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Abstract. The formalisation of object-oriented languages is essential for describing the implementation details
of specific programming languages or for developing program verification techniques. However there has been
relatively little formalisation work aimed at abstractly describing the fundamental concepts of object-oriented
programming, separate from specific language considerations or suitability for a particular verification style. In
this paper we address this issue by formalising a language that includes the core object-oriented programming
language concepts of field tests and updates, methods, constructors, subclassing, multithreading, and synchroni-
sation, built on top of standard sequential programming constructs. The abstract syntax is relatively close to the
core of typical object-oriented programming languages such as Java. A novel aspect of the syntax is that objects
and classes are encapsulated within a single syntactic term, including their fields and methods. Furthermore, class
terms are structured according to the class hierarchy, and objects appear as subterms of their class (and method
instances as subterms of the relevant object). This helps to narrow the gap between how a programmer thinks
about their code and the underlying mathematical objects in the semantics. The semantics is defined operationally,
so that all actions a program may take, such as testing or setting local variables and fields, or invoking methods on
other objects, appear on the labels of the transitions. A process-algebraic style of interprocess communication is
used for object and class interactions. A benefit of this label-based approach to the semantics is that a separation
of concerns can be made when defining the rules of the different constructs, and the rules tend to be more concise.
The basic rules for individual commands may be composed into more powerful rules that operate at the level
of classes and objects. The traces generated by the operational semantics are used as the basis for establishing
equivalence between classes.
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1. Introduction

Object-oriented programming [KLW95, GHJV95, Mey00] is a widely used programming paradigm, as can be
observed by the popularity of languages such as Java [AGH00] and C++ [Str97]. The paradigm originated from
ideas in the 1960s, in particular the programming language Simula [BDMN73], and developed later in Smalltalk
[GR02]. The style lends itself to encapsulation and code reuse, both important features for writing structured
code; it is also a structure that can be beneficial for formal specification [Smi00] and modelling biological systems
[FHN+11].
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Object-oriented programs are structured by grouping related functionality into classes, and can be large and
complex and used for large-scale or safety-critical applications. To take advantage of modern multi-processor com-
puter architectures, many also provide the ability to create concurrent processes (threads). Due to their importance
and complexity, analysis of such languages is an active research topic [DGC95, AF99, HM01, Nip03, LLM07],
including the complete, formal definition and analysis of the languages Java and C# by Börger, Stark, Fruja et al.
[SSB01, BFGS05, Fru04, Stä05, Fru10].

The semantics provided in the literature are typically designed towards the goal of formal analysis, and it
is therefore often the case that the semantics are either language-specific or omit important details (such as
inheritance or multithreading). There has been relatively little work on describing the fundamental concepts
of object-oriented programming, in which classes, objects, and methods are active (concurrent) participants.
The contribution of this paper is in providing a formalisation of an object oriented language whereby high-
level concepts such as dynamic dispatch are described with reference to the class hierarchy, and classes, objects,
and methods are encapsulated processes that operate and interact with each other. This helps to narrow the
gap between how a programmer or student may conceive of the semantics of object-oriented concepts, and the
mathematical constructs in the formalisation.

The language has a familiar sequential code base (including exceptions), which is extended by object-oriented
features such as fields, methods, constructors, and subclassing. A scheme for multithreading (concurrency) and
ensuring mutual exclusion on data is also presented. The language is described incrementally (following the work
of Börger et al.), and the construct-specific rules may be composed to define powerful structural rules that operate
at the class or object level.

The formal semantics is defined operationally, that is, it is based on transitions that a language construct
can take. This approach was popularised by Plotkin [Plo81] (see also [Plo04]) and his treatment of sequential
programming languages with procedures and recursion. The approach we use in this paper is different from
Plotkin’s in that the type of the step taken is represented syntactically in the label on the transition. The context
in which a command is executed determines whether that step is allowed, and the context may change as a result.
The rules tend to be concise, because only contextual information relevant to the particular language construct
need appear. The method call mechanism (and all other inter-process communication) is based on that of CCS
[Mil82].

We take the approach that the syntax of the language should match as closely as possible with actual program-
ming languages, with the semantic framework appearing mostly in the labels on transitions; however, in some
cases, abstract commands appear within the syntax of programs, but these are added and removed automatically
during execution. We do not consider static semantics issues such as type correctness (although some errors can
be caught dynamically by exceptions), private and public fields, interfaces, etc. Because our language is similar
to concrete programming languages such as Java, existing type-checking techniques (e.g., [SSB01, KN06]) can
be employed to ensure well-formedness.

The paper is structured as follows: in Sect. 2 we first present an overview of the syntax and semantics, focusing
on class- and object-level behaviour of the system. In Sect. 3 we present the syntax and semantics of a simple
sequential programming language with exceptions, and abstract input/output. In Sect. 4 we introduce the inter-
process communication framework that is used throughout the paper. In Sect. 5 we give the semantics of testing
and updating fields. In Sect. 6 we describe the semantics of methods, and in Sect. 7 we describe how new objects
may be constructed. In Sect. 8 we describe how subclassing is handled, and in Sect. 9 we present a scheme (based
on Java) for introducing thread-based concurrency and synchronisation. In Sect. 10 we explore tool support and
define a method for showing equivalence between classes. In Sect. 11 we compare with related work.



An operational semantics for object-oriented concepts 493

Fig. 1. Hierarchical structure of processes in an object-oriented program

2. Overview

2.1. Program structure and syntax

Our approach to defining the semantics of an object-oriented language is based on interacting processes, where
a process contains relevant subprocesses, e.g., a process representing a class contains all objects of that class as
subprocesses. As such, the syntax of the language matches as closely as possible the class hierarchy, with subclasses
nested inside their parent class. This is extended further by nesting objects of a class inside that class, with method
instances nested inside the relevant object. A graphical representation of the general structure is given in Fig. 1.
At the top level the program may declare variables, which are both syntactically and semantically global in scope.
The program consists of some Main code, which is used to start the program, and a set of classes. Each class
may declare its own class-level fields and class- and object-level methods,1 as well as a constructor for creating
objects. A class contains all objects of that class, and may contain other classes (its subclasses). Objects have their
own fields, as well as other information such as a monitor for restricting access to its state. Each object contains
a method instance for each method invocation to which it is responding.

A complete abstract syntax for the language is given in Fig. 2. We assume the type Ident for variable, field,
and method identifiers, Val of basic values, the type Expr of typical expressions, including method calls and
constructor calls, the type Cmd for commands, and the type Exception for exceptions. Object, class, and thread
references are taken from the type Ref . A state σ is a partial mapping from identifiers to values, and a method
definition ρ is a partial mapping from (method) identifiers to functions that return a command instantiated with
a sequence of actual parameters. A constructor γ returns a new object with the object reference determined by
the parameter.

The basic statements (Std ) include those standard in sequential programming languages, as well as abstract
input/output commands, exceptions, and object oriented concepts such as field references, method calls, construc-
tor calls, and synchronisation. There are four declaration commands (Decl ), which declare and define the scope
of variables (global and local variables), (class and object) fields, (class and object) methods, and constructors.

1 In Java, class-level fields and methods are declared with the keyword static, and we will adopt this convention when giving concrete
syntax.
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Fig. 2. Language summary

Fig. 3. Standard templates

There are three reference types (Ref ), for distinguishing and scoping objects and classes, method instances, and
giving the thread reference of a method instance. Abstract commands (Abs), which do not appear in concrete
syntax explicitly (but may be implied), include the top-level delimiter Program, parallel composition, wait for
waiting for a method call to return, a workspace where an object or class keeps its methods and objects, and
commands related to multithreading.

Processes such as classes, objects and method instances have unique references within the system: class names
are user-generated; object references are class names subscripted by natural numbers; and method instance ref-
erences are object references further subscripted by natural numbers. A method instance may also have a thread
reference.

Figure 3 introduces abbreviations for the standard structure of processes corresponding to objects and classes,
constructors, and a top-level program. An object is formed from a reference, a set of fields which includes the
special field this, and a workspace which may contain method instances. A class is formed from a reference (the
class name), a set of class-level (static) fields, method definitions, a constructor, and a workspace which may
contain objects of that class, subclasses, and/or class-level method instances. A constructor call γ (n) returns an
object with reference cln (i.e., the class name subscripted by a number unique within that class), default values
for its fields, and an empty workspace. A program P is typically formed from a set of global variables σglobals ,
and the parallel composition of some Main process (sequential code), and n classes.

Figure 4 gives an example program written in abstract syntax. At the topmost level the program contains a
global variable, g , which is declared with the state keyword, and is initially 0. The Main process is some sequential
code that has local variable r , initially null, which is assigned the reference to a new Rectangle object of dimensions
2 × 1. The object is then scaled by a factor determined by user input (the parameter to the method call is the
abstract expression input). It thereafter proceeds by executing some command c, which we leave unspecified.
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Fig. 4. An example program with main code and two classes

In parallel with the Main process is a process for a class defining a Rectangle. It has class name rect, a
class-level field tarea, which maintains the current total area of all Rectangle objects, and defines three methods,
init , getHt and scale. The method init is an initialiser , and is called only when a new object is constructed.
The function γre is the constructor for Rectangle objects. The class has a workspace (wksp), which maintains a
parallel composition of subprocesses, and a count which strictly increases as Rectangle objects are created and is
used to generate unique object and method instance references. Initially, the count is 1, and there are no Rectangle
objects. However, the workspace does contain the process Square, which is a subclass of Rectangle. It has no new
fields, but does declare a new method, getSide, overrides the initialiser init , and has its own constructor, γsq. Its
workspace is nil (no Square objects and no further subclasses).

A process O corresponding to a Rectangle object of dimensions 2 × 1 is as follows.

O �̂ ref rect1 • fields {h �→ 2,w �→ 1} • wksp1 nil

The reference is the Rectangle class name with a natural number subscript, rect1. Further Rectangle objects will
be called rect2, rect3, etc. Such objects appear in the workspace of the Rectangle process. The field names h and
w do not need to be distinguished from the same variables in other Rectangle objects; the scopes are separate
and this is reflected in the semantics.

Throughout the paper, with the exception of the generic object reference o, we follow the convention of writing
reference values in small caps font, e.g., rect for the Rectangle class name. Object references are subscripted
versions of their class name, e.g., rect1 above. This naming strategy makes it easy to ensure objects are uniquely
identified by their reference. (However, any naming scheme that ensures uniqueness may be used.) For brevity,
we write r as a shorthand for rect1. Method references are subscripted versions of the object reference, i.e., the
i th method instance of the j th Rectangle object has the reference rectj ,i . Such method references will typically
appear in the more compact form oi or ri .

Objects and classes may respond to method calls, and this creates a new instance of the relevant method,
which we call method instances (also known as stack frames), in the workspace of the relevant process. The
standard form of a method instance is a method number, unique within that object, and some sequential code.
For instance, the following process M corresponds to a method instance of getHt on object O.

M �̂ mi1 return h

The method number is 1, and is combined with the enclosing object reference to give a system-wide unique
method reference, e.g., r1.

2.2. Semantics

The semantics is defined operationally; a set of rules define how a program is executed. The semantics is ‘small-
step’, specifying the evaluation of expressions and execution of commands at a fine-grained level—for instance,
the evaluation of expression ‘x + 1’ is a two-step process, where first the value of x is found, and then one is added
to give the result. In a concurrent system, parallel processes may interleave their steps during the evaluation.

In contrast to most operational semantics, in this paper each step is represented by a label, which is a syntactic
abstraction of the kind of step being taken. Labels are promoted through the syntax of the program, which, as
described above, specifies the local context. As labels are promoted, they may be modified themselves as well
potentially modify the context. Labels are also used to represent communications between processes (which may
or may not be dependent on the context).



