence, Evolutionary Computation,
River Formation Dynamics

1. Introduction

Testing developed systems is an industrial necessity in any IT developing process. In particular, formal testing
techniques [LY96, Pet01, BT01, RMN08, Rod09] allow testers to perform testing tasks in a systematic and (semi-)
automatic way. Thus, they reduce the dependency on the inspiration of a concrete human tester. Let us remark
that, in general, precisely assessing the correctness of an implementation under test (IUT) requires testing an
infinite number of available behaviors. If the tester can assume certain hypotheses about the IUT (see, e.g. [Hie02,
RMN08, Hie09]), or she can assume that faults must belong to a given fault model (see, e.g. [PYB96, Pet01]),
then the set of systems that could actually be the IUT is reduced, so finding out whether the IUT is correct or
not (i.e. whether it belongs to the set of possible right systems or to the set of possible wrong systems) is easier. It
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has been observed that the assumption of some hypotheses may enable the existence of finite complete test suites,
that is, test suites such that observed results allow them to precisely determine whether the IUT is correct or
not [BGM91, Gau95]. In the framework presented in [RMN08], the tester can decide which hypotheses, selected
from a repertory of testing hypotheses typically appearing in the context of finite state machines (FSMs), she
actually assumes, and then a logic is used to automatically infer whether a given set of observations implies the
correctness of the IUT—provided that all assumed hypotheses hold. In [Rod09] the specific conditions that enable
the existence of finite complete test suites are studied in a general testing framework. In general, hypotheses and
fault models enabling the existence of finite complete test suites are very restrictive and, moreover, finite complete
test suites may have exponential size with respect to the size of models. Thus, testers typically refuse to pursue the
completeness, that is, they do not aim at applying some tests such that observed results allow to precisely determine
whether the IUT is correct or not. Instead, some coverage testing criteria are pursued [ZHM97, MA01, HW05],
which allows testers to concentrate on testing a part of the IUT behaviors.

For instance, given a specification represented by a FSM, precisely distinguishing it from any other FSM
whose number of states is under a given threshold may be a very expensive task. In general, the length of a
sequence of inputs allowing to make such a distinction, if it exists, is exponential with the number of states.
Techniques such as distinguishing sequence (DS) [Hen64, Gon70, SL89], characterizing set (CS) [Cho78], and
unique input/output sequence (UIO) [SD85, SD88] have been proposed in the literature. The generation of test
sequences using these techniques are the D-, W-, and U-methods, respectively. In fact, UIOs tend to obtain shorter
test sequences than D- and W-methods [WH87, SL88, ENDK02, CJH06, IB07]. Besides, several graph theory
techniques have been used to find short test sequences reaching states or transitions in an FSM specification. In
particular, the Chinese Postman problem (consisting in traversing at least once all edges of a graph) has been used
in combination with UIOs or DSs [ADLU88, DU95, SL96].

Still, test sequences distinguishing a machine from any other of a given size are, indeed, much longer than
other useful test sequences aiming at more modest goals. For instance, let us suppose that, given an FSM spec-
ification and an IUT, we compose a test suite that reaches, in such FSM, all transitions or all states. If the IUT
behavior were exactly the same as the specification (that is, if its behavior could be defined by an equivalent FSM),
then any test suite reaching some states/transitions in the specification would reach equivalent states/transitions
in the IUT. However, the IUT could differ from the specification, so reaching a specification configuration by
following a given path does not imply that the same configuration is reached in the IUT by following the same
path. Therefore, a test suite reaching each specification state or transition by following, for each target state or
transition, a single path, is not a complete test suite in general. However, such an incomplete test suite could
detect a high number of possible faults. Let us assume that the IUT is built by a nearly competent implementer, so
the probability that the IUT behavior is similar to the behavior of the specification is higher than the probability
of having a very different behavior. In this case, a high number of test sequences reaching some states/transitions
in the specification will reach equivalent states/transitions in the IUT. In particular, the proportion of sequences
reaching the required configurations will be higher in general than if random input sequences of the same length
are applied, because random sequences are not defined on purpose to reach any specific configuration in an
IUT being similar to the specification. For instance, if a given area of specification states is reached only by
following some long unique path, then random input sequences will likely miss this area and will rather focus on
(redundantly) traversing other more accessible areas. On the other hand, input sequences designed to reach these
states/transitions in the specification will be able to do so in the IUT unless the IUT is wrong in this path (and, if
it is so, then tester should be willing to investigate these paths indeed). Thus, if we aim at traversing at least once
all (specification) states or transitions, this strategy might broaden the variety of observed (IUT) configurations.
Moreover, the size of this kind of test suites is polynomial with the number of states of the FSM. Hence, despite
of their incompleteness, these test suites can be very useful in practice.



Testing restorable systems 745

Fig. 1. Example of system

In this paper we generalize testing methods reaching some/all FSM states or transitions to the case where the
tester can restore any previous configuration of the system. Let us assume that the IUT is a software system and
the tester can save the complete current configuration of the system at any time. Then, at any subsequent time,
the tester could restore such configuration and execute the system from that configuration on. In particular, after
restoring the configuration she could follow a different path to the one she followed the previous time. Notice
that, if configurations can be saved/restored, then the tester can use this feature to avoid repeating some execution
sequences. Thus, some time assigned to testing activities could be saved. Let us also note that saving/restoring
the complete configuration of a system could be time-expensive. These costs are similar to the costs of executing
process suspending and process restoring operations in any operating system, which in turn are due to copying
the program state from/to RAM to/from hard disk, respectively. Thus, a testing technique using these features
should take these costs into account. Let us consider the (cost-weighted) FSM depicted in Fig. 1. The initial
state is s1 and transitions are labeled by an input, an output, and the time required to take the transition. Let us

suppose transitions s3
i3|o3|3−−−−−→ s1 and s4

i5|o5|1−−−−−→ s1 are critical, i.e. they must be tested. The interaction plan

s1
i1−−→ s2

i2−−→ s3
i3−−→ s1

i1−−→ s2
i2−−→ s3

i4−−→ s4
i5−−→ s1 covers these transitions at cost 5+4+3+5+4+2+1 � 24

time units. Let us suppose saving/loading a previously traversed configuration costs seven time units. Then, the

interaction s1
i1−−→ s2

i2−−→ s3
i3−−→ s1

load s3−−−−−→ s3
i4−−→ s4

i5−−→ s1 costs 5 + 4 + 3 + 7 + 2 + 1 � 22 < 24, so loading
is preferable in this case. In general, saving/restoring operations should be used only if the cost of repeating a
path is bigger than the cost of saving and restoring a configuration. Let us note that this is actually the case of
many software systems that are computation-intensive but that do not use much memory (e.g. control systems,
embedded systems, etc.). Moreover, it might also be the case of other memory-intensive systems as long as data
manipulation operations are relatively expensive in time (we will illustrate this in Sect. 7, where we will present a
case study involving a database management system). It is also worth to point out that we are implicitly assuming
that we can save the state of the IUT but we cannot directly set up states. Let us note that setting up states requires
understanding the state representation to a high extent, but this is not the case in black-box testing. Still, oper-
ating systems use process suspending and process restoring operations to copy the program state from/to RAM
to/from hard disk, respectively. These operations are transparent to the user and are performed without requiring
any knowledge about the code of suspended/restored programs. Thus, these operations are suitable in a black-box
testing approach. Similarly, in some cases the state of registers in a hardware device can be externally read and
written, allowing to copy/restore system states without understanding the internal representation of these states.

In this paper we present a methodology that, given (i) the time cost of saving/restoring a configuration; (ii) an
FSM specification explicitly denoting the time cost of performing each transition; and (iii) a set of critical system
configurations that are required to be observed, it returns a plan to sequentially interact with the system (possibly
including saving/restoring operations) that allows all critical configurations to be reached in a low overall time.
As we will show, obtaining the optimal interaction sequence is an NP-hard problem. Thus, instead of an exact
solution, we will develop an heuristic method to approximate the optimal path. Let us note that an interaction
plan where saving/restoring operations are allowed (under a certain cost) is, in fact, a plan where each save/restore
point represents a bifurcation: initially, we will take a path, and then we will return to a previous point and follow
another path. We will prove that considering interaction trees, instead of interaction sequences, does not restrict
the possibility to find good paths. In particular, we will show that, for every path σ , there exists an equivalent
path that can be represented by a tree, which implies that all steps of σ can be sorted in such a way that each load
refers only to states appearing in the same branch of some tree. Consequently, interaction plans constructed by
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our method will not be represented by a sequential path, but by a tree covering all critical points. That is, our
goal will be finding a tree where the sum of the costs of all the transitions of the tree (including the sum of the
costs of saving/restoring operations) is minimal.

In order to heuristically solve this NP-hard problem, we use an evolutionary computation approach [Jon06], in
particular river formation dynamics (RFD) [RRR07, RRR09a]. This method has already been used to solve other
NP-complete problems consisting in constructing other kinds of covering trees [RRR08]. Briefly, RFD consists in
simulating how drops transform the landscape while they flow down to the sea. Drops erode the ground when they
traverse high decreasing gradients, and they deposit carried sediments in flatter areas. By increasing/decreasing
the altitude of nodes, gradients are modified, which in turn affects movements of subsequent drops. Eventually,
formed decreasing gradients will depict paths from the point(s) where it rains to the sea. Since drop movements
are driven by the difference of some values (in particular, node altitudes) rather than by these values themselves,
RFD can be seen as a gradient-oriented version of ant colony optimization (ACO) [Dor04]. However, there are
other important differences between RFD and ACO (see [RRR08, RRR09a] for details). In particular, gradients
implicitly avoid that a drop follows a local cycle (it is impossible that a path from A to A is ever-decreasing), short-
cuts are quickly reinforced because they connect the same origin and destination as older paths, but at lower cost
(thus, the decreasing gradient is immediately higher and edges in the shortcut are immediately preferable in aver-
age), and the sediment process provides a focused way to punish wrong paths (if drops get blocked then they leave
sediments and increase the node altitude, which eventually prevents other drops from following the same path).

The rest of the paper is structured as follows. Some related work in the domain of search based software
engineering and search based testing are discussed in the next section. In Sect. 3 we formally describe the problem
to be solved. In Sect. 4 we introduce our general heuristic method, while in Sect. 5 we show how to apply it to
our particular problem. Afterwards, in Sect. 6 we report the results obtained in some randomly generated exper-
imental cases. A more realistic case study, where a part of a database management system is tested, is presented
in Sect. 7. Finally, in Sect. 8 we present our conclusions and some lines of future work. Proofs of results are given
in the Appendix of the paper.

2. Related work

There exists many works on the application of search based optimization techniques in different software engineer-
ing (SE) activities involving project planning, cost estimation, testing, compiler optimization, etc. (see, e.g. [Bot02,
APH04, BL05, CKSa06, Har07]). One SE area where optimization techniques are used more prolifically is
software testing. In this area, the most used techniques are local search (hill climbing [HHP02]), simulated
annealing [MRR+53], genetic algorithms [Hol75] and ACO [DG03, SR09]. Classic techniques have received little
attention for SE problems. For example, linear programming [Dan63] or branch and bound [LW66] have been
used as optimization techniques to calculate the optimal solution. However, these algorithms are often imprac-
ticable in real problems. In fact, most of these problems are versions of NP-complete problems. This is the main
motivation for using a metaheuristic search.

A concrete area where metaheuristic search has been widely applied is model-checking. In [AC07] Alba and
Chicano propose using ACO to refute LTL formulae in concurrent systems. Their results show that ACO algo-
rithms outperform exhaustive methods in efficiency and efficacy. In other papers, classical algorithms have been
used to verify safety properties exploring graphs. For example, Edelkamp et al. [ELLL01] applied A*, Weighted
A*, Iterative Deepening A*, and Best First Search to this problem using SPIN and they compared the results
with the results obtained using a heuristic search. The authors show that the length of the counterexamples is
shortened by using the heuristic search and the amount of memory required is reduced. Genetic algorithms (GA)
have also been applied for refuting safety properties (see [AT96, GK02]).

