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Abstract. We consider two characterisations of the may and must test-
ing preorders for a probabilistic extension of the finite π-calculus: one
based on notions of probabilistic weak simulations, and the other on
a probabilistic extension of a fragment of Milner-Parrow-Walker modal
logic for the π-calculus. We base our notions of simulations on the similar
concepts used in previous work for probabilistic CSP. However, unlike the
case with CSP (or other non-value-passing calculi), there are several pos-
sible definitions of simulation for the probabilistic π-calculus, which arise
from different ways of scoping the name quantification. We show that in
order to capture the testing preorders, one needs to use the “earliest”
simulation relation (in analogy to the notion of early (bi)simulation in
the non-probabilistic case). The key ideas in both characterisations are
the notion of a “characteristic formula” of a probabilistic process, and
the notion of a “characteristic test” for a formula. As in an earlier work
on testing equivalence for the π-calculus by Boreale and De Nicola, we
extend the language of the π-calculus with a mismatch operator, without
which the formulation of a characteristic test will not be possible.

Keywords: Probabilistic π-calculus; Testing semantics; Bisimulation; Modal
logic

1 Introduction

We consider an extension of a finite version (without replication or recursion)
of the π-calculus [15] with a probabilistic choice operator, alongside the non-
deterministic choice operator of the π-calculus. Such an extension has been
shown to be useful in modelling protocols and their properties, see, e.g., [17,
2]. The combination of both probabilistic and non-deterministic choice has long
been a subject of study in process theories, see, e.g., [9, 24, 21, 5]. In this paper,
we consider a natural notion of preorders for the probabilistic π-calculus, based
on the notion of testing [3, 11]. In this testing theory, one defines a notion of test,
what it means to apply a test to a process, the outcome of a test, and how the
outcomes of tests can be compared. In general, the outcome of a test can be any
non-empty set, endowed with a (partial) order; in the case of the original theory,
this is simply a two-element lattice, with the top element representing success
and the bottom element representing failure. In the probabilistic case, the set
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of outcomes is the unit interval [0,1], denoting probabilities of success, with the
standard mathematical ordering ≤. In the presence of non-determinism, it is
natural to consider a set of such probabilities as the result of applying a test
to a process. Two standard approaches for comparing results of a test are the
so-called Hoare preorder, written ⊑Ho, and the Smyth preorder, ⊑Sm [10]:

– O1 ⊑Ho O2 if for every o1 ∈ O1 there exists o2 ∈ O2 such that o1 ≤ o2.
– O1 ⊑Sm O2 if for every o2 ∈ O2 there exists o1 ∈ O1 such that o1 ≤ o2.

Correspondingly, these give rise to two semantic preorders for processes:

– may-testing: P ⊑pmay Q iff for every test T , Apply(T, P ) ⊑Ho Apply(T,Q)
– must-testing: P ⊑pmust Q iff for every test T , Apply(T, P ) ⊑Sm Apply(T,Q),

where Apply(T, P ) refers to the result of applying the test T to process P .
We derive two characterisations of both may-testing and must-testing: one

based on a notion of probabilistic weak (failure) simulation [21], and the other
based on a modal logic obtained by extending Milner-Parrow-Walker (MPW)
modal logic for the (non-probabilistic) π-calculus [16].

The probabilistic π-calculus that we consider here is a variant of the proba-
bilistic π-calculus considered in [2], but extended with the mismatch operator.
As has already been observed in the testing semantics for the non-probabilistic
π-calculus [1], the omission of mismatch would result in a strictly less discrimi-
nating test. This is essentially due to the possibility of two kinds of output tran-
sitions in the π-calculus, a bound-output action, which outputs a new name, e.g.,
x̄(w).0, and a free-output action, e.g., x̄y.0.Without the mismatch operator, the
two processes are related via may-testing, because the test cannot distinguish
between output of a fresh name and output of an arbitrary name (see [1]).

The technical framework used to prove the main results in this paper is
based on previous works on probabilistic CSP (pCSP) [7, 5], an extension of
Hoare’s CSP [13] with a probabilistic choice operator. This allows us to adapt
some proofs and results from [7, 5] that are not calculus-specific. The name-
passing feature of the π-calculus, however, gives rise to several difficulties not
found in the non-name-passing calculi such as pCSP, and it consequently requires
new techniques to deal with. For instance, there is not a canonical notion of
(weak) simulation in the π-calculus, unlike the case with pCSP. Different variants
arise from different ways of scoping the name quantification in the simulation
clause dealing with input transitions, e.g., the “early” vs. the “late” variants
of (bi)simulation [15]. In the case of weak simulation, one also gets a “delay”
variant of (bi)simulation [8, 18, 23]. As we show in Section 4, the right notion
of simulation is the early variant, as all other weak simulation relations are
strictly more discriminating than the early one. Another difficulty is in proving
congruence properties, a prerequisite for the soundness of the (failure) simulation
preorders. The possibility of performing a ‘close’ communication in the π-calculus
requires a combination of closure under parallel composition and name restriction
(see Section 5). We use the so-called “up-to” techniques [19] for non-probabilistic
calculi to prove these congruences.
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We show that ⊑pmay coincides with a simulation preorder ⊑S and a preorder
⊑L induced by a modal logic L extending the MPW logic. Dually, the must-
testing preorder is shown to coincide with a failure simulation preorder, ⊑FS ,
and a preorder⊑F induced by a modal logic F extending L. For technical reasons
in proving the completeness result of (failure) simulation, we make use of testing
preorders involving vector-based testing (⊑Ωpmay and ⊑Ωpmust below). The precise
relations among these preorders are as follows:

⊑S ⊆ ⊑pmay = ⊑Ωpmay ⊆ ⊑L ⊆ ⊑S

⊑FS ⊆ ⊑pmust = ⊑Ωpmust ⊆ ⊑F ⊆ ⊑FS .

The proofs of these inclusions are subjects of Section 5, Section 6 and Section 7.
Let us highlight the characterisations of may-testing preorder. As with the case
with pCSP [5], the key idea to the proof of the inclusion ⊑L ⊆ ⊑S is to show
that for each process P , there exists a characteristic formula ϕP such that if
Q |= ϕP then P ⊑S Q. The inclusion ⊑Ωpmay ⊆ ⊑L is proved by showing that
for each formula ϕ, there exists a characteristic test Tϕ such that for all process
P , P |= ϕ iff P passes the test Tϕ with some threshold testing outcome.

2 Processes and probabilistic distributions

We consider an extension of the (finite) π-calculus with a probabilistic choice op-
erator, p⊕ , where p ∈ (0, 1].We shall be using the late version of the operational
semantics, formulated in the reactive style (in the sense of [22]) following previous
work [7, 5]. The use of the late semantics allows for a straightforward definition
of characteristic formulas (see Section 6), which are used in the completeness
proof. So our testing equivalence is essentially a “late” testing equivalence. How-
ever, as has been shown in [14, 1], late and early testing equivalences coincide
for value-passing/name-passing calculi.

We assume a countably infinite set of names, ranged over by a, b, x, y etc.
Given a name a, its co-name is ā. We use µ to denote a name or a co-name.
Process expressions are generated by the following two-sorted grammar:

P ::= s | P p⊕P
s ::= 0 | a(x).s | āx.s | [x = y]s | [x 6= y]s | s+ s | s|s | νx.s

We let P,Q, ... range over process terms defined by this grammar, and s, t range
over the subset Sp comprising only the state-based process terms, i.e. the sub-
sort s.

The input prefix a(x) and restriction νx are name-binding contructs; x in
this case is a bound name. We denote with fn(P ) the set of free names in P
and bn(P ) the set of bound names. The set of names in P (free or bound) is
denoted by n(P ). We shall assume that bound names are different from each
other and different from any free names. Processes are considered equivalent
modulo renaming of bound names. Processes are ranged over by P ,Q,R, etc. We
shall refer to our probablistic extension of the π-calculus as πp.
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We shall sometimes use an n-ary version of the binary operators. For example,
we use

⊕

i∈I piPi, where
∑

i∈I pi = 1, to denote a process obtained by several
applications of the probabilistic choice operator. Simiarly,

∑

i∈I Pi denotes sev-
eral applications of the non-deterministic choice operator +. We shall use the
τ -prefix, as in τ.P , as an abbreviation of νx(x(y).0 | x̄x.P ), where x, y 6∈ fn(P ).

In this paper, we take the viewpoint that a probabilistic process represents an
unstable state that may probabilistically evolve into some stable states. Formally,
we describe unstable states as distributions and stable states as state-based
processes. Note that in a state-based process, probablistic choice can only appear
under input/output prefixes. The operational semantics of πp will be defined only
for state-based processes.

Probabilistic distributions are ranged over by ∆. A discrete probabilistic dis-
tribution over a set S is a mapping ∆ : S → [0, 1] with

∑

s∈S ∆(s) = 1. The
support of a distribution ∆, denoted by ⌈∆⌉, is the set {s | ∆(s) > 0}. From
now on, we shall restrict to only probabilistic distributions with finite support,
and we let D(S) denote the collection of such distributions over S. If s is a
state-based process, then δ[s] denote the point distribution that maps s to 1.
For a finite index set I, given pi and distribution ∆i, for each i ∈ I, such
that

∑

i∈I pi = 1, we define another probability distribution
∑

i∈I pi · ∆i as
(
∑

i∈I pi ·∆i)(s) =
∑

i∈I pi ·∆i(s), where · here denotes multiplication. We shall
sometimes write this distribution as a summation p1 ·∆1+p2 ·∆2+ . . .+pn ·∆n

when the index set I is {1, . . . , n}.

Probabilistic processes are interpreted as distributions over state-based pro-
cesses as follows.

[[s]] ::= δ[s] for s ∈ Sp
[[P p⊕Q]] ::= p · [[P ]] + (1− p) · [[Q]]

Note that for each process term P the distribution [[P ]] is finite, that is it has
finite support.

A transition judgment can take one of the following forms:

s
a(x)
−−→ ∆ s

τ
−−→ ∆ s

āx
−−→ ∆ s

ā(x)
−−→ ∆

The action a(x) is called a bound-input action; τ is the silent action; āx is a
free-output action and ā(x) is a bound-output action. In actions a(x) and ā(x),
x is a bound name. Given an action α, we denote with fn(α) the set of free
names in α, i.e., those names in α which are not bound names. The set of bound
names in α is denoted by bn(α), and the set of all names (free and bound) in α
is denoted by n(α). The free names of a distribution is the union of free names
of its support, i.e., fn(∆) =

⋃

{fn(s) | s ∈ ⌈∆⌉}.

A substitution is a mapping from names to names; substitutions are ranged
over by ρ, σ and θ. A substitution θ is a renaming substitution if θ is an injective
map, i.e., θ(x) = θ(y) implies x = y. A substitution is extended to a mapping
between processes in the standard way, avoiding capture of free variables. We
use the notation s[y/x] to denote the result of substituting free occurrences of x
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α.P
α

−−→ [[P ]]
Act

s
α

−−→ ∆

s+ t
α

−−→ ∆
Sum

s
α

−−→ ∆

[x = x]s
α

−−→ ∆
Match

s
α

−−→ ∆

[x 6= y]s
α

−−→ ∆
Mismatch, x 6= y

s
α

−−→ ∆

s | t
α

−−→ ∆ | δ[t]
Par, bn(α) ∩ fn(t) = ∅

s
a(x)

−−→ ∆1 t
āy

−−→ ∆2

s | t
τ

−−→ ∆1[y/x] | ∆2

Com
s

a(w)

−−→ ∆1 t
ā(w)

−−→ ∆1

s | t
τ

−−→ νw.(∆1 | ∆2)
Close

s
α

−−→ ∆

νx.s
α

−−→ νx.∆
Res, x 6∈ n(α)

s
x̄z

−−→ ∆

νz.s
x̄(y)

−−→ ∆[y/z]

Open, y 6= x, y 6∈ fn(νz.s)

Fig. 1. The operational semantics of πp.

in s with y. Substitution is lifted to a mapping between distributions as follows:

∆[y/x](s) =
∑

{∆(s′) | s′[y/x] = s}.