496 R. J. Colvin

Fig. 5. Derived structural rules

This style of operational semantics, where labels are promoted and either operate on the local context, or
represent a communication, or both, complements the structured nature of the syntax and supports encapsula-
tion of local data and straightforward communication between parallel processes. Each command given above
in Fig. 2 is specified by rules showing which labels it generates or which labels it interacts with; other labels are
simply promoted unchanged. This style supports modularity as defined by Mosses [Mos04b]. The advantage of
this style of operational semantics and structuring of syntax manifests in the derived rules in Fig. 5, described
below, which operate at the level of objects and classes as defined by the templates in Fig. 3. These rules are
relatively concise, with the syntactic structure of the relevant processes implicitly conveying some of the intent of
the rule. In similar rules for method invocation and object construction in the literature, there are a significant
number of antecedents to the rules and a large syntactic overhead.

As an example of labels modifying local context or communicating to modify some remote context, consider

an assignment statement x :� 0. This transitions to nil with a label indicating the update, i.e., x :� 0 x :� 0−−−→ nil.
This label is promoted through the structure of the enclosing program, which may include x as a field; the value
of field x is modified to be 0, and the label itself is modified to become silent (τ ), so that it will have no effect on
any other context. If instead of updating a local variable, a field of some other object is updated, then the label is
decorated with an exclamation mark ‘!’ to indicate it is an invocation, that is, a request of or directive to another

object, e.g., o.x :� 0 o.x :� 0!−−−−→ nil. The corresponding response transition is given by O o.x :� 0?−−−−→ O′, where O is
some parallel process representing the target object which contains a local declaration of x , and O′ is identical to
O except for the updated value of field x . The labels are said to match, and synchronise using a communication
style based on CCS [Mil82], as exemplified by Rule 7. The steps of the invoker and responder combine into a
single, internal step.
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As an example of how labels are promoted through nested contexts, consider the command c defined below.

c �̂ (if x then h :� 1 else h :� −1) ; x :� false

There are two possible behaviours (traces) of the program, corresponding to the initial boolean value of x . Traces
are formed from multiple applications of the operational rules, but below we summarise the effect in a single

bundled transition, that is, the notation c �s�⇒ c ′ represents a sequence of transitions with labels given by the
sequence �s (elements separated by whitespace). By convention we omit internal steps from traces.

c x�true h :� 1 x :� false�����������������⇒ nil c x�false h :�−1 x :� false������������������⇒ nil

When executed inside a local state that records x as currently true, those parts of the label referring to x become
internal steps (τ ), and updates to x are recorded by its changing value in the local state. The second trace above
is not consistent with a value of true for x , and is thus eliminated (or pruned) from the possible behaviours.

(state {x �→ true} • c) h :� 1���⇒ (state {x �→ false} • nil)

The labels referencing x have become internal steps (and omitted from the transition arrow). At an outer level
that declares h, the remaining label is also hidden.

(state {h �→ 0} • (state {x �→ true} • c)) �⇒ (state {h �→ 1} • (state {x �→ false} • nil))

This situation of nested states corresponds with a local variable declaration inside a method instance (x ) occur-
ring inside the scope of an object-level field (h). The operations of a method body (such as c) on a method-level
variable, or object-level or class-level field, are hidden outside the scope of the method, object or class. This serves
to keep the semantic scope of a variable equivalent to its syntactic scope, and implicitly handles multiple instance
of the same variable or field name occurring in different methods or objects.

At the top of Fig. 5 we abbreviate an object of the standard structure to O and class to C. We also let O[M]
abbreviate an object that is executing method instance M in its workspace, and analogously C[O] picks out a
particular object in the workspace of class C. The notation O+M is object O extended to include a new method
instance M (the difference with O being that the count i used to generate unique labels is incremented and M is
added to the workspace). Analogously, C+O is the result of a new object of class C being constructed. A method
instance M is just some piece of sequential code cm wrapped inside a method reference k . In the rules in the
figure, the processes are assumed to be defined according to those standard forms unless otherwise specified in
the antecedents of the rule.

Let us first consider invocation of and then response to a method call. The standard command o.m(�v ) invokes
method m on object o with the list of (evaluated) parameters �v . (To avoid distraction in this section we only con-
sider commands where expressions have already been fully evaluated.) The actual parameters may include values
of regular types (numbers, booleans, etc.), and also references to objects (elements of Ref ), which can then be
referenced by the callee. After calling the method the invoker is suspended until the callee returns (possibly with
a value). This is shown by Rule 1, which combines two steps. The syntax of the label on the first step is essentially
the same as the command syntax, with the addition of the subscript i which serves to disambiguate this call from
any other call of o.m that may be active in the system. The combined reference oi is used to uniquely identify the
relevant labels. The suspended invoker is given by the command wait oi , which may proceed only by responding
to a return command from the callee, after which the command terminates.

Rule 3 is the corresponding rule for responding to a method call. An object O of class C, the target of the
invocation, extends its workspace with a new method instance M, provided m is defined in class C and M is
the instantiation of m with the given parameters �v . (The notation mρ(�v ) is a shorthand for ρ(m)(�v ), that is,
extracting the definition of m from ρ and instantiating with actual parameters �v ).

When a method instance terminates, it returns control, or control and a value, to the invoker. This gives the
following characteristic behaviour of a class and object responding to an invocation.

C[O]
oi .m(�v )?−−−−−→ C[O+M] ...�⇒ C ′[O′+(mii nil)]

oi .return!−−−−−→ C ′[O′] (3)

The trace is bookended by the complementary labels in Rule 1. The middle transition contains the steps taken in
the execution of M, which may involve further method calls, modification of fields, etc. When the execution of
the body of M terminates, a return label is invoked, triggering the caller to continue execution, and the method
instance is removed from the workspace of O. Processes C ′ and O′ are structurally the same as C and O, but with
the values of their fields modified according to M.
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Rule 3 holds for the straightforward case where O is of class C and C defines the method in question. However
we may also specify what happens in the presence of inheritance (subclassing). If C2 is a subclass of C1, and O is
of class C2, then it uses the definition of m given by C2, if it exists (Rule 5). However, if C2 does not define m, then
O uses the definition of m in C1, provided it exists (Rule 6). These rules give the semantics of dynamic dispatch.

Let us now consider creating a new object. An invocation of a constructor is a two-step process. Firstly, a
new default object is created in the workspace of the relevant class, and then an initialiser is invoked on that new
object, corresponding to the code for that constructor. This is given by Rule 2, which uses o as an abbreviation
for clj , the new unique reference for the object. The initialiser is just a method that uses the reserved name init ,
and is invoked according to Rule 1 for method calls (to avoid distraction, in this section we assume each class has
exactly one initialiser, but account for multiple initialisers in the body of the paper). When it finishes executing,
the initialiser returns the reference of the new object to the caller.

Rule 4 summarises the response of the target class. The class C contains a constructor, γ , which is a function
that generates a new default object, with unique reference determined by parameter j . A new object is of the
standard form (O), with default values of the fields in σ and where the workspace (co) is nil. This new object may
now respond to method calls, and in particular, to the initialiser invocation which always immediately follows.

We can summarise the effect of object creation, prior to executing the initialiser, by the following derived rule.
Assume o � clj .

O � γ (j ) M � (mi0 initρ(�v ))

C new(o)? o0.init(�v )?������������⇒ C+O+M (4)

This rule states that class C responding to the invocation of a new object and the corresponding initialiser is
extended by the creation of a new object O in its workspace, which is ready to execute method instance M. The
new object is generated by C’s constructor, and the method instance is an instantiation of the initialiser init . The
behaviour continues in the general form given in (3).

The behaviour of invokers and responders operating in parallel is given by Rule 7. The labels must syntac-
tically match exactly (i.e., specify the same object, class, parameters, method instance references, etc.), and then
each process concurrently takes a step and the label becomes silent.

Let us now consider using the rules to give the execution of the program in Fig. 4, starting with the Main
process. In the steps below we let r abbreviate the object reference rect1.

(state {r �→ null} • r :�new rect(2, 1) ; r .scale(input) ; c)
new(r)! r0.init(2,1)! r0.return?��������������������⇒ Rule 2; Rule 1.

(state {r �→ r} • r .scale(input) ; c)
input(3) r1.scale(3)! r1.return?��������������������⇒ Receive input from the environment; Rule 1.

(state {r �→ r} • c)

In the first transition a new rectangle object is created and then the initialiser is invoked. This has the effect
of updating the value of local variable r to the object reference r. In the second transition the value 3 is received
from the environment and this is used as the parameter to the call to scale. Once it has returned the Main process
may continue executing c. Note that in the traces the labels associated with the invocation of the initialiser have
the subscript 0, and those associated with the invocation of scale have the subscript 1. This strictly ascending
increment is used to disambiguate method calls and object references throughout the semantics.

Let us now consider the corresponding behaviour of the Rectangle class in Fig. 4. In the trace below, R
abbreviates the Rectangle process, O is the first object generated by the constructor (O � γre(1)), and I is the
method instance of the initialiser instantiated with the actual parameters (I � (mi0 initρre (2, 1))).

R new(r)? r0.init(2,1)?�������������⇒ R+O+I ... r0.return?��������⇒ R′+O′ r1.scale(3)? ... r1.return?�����������������⇒ R′′+O′′

Here the ‘. . .’ in the trace correspond to the transitions that the object takes in executing first the initialiser and
then the body of scale. In this instance, these are simply modifications of the fields in O and R, and in fact all steps
become silent. The primed versions of processes R and O maintain the same structure but with fields updated
according to the execution of the initialiser and scale. The trace includes an instance of (4) and two instances
of (3).
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Having constructed the traces for Main and R separately, we may now observe the behaviour of their com-
position, Main ‖ R. This process proceeds by Rule 7, with corresponding invocation and response transitions
matching and becoming internal steps. This leaves only the interaction with the environment as the observable
transitions in the trace.

Main ‖ R input(3)����⇒ (state {r �→ r} • c) ‖ R′′+O′′

3. Sequential code

In this section we describe the semantics of a basic sequential programming language, which includes the usual
command types such as assignment, conditional, and iteration. We also include a command type local state,
which is similar to a variable declaration, except that it also locally maintains the current value of the declared
variables. We then extend the language to include exceptions, input and output, and finally top-level programs.
The semantics is presented in small-step style, meaning that commands, and expression evaluation, may interleave
at a fine-grained level.2

3.1. Basic definitions

Assume a set of values, Val , and a set of identifiers, Ident . We assume the set Val contains the standard boolean
and integer values, as well as more complex values as required. The set Ident is a set of identifiers, which are used
for variable names, and later for method names.

A State (sometimes called a store or evaluation) is a partial mapping from variable identifiers to values,
Ident �→ Val . We use the notation {x �→ v , y �→ w} to represent the state which maps x to the value v
and y to the value w . The set of variables declared by a state σ are those in its domain, written dom(σ ), e.g.,
dom({x �→ v , y �→ w}) � {x , y}.

3.2. Expressions

The abstract syntax of an expression e ∈ Expr is given in Fig. 6. An expression is either a value, a variable, or
the addition of two expressions. We also allow other arithmetic and logical operators, that for space reasons we
do not explicitly declare.

Expressions are evaluated in a series of steps from left-to-right, where a ‘step’ may be looking up the value of
a variable in context, or calculating the result of some arithmetic operation. We have chosen a level of atomicity
where the retrieval or update of a single variable can be performed atomically, and hence interference is possible
during the evaluation of expressions that involve two or more variables. The level of atomicity is controlled by
the structure of the labels, and these can be adapted for different atomicity assumptions, for instance, letting
labels range over general expressions (or relations) [CH09]. In Sect. 9 we present a locking scheme based on Java’s
monitors for managing interference that may arise.