One of the fields in SE where optimization techniques have been broadly applied is software testing, in par-
ticular to test data generation [Kor92, PHP99, McM04, HM09]. Software testing is very important to detect
and reduce system errors especially in critical software. In particular, improving the testing infrastructure can
save more than 1

3 of the costs generated by software failures (see [Tas02]), so testing automation is essential. A
typical problem in software testing consists in finding an input to lead the software to a certain state. Search
based optimization techniques have been applied to solve the problem of test data generation. This approach
is known as search based testing (SBT). SBT has been successfully applied to FSM testing, mutation testing,
temporal testing, structural testing, etc. (see, e.g. [LY94, WSJE97, MMS01, Hie04, LHJ09]). In SBT the search
is commonly guided by an evolutionary algorithm.
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Lots of systems are modeled by using FSMs. A typical task to ensure the reliability of a system consists in
testing its conformance to a specification by applying a sequence of inputs and verifying that the outputs are
correct. Next we comment some works on SBT applied to FSMs. In [DHHG06] Derderian et al. describe a
method to automatically generate unique input output (UIO) sequences for each state of a FSM. They solve
this NP-hard problem by using a GA method which can work without a fully specified FSM and obtain good
results. In [LY08] Lehre and Yao analyze the influence of genetic operators on the problem of generating the UIO
sequences for FSMs. The authors study if the settings of an evolutionary algorithm have an important impact
when finding UIOs and prove that crossover can be essential for solving this problem in polynomial time. Lam
et al. in [LJL07] present an approach based on the Wp-method [LvBP94, ENDK02] to minimize the length of the
test sequences. The method reformulates the problem by using ACO to solve the asymmetric traveling salesman
problem. Finally, the authors show that the approach maintains the same fault detection capability than the
Wp-method.

3. Problem definition

In this section we formally introduce the problem to be solved as well as some related notions. Next we introduce
some preliminary notation:

• Given a pair x � (a, b), we assume fst(x ) � a and snd(x ) � b.
• Given a list l � [x1, . . . , xn ], we represent by l [i ] the i th element of l , i.e. l [i ] � xi . Besides, length(l ) returns

the number of elements of l , i.e. length(l ) � n.

We introduce the formalism used to define specifications, called weighted finite state machine (WFSM). This is
an FSM where the cost of restoring a previous configuration, as well as the cost of taking each transition, are
explicitly denoted.

Definition 3.1 A weighted finite state machine (from now on WFSM) is a tuple (S , sin , I ,O,C ,�) where

• S is a finite set of states and sin ∈ S is the initial state.
• I and O are the finite sets of input and output actions, respectively.
• C ∈ N is the cost of restoring a previously traversed state.
• � ⊆ S × S × I × O × N is the set of transitions. A transition δ ∈ � is a tuple (s1, s2, i , o, c) where s1 is the

origin state, s2 is the destination state, i is the input that triggers the transition, o is the output produced by the

transition, and c is a positive natural value that represents the cost of the transition. We write s1
i/o/c−−−−−→ s2

as shorthand for (s1, s2, i , o, c) ∈ �.

A WFSM is deterministic if for all s ∈ S and i ∈ I we have

‖ {s i/o/c−−−−−→ s ′ | ∃ o, c, s ′ : s
i/o/c−−−−−→ s ′ ∈ �} ‖ ≤ 1


�
We will assume that specifications are defined by deterministic WFSMs. From now on, in all definitions we will

assume that a WFSM W � (S , s0, I ,O,C ,�) is implicitly given.
Executions of WFSMs will be denoted by load sequences. Each step in a load sequence consists in either taking

some WFSMtransition or restoring a previously traversed configuration. The latter action will be denoted by a
symbol ψ(sk ) in the sequence meaning that, at the current step of the sequence, we move from the current state
to a previously traversed state sk by loading it (instead of by traversing actual transitions of the WFSM). The goal
of our method will be finding the cheapest load sequence belonging to the set of all load sequences that covers
some given states and/or transitions. In order to reduce the searching space, we will constrain the notion of
load sequence in such a way that some useless sequences are discarded from scratch. In particular, a condition
will be imposed to ban some sequences that are equivalent, in terms of cost, to other available sequences that
do fulfill the condition. Load sequences (regardless of whether they fulfill the additional condition or not) and
load sequences that actually fulfill it will be called load sequences and α-load sequences, respectively. Intuitively,
α-sequences are sequences that could be properly represented by some kind of tree. Later we will represent some
kind of FSM traversals by trees where nodes represent states and arcs represent transitions. In these trees, leaves
represent states where we load a previously traversed state. The loaded state must be represented by a node
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traversed in the same branch as the leaf. After loading that node, a different path will be taken, so this node
will be a branching node in the tree. In fact, the set of (load-based) FSM traversals represented by a tree will be
given by the set of possible pre-order traversals of the tree.1 Intuitively, α-sequences are sequences that could
be a pre-order traversal of some of these trees. Later we will show that constraining our search to considering
only α-sequences, rather than considering any kind of load sequences, does not limit the possibility to find cheap
sequences.

Definition 3.2 A load sequence of W is a sequence σ � s1
δ2−−→ s2. . .sn−1

δn−−→ sn where, for each 2 ≤ k ≤ n, δk
is either ik/ok/ck (if sk−1

ik /ok /ck−−−−−−−→ sk ∈ �) or ψ(sj ) (if sj ∈ {s1, . . . , sk−1} and sk � sj ). In addition, σ is also
an α-load sequence if for all s, s ′ ∈ S such that the first appearance of s in σ is before the first appearance of s ′
(i.e. such that we have s � si and s ′ � sj for some i < j such that sk �� s for all k < i and sl �� s ′ for all l < j )
all loads to s appear either after the last load to s ′ or before s ′ appears (i.e. there do not exist δp and δq with
j < p < q such that δp � ψ(s) and δq � ψ(s ′)).

The set of all load sequences of W is denoted by Sequences(W ). The set of all α-load sequences of W is
denoted by α-Sequences(W ).

Given σ � s1
δ1−−→ · · · δn−2−−−−→ sn−1

δn−1−−−−→ sn ∈ Sequences(W ), we consider σ− � s1
δ1−−→ · · · δn−2−−−−→ sn−1.

Besides, we consider −σ � s2
δ2−−→ · · · δn−1−−−−→ sn .

Let σ1, · · · , σn ∈ Sequences(W ) be such that for all 1 ≤ i ≤ n we have σi � si,1
δi,1−−→ · · · δi,ki −1−−−−−→ si,ki

and
for all 1 ≤ i ≤ n − 1 we have si,ki

� si+1,1. The concatenation of σ1, · · · , σn , denoted by σ1 ·· · ·· σn , is defined as

s1,1
δ1,1−−→ · · · δ1,k1−1−−−−−→ s1,k1

δ2,1−−→ s2,1
δ2,2−−→ · · · δ2,k2−1−−−−−→ s2,k2 · · · δn,kn−1−−−−−→ sn,kn

. 
�
Clearly, α-Sequences(W ) ⊆ Sequences(W ). For instance, let us consider the following sequence σ1 �

s1
i1/o1/c1−−−−−→ s2

i2/o2/c2−−−−−−−→ s3
ψ(s1)−−−−→ s1

i3/o3/c3−−−−−→ s4
ψ(s2)−−−−→ s2

i4/o4/c4−−−−−−−→ s5. We have σ1 ∈ Sequences(W ) for some
WFSM W , but σ1 �∈ α-Sequences(W ) (see states s1 and s2 and the positions of ψ(s1) and ψ(s2) in σ1). Let us con-

sider σ2 � s1
i5/o5/c5−−−−−→ s6

i7/o7/c7−−−−−→ s7
i8/o8/c8−−−−−→ s8

ψ(s7)−−−−→ s7
i9/o9/c9−−−−−→ s10

ψ(s6)−−−−→ s6. We have σ2 ∈ α-Sequences(W )
(provided that these transitions also exist in W ).

The cost of a load sequence is given by the addition of transition costs and load costs. Besides, the state (respec-
tively, transition) coverage of a load sequence is the set of states (resp. transitions) appearing in the sequence.
Note that a state (or transition) can appear several times in a given load sequence. There are two possible reasons
for this: either a previous state is loaded, or an already traversed state/transition is reached again by traversing
some transitions. The latter possibility is useful if we want to come back to some state and we realize that doing it
manually (i.e. by taking transitions) is cheaper than making a load. Note that, since state and transition coverages
are denoted by sets (not multisets), each state or transition appears at most once in the corresponding coverage
set.

Definition 3.3 Let σ � s1
δ1−−→ · · · δn−1−−−−→ sn ∈ Sequences(W ). If 1 ≤ k ≤ n − 1 then the cost of δk , denoted by

CostTran(δk ), is defined as

CostTran(δk ) �
{

ck if δk � ik/ok/ck
C if δk � ψ(sj )

The cost of σ , denoted by CostSeq(σ ), is defined as
∑n−1

k�1 CostTran(δk ). The states coverage or σ , denoted
by StateCover(σ ), is defined as StateCover(σ ) � {si | 1 ≤ i ≤ n}. The transitions coverage of σ , denoted by

TranCover(σ ), is defined by TranCover(σ ) � {sj ij /oj /cj−−−−−−−→ sj+1 | 1 ≤ j ≤ n − 1 ∧ δj � ij /oj /cj }. 
�
Given the load sequence σ1 considered before, CostSeq(σ1) � c1 + c2 + C + c3 + C + c4. Besides,

StateCover(σ1) � {s1, s2, s3, s4, s5} and TranCover(σ1) � {s1
i1/o1/c1−−−−−→ s2, s2

i2/o2/c2−−−−−−−→ s3, s1
i3/o3/c3−−−−−→

s4, s2
i4/o4/c4−−−−−−−→ s5}. Next we define the target problem of this paper.

1 There might exist several pre-order traversals because no order between branches (e.g. from left to right) is assumed.
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Definition 3.4 Given a WFSMW � (S , s0, I ,O,C ,�), some sets S ′ ⊆ S and �′ ⊆ �, and a natural num-
ber K ∈ N, the minimum load sequence problem, denoted by MLS, is stated as follows: is there a load
sequence σ ∈ Sequences(W ) starting by s0 such that CostSeq(σ ) ≤ K , S ′ ⊆ StateCover(σ ), and �′ ⊆
TranCover(σ )?

To the best of our knowledge, MLS has not been defined or studied before in the literature. Thus, before
describing our method to solve it, we prove that it is an NP-complete problem. The proofs of all results presented
in this paper are given in the Appendix.

Theorem 3.1 MLS ∈ NP-complete.

Next we show that by constraining our search for good testing sequences to α-load sequences (instead of
considering all load sequences) we do not lose the possibility to find sequences whose cost is under some given
upper bound.

Proposition 3.1 For all σ ∈ Sequences(W ) there exists σ ′ ∈ α-Sequences(W ) such that CostSeq(σ ) �
CostSeq(σ ′), StateCover(σ ) � StateCover(σ ′), and TranCover(σ ) � TranCover(σ ′). 
�

Let us revisit σ1. Since σ1 ∈Sequences(W ), we have that σ3 ∈α-Sequences(W ) for sequence σ3 �s1
i1/o1/c1−−−−−→

s2
i2/o2/c2−−−−−−−→ s3

ψ(s2)−−−−→ s2
i4/o4/c4−−−−−−−→ s5

ψ(s1)−−−−→ s1
i3/o3/c3−−−−−→ s4. The properties CostSeq(σ1) � CostSeq(σ3),

StateCover(σ1) � StateCover(σ3), and TranCover(σ1) � TranCover(σ3) trivially hold because we traverse
the same transitions and we make the same number of loads.