It can be verified that [[P [y/x]]] = [[P ]][y/x] for every process P.
The operational semantics is given in Figure 1. The rules for parallel compo-

sition and restriction use an obvious notation for distributing an operator over
distributions, for example:

(∆1 | ∆2)(s) =

{

∆1(s1) ·∆2(s2) if s = s1|s2
0 otherwise

(νx.∆)(s) =

{

∆(s′) if s = νx.s′

0 otherwise.

The symmetric counterparts of Sum, Par, Com and Close are omitted. The
semantics of πp processes is presented in terms of simple probabilistic automata
[21].

3 Testing probabilistic processes

As standard in testing theories [3, 11, 1], to define a test, we introduce a distin-
guished name ω which can only be used in tests and is not part of the processes
being tested. A test is just a probabilistic process with possible free occurrences
of the name ω as channel name in output prefixes, i.e., a test is a process which
may have subterms of the form ω̄a.P . Note that the object of the action prefix
(i.e., the name a) is irrelevant for the purpose of testing. Note also that it makes
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no differences whether the name ω appears in input prefixes instead of output
prefixes; the notion of testing preorder will remain the same. Therefore we shall

often simply write ω.P to denote ω̄a.P , and P
ω

−−→ ∆ to denote P
ω̄a

−−→ ∆. The
definitions of may-testing preorder, ⊑pmay, and must-testing preorder, ⊑pmust,
have already been given in the introduction, but we left out the definition of the
Apply function. This will be given below.

Following [7], to define the Apply function, we first define a results-gathering
function V : Sp → P([0, 1]) as follows:

V(s) =











{1} if s
ω

−−→
⋃

{V(∆) | s
τ

−−→ ∆} if s 6
ω

−→ but s
τ

−−→
{0} otherwise.

Here the notation P([0, 1]) stands for the powerset of [0, 1], and we use V(∆)
to denote the set of probabilities {

∑

s∈⌈∆⌉∆(s) · ps | ps ∈ V(s)}. The Apply
function is then defined as follows: given a test T and a process P ,

Apply(T, P ) = V([[ν~x.(T | P )]])

where {~x} is the set of free names in T and P , excluding ω. So the process (or
rather, the distribution) ν~x.(T | P ) can only perform an observable action on ω.

Vector-based testing. Following [5], we introdude another approach of testing
called vector-based testing, which will play an important role in Section 7.

Let Ω be a set of fresh success actions different from any normal channel
names. An Ω-test is a πp-process, but allowing subterms ω.P for any ω ∈ Ω.
Applying such a test T to a process P yields a non-empty set of test outcome-
tuples ApplyΩ(T, P ) ⊆ [0, 1]Ω. For each such tuple, its ω-component gives the
probability of successfully performing action ω.

To define a results-gathering function for vector-based testing, we need some
auxiliary notations. For any action α define α! : [0, 1]Ω → [0, 1]Ω by

α!o(ω) =

{

1 if ω = α
o(ω) otherwise

so that if α is a success action in Ω then α! updates the tuple 1 at that point,
leaving it unchanged otherwise, and when α 6∈ Ω the function α! is the identity.
For any set O ⊆ [0, 1]Ω, we write α!O for the set {α!o | o ∈ O}. For any set X
define its convex closure l X by

l X := {
∑

i∈I

pi · oi | oi ∈ X for each i ∈ I and
∑

i∈I pi = 1}.

Here, I is assumed to be a finite index set. Finally, zero vector ~0 is given by
~0(ω) = 0 for all ω ∈ Ω. Let SΩp be the set of state-based Ω-tests.
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Definition 1. The vector-based results-gathering function V
Ω : SΩp → P([0, 1]Ω)

is given by

V
Ω(s) :=

{

l
⋃

{α!(VΩ(∆)) | s
α

−−→ ∆} if s→
{~0} otherwise

The notation s→ means that s is not a deadlock state, i.e. there is some α and

∆ such that s
α

−−→ ∆. For any process P and Ω-test T , we define ApplyΩ(T, P )
as VΩ([[ν~x.(T |P )]]), where {~x} = fn(T, P )−Ω. The vector-based may and must
preorders are given by

P ⊑Ωpmay Q iff for all Ω-test T : ApplyΩ(T, P ) ⊑Ho ApplyΩ(T,Q)
P ⊑Ωpmust Q iff for all Ω-test T : ApplyΩ(T, P ) ⊑Sm ApplyΩ(T,Q)

where ⊑Ho and ⊑Sm are the Hoare and Smyth preorders on P([0, 1]Ω) generated
from ≤ index-wise on [0, 1]Ω.

Notice a subtle difference between the definition of VΩ above and the definition
of V given earlier. In V

Ω, we use action-based testing, i.e., the actual execution of
ω constitutes a success. This is in contrast to the state-based testing in V, where a
success is defined for a state where a success action ω is possible, without having
to actually perform the action ω. In the case where there is no divergence, as in
our case, these two notions of testing coincide; see [5] for more details.

The following theorem can be shown by adapting the proof of Theorem 6.6
in [5], which states a general property about probabilistic automata [4].

Theorem 1. Let P and Q be any πp-processes.

1. P ⊑Ωpmay Q iff P ⊑pmay Q
2. P ⊑Ωpmust Q iff P ⊑pmust Q.

4 Simulation and Failure Simulation

To define simulation and failure simulation, we need to generalise the transition
relations between states and distributions to those between distributions and
distributions. This is defined via a notion of lifting of a relation.

Definition 2 (Lifting [6]). Given a relation R ⊆ Sp × D(Sp), define a lifted
relation R ⊆ D(Sp)×D(Sp) as the smallest relation that satisfies

1. sRΘ implies δ[s] R Θ
2. (Linearity) ∆i R Θi for all i ∈ I implies (

∑

i∈I pi ·∆i) R (
∑

i∈I pi · Θi) for
any pi ∈ [0, 1] with

∑

i∈I pi = 1.

The following is a useful properties of the lifting operation.

Proposition 1 ([7]). Suppose R ⊆ S × D(S) and
∑

i∈I pi = 1. If (
∑

i∈I pi ·

∆i) R Θ then Θ =
∑

i∈I pi·Θi for some set of distributions Θi such that ∆i R Θi
for all i ∈ I.
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For simplicity of presentation, the lifted version of the transition relation
α

−−→ will be denoted by the same notation as the unlifted version. So we shall

write ∆
α

−−→ Θ when ∆ and Θ are related by the lifted relation from
α

−−→ .

Note that in the lifted transition ∆
α

−−→ Θ, all processes in ⌈∆⌉ must be able
to simultaneously make the transition α. For example,

1

2
· δ[āx.s] +

1

2
· δ[āx.t]

āx
−−→

1

2
· δ[s] +

1

2
· δ[t]

but the distribution 1
2 ·δ[āx.s]+

1
2 ·δ[b̄x.t] will not be able to make that transition.

We need a few more relations to define (failure) simulation:

– We write s
τ̂

−−→ ∆ to denote either s
τ

−−→ ∆ or ∆ = δ[s]. Its lifted version

will be denoted by the same notation, e.g., ∆1

τ̂
−−→ ∆2. The reflexive-

transitive closure of the latter is denoted by
τ̂

=⇒ .

– ∆1
α̂

==⇒ ∆2, for α 6= τ , iff ∆1
τ̂

==⇒ ∆′
α

−−→ ∆′′ τ̂
==⇒ ∆2 for some ∆′ and

∆′′.

– We write s ↓a to denote s
a(x)

−−→, and s ↓ā to denote either s
ā(x)

−−→ or s
āx

−−→;

s 6↓µ stands for the negation. We write s 6↓X when s 6
τ

−−→ and ∀µ ∈ X : s 6↓µ,
and ∆ 6↓X when ∀s ∈ ⌈∆⌉ : s 6↓X .

Definition 3. A relation R ⊆ Sp × D(Sp) is said to be a failure simulation if
sRΘ implies:

1. If s
a(x)
−−→ ∆ and x 6∈ fn(s,Θ), then for every name w, there exists Θ1, Θ2

and Θ′ such that

Θ
τ̂

==⇒ Θ1

a(x)

−−→ Θ2, Θ2[w/x]
τ̂

==⇒ Θ′, and (∆[w/x]) R Θ′.

2. If s
α

−−→ ∆ and α is not an input action, then there exists Θ′ such that

Θ
α̂

==⇒ Θ′ and ∆ R Θ′

3. If s 6↓X then there exists Θ′ such that Θ
τ̂

==⇒ Θ′ 6↓X .

We denote with ⊳FS the largest failure simulation relation. Similarly, we define
simulation and ⊳S by dropping the third clause above. The simulation preorder
⊑S and failure simulation preorder ⊑FS on process terms are defined by letting

P ⊑S Q iff there is a distribution Θ with [[Q]]
τ̂

==⇒ Θ and [[P ]] ⊳S Θ.

P ⊑FS Q iff there is a distribution Θ with [[P ]]
τ̂

==⇒ Θ and [[Q]] ⊳FS Θ.

Notice the rather unusual clause for input action, where no silent action
from Θ2 is permitted after the input transition. This is reminiscent of the notion
of delay (bi)simulation [8, 18, 23]. If instead of that clause, we simply require

Θ
â(x)
==⇒ Θ′′ and ∆[w/x] R Θ′′[w/x] then, in the presence of mismatch, simulation

8



is not sound w.r.t. the may-testing preorder, even in the non-probabilistic case.
Consider, for example, the following processes:

P = a(x).āb Q = a(x).[x 6= c]τ.āb

where we recall that τ.R abbreviates νz.(z(u) | z̄z.R) for some z 6∈ fn(R). The
process P can make an input transition, and regardless of the value of the input,
it can then output b on channel a. Notice that for Q, we have

Q
a(x)
−−→ [x 6= c]τ.āb

τ
−−→ νz(0 | āb) = Q′.

Q′ can also outputs b on channel a, so under this alternative definition, Q can
simulate P. But P 6⊑pmay Q, as the test āc.a(y).ω will distinguish them. This
issue has also appeared in the theory of weak (late) bisimulation for the non-
probabilistic π-calculus; see, e.g., [20].

Note that the above definition of ⊳S is what is usually called the “early”
simulation. One can obtain different variants of “late” simulation using different
alternations of the universal quantification on names and the existential quan-
tifications on distributions in clause 1 of Definition 3. Any of these variants leads
to a strictly more discriminating simulation. To see why, consider the weaker of
such late variants, i.e., one in which the universal quantifier on w comes after
the existential quantifier on Θ1:

If s
a(x)

−−→ ∆ and x 6∈ fn(s,Θ), then there exists Θ1 such that for every
name w, there exist Θ2 and Θ′ such that

Θ
τ̂

==⇒ Θ1

a(x)

−−→ Θ2, Θ2[w/x]
τ̂

==⇒ Θ′, and (∆[w/x]) R Θ′.

Let us denote this variant with ⊑S′ . Consider the following processes:

P = a(x).b̄x.0+ a(x).0+ a(x).[x = z]b̄x.0 Q = τ.a(x).b̄x.0+ τ.a(x).0

It is easy to see that P ⊑S Q but P 6⊑S′Q.

If we drop the silent transitions Θ2[w/x]
τ̂

==⇒ Θ′ in clause (1) of Definition 3,
i.e., we let Θ′ = Θ2[w/x] (hence, we get a delay simulation), then again we get
a strictly stronger relation than ⊑S. Let us refer to this stronger relation as
⊑D. Let P be a(x).(c 1

2

⊕ d) and let Q be a(x).τ.(c 1

2

⊕ d). Here we remove the
parameters in the input prefixes c and d to simplify presentation. Again, it can
be shown that P ⊑S Q but P 6⊑D Q. For the latter to hold, we would have to
prove 1

2 · δ[c] + 1
2 · δ[d] ⊳S δ[τ.(c 1

2

⊕ d)], which is impossible.

Note that (failure) simulation is a relation between processes and distribu-
tions, rather than between processes, so it is not immediately obvious that it is a
preorder. This is established in Corollary 1 below, whose proof requires a series
of lemmas.

In the following, when we apply a substitution to an action, we assume that
the substitution affects both the free and the bound names in the action. For
example, if α = a(x) and θ = [b/a, y/x] then αθ = b(y). However, application of
a substitution to processes or distributions must still avoid capture.
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Lemma 1. Suppose σ is a renaming substitution.

1. If s
α

−−→ ∆ then sσ
ασ

−−→ ∆σ.