The semantics of expression evaluation is given through a labelled transition relation.

−→: Label → (Expr ↔ Expr )

It is defined as the least relation that satisfies the operational rules for expressions (including Rules 8 and 9,

described below). A transition (�, e1, e2) ∈−→, written e1
�−→ e2, states that expression e1 (partially) evaluates

to expression e2, provided that the label � is allowed by the context.
There are three basic forms for a label � ∈ Label as shown in Fig. 6: τ , for an internal step; a test x � v , where

x ∈ Ident and v ∈ Val ; and an update x :� v . The label type τ does not depend on nor affect the context. The
label type x � v requires that x has the value v in context, while a label x :� v requires that the context updates
x to the value v .

2 Mosses has demonstrated [Mos04b] that when using big-step semantics, abrupt termination (through exceptions and return statements)
becomes harder to express, and hence we prefer the small-step style to big-step.
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Fig. 6. Semantics of expression evaluation and sequential commands

A variable x evaluates to a value v provided x � v in context (Rule 8, Fig. 6). This transition defines a
relationship between every variable and every value, and hence is highly nondeterministic taken in isolation.
For instance, assume that there are only two variables, Ident � {x , y}, and two values, Val � {0, 1}. Then the
complete set of possible transitions according to Rule 8 is as follows.

x x�0−−→ 0 x x�1−−→ 1 y
y�0−−→ 0 y

y�1−−→ 1 (5)

The rules for evaluating a binary addition enforce a strict left-to-right evaluation order, where the left-most
operand must be fully evaluated to a value before the right-most operand is evaluated (Rule 9(a) and (b)). The
behaviour of the left-most operand when being evaluated, �, is the behaviour of the whole expression when being
evaluated, and similarly for the right-most operand. When both have been evaluated to values, the sum is cal-
culated (Rule 9(c)). Note the usual distinction between the symbol ‘+’ on the bottom line, which is a syntactic
construct, and the symbol ‘+’ above the line, which denotes the semantics of addition. This form of transition
rule may be used to specify the evaluation of other expressions; in particular we assume similar rules exist for
calculating multiplication, subtraction, exponentiation, and inequalities.

As an example, consider the evaluation of expression x + y assuming that Ident and Val are defined as above.
From Rule 9(a), Rule 8 and (5), there are two possible (partial) evaluations as the first step.

x + y x�0−−→ 0 + y x + y x�1−−→ 1 + y
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Assume for now that the label x � 0 is allowed by the context (the mechanics of this are explained below). Then
continuing the evaluation via Rule 9(b), Rule 8 and (5):

0 + y
y�0−−→ 0 + 0 0 + y

y�1−−→ 0 + 1

Finally, assuming the label y � 1 is allowed by the context (and hence the label y � 0 is disallowed), we have the
following final transition from Rule 9(c).

0 + 1
τ−→ 1

The τ label on the transition indicates that, as expected, the expression 0 + 1 evaluates to 1 in any context. No
more evaluation is possible, since we have reduced the expression to an element of Val . To be more concise, we

now elide the label τ from transitions, that is, e −→ e ′ iff e τ−→ e ′. We call such transitions internal.
Combining the above steps gives the evaluation sequence (6), although the sequence (7) is also valid, depending

on the value of x and y in context.

x + y x�0−−→ 0 + y
y�1−−→ 0 + 1 −→ 1 (6)

x + y x�1−−→ 1 + y
y�1−−→ 1 + 1 −→ 2 (7)

3.3. Commands

The abstract syntax of a command c ∈ Cmd is described in Fig. 6. The special command nil indicates a termi-
nated command. It can partake in no further action. An assignment x :� e is the standard assignment command.
We assume x ∈ Ident and e is an expression as defined in the previous section (a richer expression syntax for e,
and other possibilities for x including as array indexing, is given in [CH11]). Sequential composition, conditional,
and while commands are standard. Note that we allow brackets to enclose commands and expressions where it
aids readability, and do not consider them part of the syntax of the language.

The local state command (state σ • c) declares variables in the domain of σ to be ‘local’ to c. This abstract
command type corresponds loosely to the concrete syntax of declaring a new variable and providing it with an
initial value, which is its value in σ . However, its value changes as it is updated by c. Local states may be nested,
and can be used to model shared variables if c contains concurrency. Constants are local variables that never
change value.

The semantics of command execution is defined with respect to a transition relation ‘−→’.

−→: Label → (Cmd ↔ Cmd )

It is the least relation that satisfies the operational rules for commands. We do not syntactically distinguish tran-
sitions on expressions from transitions on commands, but we ensure the correct relation is always clear from the
types.

The semantics of the language, excluding local states, appears in Fig. 6. The command nil can take no transi-
tions, and therefore there is no corresponding rule. The rules for sequential composition, conditional and iteration
are standard. The novel rule is for an assignment x :� e (Rule 10); the expression e is first evaluated (eventually)
to a value, v , then the command terminates with the update x :� v exposed in the label.

As an example, consider the following evaluation and execution of an assignment to x , where the assignment
expression is evaluated as in (7).

(x :� x + y) x�1−−→ (x :� 1 + y)
y�1−−→ (x :� 1 + 1) −→ (x :� 2) x :� 2−−−→ nil

The rules for local state commands are given in Fig. 7. Rule 14 states that a local state is eliminated when
its command terminates. Rule 15 states that if c can transition independently of the context, then so can the
command (state σ • c).

Rule 16(a) applies when the command c requires x � v to be true to transition to c′, and x is in the domain of σ .
A transition is allowed only when v has the correct value for x in σ—transitions with incorrect values are prevented
from occurring (pruned). The behaviour no longer depends on the context and so the promoted label is τ . Rule
16(b) applies when x is not in the domain of σ , and hence the label is promoted for checking at some outer level.
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Fig. 7. Semantics of local states

For example, the following choice for partial evaluation of the expression x + y is valid by Rule 16(a), which
also prevents any other evaluation.

(state {x �→ 1} • x :� x + y) −→ (state {x �→ 1} • x :� 1 + y)

This is ultimately how the choice between evaluations such as (6) and (7) are made. Although Rule 8 is highly
nondeterministic, the nondeterminism is resolved by the constraint in Rule 16(a). This pattern of context resolv-
ing nondeterminism generated by an internal command recurs throughout the paper. Note also that this has
become an internal step, since the value of x is found locally and does not depend on any outer context.

Rule 17(a) is the rule where state changes occur. If x :� v is the behaviour, and x is local to σ , then σ is updated
appropriately. This is now context-independent. We let σ [x �→ v ] represent the state which is equal to σ in every
argument except x , which it maps to the value v . For example,

(state {x �→ 1} • x :� 2) −→ (state {x �→ 2} • nil)

In Rule 17(b), c is updating a variable that is not in the local state. There is therefore no change in σ , and the
label remains the same, i.e.,

(state {y �→ 1} • x :� 2) x :� 2−−−→ (state {y �→ 1} • nil)

3.4. Simplifications for examples

To simplify the presentation of examples, we introduce the definitions and notation given in Fig. 8.
For instance, to reduce the number of steps shown in the execution of a program, we sometimes bundle

transitions that involve multiple internal steps. Informally, where �s is a sequence of labels, c �s�⇒ c′ holds if c
can take a series of transitions to evolve to c′, with the labels given by �s . This is formalised in Definition 8. For
instance, from (7),

x + y
x�1 y�1 τ���������⇒ 2
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Fig. 8. Bundled transitions, compound assignment, and promotion

For brevity when writing sequences of labels, we omit τ labels, that is, if �s is a sequence consisting of multiple

internal steps and exactly one non-internal step, �, we write c ��⇒ c ′ instead of c �s�⇒ c ′, and if �s is composed

entirely of τ transitions, we write c �⇒ c′. For example, we let the left-hand side below abbreviate the right-hand
side.

(x :� v ; c) x :� v����⇒ c (x :� v ; c) x :� v−−−→ (nil ; c) −→ c

Some of the examples are made shorter by using a compound assignment (Definition 9). We may derive Rule
18 from Rule 10.

Finally, we observe that the nested term structure we develop makes use of a large number of promotion rules,
that is, simple rules that are defined so that the label, �, on a transition of a subcommand, becomes the label on the
full command. Rule 9(a), Rule 11(a) and Rule 12(a) are all examples of promotion rules, which apply to any label
�. Rule 15 is also a form of promotion—the specific label τ is promoted from a transition of the subcommand c
to a transition of the command (state σ • c). This is the more general form of promotion law, where a particular
language construct, such as (state σ • c), has a special relationship with the label types x � v and x :� v , but
otherwise promotes labels such as τ . A more general promotion rule for local states is Rule 19, from which Rule
15 may be derived. It is a short-hand for the following

c �−→ c′

(state σ • c)
�−→ (state σ • c′)

provided � �� (x � v ) and � �� (x :� v )

Because of the trivial and ubiquitous nature of the promotion rules, we will not mention them in examples.

3.5. Exceptions

We now describe exceptions, which are used for handling undefined behaviour at runtime. We will assume that
the type Exception contains at least the values divexc, for division-by-zero errors, and castexc, for class casting
errors. In Fig. 9 we extend the syntax of expressions, commands, and labels. The ‘. . .’ in the productions refer to
syntax defined earlier, i.e., at the top of Fig. 6.
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Fig. 9. Semantics of exceptions, input and output, and programs

An exception may be explicitly thrown by a throw command or expression (Rule 20(a) and (b), respectively).3

Exceptions may also arise through undefined computation, such as division by 0. This case is given by Rule 21,
which states that an expression e1/e2 is evaluated first in e1 then in e2, and if the denominator is not 0, the final
value is the division, otherwise a divexc exception is thrown.

A try/catch command (try c1 catch (exc) c2) is a kind of context which allows command c1 to execute
normally under most circumstances (Rule 22(a)), unless it throws exception exc, when control is transferred
to command c2 (Rule 22(b)). Rule 22(c) states that exceptions other than exc are promoted, and the try/catch
command terminates. Rule 22(d) states that a try/catch command terminates when the main command terminates.

To avoid distraction, throughout the paper we treat exceptions as basic types, deferring until Appendix A a
more complete treatment where exceptions are objects, null references are handled, and the finally command is
defined.

3 We require a rule for each case as we keep commands and expressions as separate syntactic categories. An alternative would be to treat
commands as expressions, as in [KN06].
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Fig. 10. Semantics of concurrency

3.6. Input/output and program scope

We extend the language with two commands which abstract input from and output to the environment, and a
command for limiting the scope of a program. That is, some basic commands for interacting with an external
environment, and delineating a program from the environment. The delineation is important later when we con-
sider communication within an object-oriented system, and need to restrict interactions to just those occurring
in the program.

An input expression is replaced by some value v , determined by the environment (Rule 23). An output e
command first evaluates e then terminates with label output (v ) (Rule 24). These commands and their label-based
semantics is that used by Reynolds for an imperative language [Rey98].

A command (Program c) designates the boundary of the program c. It is used as the top-level command
enclosing all processes of the object-oriented system. All inter-process communication initiated by processes
within c must be with other processes within c, with the exception of the input/output commands defined above.
Semantically, the (Program c) command acts like the CCS restriction operator, restricting all communication
labels from promoting outside of its scope, and hence forcing communication within its scope (the CCS restriction
command explicitly specifies the set of events it restricts from the environment, whereas the Program command
implicitly restricts all communication events). The command also allows internal steps to proceed, e.g., those that
are individual steps of processes involving local variables, and it reports uncaught exceptions to the environment.
When the scope of a program is clear from context we will tend to omit the Program keyword. Other types of
communication with the environment, such as remote method/procedure calls, can be defined by making explicit
the call types that are not restricted.