The condition imposed to load sequences to be considered as α-load sequences implies, in particular, that
α-load sequences can be equivalently represented as trees. A load tree is a tree-like version of an α-load sequence,
where loads are represented by bifurcations in the tree. In particular, any node with several children represents
that, after we complete one of the choices represented by these children (i.e. after we complete the subtree repre-
senting this choice), we will restore the state represented by that node and we will go on through another choice
(another subtree). As in the case of sequences, states and transitions can appear several times in the tree. Since
loads are represented only by bifurcations, a repeated appearance of a state represents that this state is reached
again by taking some transitions, rather than by loading. Let us note that, according to the next definition, a leaf
can be represented by a tree t � (node, [ ]), i.e. a node without children.

Definition 3.5 A load tree of W is a term t belonging to the language induced by the term Lt in the following
E-BNF:

Lt ::� (St,Ch)
St ::� s1 | . . . | sn where S � {s1, . . . , sn }
Ch ::� [(Tr ,Lt), . . . , (Tr ,Lt)]
Tr :� (i , o,n) where (i , o,n) ∈ I × O × N

such that, if t follows the form t � (st, [(tr1, child1), . . . , (trn , childn )]), then for all 1 ≤ k ≤ n we have st trk−−→
fst(childk ) ∈ �.

The set of all load trees for a WFSM W is denoted by Trees(W ). 
�
Next we formally define the cost of a load tree t � (root, children). In the next definition, the term C · (n − 1)

represents the cost spent in restoring the state root in t : assuming t has n children, n − 1 loads are necessary to
come back from the last state visited by each child to root . In the next recursive definition, the anchor case is
reached when the list of children is empty, i.e. when we have t � (root, [ ]) (note that, in this case, no recursive
calls are made).

Definition 3.6 The cost of a tree t � (root, children), denoted by CostTree(t), is defined as

CostTree(t) �
n∑

k�1

(
CostTran(fst(children[k ]))+
CostTree(snd(children[k ]))

)
+ C · (n − 1)

where n � length(children). 
�
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We define a boolean predicate σ� t returning true if the sequence σ corresponds to the tree t , that is, if σ could
be a sequential realization of the plan described by t . Intuitively, the sequence must be one of the possible pre-order
traversals of the tree. More technically, in order to compare the sequence σ and the tree t , we transform σ into
a tree and next we compare the resulting tree with t . In order to create a tree from a sequence σ , we set the first
state s1 of the sequence as the root of the tree. Then, we split the rest of the sequence into subsequences, dividing
them at the places where we load s1. Next we recursively construct the tree of each of these subsequences, and the
returned trees are taken as children of t . In functions createTree and createSeq given in the next definition,
anchor cases are again reached when the target tree has no children. Besides, note that, in function createTree,
the terms −(σ−

1 ), . . . ,− (σ−
n ) denote that the first and the last steps of sequences σ1, . . . , σn are removed before the

recursive call is done. Similarly, in function createSeq, the term σ− denotes that the last step of the sequence is
removed. This step is the last load to root , so this load in unnecessary.

Definition 3.7 Let t1 � (root1, children1) and t2 � (root2, children2) with t1, t2 ∈ Trees(W ). Let n1 �
length(children1) and n2 � length(children2). We say that t1 and t2 are equivalent, denoted by t1 ≡T t2,
if

(1) root1 � root2,
(2) n1 � n2,
(3) There exists a bijection f : [1..n1] −→ [1..n2] such that, for all 1 ≤ i ≤ n1, we have fst(children1[i ]) �

fst(children2[f (i )]) (i.e. transitions leading to each children coincide) and we have snd(children1[i ]) ≡T

snd(children2[f (i )]) (i.e. subtrees are equivalent).

Let σ � σ1 · · · · · σn ∈ α-Sequences(W ) be such that for all 1 ≤ i ≤ n we have σi � s1
δ1,i−−→ · · · δki ,i−−−−→ s1,

where δki ,i � ψ(s1) and for all 1 ≤ j < ki we have δj ,i �� ψ(s1). The tree of σ , denoted by createTree(σ ), is
defined as

createTree(σ ) � (s1, [(δ1,1, createTree(−(σ−
1 ))), . . . , (δ1,n , createTree(−(σ−

n )))])

Let σ ∈ α-Sequences(W ) and t ∈ Trees(W ). We say that σ corresponds to t , denoted by σ � t , if
createTree(σ ) ≡T t .

Given a tree t � (root, children), the set of α-load sequences of t , denoted by createSeq(t), is defined as
{root} if children � [ ]; otherwise

createSeq(t) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
σ−

∣∣∣∣∣∣∣∣∣∣

σ � σf (1) · · · · · σf (n) ∧ n � length(children) ∧
f : [1..n] −→ [1..n] is a bijective function ∧
∀ 1 ≤ i ≤ n :(
σi � root

fst(children [i ])−−−−−−−−−−−−→ σ ′
i

ψ(root)−−−−−→ root ∧
σ ′
i ∈ createSeq(snd(children[i ]))

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

We define the state coverage of a tree t � (root, [(δ1, t1), . . . , (δn , tn )]) as follows: StateCoverT(t) �
{root} ∪ ⋃n

i�1 StateCoverT(ti ). We define the transitions coverage of t as: TranCoverT(t) � {δ1, . . . , δn } ∪⋃n
i�1 TranCoverT(ti ).

Proposition 3.2 We have the following properties:

(a) createSeq(t) � {σ | σ � t}
(b) for all σ, σ ′ ∈ createSeq(t) we have CostSeq(σ ) � CostSeq(σ ′) � CostTree(t), StateCover(σ ) �

StateCover(σ ′)�StateCoverT(t), and TranCover(σ )�TranCover(σ ′)�TranCoverT(t).


�
The previous result guarantees that, if we want to find the cheapest α-load sequence for a given WFSM, then

we can concentrate on searching for the equivalent cheapest load tree. Given such cheapest tree t , the α-load
sequence to be used can be any sequence σ such that σ ∈ createSeq(t). Recall that Proposition 3.1 showed that,
if we want to search for a good load sequence, we can concentrate on considering α-load sequences. We conclude
by transitivity that, if we want to search for a good load sequence, we can focus on searching a good load tree.
This idea will be exploited later in Sect. 5, where we will apply an evolutionary computation approach to find
trees rather than sequences.
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4. Brief introduction to river formation dynamics

In this section we briefly introduce the basic structure of RFD (for further details,see [RRR07, RRR09a]). Given
a working graph, we associate altitude values to nodes. Drops erode the ground (they reduce the altitude of nodes)
or deposit the sediment (increase it) as they move. The probability of the drop to take a given edge instead of
others is proportional to the gradient of the down slope in the edge, which in turn depends on the difference of
altitudes between both nodes and the distance (i.e. the cost of the edge). At the beginning, a flat environment
is provided, that is, all nodes have the same altitude. The exception is the destination node, which is a hole (the
sea). Drops are unleashed (i.e. it rains) at the origin node(s), and they spread around the flat environment until
some of them fall in the destination node. This erodes adjacent nodes, which creates new down slopes, and in
this way the erosion process is propagated. New drops are inserted in the origin node(s) to transform paths and
reinforce the erosion of promising paths. After some steps, good paths from the origin(s) to the destination are
found. These paths are given in the form of sequences of decreasing edges from the origin to the destination.
Several improvements are applied to this basic general scheme (see [RRR07, RRR09a]).

Next we present in detail the basic scheme of the RFD algorithm:

initializeNodes()
initializeDrops()
while (not allDropsFollowTheSamePath()) and (not otherEndingCondition())

moveDrops()
erodePaths()
depositSediments()
analyzePaths()

end while

We comment on the behavior of each step. Given a working graph, we associate altitude values to nodes in
the initializeNodes() phase. At the beginning, a flat environment is provided, that is, all nodes have the same
altitude. The exception is the destination node, whose altitude is set to 0 (it represents the sea). Then, drops are
initialized (initializeDrops()), i.e. drops are unleashed (i.e. it rains) at the origin node(s).

The while loop of the algorithm is executed until either all drops find the same solution (allDropsFollow-
TheSamePath()), that is, all drops departing from the same initial nodes traverse the same sequences of nodes,
or another alternative finishing condition is satisfied (otherEndingCondition()). This condition may be used,
for example, for limiting the number of iterations or the execution time. Another choice is to finish the loop if
the best solution found so far is not surpassed during the last n iterations.

In the first step of the loop body (moveDrops()) drops spread around the flat environment until some of
them fall in the destination node. Drops are moved across the nodes of the graph in a partially random way. The
probability of the drop to take a given edge instead of others is proportional to the gradient of the down slope in
the edge, which in turn depends on the difference of altitudes between both nodes and the distance (i.e. the cost
of the edge). The following transition rule defines the probability that a drop k at a node i chooses the node j to
move next:

Pk (i , j ) �
{

decreasingGradient(i,j )∑
l∈Vk (i) decreasingGradient(i,l) if j ∈ Vk (i )

0 if j �∈ Vk (i )
(1)

where Vk (i ) is the set of nodes that are neighbors of node i that can be visited by the drop k and have a negative
value of decreasingGradient(i,j), which represents the gradient between nodes i and j and is defined as follows:

decreasingGradient(i , j ) � altitude(j ) − altitude(i )
distance(i , j )

(2)

where altitude(x) is the altitude of the node x and distance(i,j) is the length of the edge connecting node i and
node j.

In the next step (erodePaths()), drops erode adjacent nodes (they reduce the altitude of nodes) depending
on the gradient between the origin and the destination node which creates new down slopes, and in this way the
erosion process is propagated. Once the erosion process finishes, the altitude of all nodes of the graph is slightly
increased (depositSediments()). In particular, the altitude of a node is increased according to the sediments
eroded in the previous phase.
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Finally, the last step (analyzePaths()) studies all solutions found by drops and stores the best solution found
so far. After that, new drops are inserted in the origin node(s) to transform paths and reinforce the erosion of
promising paths. After some steps, good paths from the origin(s) to the destination are found. These paths are
given in the form of sequences of decreasing edges from the origin to the destination.

Compared to a related well-known evolutionary computation method, ant colony optimization (ACO), RFD
provides some advantages that were briefly outlined in the introduction. On the one hand, local cycles are not
created and reinforced because they would imply an ever decreasing cycle, which is contradictory. Though ants
usually take into account their past path to avoid repeating nodes, they cannot avoid being led by pheromone
trails through some edges in such a way that a node must be repeated in the next step.2 However, altitudes cannot
lead drops to these situations. Moreover, since drops do not have to worry about following cycles, in general drops
do not need to be endowed with memory of previous movements, which releases some computational memory
and reduces some execution time. On the other hand, when a shorter path is found in RFD, the subsequent
reinforcement of the path is fast: since the same origin and destination are concerned in both the old and the
new path, the difference of altitude is the same but the distance is different. Hence, the edges of the shorter path
necessarily have higher down slopes and are immediately preferred (on average) by subsequent drops. Finally, the
erosion process provides a method to avoid inefficient solutions because sediments tend to be cumulated in blind
alleys (in our case, in valleys). These nodes are filled until eventually their altitude matches adjacent nodes, i.e. the
valley disappears. This differs from typical methods to reduce pheromone trails in ACO: usually, the trails of all
edges are periodically reduced at the same rate. On the contrary, RFD intrinsically provides a focused punishment
of bad paths where, in particular, those nodes blocking alternative paths are modified.

When there are several departing points (i.e. it rains at several points), RFD does not tend in general to
provide the shortest path (i.e. river) from each point to the sea. Instead, as happens in nature, it tends to provide
a tradeoff between quickly gathering individual paths into a small number of main flows (which minimizes the
total size of the formed tree of tributaries) and actually forming short paths from each point to the sea. For
instance, meanders are caused by the former goal: we deviate from the shortest path just to collect drops from
a different area, thus reducing the number of flows. On the other hand, new tributaries are caused by the latter
one: by not joining the main flows, we can form tailored short paths.3 These characteristics make RFD a good
heuristic method to solve problems consisting in forming a kind of covering tree [RRR08], which motivates using
RFD to solve MLS.