2. If ∆
α̂

==⇒ ∆′ then ∆σ
α̂σ
==⇒ ∆′σ.

Lemma 2. Let I be a finite index set, and let
∑

i∈I pi = 1. Suppose si
a(xi)

−−→ ∆i

for each i ∈ I. Let x be a fresh name not occuring in any of si, a(xi) or ∆i.
Then

∑

i∈I

pi · δ[si]
a(x)
−−→

∑

i∈I

pi ·∆i[x/xi].

Given the above lemma, given transitions si
a(xi)

−−→ ∆i, we can always assume
that, all the xi’s are the same fresh name, so that when lifting those transitions
to distributions, we shall omit the explicit renaming of individual xi. This will
simplify the presentation of the proofs in the following. The same remark applies
to bound output transitions.

Lemma 3. Suppose
∑

i∈I pi = 1 and ∆i
α̂

==⇒ Φi for each i ∈ I, where I is a
finite index set. Then

∑

i∈I

pi ·∆i
α̂

==⇒
∑

i∈I

pi · Φi.

Proof. Same as in the proof of Lemma 6.6. in [7]. ⊓⊔

Lemma 4. For every state-based process s, we have s ⊳S δ[s] and s ⊳FS δ[s].

Proof. Let R ⊆ Sp×D(Sp) be the relation defined as follows: s R Θ iff Θ = δ[s].
It is easy to see that R is a simulation and also a failure simulation. ⊓⊔

Lemma 5. Suppose ∆ ⊳S Φ and ∆
α

−−→ ∆′, where α is either τ , a free action

or a bound output action. Then Φ
α̂

−−→ Φ′ for some Φ′ such that ∆′ ⊳S Φ
′.

Proof. Similar to the proof of Lemma 6.7 in [7]. ⊓⊔

Lemma 6. Suppose ∆ ⊳S Φ and ∆
a(x)
−−→ ∆′. Then for all name w, there exist

Ψ1, Ψ2 and Ψ such that

Φ
τ̂

==⇒ Ψ1

a(x)
−−→ Ψ2, Ψ2[w/x]

τ̂
==⇒ Ψ, and (∆′[w/x]) ⊳S Ψ.

Proof. From ∆ ⊳S Φ we have that

∆ =
∑

i∈I

pi · δ[si], si ⊳S Φi, Φ =
∑

i∈I

pi · Φi. (1)

and from ∆
a(x)
−−→ ∆′ we have:

∆ =
∑

j∈J

qj · δ[tj ], tj
a(x)
−−→ Θj , ∆′ =

∑

j∈J

qj · Θj . (2)

10



We assume w.l.o.g. that all pi and qj are non-zero. Following [7], we define two
index sets: Ij = {i ∈ I | si = tj} and Ji = {j ∈ J | tj = si}. Obviously, we have

{(i, j) | i ∈ I, j ∈ Ji} = {(i, j) | j ∈ J, i ∈ Ji}, and (3)

∆(si) =
∑

j∈Ji

qj ∆(tj) =
∑

i∈Ij

pi. (4)

It follows from (4) that we can rewrite Φ as

Φ =
∑

i∈I

∑

j∈Ji

pi · qj
∆(si)

· Φi.

Note that si = tj when j ∈ Ii. Since si ⊳S Φi, and si = tj
a(x)
−−→ Θj , we have,

given any name w, some Φ1
ij , Φ

2
ij and Φij such that:

Φi
τ̂

==⇒ Φ1
ij

a(x)
−−→ Φ2

ij , Φ2
ij [w/x]

τ̂
==⇒ Φij , Θj [w/x] ⊳S Φij . (5)

Let

Ψ1 =
∑

i∈I

∑

j∈Ji

pi · qj
∆(si)

·Φ1
ij Ψ2 =

∑

i∈I

∑

j∈Ji

pi · qj
∆(si)

·Φ2
ij Ψ =

∑

i∈I

∑

j∈Ji

pi · qj
∆(si)

·Φij .

Lemma 3 and (5) above give us:

Φ =
∑

i∈I

∑

j∈Ji

pi · qj
∆(si)

· Φi
τ̂

==⇒ Ψ1

a(x)
−−→ Ψ2 Ψ2[w/x]

τ̂
==⇒ Ψ

It remains to show that ∆′[w/x] ⊳S Ψ.

∆′[w/x] =
∑

j∈J

qj ·Θj [w/x]

=
∑

j∈J

qj ·
∑

i∈Ij

pi
∆(tj)

·Θj [w/x] using (4)

=
∑

j∈J

∑

i∈Ij

pi · qj
∆(tj)

· Θj [w/x]

=
∑

i∈I

∑

j∈Ji

pi · qj
∆(si)

· Θj [w/x] using (3)

⊳S
∑

i∈I

∑

j∈Ji

pi · qj
∆(tj)

· Φij = Ψ using (5) and linearity of ⊳S

⊓⊔

Lemma 7. Suppose ∆ ⊳S Φ and ∆
α̂

==⇒ ∆′, where α is either τ , a free action

or a bound output. Then Φ
α̂

==⇒ Φ′ for some Φ′ such that ∆′ ⊳S Φ
′.
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Proof. Similar to the proof of Lemma 6.8 in [7]. ⊓⊔

Proposition 2. The relation ⊳S is reflexive and transitive.

Proof. Reflexivity of ⊳S follows from Lemma 4. To show transitivity, let us define
a relation R ⊆ Sp×D(Sp) as follows: s R Θ iff there exists ∆ such that s ⊳S ∆
and ∆ ⊳S Θ. We show that R is a simulation.

But first, we claim that Θ ⊳S ∆ ⊳S Φ implies Θ R Φ. This can be proved
similarly as in the case of CSP (see the proof of Proposition 6.9 in [7]).

Now to show that R is a simulation, there are two cases to consider. Suppose
s R Φ, i.e., s ⊳S ∆ ⊳S Φ.

– Suppose s
α

−−→ Θ, where α is either τ , a free action or a bound output
action. From s ⊳S ∆, we have

∆
α̂

==⇒ ∆′ and Θ ⊳S ∆
′. (6)

By Lemma 7 and (6), we have Φ
α̂

==⇒ Φ′ and ∆′ ⊳S Φ′, and by the above
claim and (6), Θ R Φ′.

– Suppose s
a(x)
−−→ Θ, so we have: for all w, there exist ∆1, ∆2, and ∆′ such

that

∆
τ̂

==⇒ ∆1

a(x)
−−→ ∆2, ∆2[w/x]

τ̂
==⇒ ∆′, and Θ[w/x] ⊳S ∆

′. (7)

Since ∆ ⊳S Φ, by Lemma 7 we have Φ
τ̂

==⇒ Φ1 and ∆1 ⊳S Φ1. And since

∆1

a(x)
−−→ ∆2, by Lemma 6, for all w, there exist Φ2, Φ3 and Φ4 such that:

Φ1
τ̂

==⇒ Φ2

a(x)
−−→ Φ3, Φ3[w/x]

τ̂
==⇒ Φ4, ∆2[w/x] ⊳S Φ4.

Lemma 7, together with ∆2[w/x] ⊳S Φ4 and ∆2[w/x]
τ̂

==⇒ ∆′, implies that

Φ4
τ̂

==⇒ Φ5 and ∆′ ⊳S Φ5 for some Φ5. From Θ[w/x] ⊳S ∆′ and ∆′ ⊳S Φ5,
we have Θ[w/x] R Φ5. Putting it all together, we have:

Φ
τ̂

==⇒ Φ2

a(x)

−−→ Φ3, Φ3[w/x]
τ̂

==⇒ Φ5, Θ[w/x] R Φ5.

Thus R is indeed a simulation. ⊓⊔

Proposition 3. The relation ⊳FS is reflexive and transitive.

Proof. Reflexivity of ⊳FS follows from Lemma 4. To show transivity, we use a
similar argument as in the proof of Proposition 2: define R such that s R Θ iff
there exists ∆ such that s ⊳FS ∆ and ∆ ⊳FS Θ. We show that R is a failure
simulation.

Suppose s R Θ. The matching up of transitions between s and Θ is proved
similarly to the case with simulation, by proving the analog of Lemmas 5 - 7

12



for failure simulation. It then remains to show that when s 6↓X then there exists

Θ′ such that Θ
τ̂

==⇒ Θ′ 6↓X . Since s R Θ, by the definition of R, we have a ∆

s.t. s ⊳FS ∆ and ∆ ⊳FS Θ. The former implies that ∆
τ̂

==⇒ ∆′ 6↓X , for some
∆′. It can be shown that, using arguments similar to the proof of Lemma 7

that Θ
τ̂

==⇒ Θ′ for some Θ′ such that ∆′ ⊳FSΘ
′. Suppose ⌈∆′⌉ = {si}i∈I , i.e.,

∆′ =
∑

i∈I pi · δ[si] with
∑

i∈I pi = 1. Obviously, si 6↓X for each i ∈ I. By
Proposition 1, Θ =

∑

i∈I pi ·Θi for some distributions Θi such that δ[si] ⊳FS Θi.
The latter implies, by Definition 2, that si ⊳FS Θi. Since si 6↓X , it follows that

Θi
τ̂

==⇒ Θ′
i 6↓X , for some Θ′

i. Thus Θ
τ̂

==⇒ (
∑

i∈I pi ·Θi) 6↓X . ⊓⊔

Corollary 1. The relations ⊑S and ⊑FS are preorders.

Proof. The fact that ⊑S is a preorder follows from Lemma 7 and Proposition 2.
Similar arguments hold for ⊑FS, using an analog of Lemma 7 and Proposition 3.

⊓⊔

5 Soundness of the simulation preorders

In proving soundness of the simulation preorders with respect to testing pre-
orders, we first need to prove certain congruence properties, i.e., closure under
restriction and parallel composition. For this, it is helpful to consider a slightly
more general definition of simulation, which incorporates another relation. This
technique, called the up-to technique, has been used in the literature to prove
congruence properties of various (pre-)order for the π-calculus [19].

Definition 4 (Up-to rules). Let R ⊆ Sp×D(Sp). Define the relation Rt where
t ∈ {r, ν, p} as the smallest relation which satisfies the closure rule for t, given
below (where σ is a renaming substitution):

s R ∆
sσ Rr ∆σ

r
s R ∆

(ν~x.s) Rν (ν~x.∆)
ν

s1 R ∆1 s2 R ∆2

(s1 | s2) Rp (∆1 | ∆2)
p

Definition 5 ((Failure) Simulation up-to). A relation R ⊆ Sp × D(Sp) is
said to be a (failure) simulation up to renaming (likewise, restriction and parallel
composition) if it satisfies the clauses 1, and 2, (and 3 for failure simulation)
in Definition 3, but with R in the clauses replaced by Rr (respectively, Rν and
Rp).

It is easy to see that R ⊆ Rt for any t ∈ {r, ν} (i.e., via the identity relation
as renaming substitution in the former, and via the empty restriction in the
latter). The following lemma is then an easy consequence.

Lemma 8. If R is a (failure) simulation then it is a (failure) simulation up-to
renaming, and also a (failure) simulation up to restriction.
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Our objective is really to show that simulation up-to parallel composition is
itself a simulation. This would then entail that (the lifted) simulation is closed
under parallel composition, from which soundness w.r.t. may-testing follows. We
prove this indirectly in three stages:

– simulation up-to renaming is a simulation;
– simulation up-to restriction is a simulation up-to renaming (hence also a

simulation by the previous item);
– and, finally, simulation up-to parallel composition is a simulation up-to re-

striction.

5.1 Up to renaming

Note that as a consequence of Lemma 1 (1), given an injective renaming substi-

tution σ, we have: if sσ
α′

−−→ ∆′ then there exists α and ∆ such that α′ = ασ,

∆′ = ∆σ and s
α

−−→ ∆. This is proved by simply applying Lemma 1 (1) to

sσ
α′

−−→ ∆′ using the inverse of σ.
In the following, we shall writeRtt to denote (Rt)t, i.e., the result of applying

the up-to closure rule t twice to R.

Lemma 9. Rrr = Rr.

Lemma 10. If ∆1 Rr ∆2 then (∆1σ) Rr (∆2σ) for any renaming substitution
σ.