4. Communicating processes

We now describe the model for interprocess communication we use throughout the paper to coordinate objects,
classes, and method instances. We treat communication abstractly in this section, but later use it to model testing
and updating fields, calling methods and constructors, and synchronisation via monitors.

4.1. Concurrency

We introduce the parallel composition operator between two commands, (c1 ‖ c2). This operator never appears
in sequential code, such as method bodies, but is instead implied by the structure of the program: top-level classes
operate in parallel, and objects of those classes also operate in parallel (see Fig. 4). The semantics is given in Rule
26 in Fig. 10: concurrent commands may interleave their steps, and may be eliminated after termination.

For example, consider the following concurrent program in which two commands share a variable g but each
have their own local variable h. They compete to set g to the value of their own copy of h.
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(state {h �→ 0} • g :� h) ‖ (state {h �→ 1} • g :� h) (10)

Taking the first branch, from Rules 17 and 14 we have the following trace.

(state {h �→ 0} • g :� h)
g :� 0���⇒ nil

The trace contains a single non-internal step g :� 0. Similarly the second branch generates trace g :� 1. Local
variable h is internal to both processes and hence does not appear in the labels. This aspect of the semantics—
using the same variable name in different processes does not cause name clashes—helps to simplify reasoning
about local states (fields) of objects and classes.

4.2. Invocation, response, and matching

Labels like τ, x � v , and x :� v , are always interleaved—they are not communication labels. Communication
occurs between an invocation label, �!, which matches4 with the corresponding response label �?. That is, excluding
the exclamation and question marks, the base label, �, is identical.5

This leads to the familiar communication semantics in Rule 27, in which parallel processes combine their
actions into a single internal step. In CCS [Mil82], matching labels are given by an event a and its complement
a, rather than the ‘!’ and ‘?’ decorations. In ACP [BK84], matching is determined by an auxiliary function on
labels rather than the syntactic matching we do here, and in CSP [Hoa85], multiple processes may synchronise.
Since we require only binary synchronisation the CCS-style communication scheme is adopted. As with CCS,
unmatched communication labels may also be promoted by parallel composition (Rule 26), but they are restricted
from occurring unmatched within a program by Rule 25.

To allow for the case where a process must match with itself, e.g., when an object calls a method of itself, and
hence the case where matching does not occur across a parallel composition, we introduce Rule 28. This rule
chains together an invocation and the corresponding response of a single process. (Rule 27 may be derived from
Rule 28 and Rule 26(a).)

5. Fields

We now take a first step towards object-oriented programming, by introducing referenceable processes and fields.
These two new command types may be combined to give a basic object containing a local state that may be tested
and updated by other processes. The syntax and semantics of fields and references are summarised in Fig. 11.

5.1. Fields

The command type (fields σ • c) contains a Stateσ in the context of a command c. The domain of σ are field
names. A set of fields reacts to internal operations on its domain in exactly the same manner as a local state com-
mand, (state σ • c), as stated by Rule 29. It differs from a local state in that other processes that are operating
in parallel may query or alter the value of the fields. This is handled semantically through matching on the label
types o.f � v and o.f :� v , respectively, where o is an object reference, described below.

An expression e.f is evaluated by first evaluating the expression e to a reference o, and then the whole expres-
sion evaluates to some value v , generating the invocation label o.f � v ! (Rule 30). The correct value for v will
be determined by the matching responder. A field update command, e1.f :� e2, is executed by first evaluating the
expression e1 to an object reference o and then evaluating e2 to some value v , before transitioning to nil with
invocation label o.f :� v ! (Rule 31).

Matching response transitions are given by the fields command, which may respond with the value of the
specified field (Rule 32), or update the value of a field (Rule 33). To keep a separation of concerns, the refer-
ence of the local object is kept separate from the local fields command. Hence, the response transitions use the
placeholder α, which will be replaced by the local reference after the label is promoted (see below).

4 We use match rather than the usual process-algebraic term synchronise for this sort of interprocess communication to avoid confusion with
the synchronized keyword of Java.
5 Note that although labels with multiple decorations (�!?) are legal in the syntax in Fig. 10, such labels would be nonsensical and are never
generated by the rules.
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Fig. 11. Semantics of fields

The command (ref o • c) states that fields (and other information introduced later) in the command c have
the reference o. At this stage, the only relevant information in c are fields, and hence we define a simple object
that is not executing any code by nesting fields inside a reference, (ref o • fields σ • nil). For instance, we may
define a rectangle object O with reference r and field h (height) as follows.

O � (ref r • fields {h �→ 3} • nil)

A command that doubles the height of O, r.h :� r.h ∗ 2, may take the following transitions by Rules 30 and
31.

r.h :� r.h ∗ 2 r.h�3!−−−→ r.h :� 3 ∗ 2 −→ r.h :� 6 r.h :� 6!−−−−→ nil (11)

Note that in the first step the value 3 is used. However, the invoking process may also transition similarly for any
other value. The correct value will be determined by the responder, with the transitions for incorrect values of field
r.h ignored. This mechanism for determining the correct values is familiar from the communication mechanism
of CCS [Mil82].

The matching responses of O follow from Rules 32 and 33, with the correct reference installed by Rule 34.

O r.h�3?−−−−→ O r.h :� 6?−−−−→ O[h :� 6] (12)

Above we have used the abbreviation O[h :� 6] for updating the field h of O to the value 6, i.e., for the process
(ref r • fields {h �→ 6} • nil).
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The steps in (12) are constructed by combining the rules for fields with the rule for a reference. For example,
the first step is constructed below, with the top line justified by Rule 32 and the bottom line by Rule 34.

(fields {h �→ 3} • nil) α.h�3?−−−−→ (fields {h �→ 3} • nil)

(ref r • fields {h �→ 3} • nil) r.h�3?−−−−→ (ref r • fields {h �→ 3} • nil)

This pattern of inner constructs generating labels with a placeholder (α), which are then instantiated to the correct
value through promotion of the labels to the local reference, is common throughout the paper. We assume α is
never used as an actual object reference, and only ever appears in response labels prior to instantiation via Rule
34. Any label that does not include the placeholder is unaffected by Rule 34, and is promoted as-is.

The two processes in parallel match their labels by Rule 27, i.e.,

(O ‖ r.h :� r.h ∗ 2) �⇒ (O[h :� 6] ‖ nil)

In addition to operating in parallel, a process may also request the value of its own field, in other words, the
invoker and responder may be one and the same. Usually the explicit reference is omitted and the operations are
treated as operations on local variables, as in the object

(ref r • fields {h �→ 3} • h :� h ∗ 2)

In executing the code h :� h ∗ 2 the field name h is treated as a local variable and is modified accordingly by Rule
29 and the rules in Fig. 7. However, it may be the case that, given an expression e.f in a method of object o, at
runtime e evaluates to o (in particular, if e is the keyword ‘this’, discussed in Sect. 7.1). For example, consider
the process O above, extended to explicitly qualify the field h.

(ref r • fields {h �→ 3} • r.h :� r.h ∗ 2)

The execution of this process uses the same individual steps as in (11), matching to the steps in (12) via Rule 28,
resulting in O[h :� 6] after a sequence of internal steps.

6. Objects, classes, and methods

In this section we extend the language to allow method calls. A method call creates a new instance of a method
body which executes in the context of the responding object. We begin by introducing the syntax and informally
describing the semantics of method calls in Sect. 6.1, and of method definitions in Sect. 6.2. In Sect. 6.3 we
state the general template for objects and classes. In Sect. 6.4 we give the formal semantics for method calls and
definitions.

6.1. Overview of syntax and method calls

A method call of the form e.m(�e) represents a call of method m with actual parameters �e on the process referenced
by e. The syntax �e denotes a list of expressions—the rule for evaluating a list from left-to-right is straightforward.
A method call may appear either as a command, e.g., r .scale(2), or as an expression, e.g., x :� r .getHt() ∗ 2. In
the latter case the method acts like a function with possible side effects, eventually evaluating to a value.

The responder to a method call creates a method instance (or stack frame), which is a piece of code identified
by a unique method reference. For instance, after a call r.getHt(), where the body of getHt is defined as return h,
the object r will contain a method instance (mii return h). The method number i is some number chosen locally
by r, and in combination with r will give a unique reference within the program.

When the method instance terminates, or explicitly returns as in getHt , a message is sent back to the invoker of
the method, who may then continue executing. The invoker receives the method return by the wait oi command,
where oi is the method reference of the call (the combination of the object reference and the method number).

6.2. Method definitions

Consider the following Java-like definition of the class Rectangle, which declares the class-level method getTA,
and the object-level methods getHt, scale, and double.
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Class Rectangle
static int tarea; int h, w;
static int getTA() { return tarea }
int getHt() { return h }
scale(int n) { tarea += (n*n - 1) * h*w; h := h*n; w := w*n; }
double() { this.scale(2) }

In the abstract syntax, a method definition is a mapping from a method identifier to a parameterised command.
A parameterised command is a function from a sequence of values (the actual parameters) to a command (the
method body). The method body contains a local state for the formal parameters, which are initialised to the
values of the actual parameters. We take the usual approach of omitting empty formal and actual parameter lists.
A set of method definitions, ρ, is declared to be in the scope of a command c by the command (methods ρ • c).
This command may respond to an invocation of any of the methods defined in ρ.

For example, the methods getTA, getHt , scale and double are collected in the set ρre (we will extend the set
of methods in later sections).

ρre �̂ { getTA �→ return tarea,
getHt �→ return h,
scale �→ λN • state {n �→ N } •

tarea +� (n ∗ n − 1) ∗ h ∗ w ; h :� h ∗ n ; w :�w ∗ n,
double �→ this.scale(2) }

(13)

The identifier getTA is mapped to a command that returns the value of class-level field tarea, and the identifier
getHt is mapped to a command that returns the value of object-level field h. The identifier scale is mapped to a
parameterised command: it takes a value, N , which is the value of the actual parameter to scale, and this is set as
the initial value of formal parameter n. The rest of the method body is the code for scale. The identifier double
is mapped to a command that calls scale with parameter 2.

The general form of a method definition corresponding to a method declaration in concrete syntax such as
“m(x) { c }” is the following.

m �→ (λ �v • state (�x �→ �v ) • c)

The notation (�x �→ �v ) is the state formed by mapping the i th element of �x to the i th element of �v , and is defined
only if the lengths of �x and �v are equal. The vector �v lists the actual parameter values, determined by expression
evaluation at runtime. When there are no parameters, as in getTA and getHt , the state is elided.

All parameters are passed “by-value”; the semantics of “by-reference” is achieved by passing an object ref-
erence as a (value) parameter, as in Java. For instance, consider a method definition ‘m(r ) �̂ r .h :� 0 ; . . .’. This
method takes as a parameter a reference to an object (formal parameter r ), and updates field h of that object. In
our language this method definition becomes

m �→ (λO • state {r �→ O} • r .h :� 0 ; . . .)

where O is a placeholder for the actual parameter. Thus given a call “o.m(r)”, the following new method instance
is created in the workspace of the object referenced by o.

state {r �→ r} • r .h :� 0 ; . . .

The expression r .h in the body of the method instance is locally evaluated to r.h, and thus generates the label
r.h :� 0!, causing the passed object to have its height set to 0.

6.3. Objects, classes, and workspaces

Each class and object in the system has its own workspace, (wkspi c). In classes, the command c is typically a
parallel composition of objects, and in objects, c is typically a parallel composition of method instances. The
number i is used to generate unique references (for new objects or method instances), and is strictly increased
each time a new command is added to the workspace.6

6 Other mechanisms may be used to generate unique references, such as drawing from a predetermined set; we use strictly increasing natural
numbers as it results in a more concise presentation.
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An object always has a reference and a workspace, and typically also contains fields. Hence the following
command is a standard template for an object, where c is a parallel composition of method instances.