In [RRR07, RRR09a], several improvements are applied to the basic RFD general scheme. In particular,
drops coming from different origins and coinciding at the same node are joined into a bigger drop, which allows
to reduce the number of individual drop movements. Besides, in order to avoid the formation of local optima,
drops are given a small probability to climb increasing slopes. This probability is inversely proportional to the
increasing gradient, and it is reduced during the execution of the algorithm. This feature improves the search
for good paths because it partially decouples the algorithm from the tendencies imposed at the very first steps
(see [RRR07, RRR09a] for further details).

5. Applying RFD to solve MLS

In this section we show how the general RFD scheme, described in the previous section, is adapted to solve MLS.
First, let us note that our goal will be constructing load trees where the root is the initial state of the given WFSM.
In terms of RFD, we will use this node as the final goal of all drops, i.e. the sea. In order to make drops go in
this direction, each transition of the WFSM will be represented in the working graph of RFD by an edge leading
to the opposite direction. Thus, final trees constructed by RFD will have to be inverted in order to constitute
valid MLS solutions. Besides, since solutions consist in paths covering some configurations, a modification must
be introduced to avoid drops skip some required steps. Let us suppose that we have to cover nodes A, B , and C
and the optimal path is A −→ B −→ C . If this path were formed by RFD then the altitudes xA, xB , xC of these
nodes would be such that xA > xB > xC . Let us suppose there also exists an edge A −→ C . Then, drops will tend
to prefer going directly from A to C , which is not optimal because then B is not covered. To avoid this problem,
a node will be inserted at each edge. In particular, going from A to C will actually imply going from A to a new
node ac and next going from ac to C . Since this choice provides an incomplete covering, drops following this path

2 Usually, this implies either to repeat a node or to kill the ant. In both cases, the last movements of the ant were useless.
3 We can make RFD tend towards either of these choices by changing a single parameter (see [RRR08]).
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will not be successful and the erosion in this path will be low. Thus, the altitude of ac will remain high and hence
taking A −→ B −→ C (in fact, A −→ ab −→ B −→ bc −→ C ) will be preferable for drops. These additional nodes
will be called barrier nodes. In terms of MLS, barrier nodes will represent WFSM transitions, while standard nodes
will represent WFSM states. During the execution of RFD, new drops will be introduced in nodes representing
critical states and transitions (i.e. it rains in these nodes). After executing RFD for some time, a solution tree
will be constructed by taking, for each critical node, the path leading to the sea through the highest available
decreasing gradient. This policy guarantees that the subgraph depicted by these paths is a tree indeed; if it were
not a tree then, for some node N , two outgoing edges would be included in the subgraph. This is not possible
because only the edge having the highest gradient is taken.

Let us note that load trees may include repeated states. In particular, a repeated state denotes that we return
to a previously traversed state by taking transitions instead of by loading (a load is simply represented by a
bifurcation). Thus, solutions constructed by RFD must be able to include repetitions as well. If repetitions are
represented by actually making drops pass more than once through the same node in the working graph (and,
perhaps, leaving it through a different edge each time), then formed solutions will not be stable: in the long term,
only one of the edges leaving each node would be reinforced by drops, and thus only this edge would prevail. This
argument applies to similar methods, such as ACO: in the long term, only one choice would be reinforced by
ants. In RFD, there is an additional reason for needing an alternative way to denote repetitions: the formation of
gradients implicitly makes RFD avoid following a path from a node to itself. Thus, the general RFD scheme must
be adapted. In particular, the working graph of RFD will be modified. One possibility consists in introducing
several instances of each state in the graph, so that each instance can have its own altitude. In this case, paths
formed by RFD could go from an instance of a node to another instance of the same node, and these paths would
explicitly denote not only state repetitions, but also when states must be repeated. Let us note that nodes may
be repeated more than twice in a load tree, so this solution would force us to significantly increase the number
of nodes of the working graph. Instead, an alternative solution will be applied. Let us note that the purpose of
repeating some nodes through transitions (i.e. not by using loads) is reaching some state or transition that has not
been traversed before. In particular, we will never load right after traversing some repeated states and transitions:
directly loading, instead of traversing some repeated states and transitions and next loading, would have the same
effect in terms of covering target entities, but at a lower cost (recall that the load cost C does not depend on the
current state or the state to be loaded). Thus, our target tree does not need to repeat states or transitions; it just
needs to be able to reach the destinations we could reach if states or transitions could be repeated.

In order to allow this, additional edges connecting each state with the rest of the states through the shortest
available path will be added to the graph. Let us suppose that we wish to go from A to an (unvisited) critical
node B , and the cheapest way to do it is traversing some (repeated and/or non-critical) nodes and transitions
N1 −→ · · · −→ Nm and next taking a transition from node Nm to B . Rather than doing this, we will take a single
direct transition from A to B whose cost will be the addition of costs of transitions A −→ N1 −→ · · · −→ Nm −→ B .
Technically, no state or transition will be repeated in the working graph of RFD by taking this direct edge. Let us
note that, if some states or transitions in the sequence N1 −→ · · · −→ Nm were critical and unvisited, then we could
take either this direct edge (and count traversed critical configurations) or some standard transitions to traverse
the required configurations (combined with other direct edges to skip repeated parts). Let us note that there is
no reason to take a direct edge more than once: since the goal of repeating nodes is reaching a new configuration,
we can take the direct edge leading to that new configuration (which, obviously, has not been taken yet).

The previous idea must be refined to deal with some particular situations. In fact, a direct edge will not con-
nect an origin state A with a destination state B . Instead, a different direct edge will be added to connect A with
each (standard) edge leading to B . Thus, in our previous example, some direct edge will connect A with a node
representing the transition connecting Nm and B (rather than directly connecting A with B ). As we said before,
edges are represented by barrier nodes. Thus, the direct edge will connect the origin edge with the barrier node
representing such transition. The reason for this is the following: let us suppose that the edge connecting Nm with
B is unvisited and critical, but Nm was visited before. This implies that the edge we used to leave Nm before was
not the one leading to B . How can we reach and take the transition from Nm to B? On the one hand, since Nm

has already been visited, taking the direct transition connecting A with Nm would imply following a loop, which
is implicitly avoided by RFD. On the other hand, taking a direct transition from A to B would allow to implicitly
cover the transition from Nm and B only if this transition were included in the shortest path from A to B . In
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order to cover the transition from Nm to B without actually repeating Nm in our graph, we will use a direct edge
from A to the edge between Nm and B . Let us note that having only this alternative notion of direct edge (that
is, not having direct edges leading to states) does not disable our first example in the previous paragraph: if the
goal is not covering the edge between Nm and B but covering B itself, then we can take the direct edge leading to
the transition connecting Nm and B , and next move to B (the edge between Nm and B is necessarily unvisited;
otherwise, B would have already been visited before).

In order to compute the cost of these additional edges, before launching RFD we will execute the Floyd algo-
rithm for the graph representing our WFSM. Given a graph, the Floyd algorithm finds the shortest paths connecting
each pair of nodes. After obtaining these shortest paths, for each pair of nodes A an B we will do as follows.

Let us suppose that the (standard) transitions leading to B are N1
i1/o1/c1−−−−−→ B , . . ., Nm

im/om/cm−−−−−−−−−→ B . Let us
suppose that, according to Floyd algorithm, the shortest path from A to Ni has c′

i cost. Then, for all 1 ≤ j ≤ m,

the direct edge from A to the barrier node representing the transition Nj
ij /oj /cj−−−−−−−→ B is given a cost c ′

j + cj /2.
In addition, the transition connecting this barrier node with B will be given cost cj /2. Thus, the total cost of
moving from A to B through Nj will be c ′

j + cj , as expected.
Next we formally present the proposed graph transformation, and we prove the correctness of the approach.

Definition 5.1 Let W � (S , sin , I ,O,C ,�) be a WFSM. The shortcut machine of W , denoted by shortcut(W ), is
a WFSM W ′ � (S ′, sin , I ′,O ′,C ,�′) where

• S ′ � S ∪�, I ′ � I ∪ {−}, and O ′ � O ∪ {−}
• �′ � {(s, δ, i , o, c/2) | δ � (s, s ′, i , o, c) ∈ �}∪

{(δ, s ′,−,−, c/2) | δ � (s, s ′, i , o, c) ∈ �}∪{
(s, δ,−,−, c + c1/2)

∣∣∣∣ s ∈ S , δ � (s ′, s ′′, i , o, c1) ∈ �,
the shortest path from s to s ′ has cost c

}


�
Definition 5.2 Let W � (S , sin , I ,O,C ,�), S ′ ⊆ S , and�′ ⊆ �. Let W ′ � shortcut(W ) and t ′ ∈ Trees(W ′).
We say that t ′ covers S ′ (respectively, t ′ covers �′) if for all q ∈ S ′ (resp. q ∈ �′) either q appears in t ′ or t ′ has
a transition δ representing a shortest path α of W such that q is traversed by α. The maximal sets S ′ ⊆ S and
�′ ⊆ � such that t ′ covers S ′ and �′ are denoted by StCoverShort(t ′) and TrCoverShort(t ′), respectively. 
�

Next we show that, given a machine W , searching for good trees where states and transitions are allowed to
be repeated is equivalent to searching, in the machine shortcut(W ), for good trees where no state or transition
is repeated. In particular, for all tree in W , we can find in shortcut(W ) a tree without repetitions that covers
the same states and transitions and whose cost is equal to or lower than the cost of the former tree, that is, no
relevant tree is lost by considering repetition-free trees in shortcut(W ). Besides, for all tree in shortcut(S ) that
is free of repetitions we can find an equivalent tree in W with the same cost, that is, all trees in shortcut(W ) are
possible in W . Thus, shortcut(W ) provides an appropriate working graph for applying RFD to solve our target
problem. In the next result, let us note that numbers of occurrences refer to states and transitions of the shortcut
machine. Thus, these numbers do not count the number of times we implicitly traverse states and transitions of
the original machine by taking direct transitions, that is, by taking the transitions added to the shortcut machine
to represent shortest paths.

Proposition 5.1 Let W � (S , sin , I ,O,C ,�) and W ′ � shortcut(W ), where W ′ � (S ′, s ′
in , I

′,O ′,C ′,�′).

(a) If t ∈ Trees(W ) then there exists t ′ ∈ Trees(W ′) such that we have the properties CostTree(t) ≥
CostTree(t ′), StateCoverT(t) � StCoverShort(t ′), TranCoverT(t) � TrCoverShort(t ′), and for all s ′ ∈ S ′
(respectively, for all δ′ ∈ �′) the number of occurrences of s ′ (resp. δ′) in t ′ is less than or equal to 1.

(b) If t ′ ∈ Trees(W ′) and for all s ′ ∈ S ′ (respectively, for all δ′ ∈ �′) the number of occurrences of s ′ (resp.
δ′) in t ′ is less than or equal to 1 then there exists t ∈ Trees(W ) such that CostTree(t) � CostTree(t ′),
StateCoverT(t) � StCoverShort(t ′), TranCoverT(t) � TrCoverShort(t ′). 
�
It is worth to point out that, in order to (implicitly) allow repetitions, adding new transitions directly con-

necting pairs of points through the shortest path is, in general, a better choice than adding several instances of
each state in the graph. Let us note that if we want to reach X by traversing some repeated states then there is no
reason for not taking the shortest path to X . Making an evolutionary computation method, such as RFD, find
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these shortest paths by itself in a graph with several instances of each node is inefficient because the Floyd algo-
rithm optimally solves this problem in polynomial time. In fact, adding direct transitions is a good choice unless
repeating nodes is rarely preferable to loading, which happens only if the load cost C is very low. In this case,
running the Floyd algorithm before executing RFD could be almost a waste of time because direct transitions
would be rarely taken. Alternatively, we can bound the execution of the Floyd algorithm in such a way that we
do not consider any direct edge whose cost is already known to be higher than C (in this case loading is better,
so all direct transitions costing more than C can be ignored).