Proof. This follows from the fact that ∆1 Rr ∆2 implies ∆1σ Rrr ∆2σ and that
Rrr = Rr . ⊓⊔

Lemma 11. If R is a (failure) simulation up to renaming, then Rr ⊆ ⊳S (re-
spectively, Rr ⊆ ⊳FS).

Proof. Suppose R is a simulation. It is enough to show that Rr is a simulation.

So suppose s Rr ∆ and s
α

−−→ Θ. By the definition of Rr, s = s′σ and ∆ = ∆′σ
for some renaming substitution σ and some s′ and ∆′ such that s′ R ∆′. There
are several cases to consider depending on the type of α.

– α is τ or a free action: By Lemma 1 (1) we have s′
α′

−−→ Θ′ for some α′ and
Θ′ such that α = α′σ and Θ = Θ′σ. Since R is a simulation up to renaming,

s′R∆′ implies that ∆′ α̂′

==⇒ ∆1 and Θ′ Rr ∆1. The former implies, by

Lemma 1 (2), that ∆
α̂

==⇒ ∆2 for some ∆2 such that ∆2 = ∆1σ, while the
latter implies, by Lemma 10, that Θ = (Θ′σ) Rr (∆1σ) = ∆2.

– α = a(x) for some a and x: In this case, x 6∈ fn(s,∆), so we can assume,
without loss of generality, that x does not occur in σ. Using a similar argu-

ment as in the previous case, we have that s′
b(x)
−−→ Θ′ for some b and Θ′ such
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that σ(b) = a and Θ = Θ′σ. Since R is a simulation up to renaming, s′R∆′

implies that for every name w, there exist ∆1
w, ∆

2
w and ∆w such that:

∆′ τ̂
==⇒ ∆1

w

b(x)
−−→ ∆2

w, ∆2
w[w/x]

τ̂
==⇒ ∆w, and (8)

Θ′[w/x] Rr ∆w. (9)

Let Φ1 = ∆1
wσ, Φ2 = ∆2

wσ and Φ = ∆wσ. From (8) and Lemma 1 (2) we
get:

∆ = ∆′σ
τ̂

==⇒ ∆1
wσ = Φ1

a(x)
−−→ ∆2

wσ = Φ2.

By (8), the freshness assumption of x w.r.t. σ, and Lemma 1 (2), we get

Φ2[w/x] = ∆2
wσ[w/x] = ∆2

w[w/x]σ
τ̂

==⇒ ∆wσ = Φ.

Finally, by (9) and Lemma 10, Θ[w/x] = Θ′σ[w/x] = Θ′[w/x]σ Rr ∆wσ =
Φ.

– α = ā(x): This case can be proved similarly to the previous cases.

For the case where R is a failure simulation, we additionally need to show that

whenever s Rr ∆ and s 6↓X , we have ∆
τ̂

==⇒ Θ 6↓X for some Θ. Since sR∆,
we have s = s′σ and ∆ = ∆′σ for some s′, ∆ and renaming substitution σ. Let
X ′ = Xσ−1, i.e., X ′ is the inverse image of X under σ. Then we have that s′ 6↓X′ ,

and ∆′ τ̂
==⇒ Θ′ 6↓X′ . Applying σ−1 to the latter, we obtain ∆

τ̂
==⇒ Θ 6↓X . ⊓⊔

Lemma 12. Suppose P ⊑S Q (P ⊑FS Q) and σ is a renaming substitution.
Then Pσ ⊑S Qσ (respectively, Pσ ⊑FS Qσ).

Proof. Immediate from Lemma 11. ⊓⊔

5.2 Up to name restriction

The following lemma says that transitions are closed under name restriction, if
certain conditions are satisfied.

Lemma 13. 1. For every state-based process s, every action α and every list

of names ~x such that {~x} ∩ n(α) = ∅, s
α

−−→ ∆ implies ν~x.s
α

−−→ ν~x.∆.
2. For every ∆ and Φ, every action α and every list of names ~x such that

{~x} ∩ n(α) = ∅, ∆
α

−−→ Φ implies ν~x.∆
α

−−→ ν~x.Φ.

3. Suppose s
āb

−−→ ∆ and suppose ~x and ~y are names such that {~x, ~y}∩{a, b} =

∅. Then ν~xνbν~y.s
ā(b)
−−→ ν~xν~y.∆.

Lemma 14. If ∆ Rν Θ then (ν~x.∆) Rν (ν~x.Θ)

Lemma 15. If R is a (failure) simulation up to restriction, then Rν ⊆ ⊳S
(respectively, Rν ⊆ ⊳FS).
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Proof. Suppose R is a simulation up to restriction. We show that Rν is a simu-
lation up to renaming, hence by Lemma 11 we have Rν ⊆ Rνr ⊆ ⊳S .

Suppose s Rν∆ and s
α

−−→ Θ. By the definition of Rν , we have that s =
ν~x.s′, ∆ = ν~x.∆′, and s′[~y/~x] R ∆′[~y/~x] for some ~y such that {~y}∩fn(s,∆) = ∅.

There are several cases depending on how the transition s
α

−−→ Θ is derived.
Note that there may be implicit α-renaming involved in the derivations of a
transition judgment. We assume that the names ~x are chosen such that no α-

renaming is needed in deriving the transition relation ν~x.s′
α

−−→ Θ, e.g., one
such choice would be one that avoids clashes with the free names in ~y, s, and ∆.

– α is either τ or a free action. In this case, the transition must have been
derived as follows:

s′
α

−−→ Θ′

ν~x.s′
α

−−→ ν~x.Θ′
res

where Θ = ν~x.Θ′ and n(α) ∩ {~x} = ∅. Here a double-line in the inference
rule indicates zero or more applications of the rule. An inspection on the op-
erational semantics will reveal that in this case, n(α) ⊆ fn(s) and fn(Θ) ⊆
fn(s). So in particular, {~y} ∩ n(α) = ∅. We thus can apply the renaming

substitution [~y/~x, ~x/~y] to get s′[~y/~x]
α

−−→ Θ′[~y/~x]. Since s′[~y/~x] R ∆′[~y/~x],

we have that ∆′[~y/~x]
α

==⇒ ∆′′[~y/~x] and Θ′[~y/~x] Rν ∆′′[~y/~x]. The former

implies, via Lemma 13 (1), that ν~x.∆′ α
==⇒ ν~x.∆′′ and the latter implies,

via Lemma 14, that (ν~x.Θ′) Rν (ν~x.∆′′). Since Rν ⊆ (Rν)r , we also have
(ν~x.Θ′) Rνr (ν~x.∆′′).

– α = a(z): With a similar argument as in the previous case, we can show that

in this case we must have s
a(z)
−−→ Θ′ where Θ = ν~x.Θ′.We need to show that

for every name w, there exist Γ 1
w, Γ

2
w and Γw such that ∆

τ̂
==⇒ Γ 1

w

a(z)

−−→ Γ 2
w,

Γ 2
w[w/z]

τ̂
==⇒ Γw, and Θ[w/z] Rνr Γw.

Note that z 6∈ {~x}, but it may be the case that z ∈ {~y}. So we first apply
a renaming [u/z, z/u, ~y/~x, ~x/~y], for some fresh name u, to the transition

s′
a(z)
−−→ Θ′ to get:

s′[~y/~x]
a(u)
−−→ Θ′[u/z, ~y/~x].

Since s′[~y/~x] R ∆′[~y/~x], we have, for every name w, some ∆1
w, ∆

2
w and ∆w

such that

∆′[~y/~x]
τ̂

==⇒ ∆1
w

a(u)
−−→ ∆2

w, ∆2
w[w/u]

τ̂
==⇒ ∆w, and (10)

Θ′[u/z, ~y/~x][w/u] = Θ′[w/z, ~y/~x] Rν ∆w[w/u]. (11)

Let Φ1
w, Φ

2
w and Φw be distributions such that ∆1

w = Φ1
w[~y/~x], ∆

2
w =

Φ2
w[u/z, ~y/~x], and ∆w = Φw[~y/~x]. So in particular, ∆2

w[w/u] = Φ2
w[w/z, ~y/~x]
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and ∆w[w/u] = Φw[w/z, ~y/~x]. Then (10) can be rewritten as:

∆′[~y/~x]
τ̂

==⇒ Φ1
w[~y/~x]

a(u)
−−→ Φ2

w [u/z, ~y/~x] Φ2
w[w/z, ~y/~x]

τ̂
==⇒ Φw[~y/~x],

(12)
and (11) can be rewritten as:

Θ′[w/z, ~y/~x] Rν Φw [w/z, ~y/~x]. (13)

Now, to define Γ 1
w, Γ

2
w and Γw, we need to consider two cases, based on the

value of w. The reason is that in the construction of Γw we need to bound
the free names in Φw, so if z is substituted with a name in ~y, it could get
captured.
• w 6∈ {~x, ~y}. In this case, define:

Γ 1
w = ν~x.Φ1

w, Γ 2
w = ν~x.Φ2

w, Γw = ν~x.Φw.

By Lemma 13 (1) and (12), we have:

ν~x.∆′ τ̂
==⇒ Γ 1

w

a(z)
−−→ Γ 2

w, Γ 2
w[w/z]

τ̂
==⇒ Γw

and by Lemma 14 and (13), we have

(Θ[w/z]) = (ν~x.Θ′)[w/z] Rν Γw,

hence also, (Θ[w/z]) = (ν~x.Θ′)[w/z] Rνr Γw.
• w ∈ {~x, ~y}. Let v be a new name (distinct from all other names consid-
ered so far). From the previous case, we know how to construct Γ 1

v , Γ
2
v

and Γv such that

ν~x.∆′ τ̂
==⇒ Γ 1

v

a(z)
−−→ Γ 2

v , Γ 2
v [v/z]

τ̂
==⇒ Γv (Θ[v/z]) Rνr Γv.

(14)
In this case, let Γ 1

w = Γ 1
v , Γ

2
w = Γ 2

v and Γw = Γv[w/v]. (Note that
because subsitution is capture-avoiding, the bound names in Γv will be
renamed via α-conversion). Then by Lemma 1 (2) and Lemma 10 and
(14):

ν~x.∆′ τ̂
==⇒ Γ 1

w

a(z)
−−→ Γ 2

w, Γ 2
v [w/z]

τ̂
==⇒ Γw (Θ[w/z]) Rνr Γw.

– If α is a bound output action, i.e., α = ā(b) for some a and b. There are
two subcases to consider, depending on whether b ∈ {~x} (i.e., one of the
restriction names ~x is extruded) or not. The latter can be proved similarly to
the previous case. We show here a proof of the former case. So suppose b ∈ ~x,
i.e., ν~x = ν~x1νbν~x2 and suppose that [~y/~x] maps b to c, i.e., ν~y = ν~y1νcν~y2.
Suppose the transition relation is derived as follows:

s
āb

−−→ Θ′

ν~x2.s
āb

−−→ ν~x2.Θ
′

res

νbν~x2.s
ā(b)

−−→ ν~x2.Θ
′

open

ν~x1νbν~x2.s
′
ā(b)
−−→ ν~x1ν~x2.Θ

′

res

17



Applying the renaming [~y/~x, ~x/~y] we have: s[~y/~x]
āc

−−→ Θ′[~y/~x]. Since s′[~y/~x]R∆′[~y/~x],
we have that

∆′[~y/~x]
āc

==⇒ Φ, and Θ′[~y/~x] Rν Φ. (15)

Let Ψ [~y/~x] = Φ. Lemma 13 (3) and (15) imply that

ν~x.∆′ = ν~y1νc~y2.∆
′[~y/~x]

ā(c)
==⇒ ν~y1ν~y2.Ψ [~y/~x] = ν~x1~x2.Ψ [c/b]

and by an application of a renaming (Lemma 1 (1)) we get

ν~x.∆′ ā(b)
==⇒ ν~x1ν~x2.Ψ.

Lemma 14 and (15) imply

(ν~x1ν~x2.Θ
′[c/b]) Rν (ν~x1ν~x2.Ψ [c/b])

hence, via the renaming [c/b, b/c], (ν~x1ν~x2.Θ
′) Rνr (ν~x1ν~x2.Ψ).