(ref o • fields σ • wkspi c) (14)

When new objects are created, their fields include a mapping from the special identifier this to their object refer-
ence (explained in Sect. 7.1). To save space we introduce the following abbreviation for objects, which leaves the
mapping for this implicit.

(obj o(σ )i • c) �̂ (ref o • fields σ [this �→ o] • wkspi c) (15)

For example, (obj r({h �→ 3,w �→ 3})i • c) is an abbreviation for

(ref r • fields {this �→ r, h �→ 3,w �→ 3} • wkspi c) (16)

A class always has its own reference (the class name), a workspace, its own class-level fields, and a set of
methods. Classes also contain a constructor for generating new objects, but we defer further discussion of this
until Sect. 7. The standard format of a class is given below, where c is the parallel composition of objects and
subclasses of that class.

(ref cl • fields σ • methods ρ • cstr γ • wkspj c) (17)

As with objects, we introduce the following abbreviation for classes of the form (17).

class cl(σ, ρ, γ )j • c

For example, the initial process corresponding to class Rectangle is abbreviated as follows.

(class rect({tarea �→ 0}, ρre, γre)1 • nil) abbreviates
(ref rect • fields {tarea �→ 0} • methods ρre • cstr γre • wksp1 nil)

(18)

In this case, the class Rectangle is made up of a class-level field tarea, methods ρre, an object constructor
γre, and an empty workspace, that is, no objects of class Rectangle exist initially. We have chosen to initialise the
workspace with the number 1 so that the first object is called rect1, although any number could be chosen.

Note that the methods in ρre contain both instance methods, such as getHt and scale, that are called on
objects, as well as class-level methods, such as getTA, that operate on class-level fields and are called on classes.
Invocations of the form rect.getTA() will create a method instance in Rectangle’s workspace, alongside the
Rectangle objects.

In addition to the structure of common processes above, we also use some extended notation to indicate
containment.

M � (mik cm)
O � (obj o(σ )i • co)

O[M] � (obj o(σ )i • co ‖ M)
O+M � (obj o(σ )i+1 • co ‖ M)

C � (class cl(σcl, ρ, γ )j • cc)
C[O] � (class cl(σcl, ρ, γ )j • cc ‖ O)
C+O � (class cl(σcl, ρ, γ )j+1 • cc ‖ O)

(19)

Here M is a method instance with reference number k executing command cm. Process O is an object with
command co in its workspace, while O[M] is the same object but with method instance M explicit in its workspace.
Object O+M is O after the addition of M to its workspace (hence, the count in its workspace is incremented).
Class C takes the standard form, and the notation C[O] and C+O for classes and objects are analogous to the
corresponding notation for objects and method instances, above. We let a subscripted process, e.g., Ci , indicate a
process with all elements of C subscripted by i .

The structure of a program is essentially the parallel composition of classes. Typically there is also some
top-level ‘Main’ code to start the program, and there may be global variables. We give such a structure below for
a program with n top-level classes and globals in σ .

Program (state σ • C1 ‖ . . . ‖ Cn ‖ Main)
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Classes may have subclasses, and during execution objects and method instances are created. For instance, below
objects O1 and O2 are of class C1, and O3 is object of class SC , which is a subclass of Cn . Object O2 is currently
executing method instance M1 (and possibly others).

Program (state σ • C1[O1 ‖ O2[M1]] ‖ . . . ‖ Cn [SC [O3]] ‖ Main)

As described in Sect. 4.1, interactions between processes occur through a CCS-like event mechanism. We can
specialise Rule 27 for structures such as that above, indicating the matching of two objects.

O1
�!−→ O′

1 O2
�?−→ O′

2

C1[O1] ‖ C2[O2]
τ−→ C1[O′

1] ‖ C2[O′
2]

O1
�!−→ O′

1 O2
�?−→ O′

2

C[O1 ‖ O2]
τ−→ C[O′

1 ‖ O′
2]

(20)

The derived rule below shows an object O1 in class C1 calling method m in object O2 of class C2. Object O2 is
extended to include a new method instance M, which the premise of the rule constrains to correspond to the
definition of m in class C2 (contained in ρ2).

O1
o2i .m(�v )!−−−−−→ O′

1 m ∈ dom(ρ2) M � (mii mρ2 (�v ))

C1[O1] ‖ C2[O2] τ−−−→ C1[O′
1] ‖ C2[O2

+M]]
(21)

This rule uses the method invocation label o2i .m(�v )! which is similar to a method call on object o2 in command
syntax (o2.m(�v )) with the addition of the method number i to uniquely identify this method call in the system
(the number i is decided by the responder O2). In the rest of this section we provide the underlying rules for
constructing more powerful rules such as this.

6.4. Semantics

The syntax and semantics of invoking and responding to a method call, and returning from a method, are given
in Fig. 12, and the semantics for method instances are given in Fig. 13.

Rule 35 states that after first evaluating the reference e and the actual parameters �e, a method call is replaced
by a wait oi command (or expression), where oi is the unique reference for the call, and which is blocked until
the method returns. The method reference oi is formed from o, the responding object, and i , a number chosen
by the responder. The label for the method call is the invocation oi .m(�v )!, which, apart from the addition of i , is
identical to the syntax of the command. Rule 35(d) makes explicit that unqualified method calls are interpreted
as calls to self.

Rule 36 states that the return and return e commands return control, or control and a value, respectively,
to the calling process. A return command does not know the reference for the method instance in which it is
executing, and uses a label with the object or class reference placeholder α, subscripted by a method number i .
The placeholder is replaced with the correct reference as the label is promoted by Rule 34, and the correct method
number is selected by Rule 41(a), below.

The labels generated by return commands are matched by the corresponding wait oi command in the sus-
pended caller (Rule 37(a) and (b)). If an exception is returned instead of a value (see below), the method call is
replaced by throwing that exception (Rule 37(c)).

Combining Rules 35 and 37 we have the following characteristic traces of method calls, as commands and as
expressions.

o.m(�v )
oi .m(�v )! oi .return?������������⇒ nil o.m(�v )

oi .m(�v )! oi .return(v )?��������������⇒ v (22)

First the method is invoked, and then execution is suspended until the return signal is received.
Let us now consider a process responding to a method call. Recall the definition of C[O] from (19), which

is class C containing object O in its workspace. Then we expect to derive the following rule, where the process
responds to a call of method m ∈ dom(ρ) (recall ρ contains the method definitions of class C) by extending the
workspace of O to include a new method instance.
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Fig. 12. Semantics of method invocation and response

m ∈ dom(ρ) M � (mii mρ(�v ))

C[O]
oi .m(�v )?−−−−−→ C[O+M]

(23)

This rule can be derived from Rules 38 and 39. Rule 38 states that a workspace may be extended to include a
new method instance, using the label oi .m(�v ) �̂ d?, which does not quite match with the invocation label due to
the “�̂ d” part. This part of the label is stripped once the correct value for d is found after being promoted to
the level of the method definition. Rule 39(a) states that a method declaration promotes all labels except those
generated by a workspace, where the method name m is defined in ρ. This special case is handled by Rule 39(b),
which allows only those labels in the form oi .m(�v ) �̂ d? where m is defined within ρ and the method body,
d , is (mii mρ(�v )), i.e., represents an instantiation of m with actual parameters �v . The label is promoted but
with the ‘�̂ d ’ part stripped, and matching may therefore occur. Note that if the object is within nested method
declarations that define m, the innermost definition will be dynamically selected: this is the semantics of dynamic
dispatch, and is discussed in more detail in Sect. 8.
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Fig. 13. Semantics of method instances

The transition in (23) can therefore be constructed as follows, from the interaction of the workspace in O and
the method definitions in C. Let M abbreviate (mii mρ(�v )).

(wkspi c)
αi .m(�v )�̂M?−−−−−−−→ (wkspi+1 c ‖ M)

O oi .m(�v )�̂M?−−−−−−−→ O+M
C[O]

oi .m(�v )?−−−−−→ C[O+M]

The top line is justified by Rule 38(b); the second line is justified by Rule 34; and the bottom line is justified by
Rule 39(b) and m ∈ dom(ρ). (Also recall the definitions from (19).)

The semantics of a method instance (mii c) is given in Fig. 13. It executes until the body terminates, returns
a value, throws an exception, or releases control7 (Rule 40). Rule 41(a) states that when the method body termi-
nates, control is returned to the invoker of the method and the method instance terminates. Rule 41(b) and (c)
states that if c returns then the method instance is (abruptly) terminated and the return label is promoted. The
nondeterminism in the choice of method number (i ) introduced by Rule 36 is resolved here. Uncaught exceptions
generated by a method instance are returned to the invoker, and the method instance is (abruptly) terminated
(Rule 41(d)).

Consider the following derived rules which more clearly show the execution of a method instance. Assume
the trace �s does not contain return, throw, or release labels, that is, does not specify an abruptly terminated
execution.

c �s�⇒ nil

(mii c) �s αi .return!��������⇒ nil

c �s αi .return!��������⇒ c′

(mii c) �s αi .return!��������⇒ nil

c
�s throw(exc)���������⇒ c ′

(mii c)
�s αi .return(exc)!�����������⇒ nil

The first states that when the method body c terminates, the method instance terminates and returns control to
the invoker. The other two rules cover abrupt termination, via a return statement or an exception. In both cases,
the method instance terminates and control is passed back to the invoker.

7. Constructors

The construction of a new object is a two-step procedure: first a new object is created with an empty workspace,
and then the appropriate initialisation code is invoked as a method call. In Sect. 7.1 we describe constructor
functions that are used to create new objects, in Sect. 7.2 we describe initialisation code, and in Sect. 7.3 we
describe invoking and returning from a constructor.

7 The release label type is used when starting multiple threads and discussion is deferred until Sect. 9.
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7.1. Object constructors

A constructor command (cstr γ • c) defines the constructor γ in the context of c. Function γ is of type N →
Cmd , where the natural number is used to construct a unique reference for the new object. The general form of
a constructor γ for a class cl is as follows:

λ j • (ref clj • fields σcl[this �→ clj ] • wksp0 nil)

Hence, the new object’s reference is the class name subscripted by the parameter j , its fields have the initial
values given by the state σcl, and includes the field this, a special member of Ident that is used for storing the
reference of the object. The workspace is initially empty. For instance, the constructor for class Rectangle is
defined as follows (using (15)).

γre �̂ λ j • (obj rectj ({h �→ 0,w �→ 0})0 • nil) (24)

7.2. Initialisers

Initialisers are special methods that are invoked at object creation time (usually to set up specific values of the
object’s fields). Consider the following extension of class Rectangle with a parameterless, empty constructor, and
a second constructor that sets the height and width.

Class Rectangle
...
Rectangle() { }
Rectangle(int ht, int wd) {

h := ht; w := wd; tarea += h*w }

All initialiser methods are named by the reserved identifiers initn ∈ Ident , where n ∈ N is the number of
parameters;8 hence the initialiser that takes no parameters is named init0. All initialisers must be defined to ter-
minate with a return this command (although this need not be the case in the concrete code, as above). If there
is no code associated with a constructor, as with init0 above, the body of the initialiser is exactly return this,
i.e., the first initialiser corresponds to the method (init0 �→ return this).

The other constructor takes 2 parameters, and hence is represented as a method called init2.

init2 �→ (λH ,W • state {ht �→ H ,wd �→ W } •
h :� ht ; w :�wd ; tarea +� h ∗ w ; return this)

(25)

In the above, H and W are the actual parameters, ht and wd are the formal parameters, and h and w are the
local fields.