The second main modification of the general RFD scheme concerns load costs. The general RFD scheme does
not include any negative incentive to form bifurcation points, i.e. points where two or more flows join together.
However, a negative incentive must be included because these points will represent loads in our solutions, which
imply some additional cost. Negative incentives should be proportional to the load cost, in such a way that
loads are preferred only if repeating nodes is more expensive than loading. We consider the following incentive
approach. Let us suppose that a drop can take an edge connecting its current node to a node N where some drop
has already moved this turn. Note that moving to N would imply that the hypothetical solution formed by both
drops would include a load at N . We will bias the perception of drops in such a way that, when the drop makes
the (probabilistic) decision of where to move next, it will perceive as if the edge leading to N were C units higher
than it actually is, where C is the load cost. Since the chances to take a path depend on the gradient, which in
turn depends on the edge cost, this will reduce the probability to go to N . In fact, the drop will choose to go to N
only if it is a good choice despite of the additional cost. Moreover, the erosion introduced after the drop moves
to N , which in turn also depends on the edge gradient, will be calculated as if the edge cost were C units higher.

6. Experimental results

In this section we apply our method to empirically find good load trees for some WFSMs. Our experiments have two
goals: (a) showing that being able to load previously traversed states may reduce the time needed to cover some
states and transitions; and (b) showing that solutions provided by our heuristic method are good enough though
not optimal. Regarding (a), we compare the time required to cover some critical configurations in the cases where
load operations are allowed and not allowed. This comparison is made for three load cost assumptions: the load
cost is similar to the cost of taking a few edges (so loading is usually preferable); the load cost is a bit less than the
cost of the shortest path between two distant nodes (so loading is seldom preferable); and an intermediate point.
In the alternative case where we cannot restore configurations, we assume that a reliable reset button is available,
which is a typical assumption in testing methods. Thus, we actually assume we can only restore the initial state
of the WFSM. An adapted version of RFD is also used to find solutions in this alternative case. Regarding (b), we
compare the performance and optimality of results given by our method with those given by an optimal branch
and bound (B&B) strategy.

Let us introduce the alternative problem we will use in this section for comparison purposes. This is the prob-
lem of covering a set of critical configurations when restoring previous configurations is not allowed, that is, when
the only method to return to a previously traversed configuration is resetting the system and repeating the path
from the initial state to this configuration. We assume that resetting has an associated cost. Since resetting implies
putting some specific contents into the system memory (in particular, the contents of the initial configuration), in
many practical cases the cost of resetting will be comparable with the cost of restoring a non-initial configuration
in a environment where previously traversed configurations can be restored indeed. The problem of finding an
optimal plan to test some target states/transitions when loading is not allowed but resetting (with an associated
cost r ) is formally defined next, and we prove that this problem is NP-complete too.

Definition 6.1 Let W � (S , s0, I ,O,C ,�) be a WFSM. A plain sequence of W is a sequence σ � s1
i1/o1/c1−−−−−→

s2. . .sn−1
in−1/on−1/cn−1−−−−−−−−−−→ sn where s1 � s0. The cost of the plain sequence σ , denoted by CostPlain(σ ), is equal to

�n−1
k�1 ck . Let α � {σ1, . . . , σn} be a set of plain sequences of W and r ∈ N. The resets-included cost of α for reset

cost r , denoted by ResetsIncludedCost(α, r ) is equal to �{CostPlain(σ ) | σ ∈ α} + (n − 1) · r .
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Given a WFSM W � (S , s0, I ,O,C ,�), some sets S ′ ⊆ S and �′ ⊆ �, and two natural numbers r ,K ∈
N, the minimum resets-included plan problem, denoted by MRP, is stated as follows: is there a set α of plain
sequences of W such that ResetsIncludedCost(α, r ) ≤ K and we have S ′ ⊆ ⋃

σ∈α StateCover(σ ) and �′ ⊆⋃
σ∈α TranCover(σ ). 
�

Theorem 6.1 MRP ∈ NP-complete. 
�

There exists some works where testing interactions with the minimum number of resets are constructed in the
domain of FSMs [Hie04, HU10]. In [Hie04], given a set of sequences, a test sequence including all sequences from
the set and having the minimum number of resets is composed. In [HU10], checking sequences (i.e. sequences
allowing the tester to observe at least a fault in any faulty IUT having less than a given number of states) are
constructed in such a way that they have the minimum number of resets. Let us note that the goal of problem
MRP defined before is not minimizing the number of resets, but covering all states and transitions from a given set
as cheaply as possible. Thus, depending on the cost of resetting (given by term r in Definition 6.1) and the cost
of reaching each state without resetting, resetting might be a good choice or not in each case.

In order to adapt RFD to MRP, we apply the same ideas as before when we considered solving MLS by means of
RFD. The main change with respect to the previous scheme consists in modifying the negative incentive to form
bifurcations points. Let us note that, in this case, the additional cost due to including a bifurcation point does
not consist only of the reset cost itself, but also of the cost to go from the initial state (the sea) to the bifurcation
point. Note that a reset operation does not recover the bifurcation point but the initial state, so next we have
to reach the bifurcation point again. The negative incentive to make a bifurcation point will be proportional to
the sum of the reset cost and the cost of going from the sea to the node where the bifurcation is formed. Let us
suppose that a drop is in node N1, there is an edge between N1 and N2, and at least one drop has moved to N2 in
this turn. Then, the probability of this drop to go to N2 is proportional to the difference of altitudes and inverse
proportional to the sum of the cost of the edge connecting N1 and N2, the reset cost r , and the cost of the direct
edge connecting the sea to N2 (this value is 0 if N2 is the sea). Let us note that, in practice, this negative incentive
will avoid the formation of bifurcation points that are far from the sea (which are the most expensive ones to
reach after a reset operation). Thus, formed solution trees will tend to have their bifurcation points near to the
root (i.e. near to the initial state).

After executing RFD for solving MLS or MRP, we construct the solution tree as follows. If the set of critical
edges, that is the set of edges required to be covered in our problem instance, is not empty, then we start by
selecting one of these critical edges. Next we follow, from this edge, the best slopes (i.e. the ones providing highest
down gradients) for going down to the sea, and we introduce in the tree all nodes and edges visited in the way.
Then we take another critical edge that is not in the constructed tree yet, and we follow the best slopes down
to the sea or to a node/edge already included in the solution tree, whatever comes first, including in the tree all
traversed edges and nodes. The process is repeated until all critical edges are included in the solution tree, and
next we follow the same process for critical nodes, that is, nodes required to be covered in our problem instance,
from the highest critical node to the lowest one.

The previous tree construction scheme is modified to improve the quality of formed solutions as follows. Let
us suppose that, by following the best down slopes to the sea from some critical node/edge, we reach some node
si and the best available edge from si (i.e. the one with the highest down gradient) is an edge si → sj leading
to a node sj already included in the tree. If si → sj is added to the tree indeed, then a bifurcation point will be
introduced, so an additional load or reset operation will be added to the solution in MLS or MRP, respectively. In
these cases, we will check if it is cheaper creating that load/reset (that is, adding si → sj ) or trying to avoid this
load/reset in two possible ways: (i) joining si to some leaf of the current tree by taking some direct transition to
the leaf; or (ii) adding si → sj indeed, but modifying the current tree so that the transition already existing in
the tree that leads to sj , say sk → sj , is substituted by a direct transition from sk to the leaf of the new branch
(i.e. the node where we started the branch). There exists a particularity in the case of MRP. If we observe that
avoiding the reset as said in (i) and (ii) is not better than resetting, then we will not add si → sj to the tree, but
we will add the direct transition leading to s0, the initial state of the FSM. In this way, the testing path will reach
si from s0 through the shortest path.

On the other hand, the B&B algorithm used for solving MLS works as follows. First, we create an initial and
trivial solution. This solution consists in joining all critical nodes/edges directly with the sea (the initial state) by
using the shortest path. In the first call to the recursive function, the initial state of the FSM is set as the root of
the solution tree. The parameters of the recursive call are the following: nodes and edges already visited, nodes
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that are leaves in the partial solution (used to control needed loads), the cost of the partial solution constructed
so far (from now on, denoted by currentCost), and the number of loads. We extend the partial solution by adding
some edge connected with the formed solution that does not belong to the solution yet, and we recursively call
the function again with the new partial solution. The recursion finishes when all critical nodes/edges are included
in the tree. Besides, in order to prune some useless alternatives, we stop the development of those partial solutions
such that currentCost + minCost is higher than the best solution found so far, where minCost is the sum of the
costs of all critical edges not included in the solution yet. Clearly, minCost is a lower bound of the cost of adding
all critical nodes/edges not visited yet to the solution tree.

Next we present our experimental results. All experiments were performed using an Intel T2400 processor
with 1.83 GHz. RFD was executed fifty times for each of the graphs during 5 min, while the B&B method was
executed once and given 2 h (note that B&B is deterministic, so running it more times is pointless). For each
method, Table 1 summarizes the best solution found (Best), the arithmetic mean (Avg), the best solution found
for the reset case, that is the alternative case where we cannot load any state different to the initial state (Rst best),
and the arithmetic mean in this case (Rst avg).

In Table 1, symbol ‘–’ denotes a non-applicable case. The inputs of both algorithms are randomly generated
graphs with 50, 100 and 200 nodes where the cost of edges is between 0 and 100. In the case that the graphs
are sparse (� ), each node is connected with 2–5 nodes. However, when the graphs are dense (×), each node is
connected with 80% of the nodes. We present the results when the load/reset cost is relatively cheap (20), when
the load/reset cost is medium (100) and when the load/reset cost is high (1,000) with respect to the cost of an edge
of the WFSM.

As we can see in Table 1, being able to load previously traversed states reduces the time needed to cover all
the critical points in sparse graphs (see columns Best and Rst best). Let us note that in the case of dense graphs it
is relatively easy to find paths covering all the critical points without requiring any load or reset. Thus, columns
Best and Rst best are nearly equal. However, in the case of sparse graphs (in fact, the most typical case of FSM
specification) the advantages are obvious: in nearly all cases the column Best outperforms the column Rst best.
As it can be expected, in the cases where the load cost is not very high, the difference is even bigger. Thus, cheaper
testing plans can be obtained when load operations are available.

Regarding the quality of the solutions found by RFD, we must analyze the differences between RFD and
B&B rows. Let us recall that RFD was executed for only 5 min while the B&B strategy was running for 2 h. Those
cases marked with an asterisk (*) denote that the B&B algorithm did not improve the initial solution during
the 2 h execution. Anyway, the results obtained by RFD are always better than those of B&B. In fact, though
B&B can eventually find the optimal solution, the performance of RFD and B&B for similar execution times
is incomparable: even if we execute B&B for much longer times than RFD, solutions found by RFD clearly
outperform those given by B&B. So, executing RFD helps us to create test plans for testing an application and
to reduce the time needed for this task.