If R is a failure simulation up to restriction, we need to additionally show that
Rν satisfies clause 3 of Definition 3. Suppose s Rν Θ. Then s = ν~x.s′ and
Θ = ν~x.Θ′ for some ~x, s′ and Θ′ such that s′ R Θ′. Suppose s 6↓X . We need to

show that Θ
τ̂

==⇒ ∆ such that ∆ 6↓X for some ∆. Since name restriction hides
visible actions, it can be shown that s′ 6↓X\{~x} iff ν~x.s′ 6↓X . So from s′ R Θ′ we

have that Θ′ τ̂
==⇒ ∆′ 6↓X\{~x} . Let ∆ = ν~x.∆′. Then by Lemma 13 (2), we have

Θ = ν~x.Θ′ τ̂
==⇒ ν~x.∆′ = ∆ 6↓X . ⊓⊔

Lemma 16. If P ⊑S Q (P ⊑FS Q) then (ν~x.P ) ⊑S (ν~x.Q) (respectively,
(ν~x.P ) ⊑FS (ν~x.Q)).

Proof. This is a simple corollary of Lemma 8 and Lemma 15. ⊓⊔

5.3 Up to parallel composition

The following lemma will be useful in proving the closure of simulation under
parallel composition. It is independent of the underlying calculus, and is origi-
nally proved in [7].

Lemma 17. 1. (
∑

j∈J pj ·Φj) | (
∑

k∈K qk·∆k) =
∑

j∈J

∑

k∈K(pj ·qk)·(Φj | ∆k).
2. Suppose R,R′ ⊆ Sp × D(Sp) are two relations such that sR′∆ whenever

s = s1 | s2 and ∆ = ∆1 | ∆2 with s1R∆1 and s2R∆2. Then Φ1R∆1 and
Φ2R∆2 imply (Φ1 | Φ2)R′(∆1 | ∆2).

We also need a slightly more general substitution lemma for transitions than
the one given in Lemma 1 (1). In the following, we denote with n(θ) the set of
all names appearing in the domain and range of θ.

Lemma 18. For any substitution σ, the following hold:
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1. If s
α

−−→ ∆ and bn(α) ∩ n(σ) = ∅ then sσ
ασ

−−→ ∆σ.

2. If ∆
α̂

==⇒ Φ and bn(α) ∩ n(σ) = ∅ then ∆σ
α̂σ
==⇒ Φσ.

The following lemma shows that transitions are closed under parallel com-
position, under suitable conditions.

Lemma 19. 1. If s
α

−−→ ∆ and fn(s′) ∩ bn(α) = ∅ then s | s′
α

−−→ ∆ | δ[s′]

and s′ | s
α

−−→ δ[s′] | ∆.

2. If Φ
α̂

==⇒ ∆, where α is either τ , a free action or a bound output, and

fn(Φ′) ∩ bn(α) = ∅ then Φ | Φ′ α̂
==⇒ ∆ | Φ′ and Φ′ | Φ

α̂
==⇒ Φ′ | ∆.

3. If Φ
a(y)
−−→ Φ′ and ∆

āw
−−→ ∆′ then Φ | ∆

τ
−−→ Φ′[w/y] | ∆′.

4. If Φ
a(y)
−−→ Φ′ and ∆

ā(y)
−−→ ∆′ then Φ | ∆

τ
−−→ νy.(Φ′ | ∆′).

Lemma 20. If R is a simulation, then Rp ⊆ ⊳S.

Proof. We show that Rp is a simulation up to restriction, and therefore, by
Lemma 15, it is included in ⊳S.

So suppose s Rp ∆ and s
α

−−→ Θ. By definition, we have s = s1 | s2 and
∆ = ∆1 | ∆2 such that s1 R ∆1 and s2 R ∆2.

There are several cases to consider depending on the type of α:

– α is a free output action. There can be two ways in which the transition

s
α

−−→ Θ is derived. We show here one case; the other case is symmetric. So
suppose the transition is derived as follows:

s1
α

−−→ Θ′

s1 | s2
α

−−→ Θ′ | δ[s2]
par

where Θ = Θ′ | δ[s2]. Since s1 R ∆1, we have

∆1
α̂

==⇒ ∆′
1

and Θ′ R ∆′
1. The former implies, via Lemma 19 (2), that ∆1 | ∆2

α̂
==⇒

∆′
1 | ∆2. Since s2 R ∆2 by assumption, and therefore δ[s2] R ∆2, by

Lemma 17 (2) we have

Θ = (Θ′ | δ[s2]) Rp (∆′
1 | ∆2)

and therefore, also

Θ = (Θ′ | δ[s2]) Rpν (∆′
1 | ∆2).

– α = a(y) and y 6∈ fn(s,∆). That is, in this case, the transition is derived as
follows:

s1
a(y)
−−→ Θ′

s1 | s2
a(y)
−−→ Θ′ | δ[s2]

par
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and y 6∈ fn(s2). (There is another symmetric case which we omit here.) Since
s1 R ∆1, we have, for every name w, some ∆1

w, ∆
2
w and ∆w such that:

∆1
τ̂

==⇒ ∆1
w

a(y)
−−→ ∆2

w, ∆2
w[w/y]

τ̂
==⇒ ∆w, and (16)

Θ′[w/y] R ∆w. (17)

From (16) above and Lemma 19 (2), and the assumption that y 6∈ fn(s,∆),
we have

∆1 | ∆2
τ̂

==⇒ ∆1
w | ∆2

a(y)

−−→ ∆2
w | ∆2, ∆2

w[w/y] | ∆2
τ̂

==⇒ ∆w | ∆2.

Since s2 R ∆2, and therefore δ[s2] R ∆2, it then follows from (17) and
Lemma 17 (2) that

Θ[w/y] = (Θ′[w/y] | δ[s2]) Rp (∆w | ∆2)

and therefore

Θ[w/y] = (Θ′[w/y] | δ[s2]) Rpν (∆w | ∆2).

– α = ā(y) and y 6∈ fn(s,∆). This case is similar to the previous cases, except
that we only need to consider an instantiation of y with a fresh name. This
is left as an exercise for the reader.

– α = τ and the transition s
τ

−−→ Θ is derived via a Com-rule. We show here
one case; the other case can be dealt with symmetrically. So suppose the
transition is derived as follows:

s1
a(y)
−−→ Θ1 s2

āw
−−→ Θ2

s1 | s2
τ

−−→ Θ1[w/y] | Θ2

com

Without loss of generality, we can assume that y 6∈ fn(s,∆). Since s1 R ∆1

and s2 R ∆2, we have:

• For every name w, there are Λ1, Λ2 and ∆w
1 such that

∆1
τ̂

==⇒ Λ1

a(y)
−−→ Λ2, Λ2[w/y]

τ̂
==⇒ ∆w

1 and (18)

Θ1[w/y] R ∆w
1 (19)

• There exists ∆′
2 such that

∆2
τ̂

==⇒ Φ1

āw
−−→ Φ2

τ̂
==⇒ ∆′

2 and (20)

Θ2 R ∆′
2 (21)
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From (18), (20), and Lemma 19 (2)-(3), we have:

∆1 | ∆2
τ̂

==⇒ Λ1 | Φ1

τ
−−→ Λ2[w/y] | Φ2

τ̂
==⇒ ∆w

1 | ∆′
2,

and Lemma 17 (2), together with (19) and (21), implies

(Θ1[w/y] | Θ2) Rp (∆w
1 | ∆′

2)

and therefore
(Θ1[w/y] | Θ2) Rpν (∆w

1 | ∆′
2).

– α = τ and the transition s
τ

−−→ Θ is derived via the Close-rule:

s1
a(y)
−−→ Θ1 s2

ā(y)
−−→ Θ2

s1 | s2
τ

−−→ νy.(Θ1 | Θ2)
close.

Again, we only show one of the two symmetric cases. Without loss of gener-
ality, assume that y is chosen to be fresh w.r.t. s and ∆. Since s1 R∆1 and
s2 R∆2, we have:
• For every name w, there are Λ1, Λ2 and ∆w

1 such that

∆1
τ̂

==⇒ Λ1

a(y)
−−→ Λ2, Λ2[w/y]

τ̂
==⇒ ∆w

1 and Θ1[w/y] R ∆w
1 .

Note that letting w = y, we have

∆1
τ̂

==⇒ Λ1

a(y)
−−→ Λ2, Λ2

τ̂
==⇒ ∆y

1 and (22)

Θ1 R ∆y
1 (23)

• There exist Φ1, Φ2 and ∆′
2 such that

∆2
τ̂

==⇒ Φ1

ā(y)
−−→ Φ2

τ̂
==⇒ ∆′

2 and (24)

Θ2 R ∆′
2 (25)

Then, by (22), (24), Lemma 19 (2) and (4), and Lemma 13 (1), we have:

∆1 | ∆2
τ̂

==⇒ Λ1 | Φ1

τ
−−→ νy.(Λ2 | Φ2)

τ̂
==⇒ νy.(∆y

1 | ∆′
2).

Lemma 17 (2), together with (23) and (25), implies

(Θ1 | Θ2) Rp (∆y
1 | ∆′

2),

which also means:
(Θ1 | Θ2) Rpν (∆y

1 | ∆′
2).

Now by Lemma 14, the latter implies that

νy.(Θ1 | Θ2) Rpν νy.(∆y
1 | ∆′

2).
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⊓⊔

Lemma 21. If R is a failure simulation, then Rp ⊆ ⊳FS.

Proof. Suppose sRp∆ and s 6↓X . By definition, we have s = s1 | s2 and ∆ =
∆1 | ∆2 such that s1 R ∆1 and s2 R ∆2. Then we have si 6↓X for i = 1, 2. Define
a set A as follows:

A = {a, ā | a ∈ fn(s1, s2, ∆1, ∆2)} ∪X.

That is, A contains the set of free (co-)names in si and ∆i and X. Let Xi be the
largest set such that X ⊆ Xi ⊆ A and si 6↓Xi

. Since R is a failure simulation, it

follows that there exist ∆′
i such that ∆i

τ
==⇒ ∆′

i 6↓Xi
. By Lemma 19 (2), we have

∆1 | ∆2
τ

==⇒ ∆′
1 | ∆′

2. We claim that (∆′
1 | ∆′

2) 6↓X . Suppose otherwise, that is,
there exist t1 ∈ ⌈∆′

1⌉ and t2 ∈ ⌈∆′
2⌉ such that either (t1 | t2) ↓µ, for some µ ∈ X ,

or (t1 | t2)
τ

−−→. If (t1 | t2) ↓µ then our operational semantics entails that either
t1 ↓µ or t2 ↓µ, which contradicts the fact that ∆′

i 6↓Xi
. So let’s assume that

(t1 | t2)
τ

−−→ . Again, from the assumption ∆′
i 6↓Xi

, we can immediately rule out

the cases where ti
τ

−−→ or ti ↓µ, for some µ ∈ X. This leaves us only with the

cases where t1
µ

−−→ and t2
µ̄

−−→ where µ 6∈ X and µ̄ 6∈ X. But since ∆′
i 6↓Xi

, this
can only be the case if µ 6∈ X1 and µ̄ 6∈ X2. From the operational semantics, it
is easy to see that fn(∆′

1, ∆
′
2) ⊆ fn(∆1, ∆2), so it must be the case that µ ∈ A

and µ̄ ∈ A. It also must be the case that s1 ↓µ, for otherwise, it would contradict
the “largest” property of X1. Similarly, we can argue that s2 ↓µ̄. But then this

would imply that (s1 | s2)
τ

−−→, contradicting the fact that (s1 | s2) 6↓X .
The matching up of transitions and the using of R to prove the preservation

property of ⊳FS under parallel composition are similar to those in the corre-
sponding proof in Lemma 20 for simulations, so we omit them. ⊓⊔

Lemma 22. 1. If P1 ⊑S Q1 and P2 ⊑S Q2 then P1 | P2 ⊑S Q1 | Q2.
2. If P1 ⊑FS Q1 and P2 ⊑FS Q2 then P1 | P2 ⊑FS Q1 | Q2.

Proof. It is enough to show that (⊳S)
p ⊆ ⊳S and (⊳FS)

p ⊆ ⊳FS , which follow
directly from Lemmas 20 and 21 respectively. ⊓⊔

5.4 Soundness

We now proceed to proving the main result, which is that P ⊑S Q implies
P ⊑pmay Q, and P ⊑FS Q implies P ⊑pmust Q. The structure of the proof
follows closely that of [5]. Most of the intermediate lemmas in this section are
not specific to the π-calculus; rather, they utilise the underlying probabilistic
automata semantics.