The initialisers for a class appear in the method declaration for that class. This allows them to be overridden
by subclasses as with standard methods. For instance, the methods of Rectangle are extended with the initialisers
defined above.

ρre �̂ { init0 �→ return this, init2 �→ . . . ,
getTA �→ . . . , getHt �→ . . . , scale �→ . . . , double �→ . . . } (26)

7.3. Invoking and responding to new commands

The syntax and semantics of creating new objects are given in Fig. 14. The syntax of a constructor invocation is
new cl(�e), where cl is a reference to a class, and �e lists the actual parameters to the constructor. An invocation
new cl(�v ) transitions with a label of new(cl)�vj , where cl is the class reference and j is a number determined by
the responder. Their combination, clj , is the reference of the new object. Hence, to complete the construction,
the call is replaced by an invocation of the appropriate initialiser, init#�e (�e), as determined by the number of
parameters.

8 Because this is an untyped setting, we distinguish different initialisers by the number of parameters only. In a typed setting, initialisers
may be distinguished by their full signature.
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Fig. 14. Semantics of constructors

The rules may be combined with the rules for method calls to give the following standard trace for a con-
structor invocation of class cl, with exactly one parameter v . Let o abbreviate clj , the unique reference of the
new object.

new cl(v )
new(o)! o0.init1(v )! o0.return(o)?����������������������⇒ o

An object with new, unique, reference o is created, then the initialiser method init1 is invoked on that object
(with method reference o0), and finally when the initialiser completes it returns the object reference and the new
expression evaluates to o.

On the responding side, Rule 43 states that a new process, d , may be added to the a workspace (of a class) if it
is the result of a constructor call. This rule is similar to Rule 38(b) for adding method instances to a workspace.
Rule 44(a) states that, similarly to method declarations, all labels except new class responses are promoted by a
constructor declaration. Rule 44(b) defines the response to a constructor invocation. As with method calls, only
those labels which contain objects resulting from the appropriate application of function γ are permitted. Thus
we may construct the following rule that combines the workspace with the constructor declaration and the class
reference to add a new object O of class C, under the assumption that γ (j ) � O (recall the abbreviations in (19)).

(wkspj c)
new(α)j �̂O?−−−−−−−→ (wkspj+1 c ‖ O)

(cstr γ • wkspj c)
new(α)j ?−−−−−→ (cstr γ • wkspj+1 c ‖ O)

(ref cl • cstr γ • wkspj c)
new(cl)j ?−−−−−→ (ref cl • cstr γ • wkspj+1 c ‖ O)

The inference is justified, top to bottom, by Rule 43, Rule 44(b), and Rule 34. By promotion rules, the inference
may be extended straightforwardly to apply to classes in standard form (17). Hence, recalling the notation from
(19), we have the rule

C new(o)?−−−−→ C+O (27)

where γ (j ) � O and o abbreviates clj . After creation, object O may respond to field accesses and method calls
in the usual way, starting with the initialiser.
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8. Subclassing

In this section we describe how subclasses and the semantics of dynamic dispatch are treated (Sect. 8.1), class-spe-
cific method calls (method calls that do not follow the semantics of dynamic dispatch) (Sect. 8.2), and determining
the class of an object (Sect. 8.3).

8.1. Subclasses

A subclass process has the same format and functions as a class process, except that a subclass appears as a
subprocess of (within the workspace of) its superclass. Therefore the subclass, and all instances of the subclass,
have access to the context provided by the super class, i.e., its methods and its class-level variables. This nested
structure naturally supports the semantics of dynamic dispatch: when a method call of m is responded to by some
instance of a class, the context is consulted (the relevant label promotes) backwards through the subclasses until
the closest definition of m is found (Rule 39(a)).

As an example, consider a subclass Square of Rectangle. It extends Rectangle with a new constructor which
takes just one parameter, and a new method called getSide().

Class Square Extends Rectangle
Square(int s) { super(s, s) }
int getSide() { return h }

The corresponding definitions in the abstract syntax follow the standard template for classes, methods and
constructors. The class Rectangle now contains the Square as a process in its workspace (recall the structure in
Fig. 1).

Rectangle �̂ class rect({tarea �→ 0}, ρre, γre)1 • Square (28)
Square �̂ class sq(∅, ρsq, γsq)1 • nil (29)

ρsq �̂ { init1 �→ λS • state {s �→ S } • init2(s, s),
getSide �→ return h }

(30)

γsq �̂ λ j • obj sqj (σre)0 • nil (31)

Class Square has no class-level fields, and the methods of Square are mostly straightforward translations of the
concrete syntax, although note that the call super (s, s) in the constructor has been translated to a call to the
the 2-place initialiser, which is implicitly inherited from Rectangle. The constructor γsq is standard, where a new
Square object has the same fields, h and w , and initial values, of Rectangle (σre).

Let O be an object in the workspace of Square. Such an object is in the scope of the (inner) method declarations
in ρsq (29), and the (outer) method declarations in ρre (28). By Rule 39(b) any calls to O on methods declared
in ρsq will use that definition, regardless of whether the superclass also defines those methods. However, by Rule
39(a) and (b), calls on methods not declared in ρsq but declared in ρre will be promoted to use the definition in
ρre.

More formally, let O be an object of class C2, which is a subclass of C1, as given by the process C1[C2[O]].
Recalling the notation from (19), the methods of C1 (C2) are defined in ρ1 (ρ2). We may derive the following rules
from Rule 39, which formally state the circumstances under which the definition of m is taken from the class or
superclass.

m ∈ dom(ρ2) M � (mii mρ2 (�v ))

C1[C2[O]]
oi .m(�v )?−−−−−→ C1[C2[O+M]]

(32)

m ∈ dom(ρ1) \ dom(ρ2) M � (mii mρ1 (�v ))

C1[C2[O]]
oi .m(�v )?−−−−−→ C1[C2[O+M]]

(33)

Rule (32) states that the new method instance in O is determined by the definition in C2 (ρ2), since it is
declared there (it is similar in form to (23)), while rule (33) states that the new method instance is determined by
the definition in C1, since m it is not (re)declared in C2.
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Fig. 15. Semantics of class-specific methods

8.2. Class-specific method calls

The nested structure of subclasses naturally gives the semantics of dynamic dispatch for method inheritance
whenever a call to method m always refers to the most recent definition at runtime. However, when a method m is
overridden by a subclass, but the definition of m in the superclass is required, some extra mechanisms must be in
place. This situation occurs most commonly when a subclass needs to extend m to handle some extra fields—m
in the subclass is implemented by calling super .m() before or after executing its own specific code.

As an example, consider the class Cube, which extends Square to three dimensions. This is a different sort of
subclassing; Square refers to a subset of Rectangles, while Cube is an extension of Square in sense of inheriting
methods, but otherwise cubes are not squares (or rectangles).

Class Cube Extends Square
static int tvol := 0;
int d := 0;
Cube(int s) { super(s); d := s; tvol += s*s*s }
int getVolume() { return h * h * h }
scale(n) { tvol += (n*n*n - 1) * getVolume();

super.scale(n); d := d * n; }
Note that Cube declares its own 1-place constructor, which calls the 1-place constructor of Square. It also

uses the superclass definition of method scale, which in this case refers to the declaration in Rectangle, since
Square does not define it.

We generalise the super syntax of Java to a class-specific method call, written o.cl: m(�e), which states that
object o must call the version of method m declared in class cl. Concrete syntax like super may be translated
into the class-specific abstract syntax straightforwardly.

The declarations for Cube follow the standard templates, with the super calls replaced by class-specific
method calls, that is, the target class name is made explicit. Class Square in (29) is extended to contain Cube in
its workspace.
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Cube �̂ class cube({tvol �→ 0}, ρcu, γcu)1 • nil (35)
ρcu �̂ { init1 �→ λS • state {s �→ S } •

sq: init1(s) ; d :� s ; tvol +� s ∗ s ∗ s
getVolume �→ return h ∗ h ∗ h

scale �→ λN • state {n �→ N } •
tvol +� (n ∗ n ∗ n − 1) ∗ getVolume() ;
rect: scale(n) ; d :� d ∗ n }

γcu �̂ λ j • obj cubej (σre[d �→ 0])0 • nil (36)

To define the semantics of class-specific methods we introduce the syntax as a command and expression, and,
following standard method calls, introduce two new label types oi .cl: m(�v ) �̂ d and oi .cl: m(�v ) (see Fig. 15).

Rule 47 is syntactically identical to Rule 35 where the method name m is replaced by cl: m. Rule 46 is similarly
related to Rule 38.

Rule 47 corresponds to Rule 39(b), however, the method call resolution is performed at the reference level
rather than the method declaration level. This is so that the class name can be directly linked to its own specific
declaration of method m. The methods declared by a class process c are given by the function meths(c) in defini-
tion 34, which straightforwardly extracts any method declarations in c, excluding those defined in its subclasses
(by ignoring any declarations occurring in its workspace).

For instance, we may derive the following rule from Rules 46 and 47, which is similar to (33) except that it
applies whether or not m ∈ dom(ρ2).

m ∈ dom(ρ1) M � (mii mρ1 (�v ))

C1[C2[O]]
oi .cl1:m(�v )?−−−−−−−→ C1[C2[O+M]]

The premise of Rule 47 holds because meths(C1[. . .]) � ρ1 by Definition 34.

Class-specific fields. In the above we have considered class-specific methods, and it seems logical to extend this
concept to class-specific fields. That is, the semantics when (subclass) C2 declares a field f that was declared in
its superclass, C1. Perhaps the most straightforward option is to disallow this possibility entirely, and hence any
objects of class C2 have only one field with base name f . Another option is to allow the redeclaration of f in C2
only if the type of the redeclared f is a subclass of the type of f in C1. In this case also, objects of class C2 have
only one field with base name f (and hence in both of these two options, class-specific field references are not
necessary).

The approach adopted by Java is to allow redeclarations of fields, with the previously declared versions acces-
sible within a subclass by qualifying with the super keyword. In this scheme, the most straightforward approach
is to treat each field declaration ‘f ’ in class C1 in the concrete syntax as a field ‘C1: f ’ in the abstract syntax. Then
the redeclaration of f in C2 means that objects of class C2 have fields named ‘C1: f ’ and ‘C2: f ’.

This leaves the question of how to interpret expressions o.f in the concrete syntax, in the case where o is
statically declared of type C1, but may be an instance of C2 at run time. In the spirit of dynamic dispatch for
method calls, one could require o.f to refer to the innermost declaration of f in the class hierarchy of o at
runtime. However, presumably for issues of definedness and efficiency, in Java the choice of field is made based
on the compile-time type of o. Hence, to follow Java’s approach, a field reference o.f would be translated into
abstract syntax as o.C1: f , where C1 is the declared type of o. (Thus, the correct field is chosen at compile-time,
not run-time.)

Each of these three approaches can be dealt with in the concrete syntax and hence do not need special
treatment in the semantics. Other semantics are possible but outside the scope of this paper.

8.3. Class-based commands

Figure 16 introduces the expression type (e1 instOf e2) for testing the class of an object. Rule 48 states that
first expression e1 is evaluated to an object reference and then the expression e2 to a class reference. If the
label o.instOf(cl)! matches with the responder, the entire expression evaluates to true, otherwise the label
¬o.instOf(cl)! must match with the responder, and the entire expression evaluates to false.
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Fig. 16. Semantics of ‘instance of’ relations

We may use this expression type to define class casting as follows:

(e2) e1 �̂ if (e1 instOf e2) then e1 else throw castexc

Rule 49 gives the semantics for responding to an o.instOf(cl) label. The responding process is the class ref-
erenced by cl. If it contains a reference to o, it may transition with a label of o.instOf(cl)?, otherwise it may
transition with a label of ¬o.instOf(cl)?.