7. Case study

In this section we apply our testing methodology to a simple case study. We test a social network management
application. This application lets the system manager check and modify data from the network users. In this
example we will be concerned with the following functionalities: adding a user, deleting a user, and modifying the
friends of a user in some predefined ways. For each user we will be concerned with only two data: her complete
name (which must be fixed and unique) and her list of friends. Thus, in this example, modifying a user will consist
just in modifying her list of friends. Friends of a user can be modified either manually (i.e. the manager directly
selects the friends to be added/deleted) or according to a given friendship operation. The first friendship operation
consists in modifying the friends set of a user by adding all users having a friendship relation with any current
friend of the user (i.e. my friend’s friends are my friends). On the other hand, given a user and a target new friend,
the second friendship operation also adds some users to the user’s friends set, in particular all users in the shortest
path of friendship links from the user to the target new friend (i.e. those people most directly leading to my new
friend are my friends). Besides, in order to ban users aiming at using the social network for commercial purposes
(e.g. to contact potential customers), the system will not allow any user U to have more than 50 completely
isolated friends, i.e. friends that do not have friendship with any other friend of U . In particular, the system will
not allow the creation of a user not fulfilling this condition. Beyond these specific functionalities, the system will
be required to fulfill the expected requirements in a correct database management system (such as, e.g. a user
should not disappear from the system unless the manager deletes it), as well as other specific conditions. Let us
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Table 1. Summary of results of experiments presented in Sect. 6 (up to the 200 nodes graph) and Sect. 7 (the 252 nodes graph)

Method Graph size Sparse Load cost Best Avg Rst best Rst avg
RFD 50 � 20 1,327 1,379 1,873 1,982
B&B 50 � 20 3,213 – – –
RFD 50 � 100 1,935 2,193 2,249 2,317
B&B 50 � 100 5,453 – – –
RFD 50 � 1,000 4,047 4,123 4,079 4,147
B&B 50 � 1,000 30,653 – – –
RFD 100 � 20 3,979 4,154 4,615 4,944
B&B 100 � 20 6152 – – –
RFD 100 � 100 4,472 4,729 4,863 5,205
B&B 100 � 100 10,312 – – –
RFD 100 � 1,000 6,275 6,576 6,618 6,935
B&B 100 � 1,000 57,112 – – –
RFD 200 � 20 8,544 9,244 9,250 9,881
B&B 200 � 20 20,570* – – –
RFD 200 � 100 9,796 10,631 9,764 10,740
B&B 200 � 100 27,370* – – –
RFD 200 � 1,000 12,418 13,374 12,675 13,649
B&B 200 � 1,000 103,870* – – –
RFD 50 × 20 811 823 816 838
B&B 50 × 20 3,974 – – –
RFD 50 × 100 806 890 810 895
B&B 50 × 100 7,654 – – –
RFD 50 × 1,000 827 1,427 808 1,488
B&B 50 × 1,000 49054 – – –
RFD 100 × 20 1,242 1,271 1,237 1,282
B&B 100 × 20 2,309* – – –
RFD 100 × 100 1,249 1,287 1,253 1,325
B&B 100 × 100 5,909* – – –
RFD 100 × 1,000 1,213 1,527 1,231 1,776
B&B 100 × 1,000 46,409* – – –
RFD 200 × 20 1,129 1,136 1,110 1,126
B&B 200 × 20 2,829* – – –
RFD 200 × 100 1,285 1,295 1,279 1,288
B&B 200 × 100 9629* – – –
RFD 200 × 1,000 3,069 3,095 3,076 3,088
B&B 200 × 1,000 86,129* – – –
RFD 252 Case study 20 1,620 1,695 1,787 1,873
B&B 252 Case study 20 6,880* – – –
RFD 252 Case study 100 2,123 2,165 2,243 2,320
B&B 252 Case study 100 12,080* – – –
RFD 252 Case study 1,000 7,525 7,585 7,685 7,741
B&B 252 Case study 1,000 70,580* – – –
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denote a system user U by a pair U � (name, friends) where name is the name of U and friends is the set
of names of the friends of U . We will assume that friendship is a symmetric relation in our system, i.e. given
two users U � (name, friends) and U ′ � (name ′, friends ′), we have name ∈ friends ′ iff name ′ ∈ friends . So,
adding name to friends ′ should immediately add name ′ to friends (otherwise we would have a system failure).
Moreover, we also assume that friendship is anti-reflexive (i.e. name �∈ friends) because it would not add valuable
information. Besides, if the manager deletes a user then the system will be required to remove the user from any
friend set of any user, and the system will not allow the addition of a user with an already existing name.

In order to check the functionality of this application under typical run-time conditions, our testing activity
will start from a configuration where there are one million randomly generated users in the system database.
Obviously, checking any possible configuration of a system with one million users is unfeasible. Instead, we will
concentrate on exhaustively studying the system behavior for all possible configuration of three arbitrary users
belonging to the set of users. Let X1,X2,X3 be three users belonging to the system at the initial configuration.
A user Xi with 1 ≤ i ≤ 3 will be denoted by a tuple Xi � (namei , friendsi ) where namei is the name of Xi

and friendsi is the set of names of the friends of Xi . We will add a 0 superfix to denote the values of these data
at the initial configuration, i.e. X 0

i � (name0
i , friends0

i ) denotes the data stored for Xi at the beginning of the
experiment. In order to distinguish X1,X2,X3 from the rest of users in the system, we will call these users control
users. We will assume that name0

i �∈ friends0
j for all i �� j with i , j ∈ {1, 2, 3}, that is, our control users are not

friends in the initial configuration. Our testing plan will consist of observing all possible behaviors of the system
at all possible configurations up to control users. We consider that two system configurations are equivalent up
to control users if they contain the same information regarding the (non-)existence of X1, X2, X3 and the (non-)
presence of these users in each other’s friends sets. For each configuration c and for each operation o involving
the creation, deletion, or modification of users X1, X2, or X3, our testing plan will aim at observing at least once
the operation o from some configuration being equivalent to c. In our experiments, we will assume that if Xi is
deleted and re-created later, then it will be given again the initial value X 0

i � (name0
i , friends0

i ).
The expected functionality of the system is depicted in Fig. 2 in the form of an extended finite state machine

(EFSM). An EFSM is an FSM where the configuration of a system depends not only on the current state but also
on the current values of a set of variables. In our example, these variables will be the current values of X1, X2, and
X3. An EFSM transition is labeled by an input and an output, like any FSM, together with some new information:
a boolean guard on the variables (which must be true to trigger the transition) and an action on the variables (which
determines how variables change after taking the transition). If the domain of variable values is finite, an EFSM
can be transformed into an equivalent FSM by expanding it into any combination of (state, values of variables).
Since our experiment will only concern the creation/deletion/modification/observation of control usersX1,X2,X3,
the set of possible values of variables consists of all combination of existence/inexistence of each of these users, as
well as all combination of friend sets of each (existing) control user, where combinations differ only in X1,X2,X3.
In particular, the (non-)presence of non-control users will be ignored and will not motivate the existence of addi-
tional variable values. It is easy to see that, according to the restrictions imposed to a (correct) system, only 18
combinations of variable values are possible in the EFSM specification.4

The central state of the EFSM depicted in Fig. 2, HOME, is the state where the system manager chooses
what to do next. We can choose to add/delete a user (ADD USER, DEL USER), to add/delete a friend to the
friends set of some user (ADD FRIEND, DEL FRIEND), or, given a user, we can add all friends of her current
friends to his set of friends (ADD FR OF FR) or we can add to her list of friends all friends in the shortest
path to some target new friend (ADD FR TO X). After selecting the operation to be performed, we reach a state
where we can either cancel the operation or specify the target users of the operation. If correct target users are
given, the system reaches a new state denoting that the operation was correctly performed (the one whose name
finishes with ‘OK’). Besides, from the HOME state we can also go to the QUERIES state, where we can check
whether some user exists or not, as well as the set of friends of a user. The definition of each transition depicted
in Fig. 2 is given in Table 2. Transitions follow the form “[guard on variables] input | output [action on variables]”.

4 We count as follows: one combination where none of the control users is present in the system, three combinations with only one control
user (which cannot be friend of the others), three combinations with two control users (where these two users can be friends or not, leading to
6 combinations indeed), and 1 combination with all three control users, which splits into the following possibilities: one combination where
none is friend of any other, three combinations where there is only one friendship link out of the three available ones, three combinations
where there are two friendship links, and 1 combination where all three available friendship links exist.
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Fig. 2. Specification of the social network manager system

In transitions where the input consists in introducing a user’s nick, we will consider that this nick must be name0
1 ,

name0
2 , or name0

3 , i.e. a name of a control user. So, in this case the EFSM provides a compact notation to denote
three standard FSM transitions. Similarly, in transitions where the input also includes a friend of a set of friends,
a control user or a set of control users will be given, respectively. The meaning of functions used in guards and
actions of transitions given in Table 2 is straightforward.

The goal of our testing methodology will be to traverse at least once all critical configurations introduced by
the user of FSM derived from the original EFSM in the shortest possible time. Since the EFSM has 14 states,
the derived FSM has 14 × 18 � 252 states.5 In order to decorate FSM transitions with their associated time
consumption, we assign time delays to system operations as follows. The cost of remotely accessing a database
with one million registers may be relatively high for some operations, in particular for those where more than
one register has to be checked or modified. For instance, let us note that adding a user (nick , friends) implies
checking that the number of completely isolated friends in the set friends (i.e. the number of users in friends that
do not have any friend belonging to friends) is under 50, which in turn implies checking the sets of friends of all
users in friends . Thus, many registers might have to be checked. We consider that (correctly) adding a user to the
database takes 25 s, which is also the cost of detecting an error in this operation. Adding a friend to some user’s
friends set takes 12 s, while deleting a user or a friend from some user’s friends set takes 10 s. Other operations
are more complex and have higher costs, such as adding the friends of current friends of some user (which costs

5 Actually, there are a few less states because some of these 252 states are not reachable. For instance, it is not possible to reach an EFSM
configuration where the state is ADD USER OK and none of X1, X2, X3 are present in the database.
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60 s) and adding the friends in the shortest path to a target new friend (which costs 60 s as well). In these cases,
detecting an error takes 60 s as well. We consider that all query operations require a short time, in particular
10 s. The transitions from/to the HOME state are set to 1 s. Finally, the time to recover a previously traversed
configuration, that is the time required to load a one million registers database, is given a different value in each
experiment, as we did in the experiments of the previous section. In particular, times 20, 100, and 1,000 are
considered.6 Let us note that the system state basically consists in the state of the database, because the memory
required to store the system interface state is negligible in comparison with the database size.

Table 2. Transitions of the EFSM
1E. [ ] pushBtnQueries | screenQueries [ ]
1S. [ ] pushBtnReturnQueries | screenHome [ ]
1.1 [not exists(nick, BD)] exists(nick)? | "The user does not exist." [ ]
1.2 [exists(nick, BD)] exists(nick)? | "The user exists." [ ]
1.3 [not exists(nick, BD)] friends(nick)? | "The user does not exist." [ ]
1.4 [exists(nick, BD)] friends(nick)? | "The friends are:" ++ friends(nick,BD) [ ]

2E. [ ] pushBtnAddUser | screenAddUser [ ]
2S. [ ] pushBtnReturnAddUser | screenHome [ ]
2.1 [not validAddUser(nick, friends, BD)] (nick, friends) |

"The user already exists or has too many completely isolated friends." [ ]
2.2 [validAddUser(nick, friends, BD)] (nick, friends) | "New user added."

[addUser(nick, friends, BD)]
2.3 [ ] pushBtnReturnAddUserOk | screenHome [ ]

3E. [ ] pushBtnDelUser | screenDelUser [ ]
3S. [ ] pushBtnReturnDelUser | screenHome [ ]
3.1 [not validDelUser(nick, BD)] (nick) | "The user does not exists." [ ]
3.2 [validDelUser(nick, BD)] (nick) | "The user has been deleted." [delUser(nick, BD)]
3.3 [ ] pushBtnReturnDelUserOk | screenHome [ ]

4E. [ ] pushBtnAddFriend | screenAddFriend [ ]
4S. [ ] pushBtnReturnAddFriend | screenHome [ ]
4.1 [not validAddFriend(name, friend, BD)] (name, friend) | "The friend already exists." [ ]
4.2 [validAddFriend(name, friend, BD)] (name, friend) | "New friend added."