Let πω be the set of all π processes that may use action ω. We write s
α

−−→ω ∆

if either α = ω or α 6= ω but both s 6
ω

−→ and s
α

−−→ ∆ hold. We define
τ̂

−−→w

as we did for
τ̂

−−→, using
τ

−−→ω in place of
τ

−−→. Similarly, we define ==⇒ω and
α̂

==⇒ω. Simulation and failure simulation are adapted to πω as follows.
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Definition 6. Let ⊳eFS ⊆ πω × D(πω) be the largest relation such that s ⊳eFS Θ
implies

– If s
a(x)
−−→ω ∆ and x 6∈ fn(s,Θ), then for every name w, there exists Θ1, Θ2

and Θ′ such that

Θ
τ̂

==⇒ω Θ1

a(x)
−−→ω Θ2, Θ2[w/x]

τ̂
==⇒ω Θ

′, and (∆[w/x]) R Θ′.

– if s
α

−−→ω ∆ and α is not an input action, then there is some Θ′ with

Θ
α̂

==⇒ω Θ
′ and ∆ ⊳eFS Θ

′

– if s 6↓X with ω ∈ X then there is some Θ′ with Θ
τ̂

==⇒ω Θ
′ and Θ′ 6↓X.

Similarly we can define ⊳eS by dropping the third clause. Let P ⊑eFS Q if [[P ]]
τ̂

==⇒ω

Θ for some Θ with [[Q]] ⊳eFS Θ. Similarly, P ⊑eS Q if [[Q]]
τ̂

==⇒ω Θ for some Θ
with [[P ]] ⊳eS Θ.

Note that for π-processes P,Q, there is no action ω, therefore we have P ⊑FS Q
iff P ⊑eFS Q, and P ⊑S Q iff P ⊑eS Q.

Lemma 23. Let P,Q be processes in π and T be a process in πω.

1. If P ⊑S Q then T | P ⊑eS T | Q.
2. If P ⊑FS Q then T | P ⊑eFS T | Q.

Proof. Similar to the proof of Lemma 22. ⊓⊔

Lemma 24. 1. P ⊑pmay Q if and only if for every test T we have

max(V([[ν~x.(T | P )]])) ≤ max(V([[ν~x.(T | Q)]]))

where ~x contain the free names of T , P and Q, excluding ω.
2. P ⊑pmust Q if and only if for every test T we have

min(V([[ν~x.(T | P )]])) ≤ min(V([[ν~x.(T | Q)]]))

where ~x contain the free names of T , P and Q, excluding ω.

Proof. The results follow from the simple fact that, for non-empty finite outcome
sets O1, O2,

– O1 ⊑Ho O2 iff max(O1) ≤ max(O2)
– O1 ⊑Sm O2 iff min(O1) ≤ min(O2)

which is established as Proposition 2.1 in [7]. ⊓⊔

Lemma 25. ∆1
τ̂

==⇒ ∆2 implies max(V(∆1)) ≥ max(V(∆2)) andmin(V(∆1)) ≤
min(V(∆2)).
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Proof. Similar properties are proven in [7, Lemma 6.15] using a functionmaxlive
instead of max ◦ V. Essentially the same arguments apply here. ⊓⊔

Proposition 4. 1. ∆1 ⊳eS ∆2 implies max(V(∆1)) ≤ max(V(∆2)).
2. ∆1 ⊳eFS ∆2 implies min(V(∆1)) ≥ min(V(∆2)).

Proof. The first clause is proven in [7, Proposition 6.16] using a functionmaxlive
instead of max ◦ V. The second clause is proven in [5, Proposition 4.10] ⊓⊔

Theorem 2. 1. P ⊑S Q implies P ⊑pmay Q
2. P ⊑FS Q implies P ⊑pmust Q.

Proof. We prove the second statement; similar is the first one. Suppose P ⊑FS Q.
Given Proposition 24, it is sufficient to show that for every test T ,

min(V([[ν~x(T | P )]])) ≤ min(V([[ν~x(T | Q)]]))

where ~x contain the free names of T , P and Q, but excluding ω. Since ⊑FS is
preserved by parallel composition (cf. Lemma 23) and name restriction, we have
that

ν~x(T | P ) ⊑eFS ν~x(T | Q),

which means there is a Θ such that [[ν~x(T | P )]]
τ̂

==⇒ Θ and [[ν~x(T | Q)]] ⊳eFS Θ.
The result then follows from Proposition 4 and Lemma 25. ⊓⊔

6 A modal logic for πp

We consider a modal logic based on a fragment of Milner-Parrow-Walker’s (MPW)
modal logic for the (non-probabilistic) π-calculus [16], but extended with a prob-
abilistic disjunction operator ⊕, similar to that used in [5]. The language of
formulas is given by the following grammar:

ϕ ::= ⊤ | ref(X) | 〈a(x)〉ϕ | 〈āx〉ϕ | 〈ā(x)〉ϕ | ϕ1 ∧ ϕ2 | ϕ1 p⊕ϕ2

The x’s in 〈a(x)〉ϕ and 〈ā(x)〉ϕ are binders, whose scope is over ϕ. The diamond
operator 〈a(x)〉 is called a bound input modal operator, 〈āx〉 a free output modal
operator and 〈ā(x)〉 a bound output modal operator. Instead of binary conjunc-
tion and probabilistic disjunction, we sometimes write

∧

i∈I ϕi and ϕ1 p⊕ϕ2 for
finite index set I; they can be expressed by nested use of their binary forms.
We refer to this modal logic as F . Let L be the sub-logic of F by skipping the
ref(X) clause. The semantics of each operator is defined as follows.

Definition 7. The satisfaction relation |= between a distribution and a modal
formula is defined inductively as follows:

– ∆ |= ⊤ always.

– ∆ |= ref (X) iff there is a ∆′ with ∆
τ̂

==⇒ ∆′ and ∆′ 6↓X .
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– ∆ |= 〈a(x)〉ϕ iff for all z there are ∆1, ∆2, ∆
′ and w such that ∆

τ̂
==⇒

∆1

a(w)
−−→ ∆2, ∆2[z/w]

τ̂
==⇒ ∆′ and ∆′ |= ϕ[z/x].

– ∆ |= 〈āx〉ϕ iff for some ∆′, ∆
̂̄ax

==⇒ ∆′ and ∆′ |= ϕ.

– ∆ |= 〈ā(x)〉ϕ iff for some ∆′ and w 6∈ fn(ϕ,∆), ∆
̂̄a(w)
==⇒ ∆′ and ∆′ |= ϕ[w/x].

– ∆ |= ϕ1 ∧ ϕ2 iff ∆ |= ϕ1 and ∆ |= ϕ2.
– ∆ |= ϕ1 p⊕ϕ2 iff there are ∆1, ∆2 ∈ D(Sp) with ∆1 |= ϕ1 and ∆2 |= ϕ2,

such that ∆
τ̂

==⇒ p ·∆1 + (1 − p) ·∆2.

We write ∆ ⊑L Θ just when ∆ |= ψ implies Θ |= ψ for all ψ ∈ L, and ∆ ⊑F Θ
just when Θ |= ϕ implies ∆ |= ϕ for all ϕ ∈ F . We write P ⊑L Q when
[[P ]] ⊑L [[Q]], and P ⊑F Q when [[P ]] ⊑F [[Q]].

Following [5], in order to show soundness of the logical preorders w.r.t. the
simulation pre-orders, we need to define a notion of characteristic formulas.

Definition 8 (Characteristic formula). The F -characteristic formulas ϕs
and ϕ∆ of, respectively, a state-based process s and a distribution ∆ are defined
inductively as follows:

ϕs :=
∧

{〈α〉ϕ∆ | s
α

−−→ ∆} ∧ ref({µ | s 6↓µ}) if s 6
τ

−−→,

ϕs :=
∧

{〈α〉ϕ∆ | s
α

−−→ ∆, α 6= τ} ∧
∧

{ϕ∆ | s
τ

−−→ ∆} otherwise.
ϕ∆ :=

⊕

s∈⌈∆⌉∆(s) · ϕs

where
⊕

is a generalised probabilistic choice as in Section 2. The L-characteristic
formulas ψs and ψ∆ are defined likewise, but omitting the conjuncts ref({µ | s 6↓µ
}).

Note that because we use the late semantics (cf. Figure 1), the conjunction in
ϕs is finite even though there can be infinitely many (input) transitions from s.

Given a state based process s, we define its size, |s|, as the number of process
constructors and names in s. The following lemma is straightforward from the
definition of the operational semantics of πp.

Lemma 26. If s
α

−−→ ∆ then |s| > |t| for every t ∈ ⌈∆⌉.

Lemma 27. For every ∆ ∈ D(Sp), ∆ |= ϕ∆, as well as ∆ |= ψ∆.

Proof. It is enough to show that s̄ |= ϕs. This is proved by by induction on |s|.

So suppose s 6
τ

−−→. Then we have

ϕs = ref({µ | s 6↓µ})∧
∧

{〈a(x)〉ϕ∆ | s
a(x)
−−→ ∆} ∧

∧

{ϕ∆ | s
τ

−−→ ∆}∧
∧

{〈āx〉ϕ∆ | s
āx

−−→ ∆} ∧
∧

{〈ā(x)〉ϕ∆ | s
ā(x)
−−→ ∆}.

where ϕ∆ =
⊕

s∈⌈∆⌉∆(s).ϕs. For each of the conjunct φ, we prove that δ[s] |= φ.
We show here two cases; the other cases are similar.
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– φ = ref (X), where X = {µ | s 6↓µ}. For each µ ∈ X we have s 6↓µ. Moreover,

since s 6
τ

−−→, we see that s 6↓X .

– φ = 〈a(x)〉ϕ∆. So suppose s
a(x)
−−→ ∆ and ⌈∆⌉ = {si | i ∈ I} and ∆ =

∑

i∈I pi · δ[si]. Since |si| < |s|, by the induction hypothesis, for every name
w, we have

δ[si[w/x]] |= ϕsi[w/x]

and therefore:

∆[w/x] =
∑

i∈I

pi · δ[si[w/x]] |=
⊕

i∈I

pi · ϕsi[w/x] = ϕ∆[w/x].

Let Φ1 = Φ2 = δ[s]. Obviously we have, for every w,

Φ1
τ̂

==⇒ Φ2

a(x)

−−→ ∆, ∆[w/x] |= ϕ∆[w/x].

So by Definition 7, δ[s] |= φ.
⊓⊔

Lemma 28. For any processes P and Q, [[P ]] |= ϕ[[Q]] implies P ⊑FS Q, and
likewise [[Q]] |= ψ[[P ]] implies P ⊑S Q.

Proof. Let R be the relation defined as follows: s R Θ iff Θ |= ϕs. We first prove
the following claim:

Θ |= ϕ∆ implies there exists Θ′ such that Θ
τ̂

==⇒ Θ′ and ∆ R Θ′. (26)

To prove this claim (following [5]), suppose that Θ |= ∆. By definition, ϕ∆ =
⊕

i∈I pi · ϕsi and ∆ =
∑

i∈I pi · δ[si]. For every i ∈ I, we have Θi ∈ D(Sp) with

Θi |= ϕsi such that Θ
τ̂

==⇒ Θ′ with Θ′ =
∑

i∈I pi ·Θi. Since si R Θi for all i ∈ I,

we have ∆ R Θ′.
We now proceed to show that R is a failure simulation, hence proving the

first statement of the lemma. So suppose s R Θ.

1. Suppose s
τ

−−→ ∆. By the definition of R, we have Θ |= ϕs. By Definition 8,

we also have Θ |= ϕ∆. By (26) above, there exists Θ′ such that Θ
τ̂

==⇒ Θ′

and ∆ R Θ′.

2. Suppose s
āx

−−→ ∆. Then by Definition 8, Θ |= 〈āx〉ϕ∆. So Θ
āx
==⇒ Θ′ and

Θ′ |= ϕ∆, for some Θ′. By (26), there exists Θ′′ such that Θ′ τ̂
==⇒ Θ′′ and

∆ R Θ′′. This means that Θ
āx

==⇒ Θ′′ and ∆ R Θ′′.