The rule makes use of the auxiliary function refs (Definition 37), that collects all the class and object references
contained in c. Its definition is straightforward by structural induction on the language, and hence we give only
a representative set of cases. It is similar to extracting the alphabet of a process in CSP [Hoa85].

9. Multithreading

We now extend the semantic framework to allow concurrency. Thus far we have presented classes and objects
composed in parallel, but because each invoker of a method call is blocked until the responder terminates and
returns control, there is no scope for interleaving of actions without explicitly supporting it in the concrete syntax.

The simplest way of introducing concurrency is to allow the parallel operator in the concrete syntax, and thus
the Main code may be defined to start n parallel threads, or methods may fork into parallel processes. However,
such unrestricted concurrency becomes difficult to manage and understand, as processes compete for access to
shared data. Furthermore, the correct semantics of abrupt termination via return statements or exceptions is
unclear in the general case. For instance, consider the program (throw e) ‖ c. The left-hand process abruptly
terminates the current method call, which should terminate the right-hand process, c, but c itself may contain
nested concurrency and calls to active method instances executing in other objects. Rather than make arbitrary
decisions about how to handle such cases, which do not arise in practice since the parallel operator ‘‖’ is not part
of concrete syntax, and to allow greater control over access to shared data, we will be guided by Java’s approach
to introducing concurrency via threads, where new threads are created only via calls to a special start method.
This method begins a new thread in the responding object, while the invoker may continue executing.

In Sect. 9.1 we describe how a start method acquires a new thread reference and allows the invoker to con-
tinue executing in parallel. In Sect. 9.2 we describe the behaviour of method calls in the presence of threads. In
Sect. 9.3 we describe monitors, which provide synchronised access to processes through the synchronised block
command type, which is described in Sect. 9.4. Java also allows other operations on threads, such as suspension
and interruption, but a complete semantics for Java threads is outside the scope of this paper.
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Fig. 17. Semantics of threads

9.1. Java’s thread mechanism

To start a new thread in Java, the special start method is invoked on subclasses of the built-in thread class.
The invoker may then continue executing while the start method begins its own thread. Since the start method
is associated with an object, it may be invoked exactly once per (thread) object, or an exception is thrown. We
translate a Java start method with body c as follows (to avoid distraction we assume start is parameterless).

if started then throwThreadExc else (started :� true ; release ; newtref c)

Multiple copies of the body of start are prevented by testing an object-level boolean field started .9 Otherwise,
started is set to true, the invoker is released to continue execution, and a new thread reference is obtained before
executing c. The command release (see Rule 50 in Fig. 17) behaves similarly to a return command, except the
method instance that executes the release may continue executing afterwards.10 Since the method is now inde-
pendent of the invoker the method number may be discarded. The (newtref c) command obtains a new thread
reference from a global thread reference allocator, and then executes c in the new thread (Rule 51). The allocator
is given by command (trefsi c), where the number i is used for the new thread reference, and is incremented
as threads are allocated (Rule 52). Within a program, the allocator is placed at the outermost level, i.e., for a
threaded program c, we write (Program trefsi c).

9 To avoid race conditions on variable started the code may be enclosed in a synchronised block (see Sect. 9.4).
10 Jones [Jon07] uses a similar command to introduce concurrency in an object-oriented programming language.
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Fig. 18. Semantics of monitors and synchronised blocks

9.2. Threads

In a threaded context, method instances contain a thread reference in addition to the method reference. A com-
mand c (a method body) executing ‘within’ thread T is written (thrT c). Any method or constructor calls invoked
by c will pass the thread reference T to the responder. Furthermore, any attempt by c to obtain a lock on a process
will use T as the reference. A command (thrT c) is created when a new thread is started with reference T, or
when a method is invoked by a process already within thread T.

Rule 53 states that a command (thrT c) replaces the placeholder thread reference φ with the local thread
reference (cf. Rule 34). When the body terminates, the thread reference may be eliminated (Rule 54).

In a threaded program, the invoker of a method call or new object passes its thread reference to the responder,
and hence the invocation Rule 35 is replaced by its threaded counterpart, Rule 55, which is identical apart from
the addition of the placeholder thread reference φ to the label. The placeholder is locally instantiated by Rule 53.
Similarly, the method response Rule 39 is replaced by its threaded counterpart Rule 56, which installs the thread
reference of the invoker as the thread reference for the new method body. The rules for class-specific method calls
(Fig. 15) may be extended to handle threads in a similar manner.

The trace of invokers and responders in a threaded context are the same except that the thread reference
appears in the method call labels. For instance, the derived rule corresponding to (23) for responding to a method
call at the class level is as follows.

m ∈ dom(ρ) M � (mii thrT mρ(�v ))

C[O]
oT
i .m(�v )?−−−−−→ C[O+M]

(38)

An alternative approach for passing thread references from invoker to responder would be to have the thread
reference as an implicit parameter to every method declaration, and for every method call to implicitly include
the local thread reference as an actual parameter. This would eliminate the need to redefine the operational rules
for method calls, but at the expense of complicating the abstract syntax.
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9.3. Monitors

Access to a process may be managed through a monitor, upon which threads compete to set locks and have
exclusive access to the process. We introduce a new abstract command (mtr (T,n) • c), which indicates that c
is a lockable process. The number n counts the number of locks thread T currently has on c—the count may be
non-zero because the same process may be locked several times in the same thread. The syntax and semantics
appear in Fig. 18. The semantics implicitly uses object references to uniquely identify the monitored command
c, since this is natural in a object-oriented paradigm, and processes have straightforward access to that reference
type.

An object in a threaded context is extended to include a monitor command, that is, we extend the standard
form of an object in (14) to:

(ref o • fields σ • mtr (T,n) • wkspi c) (39)

Rule 57 states that a new thread can acquire a lock if no other thread has any locks on c, that is, when n is
zero, or may acquire a further lock (become re-entrant) on c if it already holds the lock. A thread removes a lock
by decrementing n. The labels use the object placeholder α, which is instantiated to the enclosing reference by
Rule 34.

Let abbreviate an object of form (39) where the lock count is 0, and let abbreviate an object which
is locked n times by thread T. Then we may derive the following rules:

(40)

9.4. Synchronise blocks

Locks are acquired on monitors through the command (sync e • c), which blocks until it acquires a lock on
the reference e, and then executes c (Rule 58). When c terminates, the lock is released. The command
distinguishes between a synchronised block which has acquired the lock from one which is waiting to acquire the
lock.11

Putting these rules together we may derive the following rule, where we assume the the trace �s does not
abruptly terminate (i.e., does not contain a return or throw label).

c �s�⇒ nil

(sync o • c)
o.lock(φ)! �s o.unlock(φ)!�����������������⇒ nil

(41)

That is, executing c inside a synchronised block bookends the execution of c with a lock and unlock of the relevant
monitor.

If a synchronise block terminates abruptly, i.e., through a return statement or an uncaught exception, it must
release its locks before terminating, or the system may deadlock (Rule 59). In the case of an exception inside
a synchronised block, we may derive the following transition, where as above we assume �s does not abruptly
terminate.

c
�s throw(exc)���������⇒ c ′

(sync o • c)
o.lock(φ)! �s o.unlock(φ)! throw(exc)�������������������������⇒ nil

(42)

This states that an exception occurring inside a synchronised block causes the block to release its lock, then throw
the exception and terminate.

11 An alternative to explicit locking by the invoker is to build the synchronisation block into the method definition, for instance, scale could
be defined to contain a synchronised block locking its own monitor.

scale �→ (λN • state {n �→ N } • (sync this • tarea +� . . .))
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10. Tool support and analysis

10.1. Simulation

The operational rules provide an abstract mechanism for formally describing fundamental concepts of object-
oriented programming. One advantage of formalising a language operationally is that it lends itself to simulation,
by executing a program step-by-step through encodings of the rules. The Maude system [CDE+02, MR11] is a
powerful tool for rewriting logic computations, and has been used for defining operational semantics for process
algebras and imperative and object-oriented languages [Mes00, VMO04, FCMR04, VMO06, CB07].

The translation of the majority of the rules into the Maude syntax is straightforward following the processes
given by Verdejo and Mart-Oliet [VMO06]. For example, Rules 9 and 10 may be translated as follows.

crl [rule3-a] : (X := E) => {L} X := E’ if E => {L} E’ .
rl [rule3-b] : (X := V) => {X :== V} nil .

The keywords (c)rl indicate (conditional) rewrite rules, with an optional tag in square brackets to name the rule.

The rules themselves are essentially direct translations, where a transition e �−→ e ′ is written E => {L} E’, and
a rule c

d
is written d if c.

Many of the rules are highly nondeterministic, and for tractability must be transformed to be deterministic.
For instance, consider Rule 8, which generates a transition for every possible value. This style is attractive in
the abstract rules since the outer context prunes away redundant transitions, but in an executable environment
this is prohibitively expensive. We therefore rewrite the rule to be deterministic, using a placeholder within the
program to stand for the value of the variable, and which interacts with the local state deterministically using term
replacement. We repeat Rules 8 and 16(a) in (43) below, followed by their transformation into a deterministic
version in (44).

x x�v−−→ v c x�v−−→ c′ x ∈ dom(σ ) σ (x ) � v

(state σ • c) −→ (state σ • c′)
(43)

x x�κ−−→ κ
c x�κ−−→ c′ x ∈ dom(σ ) σ (x ) � v

(state σ • c) −→ (state σ • c′[κ\v ])
(44)

In the above κ is a reserved constant, appearing only in these rules, used as a placeholder for (the value of) x ;
the local state determines the value v for x , and hence v is textually substituted into c′ in place of κ (given by the
notation c′[κ\v ]). This makes the rule deterministic, i.e., for a variable x there is exactly one transition possible
(note that κ is redundant in the labels, but we keep it for comparison purposes). Following the same approach the
more complex rules may also be transformed to eliminate nondeterminism in the labels, for instance, Rules 38 and
39 (repeated below in (45)), defining the interaction of the workspace and method definition when responding to
a method call, may be transformed as shown in (46), where the reserved constant η is used as a placeholder for
the new method body.

(wkspi c)
αi .m(v )�̂d?−−−−−−→ wkspi+1 c ‖ d c

oi .m(�v )�̂d?−−−−−−−→ c′ m ∈ dom(ρ) d � (mii mρ(�v ))

(methods ρ • c)
oi .m(�v )?−−−−−→ (methods ρ • c ′)

(45)

(wkspi c)
αi .m(v )�̂η?−−−−−−→ wkspi+1 c ‖ η

c
oi .m(�v )�̂η?−−−−−−→ c′ m ∈ dom(ρ) d � (mii mρ(�v ))

(methods ρ • c)
oi .m(�v )?−−−−−→ (methods ρ • c ′[η\d ])

(46)

The transformations are straightforward and maintain the structure of the original rules.
The general format of nondeterministic rule described above is characterised by a metavariable (such as v in

Rule 38 and d in Rule 38(b)) appearing in the label and in the expression or program on the right-hand side of
a transition, but not in the left-hand side. Metavariables appearing only in the label (and not in the right-hand
side) are already handled using placeholders in the labels, e.g., α in Rule 34.
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Another, related, type of nondeterminism is generated by communication labels where, instead of the non-
determinism in the label being resolved by a context, it is resolved by a parallel process. That is, an invocation �!
matches with a responder �?, and non-matching invocation/response labels are pruned at the outermost level by
Rule 25 (see, for instance, Rules 31 and 33 for an example of invocation/response labels). To avoid generating a

large number of redundant response transitions, the transition relation on the response label, such as c
o.f :� v?−−−−−→ c′,

may be transformed from a relation to a function respond : (Cmd × Label ) → Cmd . This gives the following
format for Rule 27 for matching.

c1
�!−→ c′

1 respond (c2, �) � c′
2

c1 ‖ c2
τ−→ c′

1 ‖ c ′
2

This style eliminates nondeterminism on the responder-side; any nondeterminism on the invoker-side may be
eliminated using placeholders, as above. The transformation from the relation to the function respond (a Maude
equation) is straightforward.