[addFriend(name, friend, BD)]
4.3 [ ] pushBtnReturnAddFriendOk | screenHome [ ]

5E. [ ] pushBtnDelFriend | screenDelFriend [ ]
5S. [ ] pushBtnReturnDelFriend | screenHome [ ]
5.1 [not validDelFriend(name, friend, BD)] (name, friend) | "The friend does not exists." [ ]
5.2 [validDelFriend(name, friend, BD)] (name, friend) | "The friend has been deleted."

[delFriend(name, friend, BD)]
5.3 [ ] pushBtnReturnDelFriendOk | screenHome [ ]

6E. [ ] pushBtnFriendsOfMyFriends | screenFriendsOfMyFriends [ ]
6S. [ ] pushBtnReturnFriendsOfMyFriends | screenHome [ ]
6.1 [not existsFriendsOfMyFriends(name, BD)] (name) | "There are not new friends." [ ]
6.2 [existsFriendsOfMyFriends(name, BD)] (name) | "Friends of friends have been added."

[addFriendsOfMyFriends(name, BD)]
6.3 [ ] pushBtnReturnFriendsOfMyFriendsOk | screenHome [ ]

7E. [ ] pushBtnAddFriendToX | screenAddFriendX [ ]
7S. [ ] pushBtnReturnAddFriendToX | screenHome [ ]
7.1 [not existsChainFriendsToX(name, friendX, BD)] (name, friendX) |

"Chain to friendX cannot be added." [ ]
7.2 [existsChainFriendsToX(name, friendX, BD)] (name, friendX) | "Chain to friendX added."

[addChainFriendsToX(name, friendX, BD)]
7.3 [ ] pushBtnReturnAddFriendToXOk | screenHome [ ]

6 In practice, 100 s could be a feasible time for making a copy of a database with one million registers, as its actual size could be a few
gigabytes—assuming it contains data other than just user names and friends sets.
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We conducted experiments to find good testing plans for this problem by following the same methodology
as in the previous section. Regarding the reset case, i.e. the case where only the initial state can be recovered, we
consider the same possible costs as in the case where any previously traversed state can be restored (that is, 20,
100, and 1,000 s). Experimental results are depicted at the bottom of Table 1. As we can see, RFD obtains again
better results than B&B. Besides, being able to restore any previously traversed state is again better than only
being able to reset, though the advantage is reduced in this case. Let us note that, in this system, the average cost
to reach a state from another state is not very high because there do not exist two states that are very distant from
each other. For instance, given a configuration where none of X1, X2, and X3 exist, reaching a new configuration
where X1, X2, X3 exist and all of them are friends of each other requires only six database operations. Let us recall
that the initial configuration is a state where X1, X2, and X3 exist but none of them is friend of each other. Thus,
it is easy to see that reaching any state from the initial state requires at most three database operations, which
is a very low number of transitions for a 252 states FSM. In particular, coming back to a previously traversed
state by resetting and repeating some path is relatively cheap in all cases because the path to be repeated is short.
It is remarkable that, even in such an adverse scenario for a general loading framework, being able to load any
configuration is still (a bit) better than just resetting.

8. Conclusions and future work

In this paper we have presented and studied a testing scenario where we can copy and restore previously traversed
configurations of the IUT at some cost. Being able to copy and restore complete state representations of the IUT
is generally possible when the IUT is a software system. It may also be possible in a hardware system, provided
that the complete state memory of the device can be dumped and reinserted later. Beyond these basic require-
ments, the practical applicability of such feature requires that, in addition, operations performed by the IUT are
time-expensive but the memory used by it is, in comparison, not so high. As we have shown in our case study,
this restriction can be fulfilled even by a system being as memory-intensive as a database management system,
provided that some data manipulation operations require high times. In this case, using load/restore operations
allows a reduction in the time needed to cover some given critical IUT configurations, because loading will often
be cheaper than repeating some already traversed path. We have shown that finding optimal plans to interact with
the IUT for this particular testing case is an NP-hard problem, so an heuristic approach is required to find good
test sequences (in particular, good test trees). We have applied an evolutionary computation approach to solve
this problem, in particular river formation dynamics. Experimental results show that (a) loading is a good choice
even in scenarios where the cost of loading is not particularly low; and (b) the RFD implementation provides a
good tradeoff between (partial) optimality of results and the time needed to achieve them.

As future work, we wish to apply another evolutionary computation approach, ant colony optimization, to
this problem. RFD and ACO have already been compared in the context of other NP-hard problems, but the
performance of both methods to solve MLS/MRP should be studied. Previous studies show that RFD fits partic-
ularly well for problems consisting in forming a kind of covering tree [RRR08, RRR09a], though an hybrid
RFD-ACO approach could outperform the results provided by each method if we were able to take the best parts
of both methods. Besides, we wish to generalize our method to the case where extended finite state machines are
considered. We have dealt with an EFSM in the case study of this paper, but we have done it by expanding it into
an equivalent FSM. However, RFD adaptations considered in [RRR09a] show that RFD can deal with variables
without necessarily unfolding FSM states into all combinations of (variable value, state). Thus, the capability of
our method to directly deal with EFSMs, without expanding them into FSMs, should be studied.

A. Proofs

A.1. Proof of Theorem 3.1

Given a load sequence σ , we can easily compute CostSeq(σ ) (and compare it with K ), as well as StateCover(σ )
and TranCover(σ ) (and compare them with S ′ and �′, respectively), in polynomial time with respect to W , S ′,
�′, and K , so we have MLS ∈ NP.
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In order to prove MLS ∈ NP-complete, we polynomially reduce an NP-complete problem to MLS. Let us
consider the Hamiltonian Path problem in directed graphs, which is stated as follows: given a directed graph G
(without costs associated with transitions), find a path traversing all nodes exactly once. Let G � (V, E) (where V
and E denote the sets of vertices and edges, respectively, and we suppose n �| V |) represents an instance of the
Hamiltonian Path problem. We construct n instances of MLS from G as follows. Let W1, . . . ,Wn be WFSMs where,
for all 1 ≤ i ≤ n, we have Wi � (S , si , I ,O,C ,�) (note that, for all Wi , we have the same values for all tuple
components but the initial state, si ). Sets S and �, that is, sets of states and transitions of all considered WFSMs,
literally copy the form defined by V and E in G. In addition, inputs and outputs labeling transitions in � are
defined in such a way that the resulting WFSM is deterministic: we consider I � {i1, . . . , in } for some input symbols
i1, . . . , in , O � {o1, . . . , in } for some output symbols o1, . . . , on , and, for all s ∈ S , all transitions leaving s are
labeled by a different input/output pair ij /oj . The cost of all transition δ ∈ � is set to 1, and the load cost C is
equal to n. For each Wi , its initial state si is set to a different state in S (thus, for all s ∈ S there is some 1 ≤ j ≤ n
such that the initial state of Wj is s). In addition, let S ′ ⊆ S and �′ ⊆ � be defined as S ′ � S and �′ � ∅, and
let K � n − 1. Since each Wi can be constructed from G in polynomial time, constructing MLS problem instances
(W1,S ′,�′,K ), . . ., (Wn ,S ′,�′,K ) from G requires polynomial time.

Let us see that the answer of the Hamiltonian Path problem for G is yes iff there exists 1 ≤ i ≤ n such that the
answer of MLS to Wi ,S ′,�′,K is yes. Let us consider the implication from left to right. Let σ be a Hamiltonian
path for G and Wi be the WFSM such that its initial state is the initial state of σ . We have that σ is a load sequence
for Wi , σ covers all states and transitions in S ′ and �′, and CostSeq(σ ) � n − 1 � K . Now, let us consider the
implication from right to left. If (a) σ is a load sequence for some Wi ; (b) σ covers all states and transitions in S ′
and�′; and (c) CostSeq(σ ) ≤ K � n −1, then there is no load in σ (otherwise we would have CostSeq(σ ) > K ).
Since all n states of S ′ are covered by σ , σ must take at least n −1 transitions. Note that the cost of all transitions
is 1. Thus, CostSeq(σ ) ≤ n − 1 implies that σ traverses exactly n − 1 transitions. If σ traverses n different states
in n − 1 transitions then no state is traversed more than once in σ . Thus, σ is a Hamiltonian path for G.

A.2. Proof of Proposition 3.1

Let σ � σ1 · · · · · σn be such that for all 1 ≤ j ≤ n we have σj � s1,j
δ1,j−−→ · · · δkj ,j−−−−→ skj ,j , where δkj ,j � ψ(skj ,j )

and for all 1 ≤ l < kj we have δl,j � il,j /ol,j /cl,j for some il,j , ol,j , cl,j . Let us iteratively construct a sequence
σ ′ from σ as given in the following algorithm. Given a load sequence σ , this algorithm constructs a new load
sequence σ ′ by splitting σ into all possible subsequences where a load is executed at the last step, and next these
subsequences are re-joined in such a way that loads refer only to the states traversed most recently. We will see
that, by doing so, the returned load sequence σ ′ will be an α-load sequence. Moreover, σ ′ will traverse the same
states/transitions as σ and will make the same number of load operations, so both sequences will have the same
cost.

R :� {(s1,j , (σj )−) | 2 ≤ j ≤ n};
σ ′ :� (σ1)−;
stack :� empty stack;
push onto stack , in appearance order, all states appearing in (σ1)−;
while R �� ∅ do

first :� top(stack );
while � ∃ σ ′′ such that (first, σ ′′) ∈ R do
stack :� pop(stack );
first :� top(stack );

od
σ ′′ :� any σ ′′ such that (first, σ ′′) ∈ R;
R :� R\(first, σ ′′);
last :� lastStateOf (σ ′);
σ ′ :� σ ′ · (last

ψ(first)−−−−−→ first) · σ ′′;
push onto stack all states in σ ′′ that are not already included in stack ;

od
return σ ′;
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Let us see that (a) the previous algorithm always terminates; and (b) σ ′ is such that σ ′ ∈ α-Sequences(W )
and we have CostSeq(σ ) � CostSeq(σ ′), StateCover(σ ) � StateCover(σ ′), and we also have TranCover(σ ) �
TranCover(σ ′). In order to check (a), let us see that, for each round of the outer while, an element is taken away
from R, and R never increases. Thus, as long as the inner while always terminates, the outer one will always do
so. We consider the inner while. Let us check that, by popping elements from stack , we will eventually find some
state first such that, for some σ ′′, we have (first, σ ′′) ∈ R. By contradiction, let us suppose that stack is fully
emptied without finding such state first . This means that there is no pair (s, σ ′′) in R such that s ∈ stack . For
all (s, σ ′′) ∈ R, either s is traversed in the current value of σ ′ or not. If it does then, since all states traversed by
σ ′ are eventually introduced in stack but we have s �∈ stack , we have that s has been removed from stack before.
By the construction of stack , s is removed from stack only after there are no more elements (s, σ ′′) in R. Thus,
for all (s, σ ′′) ∈ R, we have that s has not been traversed yet by σ ′. Let R1 be the value initially given to R in
the algorithm. Since σ is the result of extending (σ1)− with the concatenation of all subsequences σ ′′ such that
(s, σ ′′) ∈ R1 with appropriate loads to previously traversed states, we infer that for all (s, σ ′′) ∈ R1 either there
exists (s ′, σ ′′′) ∈ R1 such that s is traversed in σ ′′′ or s is traversed by (σ1)−. Since for all (s, σ ′′) ∈ R ⊆ R1 we have
that s has not been traversed yet by σ ′, we infer that, for all (s, σ ′′) ∈ R, s is not traversed by (σ1)− and all pairs
(s ′, σ ′′′) ∈ R1 such that s is traversed in σ ′′′ are such that (s ′, σ ′′′) ∈ R (otherwise we would have (s ′, σ ′′′) ∈ R1\R
and s would be traversed by σ ′). If states appearing in the first element of pairs belonging to R ⊆ R1 are traversed
only in subsequences referred in the second element of pairs belonging to R ⊆ R1 then σ cannot be the result
of extending (σ1)− with a concatenation of all subsequences σ ′′ such that (s, σ ′′) ∈ R1 with appropriate loads:
connecting subsequences σ ′′ with (s, σ ′′) ∈ R to the rest of the sequence would not be possible. Hence, we have
a contradiction.