3. Suppose s
a(x)
−−→ ∆ for some x 6∈ fn(s,Θ). By Definition 8, Θ |= 〈a(x)〉ϕ∆.

This means for every name z, there exists Θ1
z , Θ

2
z and Θz such that Θ

τ̂
==⇒

Θ1
z

a(x)
−−→ Θ2

z , Θ
2
z [z/x]

τ̂
==⇒ Θz and Θz |= ϕ∆[z/x].

3 Then by (26) we have

3 Strictly speaking, we should also consider the case where Θ1
z

a(w)

−−→ Θ2
z , but it is easy

to see that since x 6∈ fn(s, Θ) we can always apply a renaming to rename w to x.
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Θz
τ̂

==⇒ Θ′
z and ∆[z/x] R Θ′

z . So we indeed have, for every name z, Θ1
z , Θ

2
z

and Θ′
z such that

Θ
τ̂

==⇒ Θ1
z

a(x)
−−→ Θ2

z , Θ2
z [z/x]

τ̂
==⇒ Θ′

z and ∆[z/x] R Θ′
z .

4. Suppose s
ā(x)
−−→ ∆. This case is similar to the previous one, except that we

need only to consider one instance of x with a fresh name.
5. Suppose s 6↓X for a set of channel names X . By Definition 8, we have Θ |=

ref(X). Hence, there is some Θ′ with Θ
τ̂

==⇒ Θ′ and Θ′ 6↓X .

To establish the second statement, define R by sRΘ iff Θ |= ψs. Just as
above it can be shown that R is a simulation. Then the second statement of the
lemma easily follows. ⊓⊔

Theorem 3. 1. If P ⊑L Q then P ⊑S Q.
2. If P ⊑F Q then P ⊑FS Q.

Proof. Suppose P ⊑L Q. By Lemma 27, we have [[P ]] |= ψ[[P ]], hence [[Q]] |= ψ[[P ]].
Then by Lemma 28, we have P ⊑S Q.

For the second statement, assume P ⊑FS Q, we have [[Q]] |= ϕ[[Q]] and hence
[[P ]] |= ϕ[[Q]], and thus P ⊑FS Q. ⊓⊔

7 Completeness of the simulation preorders

In the following, we assume a function new that takes as an argument a finite
set of names and outputs a fresh name, i.e., if new(N) = x then x 6∈ N. If N =
{x1, . . . , xn}, we write [x 6= N ]P to abbreviate [x 6= x1][x 6= x2] · · · [x 6= xn]P.

For convenience of presentation, we write ~ω for the vector in [0, 1]Ω defined
by ~ω(ω) = 1 and ~ω(ω′) = 0 for any ω′ 6= ω. We also extend the ApplyΩ

function to allow applying a test to a distribution, defined as ApplyΩ(T,∆) =
V(ν~x([[T ]] | ∆)) where ~x = fn(T,∆)−Ω.

Lemma 29. If ∆ |= ϕ then ∆σ |= ϕσ for any renaming substitution σ.

In the following, given a name a, we write a.P to denote a(y).P for some
y 6∈ fn(P ). Similarly, we write ā.P to denote āa.P. Recall that the size of a
state-based process, |s|, is the number of symbols in s. The size of a distribution
∆, written |∆|, is the multiset {|s| | s ∈ ⌈∆⌉}. There is a well-founded ordering
on |∆|, i.e., the multiset (of natural numbers) ordering, which we shall denote
with ≺.

Lemma 30. Let P be a process and T, Ti be tests.

1. o ∈ ApplyΩ(ω, P ) iff o = ~ω.
2. Let X = {µ1, ..., µn} and T = µ1.ω + ...+ µn.ω. Then ~0 ∈ ApplyΩ(T, P ) iff

[[P ]]
τ̂

==⇒ ∆ for some ∆ with ∆ 6↓X.
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3. Suppose the action ω does not occur in the test T . Then o ∈ ApplyΩ(ω +

a(x).([x = y]τ.T + ω), P ) with o(ω) = 0 iff there is ∆ such that [[P ]]
̂̄ay

==⇒ ∆
and o ∈ ApplyΩ(T [y/x], ∆).

4. Suppose the action ω does not occur in the test T and fn(P ) ⊆ N . Then
o ∈ ApplyΩ(ω + a(x).([x 6= N ]τ.T + ω), P ) with o(ω) = 0 iff there is ∆ such

that [[P ]]
̂̄a(y)
==⇒ ∆ and o ∈ ApplyΩ(T [y/x], ∆).

5. Suppose the action ω does not occur in the test T . Then o ∈ ApplyΩ(ω +

āx.T, P ) with o(ω) = 0 iff there are ∆, ∆1 and ∆2 such that [[P ]]
τ̂

==⇒

∆1

a(y)
−−→ ∆2, ∆2[x/y]

τ̂
==⇒ ∆ and o ∈ ApplyΩ(T,∆).

6. o ∈ ApplyΩ(
⊕

i∈I pi · Ti, P ) iff o =
∑

i∈I pi · oi for some oi ∈ ApplyΩ(Ti, P )
for all i ∈ I.

7. o ∈ ApplyΩ(
∑

i∈I τ.Ti, P ) if for all i ∈ I there are qi ∈ [0, 1] and ∆i such

that
∑

i∈I qi = 1, [[P ]]
τ̂

==⇒
∑

i∈I qi · ∆i and o =
∑

i∈I qi · oi for some
oi ∈ ApplyΩ(Ti, ∆i).

Proof. The proofs of items 1 and 2 are similar to the proofs of Lemma 6.7(1) and
6.7(2) in [5] for pCSP; items 6 and 7 correspond to Lemma 6.7(4) and Lemma
6.7(5) in [5], respectively. Items 3, 4 and 5 have a counterpart in Lemma 6.7(3)
of [5], but they are quite different, due to the name-passing feature of the π-
calculus, and the possibility of checking the identity of the input value via the
match and the mismatch operators. We show here a proof of item 3; the proofs
of items 4 and 5 are similar.

We first generalize item 3 to distributions: given ω and T as above, we have,
for every distribution Θ,

o ∈ ApplyΩ(ω + a(x).([x = y]τ.T + ω), Θ) with o(ω) = 0 iff there is ∆

such that Θ
̂̄ay

==⇒ ∆ and o ∈ ApplyΩ(T [y/x], ∆).

The ‘if’ part is straightforward from Definition 1. We show the ‘only if’ part
here. The proof will make use of the following claim (easily proved by induction
on |Θ|):

Claim: o ∈ ApplyΩ([y = y]τ.T [y/x] + ω,Θ) with o(ω) = 0 iff

there is ∆ such that Θ
τ̂

==⇒ ∆ and o ∈ ApplyΩ(T [y/x], ∆).
(27)

So, suppose we have o ∈ ApplyΩ(ω+a(x).([x = y]τ.T +ω), Θ) with o(ω) = 0.

We show, by induction on |Θ|, that there exists ∆ such that Θ
āy

==⇒ ∆ and
o ∈ ApplyΩ(T [y/x], ∆). Let T ′ = ω + a(x).([x = y]τ.T + ω), and suppose Θ =
p1 · δ[s1] + . . .+ pn · δ[sn], for pairwise distincts state-based processes s1, . . . , sn,
and suppose that ~z is an enumeration of the set fn(T ′, Θ)−Ω. Then

ApplyΩ(T ′, Θ) = V
Ω(p1 · δ[ν~z(T

′|s1)] + . . .+ pn · δ[ν~z(T ′|sn)]).

FromDefinition 1, in order to have o(ω) = 0, it must be the case that ν~z(T ′|sj)
τ

−−→
for every j ∈ {1, . . . , n}. From the definition of the operational semantics, there
are exactly two cases where this might happen:
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– For some i, si
τ

−−→ Λ for some distribution Λ. Let Θ′ = p1 · δ[s1] + . . .+ pi ·

Λ+ . . .+ pn · δ[sn]. Then we have Θ
τ̂

−−→ Θ′ and ν~z(T ′|Θ)
τ̂

−−→ ν~z(T ′|Θ′).
The latter means that o ∈ V

Ω(ν~z(T ′|Θ′)) as well. By Lemma 26, we know
that |Λ| ≺ {|si|}, and therefore |Θ′| ≺ |Θ|. By the induction hypothesis,

Θ
τ̂

−−→ Θ′ ̂̄ay
==⇒ ∆

and o ∈ ApplyΩ(T [y/x], ∆).

– For every i ∈ {1, . . . , n}, we have si 6
τ

−−→ . This can only mean that the τ
transition from ν~z(T ′|si) derives from a communiation between T ′ and si.
This means that si ↓ā, for every i ∈ {1, . . . , n}. We claim that, in fact, for

every i, we have si
āy

−−→ Θi, for some Θi. For otherwise, we would have that

for some j, ν~z(T ′|sj)
τ

−−→ ν~z(([u = y]τ.T [y/x]+ω) | Θj), for some u distinct
from y. But this means that only the ω action is enabled in the test, so all
results of VΩ(ν~z(([u = y]τ.T [y/x] + ω) | Θi)) in this case would have a non-
zero ω component, which would mean that o(ω) would be non-zero as well,

contradicting the assumption that o(ω) = 0. So, we have si
āy

−−→ Θi for every

i ∈ {1, . . . , n}. Let Θ′ = p1 · Θ1 + . . . + pn · Θn. Then we have Θ
āy

−−→ Θ′

and ν~z(T ′ | Θ)
τ

−−→ ν~z(T ′′ | Θ′) where T ′′ = [y = y]τ.T [y/x] + ω. The
latter transition means that o ∈ V

Ω(ν~z(T ′′ | Θ′)) = ApplyΩ(T ′′, Θ′). We
can therefore apply Claim 27 to get:

Θ
āy

−−→ Θ′ τ̂
==⇒ ∆

and o ∈ ApplyΩ(T [y/x], ∆).
⊓⊔

Lemma 31. If o ∈ ApplyΩ(
∑

i∈I τ.Ti, P ) then for all i ∈ I there are qi ∈ [0, 1]

and ∆i with
∑

i∈I qi = 1 such that [[P ]]
τ̂

==⇒
∑

i∈I qi ·∆i and o =
∑

i∈I qi · oi for
some oi ∈ ApplyΩ(Ti, ∆i).

Proof. The proof is similar to the proof of Lemma 6.8 in [5]. ⊓⊔

The key to the completeness proof is to find a ‘characteristic test’ for every
formula ϕ ∈ L with a certain property. The construction of these characteristic
tests is given in the following lemma. Note that unlike in the case of pCSP [5],
this construction is parameterised by a finite set of names N , representing the
set of free names of the process/distribution on which the test applies to. This
parameter is important for the test to be able to detect output of fresh names.

Lemma 32. For every finite set of names N and every ϕ ∈ F such that fn(ϕ) ⊆
N , there exists a test T〈N,ϕ〉 and vϕ ∈ [0, 1]Ω, such that

∆ |= ϕ iff ∃o ∈ ApplyΩ(T〈N,ϕ〉, ∆) : o ≤ vϕ (28)
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for every ∆ with fn(∆) ⊆ N , and in case ϕ ∈ L we also have

∆ |= ϕ iff ∃o ∈ ApplyΩ(T〈N,ϕ〉, ∆) : o ≥ vϕ. (29)

T〈N,ϕ〉 is called a characteristic test of ϕ and vϕ its target value.

Proof. The characteristic tests and target values are defined by induction on ϕ:

– ϕ = ⊤: Let T〈N,ϕ〉 := ω for some ω ∈ Ω and vϕ := ~ω.
– ϕ = ref(X) with X = {µ1, ..., µn}. Let Tϕ := µ1.ω + ... + µn.ω for some

ω ∈ Ω, and vϕ = ~0.
– ϕ = 〈āx〉ψ: Let T〈N,ϕ〉 := ω + a(y).([y = x]τ.T〈N,ψ〉 + ω) for some y 6∈
fn(T〈N,ψ〉), where ω ∈ Ω does not occur in T〈N,ψ〉 and vϕ := vψ .

– ϕ = 〈ā(x)〉ψ: Let z = new(N) and N ′ = N ∪{z}.Without loss of generality,
we can assume that x = z (since we consider terms equivalent modulo α-
conversion). Then let T〈N,ϕ〉 := ω+a(x).([x 6= N ]τ.T〈N ′,ψ〉+ω), where ω ∈ Ω
does not occur in T〈N ′,ψ〉 and vϕ := vψ .

– ϕ = 〈a(x)〉ψ: Let z = new(N) and N ′ = N ∪{z}. Let pw ∈ (0, 1] for w ∈ N ′

be chosen arbitrarily such that
∑

w∈N ′ pw = 1. Then let

T〈N,ϕ〉 :=
⊕

w∈N ′

pw · (ωw + āw.T〈N ′,ψ[w/x]〉)

where ωw does not occur in T〈N ′,ψ[w/x]〉 for each w ∈ N ′, and ωw1
6= ωw2

if
w1 6= w2. We let vϕ :=

∑

w∈N ′ pw · vψ[w/x].
– ϕ =

∧

i∈I ϕi where I is a finite and non-empty index set. Choose an Ω-
disjoint family (T〈N,ϕi〉, vϕi

)i∈I of characteristic tests and target values. Let
pi ∈ (0, 1] for i ∈ I be chose arbitrarily such that

∑

i∈I pi = 1. Then let

T〈N,ϕ〉 :=
⊕

i∈I

pi · T〈N,ϕi〉

and vϕ :=
∑

i∈I pi · vϕi
.

– ϕ =
⊕

i∈I pi · ϕi. Choose an Ω-disjoint family (Ti, vi)i∈I of characteristic
tests Ti with target values vi for each ϕi, such that there are distinct success
actions ωi for i ∈ I that do not occur in any of those tests. Let T ′

i := Ti 1

2

⊕ωi

and v′i :=
1
2vi +

1
2 ~ωi. Note that for all i ∈ I also T ′

i is a characteristic test of
ϕi with target value v′i. Let T〈N,ϕ〉 :=

∑

i∈I τ.T〈N,ϕi〉 and vϕ :=
∑

i∈I pi · v
′
i.

We now prove (28) above by induction on ϕ:

– ϕ = ⊤: obvious.

– ϕ = ref(X). Suppose ∆ |= ϕ. Then there is a ∆′ with ∆
τ̂

==⇒ ∆′ and ∆′ 6↓X .
By Lemma 30(2), ~0 ∈ ApplyΩ(T〈N,ϕ〉, ∆).

Now suppose ∃o ∈ ApplyΩ(T〈N,ϕ〉, ∆) : o ≤ vϕ. This means o = ~0, so by

Lemma 30(2) there is a ∆′ with ∆
τ

==⇒ ∆′ and ∆′ 6↓X . Hence ∆ |= ϕ.
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– ϕ = 〈āx〉φ : Suppose ∆ |= ϕ. Then ∆
āx
==⇒ ∆′ and ∆′ |= φ. By the induction

hypothesis, ∃o ∈ ApplyΩ(T〈N,φ〉, ∆
′) : o ≤ vφ. By Lemma 30(3), this means

o ∈ ApplyΩ(ω + a(y).([y = x]τ.T〈N,φ〉 + ω), ∆). Therefore, we have o ∈
ApplyΩ(T〈N,ϕ〉, ∆) and o ≤ vϕ.
Conversely, suppose ∃o ∈ ApplyΩ(T〈N,ϕ〉, ∆) : o ≤ vϕ. This implies o(ω) = 0.

By Lemma 30(3), this means ∆
āy

==⇒ ∆′ and o ∈ ApplyΩ(T〈N,φ〉, ∆
′). By the

induction hypothesis, we have∆′ |= φ, and therefore, by Definition 7,∆ |= ϕ.
– ϕ = 〈ā(x)〉φ : This is similar to the previous case. The only difference is that

the guard [x 6= N ] makes sure that it is the bound output transition that is
enabled from ∆, so we use Lemma 30(4) in place of Lemma 30(3).

– ϕ = 〈a(x)〉φ : Suppose ∆ |= ϕ. Then for every name w, there exist ∆1, ∆2

and ∆′ such that:

∆
τ̂

==⇒ ∆1

a(x)
−−→ ∆2, ∆2[w/x]

τ̂
==⇒ ∆′, and ∆′ |= φ[w/x]. (30)

In particular, (30) holds for any w ∈ N ′, where N ′ = N ∪{new(N)}. By the
induction hypothesis, ∃ow ∈ ApplyΩ(T〈N ′,φ[w/x]〉) : ow ≤ v〈N ′,φ[w/x]〉, hence
by Lemma 30(5),

ow ∈ ApplyΩ(ω + āw.T〈N ′,φ[w/x]〉, ∆)

for each w ∈ N ′. Then by Lemma 30(6), we have

o ∈ ApplyΩ(T〈N,ϕ〉, ∆))

where o =
∑

w∈N ′ pw · ow ≤ oϕ.
Suppose ∃o ∈ ApplyΩ(T〈N,ϕ〉, ∆) : o ≤ vϕ. Then by Lemma 30(6), we have
o =

∑

w∈N ′ pw · ow for some ow with

ow ∈ ApplyΩ(ω + āw.T〈N ′,φ[w/x]〉, ∆)

The latter means, by Lemma 30(5), for each w ∈ N ′, there are ∆1, ∆2 and
∆′ such that

∆
τ̂

==⇒ ∆1

a(x)
−−→ ∆2, ∆2[w/x]

τ̂
==⇒ ∆′, (31)

and
ow ∈ ApplyΩ(T〈N ′,φ[w/x]〉, ∆

′). (32)

Since
∑

w∈N ′ pw · ow = o ≤ vϕ =
∑

w∈N ′ pw · vφ[w/x], we have

ow ≤ vφ[w/x] (33)

for each w ∈ N ′. Otherwise, suppose ow(ω) > vφ[w/x](ω) for some ω ∈ Ω.
We would have o(ω) = pw · ow(ω) > pw · vφ[w/x](ω) = vϕ(w), a contradiction
to o ≤ vϕ. By (32), (33), and the induction hypothesis, we have

∆′ |= φ[w/x]. (34)
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To show ∆ |= ϕ, we need to show for every w, there exist ∆1, ∆2 and ∆′

satisfying (31) and (34) above. We have shown this for w ∈ N ′. For the case
where w 6∈ N ′, this is obtained from the case where x = z via the renaming
[w/z]: Recall that z 6∈ N , so z 6∈ fn(∆2) and z 6∈ fn(φ). Therefore, we have,
from (31) and Lemma 1 (2),

∆2[z/x][w/z] = ∆2[w/x]
τ̂

==⇒ ∆′[w/z]

and from (34) and Lemma 29, we have ∆′[w/z] |= φ[w/x] = φ[z/x][w/z].
– ϕ =

∧

i∈I ϕi : Suppose ∆ |= ϕ. Then ∆ |= φi for all i ∈ I, and by the induc-
tion hypothesis, oi ∈ ApplyΩ(T〈N,φi〉, ∆) : oi ≤ vϕi

and by Lemma 30(6)

∑

i∈I

pi · oi ∈ ApplyΩ(T〈N,ϕ〉, ∆)

and
∑

i∈I pi · oi ≤
∑

i∈I pi · vϕi
= vϕ.

Suppose ∃o ∈ Apply(T〈N,ϕ〉, ∆) : o ≤ vϕ Then by Lemma 30(6), o =
∑

i∈I pi ·
oi with

oi ∈ Apply(T〈N,φi〉, ∆)

for each i ∈ I. As in the last case, we see from
∑

i∈I pi · oi ≤
∑

i∈I pi · vϕi

that oi ≤ vϕi
for each i ∈ I. By induction, we have ∆ |= φi, therefore, by

Definition 7, ∆ |= ϕ.

– ϕ =
⊕

i∈I pi · ϕi : Suppose ∆ |= ϕ. Then ∆
τ̂

==⇒
∑

i∈I pi ·∆i and ∆i |= φi.
By the induction hypothesis,

∃oi ∈ ApplyΩ(Ti, ∆i) : oi ≤ vi.

Hence, there are o′i ∈ ApplyΩ(T ′
i , ∆i) with o′i ≤ v′i. Thus by Lemma 30(7),

o :=
∑

i∈I pi · o
′
i ∈ ApplyΩ(T〈N,ϕ〉, ∆), and o ≤ vϕ.

Conversely, suppose ∃o ∈ Apply(T〈N,ϕ〉, ∆) : o ≤ vϕ. Then by Lemma 31,

there are qi and ∆i, for all i ∈ I, such that
∑

i∈I qi = 1 and ∆
τ̂

==⇒
∑

i∈I qi ·
∆i and o =

∑

i∈I qi ·o
′
i for some o′i ∈ ApplyΩ(T ′

i , ∆i). Now o′i(ωi) = v′i(ωi) =
1
2 for each i ∈ I. Using that (Ti)i∈I is an Ω-disjoint family of tests, 1

2qi =
qio

′
i(ωi) = o(ωi) ≤ vϕ(ωi) = piv

′
i(ωi) = 1

2pi. As
∑

i∈I qi =
∑

i∈I pi = 1,
it must be that qi = pi for all i ∈ I. Exactly as in the previous case we
obtain o′i ≤ v′i for all i ∈ I. Given that T ′

i = Ti 1

2

⊕ωi, using Lemma 30(6),

it must be that o′ = 1
2oi +

1
2 ~ωi for some oi ∈ ApplyΩ(Ti, ∆i) with oi ≤ vi.

By induction, ∆i |= φi for all i ∈ I, Therefore, by Definition 7, ∆ |= ϕ.

In case ϕ ∈ L, the formula cannot be of the form ref (X). Then it is easy
to show that

∑

ω∈Ω vϕ(ω) = 1 and for all ∆ and o ∈ ApplyΩ(Tϕ, ∆) we have
∑

w∈Ω o(ω) = 1. Therefore, o ≤ vϕ iff o ≥ vϕ iff o = vϕ, yielding (29). ⊓⊔

Completeness of ⊑Ωpmay and ⊑Ωpmust, and hence also ⊑pmay and ⊑pmust by The-
orem 3 and Theorem 1, follows from Lemma 32.

Theorem 4. 1. If P ⊑Ωpmay Q then P ⊑L Q.
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2. If P ⊑Ωpmust Q then P ⊑F Q.

Proof. Suppose P ⊑Ωpmay Q and [[P ]] |= ψ for some ψ ∈ L. Let N = fn(P, ψ) and
let T〈N,ψ〉 be a characteristic test of ψ with target value vψ. Then by Lemma 32,
we have

∃o ∈ ApplyΩ(T〈N,ψ〉, [[P ]]) : o ≥ vψ .

But since P ⊑Ωpmay Q, this means ∃o′ ∈ ApplyΩ(T〈N,ψ〉, [[Q]]) : o ≤ o′, and thus
o′ ≥ vψ . So again, by Lemma 32, we have [[Q]] |= ψ.

The case for must preorder is similar, using the Smyth preorder. ⊓⊔

Theorem 5. 1. If P ⊑pmay Q then P ⊑S Q.
2. If P ⊑pmust Q then P ⊑FS Q.

8 Related and future work

There have been a number of previous works on probabilistic extensions of the π-
calculus by Palamidessi et. al. [12, 2, 17]. One distinction between our formulation
with that of Palamidessi et. al. is the fact that we consider an interpretation of
probabilistic summation as distribution over state-based processes, whereas in
those works, a process like s p⊕ t is considered as a proper process, which can
evolve into the distribution p · δ[s] + (1 − p) · δ[t] via an internal transition. We
could encode this behaviour by a simple prefixing with the τ prefix. It would
be interesting to see whether similar characterisations could be obtained for
this restricted calculus. As far as we know, there are no existing works in the
literature that give characterisations of the may- and must-testing preorders for
the probabilistic π-calculus.

We structure our completeness proofs for the simulation preorders along the
line of the proofs of similar characterisations of simulation preorders for pCSP [7,
5]. The name-passing feature of the π-calculus, however, gives rise to several com-
plications not encountered in pCSP, and requires new techniques to deal with.
In particular, due to the possibility of scope extrusion and close communication,
the congruence properties of (failure) simulation is proved using an adaptation
of the up-to techniques [19].

The immediate future work is to consider replication/recursion. There is a
well-known problem with handling possible divergence; some ideas developed in
[6, 1] might be useful for studying the semantics of πp as well.
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