Next we consider (b). Let σ ′ � s1
δ1−−→ s2 · · · sn−1

δn−1−−−−→ sm be the sequence returned after terminating the
algorithm. Loads introduced in σ ′ are forced to refer to states that are as upper in stack as possible. Thus, no
load to a previously traversed state s is introduced in σ ′ until all required loads leading to states traversed after s
are introduced. Thus, there cannot exist states si , sj with 1 ≤ i < j ≤ m such that for all k < i we have sk �� si ,
for all l < j we have sl �� sj , and there exist j < p < q ≤ n such that δp � ψ(si ) and δq � ψ(sj ). Hence,
σ ′ ∈ α-Sequences(W ). Besides, let us note that σ ′ includes exactly the same transitions of σ , as well as the same
number of loads. Thus, CostSeq(σ ) � CostSeq(σ ′) and TranCover(σ ) � TranCover(σ ′). Moreover, the same
states are traversed in σ and σ ′, so we have StateCover(σ ) � StateCover(σ ′).

A.3. Proof of Proposition 3.2

Let us consider (a). In particular, we show that for allσ ∈ createSeq(t) we haveσ�t . We prove it by induction over
the structure of t . As anchor case, let us consider t � (root, [ ]). In this case,createSeq(t) contains a single element
σ � root . Let us note that σ � t means createTree(σ ) ≡T t . We have createTree(σ ) � (root, [ ]), and trivially
we conclude t ≡T (root, [ ]). Let us consider the inductive case, that is, t � (root, [(tr1, child1), . . . , (trn , childn )])
with n ≥ 1. In this case, for all σ ∈ createSeq(t) we have that σ is the result of concatenating subse-

quences root tri−−→ σ ′
i

ψ(root)−−−−−→ root in any order, where σ ′
i ∈ createSeq(childi ), and next removing the last

step. Let us show that σ � t , that is, createTree(σ ) ≡T t . We have createTree(σ ) � (root, l ), where l
is the result of concatenating the pairs (tr1, createTree(σ ′

1)), . . ., (trn , createTree(σ ′
n )) in any order. Thus,

conditions (1) and (2) required by the ≡T relation (see Definition 3.7) hold in createTree(σ ) ≡T t . Let us
match pairs (tr1, child1), . . . , (trn , childn ) with pairs (tr1, createTree(σ ′

1)),. . ., (trn , createTree(σ ′
n )), respec-

tively. The transition tri coincides for each match. Let us check that the pair of trees in each match are equivalent,
that is, that for all 1 ≤ i ≤ n we have childi ≡T createTree(σ ′

i )). By induction hypothesis, let us suppose that for
all 1 ≤ i ≤ n we have that createSeq(childi )�{σ ′ | σ ′ � childi }. This implies that for all σ ′∈createSeq(childi )
we have createTree(σ ′) ≡T childi . Since for all 1 ≤ i ≤ n we have σ ′

i ∈ createSeq(childi ), we conclude
childi ≡T createTree(σ ′

i ). Thus, condition (3) required by ≡T is met and we prove that for all σ ∈ createSeq(t)
we have σ � t . Proving the opposite set inclusion, that is, that for all σ with σ � t we have σ ∈ createSeq(t), is
similar.



Testing restorable systems 765

In order to prove (b), we check that for allσ ∈createSeq(t) we have the propertiesCostSeq(σ )�CostTree(t),
StateCover(σ )�StateCoverT(t), and TranCover(σ )�TranCoverT(t). We will prove these properties by induc-
tion over the structure of t . Then, each of the equalities given in (b) will be a trivial consequence of the tran-
sitivity of the equality. As anchor case, let us consider a tree t � (s, [ ]). For all σ ∈ createSeq(t) we have
σ � s . Thus, we have CostSeq(σ ) � CostTree(t) � 0. Besides StateCover(σ ) � StateCoverT(t) � {s} and
TranCover(σ ) � TranCoverT(t) � ∅. Let us consider the inductive case. Let t � (s, [(δ1, t1), . . . , (δn , tn )]),

where we consider that for all ≤ j ≤ n we have δj � s
ij /oj /cj−−−−−−−→ s ′

j . If σ ∈ createSeq(t) then σ can be split
into n consecutive subsequences σi such that all of them but the last one finish by loading s . In particular, for

all 1 ≤ j ≤ n − 1 we have that σi follows the form σj � s
ij /oj /cj−−−−−−−→ σ ′

j

ψ(s)−−−−→ s for some σ ′
j , while σn follows

the form σn � s
in/on/cn−−−−−−−→ σ ′

n for some σ ′
n . Let us note that for all σ ′

i we have σ ′
i ∈ createSeq(ti ). Thus, by

induction hypothesis we can assume that, for all 1 ≤ i ≤ n, CostSeq(σi ) � CostTree(ti ), StateCover(σi ) �
StateCoverT(ti ), and TranCover(σi ) � TranCoverT(ti ). Now we can see that CostSeq(σ ) � CostTree(t) �
δ1 + · · ·+δn +CostTree(t1)+ · · ·+CostTree(tn )+(n −1) ·C . We also have StateCover(σ ) � StateCoverT(t) �
{s} ∪⋃n

i�1 StateCoverT(ti ), as well as TranCover(σ ) � TranCoverT(t) � {δ1, . . . , δn} ∪⋃n
i�1 TranCoverT(ti ).

Thus, all required equalities hold.

A.4. Proof of Proposition 5.1

Let us consider (a). If no state or transition appears more than once in t then we can trivially construct a tree
t ′ ∈ Trees(W ′) representing the same traversal as t and having the same cost: for each transition (s, s ′, i , o, c) ∈ �
traversed in t , we traverse transitions (s, δ, i , o, c/2) and (δ, s ′, i , o, c/2) in t ′. Let us suppose that some states
and transitions are repeated in t . We have the following cases:

(1) There exists a sequence σ traversing a branch of t such that all states and transitions traversed by σ are
traversed somewhere else in t , and σ finishes at a leaf of t . Let σ ′ be the suffix of σ consisting of all steps in
σ from the last bifurcation node of t traversed by σ to the leaf. The sequence σ ′ is useless for covering new
states and transitions, so we can remove σ ′ from t . All other branches departing from the same bifurcation
point and leading to leaves only through repeated sequences can be removed too. Moreover, if all branches of
the bifurcation point are removed then the bifurcation point becomes a leaf itself, and we have case 1 again
for the part of σ that came before σ ′. Otherwise, the remaining part of σ must fit into case 2.

(2) No sequence of repeated states and transitions finishes at a leaf of t . This means that all sequence σ traversing
repeated states and transitions reaches some fresh state s . Let δ be the transition taken in the last step of σ ,
that is, the one taken to reach s . This transition must be fresh too (otherwise, s would not be fresh). The tree
t ′ can bypass σ by using a direct transition from the point where σ starts to the node representing δ in W ′.
The cost to this direct transition is equal to or lower than the cost to taking σ . This is so because the cost of
a direct transition is the cost of the shortest path connecting the departure and the destination nodes of the
direct transition.

After all useless parts of t are removed as described in case 1, we construct t ′ from t by treating sequences
traversing only fresh states/transitions as described at the beginning of this proof, and repeated parts as
described in case 2. The resulting tree t ′ covers the same states and transitions as t , but its cost is lower
than or equal to the cost of t . Besides, no state or transition of W ′ is repeated in t ′. Thus, t ′ fulfills the given
requirements.

Let us consider (b). Let t ′ ∈ Trees(W ′). We construct t ∈ Trees(W ) from t ′ by traversing the same stan-
dard (i.e. non-direct) transitions, and for all direct transition δ traversed in t ′, in t we traverse the shortest
path connecting both sides of the direct transition, (standard) transition by (standard) transition. The result-
ing tree t covers the same states and transitions as t ′ and has the same cost. Thus, t fulfills the proposed
requirements.
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A.5. Proof of Theorem 6.1

We will use similar arguments as in the proof of Theorem 3.1. Given a set of plain sequences α, we can easily
compute ResetsIncludedCost(α, r ), as well as

⋃
σ∈α StateCover(σ ) and

⋃
σ∈α TranCover(σ ), and compare

them with K , S ′,�′ in polynomial time with respect to W , S ′,�′, and K , so we have MLS ∈ NP. In order to prove
MRP ∈ NP-complete, we polynomially reduce the NP-complete Hamiltonian Path problem in directed graphs
(this problem was stated before in the proof of Theorem 3.1) to MRP. Let G � (V, E) (where V and E denote the
sets of vertices and edges, respectively, and we suppose n �| V |) represent an instance of the Hamiltonian Path
problem. We construct n instances of MRP from G as follows. Let W1, . . . ,Wn be WFSMs where, for all 1 ≤ i ≤ n,
we have Wi � (S , si , I ,O,C ,�). Note that, for all Wi , we have the same values for all tuple components but
the initial state, si . We assume that the sets of states and transitions of all Wi , S and�, are defined in such a way
that they literally copy the form defined by V and E in G. The inputs and outputs labeling transitions of � in all
WFSMs are defined in such a way that the resulting WFSM is deterministic: we consider I � {i1, . . . , in } for some
input symbols i1, . . . , in , O � {o1, . . . , in } for some output symbols o1, . . . , on , and, for all s ∈ S , all transitions
leaving s are labeled by a different input/output pair ij /oj . The cost of all transition δ ∈ � is set to 1, and the
load cost C is set to any arbitrary value. Let us note that this value is ignored to calculate the resets-included
cost of a set of plain sequences, so C is irrelevant for MRP. For each Wi , we assume that its initial state si is set
to a different state in S (thus, for all s ∈ S there is some 1 ≤ j ≤ n such that the initial state of Wj is s). In
addition, let S ′ ⊆ S and �′ ⊆ � be defined as S ′ � S and �′ � ∅, and let K � n − 1. Finally, let r ∈ N be
equal to n. Since each Wi can be constructed from G in polynomial time, constructing the MRP problem instances
(W1,S ′,�′, r ,K ), . . ., (Wn ,S ′,�′, r ,K ) from G requires polynomial time.

Let us see that the answer of the Hamiltonian Path problem for G is yes iff there exists 1 ≤ i ≤ n such that the
answer of MRP to Wi ,S ′,�′, r ,K is yes. Let us consider the implication from left to right. Let σ be a Hamiltonian
path for G and Wi be the WFSM such that its initial state is the initial state of σ . We have that σ is a plain sequence
for Wi , σ covers all states and transitions in S ′ and �′, and ResetsIncludedCost({σ }, r ) � n − 1 � K (note
that, if our set of plain sequences contains a single sequence, then no reset cost is added). Now, let us consider
the implication from right to left. If (a) α is a set of plain sequences for some Wi ; (b) sequences belonging to α
cover all states and transitions in S ′ and�′; and (c) ResetsIncludedCost(α, r ) ≤ K � n −1, then there is single
plain sequence in α, that is, there is no need to make any reset operation to execute all sequences in α (otherwise
we would have ResetsIncludedCost(α, r ) > K because we have r � n). Let σ be the single plain sequence
belonging to α. We have CostPlain(σ ) ≤ n − 1. Since all n states of S ′ are covered by σ , σ must take at least
n − 1 transitions. Note that the cost of all transitions is 1. Thus, CostPlain(σ ) ≤ n − 1 implies that σ traverses
exactly n − 1 transitions. If σ traverses n different states in n − 1 transitions then no state is traversed more than
once in σ . Thus, σ is a Hamiltonian path for G.
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