The translation of the rules to a tool such as Maude (or related tools for simulation, e.g., [LF08, PF07]) allows
the (transformed) operational semantics to output the trace of a particular program. This gives a more concrete
method for demonstrating the execution of a program. Maude also provides a facility for checking soundness
(invariants) and liveness properties, and this may be used to verify aspects of particular programs; we consider
formal comparison of programs below.

10.2. Verification

One of the main applications of language formalisations is analysis of that language in general, and proving
properties of specific programs (model checking). Below we give a set of general conditions under which different
underlying data representations in a class give the same observable behaviour to some client of that class, under
the usual assumption that the interfaces (the domain of the set of methods) are the same and that fields are
protected from direct access. This is therefore a type of data refinement [HHS86, Jon90, dRE01]. An advantage
of structuring the abstract syntax according to relevant conceptual processes (classes, objects, and methods) is
that many of the conditions are immediately established by term homomorphisms.

We use the operational semantics as the basis for verification with respect to (weak) trace equivalence [Mil89,
vG01].12

Definition 47 (Weak trace equivalence). Commands c and d are trace equivalent, written c
t≈ d , if, for all traces

�s ,

c �s�⇒ if and only if d �s�⇒ (48)

The notation ‘c �s�⇒’ is shorthand for (∃c′ • c �s�⇒ c ′). Recalling that the notation c �s�⇒ c ′ may include

silent steps interleaved with the labels of �s , the definition states that c
t≈ d if any sequence of non-τ steps can

be matched between them. We note that nil
t≈ nil, and that if c and d are terminating commands (i.e., every

execution is finite and ends in nil),

(c �s�⇒ nil ⇐⇒ d �s�⇒ nil) ⇒ c
t≈ d .

We now consider using trace equivalence for replacing a class C with another class D that uses a different
(perhaps more efficient) representation of the data, as encapsulated in the object-level fields. Given fields σc and

σd of objects of classes C and D, respectively, we write σc

s≈ σd if the values are related (this relation is sometimes
known as abstraction function, simulation relation, or coupling invariant).

We now build towards a set of constraints on general class and object structures that ensures trace equivalence.
We first define equivalence on objects, of the standard form (15).

12 Stronger notions (such as (weak) bisimulation) are not required since the language is determinant [Mil89].
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Definition 49 (Object equivalence).

(obj o(σc)k • c)
o≈ (obj o(σd )k • d ) ⇐⇒ σc

s≈ σd ∧ c
m≈ d

Thus, two objects are equivalent if they have the same reference and structure, their fields are related by
s≈, and

the corresponding method instances are related via
m≈, defined below.

Definition 50 (Method instance equivalence). Commands c and d are equivalent, written c
m≈ d , if they always

terminate, do not contain calls to methods that modify the fields of the local object, and if the following holds

for all σc and σd such that σc

s≈ σd .

(state σc • c)
t≈ (state σd • d ) (51)

(state σc • c) �s�⇒ σ ′
c ∧ (state σd • d ) �s�⇒ σ ′

d ⇒ σ ′
c

s≈ σ ′
d (52)

We have used the abbreviation

(state σ • c) �s�⇒ σ ′ �̂ (state σ • c) �s�⇒ (state σ ′ • nil)

Property (51) ensures that any returned values, or communication with the environment, will be indistinguishable
between the classes, while (52) ensures that the operations on the local fields maintain the coupling invariant.

For brevity Definition 50 includes the constraint that method bodies do not make calls to methods that modify
the fields of the local object; to relax this constraint the standard approach of treating method calls as a shorthand
for their specification would be employed (for example, if m is a method that updates local field f , a call this.m()
within c would be replaced by f :� ..).

We now define class equivalence.

Definition 53 (Class equivalence) For classes C and D of the form below,

C �̂ class c(∅, ρc, γc)n •‖i<n Oc
i and D �̂ class c(∅, ρd , γd )n •‖i<n Od

i (54)

where γc and γd are of the (standard) form,

γc �̂ (λn • obj cn (σ init
c )0 • nil) and γd �̂ (λn • obj cn (σ init

d )0 • nil) (55)

then C c≈ D iff

σ init
c

s≈ σ init
d (56)

∀ i < n • Oc
i

o≈ Od
i (57)

dom(ρc) � dom(ρd ) (58)

∀m ∈ dom(ρc), �w • mρc
( �w )

m≈ mρd
( �w ) (59)

Thus two classes are equivalent if the initial states of new objects are related by the coupling invariant, the
objects currently executing are related, the interfaces are the same, and each method gives the same observable
trace and changes the fields so that the coupling invariant is maintained.

Note that as an immediate consequence of the definitions of γc and γd , and from (56), we have the following
for all n (recall Definition 49).

γc(n)
o≈ γd (n) (60)

In giving the general form of the classes in (54), we have let (‖i<n ci ) abbreviate (c1 ‖ . . . ‖ cn−1). If n � 1 the
command is equivalent to nil. Condition (57) is more general than need be, since classes start with no objects,
i.e., n � 1, and hence the quantification is vacuously true, however taking the more general structure helps in
subsequent proofs. Condition (58) will typically hold by definition and not require a separate proof. Note that
in (59) we implicitly assume the quantification of �w is over well-formed actual parameters only.

In the sequel, to minimise possible confusion arising from the symbol ‘�⇒’ being used for both a transition of

0 or more internal steps and logical implication, we will use ‘ τ�⇒’ to represent the former.
We now state a general theorem for showing trace equivalence.
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Theorem 61 In a single-threaded context, if C c≈ D then C t≈ D.

Proof. We prove by case analysis on the labels that C may generate. We first note that if an object in C has a
(non-nil) method instance, c, in its workspace, then c runs until it terminates. If no such object exists, then C is
free to respond to three types of requests: a creation of a new object, an invocation of a method in an existing
object, or an instance-of query (in a multi-threaded environment, locks on monitors may also be requested). If
we let �s be a trace corresponding to the execution of a method instance inside an object, and r be a label of
the form new(c)n?, oi .m(�v )?, or o.instOf(c)?, then a trace of C is a nonterminating trace of the form (r+ �s)∗,
where r+ represents a sequence of 1 or more instances of r and r∗ a sequence of 0 or more instances.

Therefore to prove trace equivalence it suffices to show that after each response r or execution of a method
instance �s that the resulting classes preserve class equivalence. More formally, we prove the following, where rs
is either a singleton trace containing an instance of label type r , or a trace corresponding to the execution of a
method instance.

C rs�⇒ ⇔ D rs�⇒ (62)

C rs�⇒ C ′ ∧ D rs�⇒ D′ ⇒ C ′ c≈ D′ (63)

Together these conditions show that any two related classes work in tandem, and that the resulting classes are
also related. This gives trace equivalence, since any trace of C and D may be subdivided into identical subtraces
which preserve equivalence.

We now prove (62) and (63) by case analysis on rs , in all cases implicitly assuming C c≈ D. We first note that

(62) for the r cases is trivial, since a class may always respond to such requests (C r−→ is always true). Therefore
below we show just (63) for those cases.

New object. Take the case where rs � new(c)n?. Using Rule 27 gives the following transitions.

C new(c)n?−−−−−→ C+γc(n) ∧ D new(c)n?−−−−−→ D+γd (n)

By (60) we have γc(n)
o≈ γd (n) and hence C+γc(n)

c≈ D+γd (n), therefore equation (63) holds.
New method instance. Take the case where rs � oi .m(�v ) (for m ∈ dom(ρ1)). Using Rule 23 gives the following

transitions (where o abbreviates object reference ci ).

C[Oc
i ]

ok .m( �w )?−−−−−→ C[Oc
i

+c] and D[Od
i ]

ok .m( �w )?−−−−−→ D[Od
i

+d ]

where c � (mik mρ1 ( �w )) and d � (mik mρ2 ( �w )). From (59), we have mρ1 ( �w )
m≈ mρ2 ( �w ), and from Rules 40 and

41 for method instances we can deduce c
m≈ d . Thus the addition of a new method preserves Oc

i
+c

o≈ Od
i

+d ,

and hence C[Oc
i

+c]
c≈ D[Od

i
+d ]. If subclassing and polymorphism were employed the class-specific method calls

would be dealt with similarly.
Instance-of responses. Rule 49 does not change the class and hence trivially satisfies (63).
Method instances. The crux of the proof lies in showing that the method bodies maintain the class equivalence

homomorphism (and therefore, importantly, method calls always return the same values).

Recall that each object in C and D satisfies Oc
i

o≈ Od
i , and that corresponding method instances in those

objects satisfy c
m≈ d . This means that, although c and d generate different traces due to operating on different

variables, they produce the same trace when executed in the local state provided by their containing objects (the
operations on local fields become internal τ steps). The remaining labels, including invocation labels accessing
other object’s fields and methods, exceptions, etc., are also precisely the same. Thus, at the object (and class) level,
the traces generated are the same, and preserve the class equivalence.

More formally, we pick some object Oc
i in the workspace of C (and a corresponding Od

i ) executing method

instance c (respectively d ). By assumption c
m≈ d . This means that executing c and d until termination in their

respective object contexts, which include the fields, generates the same trace (51). In addition, the new values for

the the fields preserve
s≈ from (52). Thus executing method instances that satisfy (59) preserves class equivalence.

Let Oc
i [c] (Od

i [d ]) be the object executing its method instance. Assumption (59) immediately implies

C[Oc
i [c]] �s�⇒ ⇔ D[Od

i [d ]] �s�⇒
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which gives (62). From (52) We have

C[Oc
i [c]] �s�⇒ C[Oc

i
′[nil]] ⇔ D[Od

i [d ]] �s�⇒ D[Od
i

′[nil]]

where the fields of Oc
i

′ and Od
i

′ are related via
s≈, and hence Oc

i
′ o≈ Od

i
′. Thus, we have C[Oc

i
′[nil]]

c≈ D[Od
i

′[nil]],
and therefore (63) holds. �

In the above conditions and proof we have for simplicity assumed a single-threaded environment. A verifica-
tion theory handling concurrency is beyond the scope of this paper, but we hope to have demonstrated how using
traces may provide the foundation for proving more complex properties. Interactions between threads and locks
are specified through labels in the traces, and these may be unified with state-based aspects as outlined above.
Interference may be handled using notions such as rely-guarantee reasoning [Jon83b, Jon83a, CJ07].

We now provide an example of Theorem 61. Consider the following classes. For readability we let ‘m() �̂ c’
abbreviate the pair m �→ c and similarly ‘m(x ) �̂ c’ abbreviate the pair m �→ (λ v • state {x �→ v} • c).

C �̂ class c(∅, ρ1, γ1)1 • nil D �̂ class c(∅, ρ2, γ2)1 • nil
γ1 �̂ (λn • obj cn ({l �→ 〈〉})0 • nil) γ2 �̂ (λn • obj cn ({s �→ 0})0 • nil)

ρ1 �̂
⎧

⎨

⎩

init0() �̂ nil
add (x ) �̂ l :� l � x

getsum() �̂ return�l

⎫

⎬

⎭

ρ2 �̂
{ init0() �̂ nil

add (x ) �̂ s +� x
getsum() �̂ return s

} (64)

An object of class C has a field l (a list of numbers that is initially empty), an empty initialiser init0, a method
add for adding a new number to the list, and a method getsum for returning the current total of numbers in the
list (�l ). An object of class C is generated by the constructor γ1, the methods are collected in ρ1 (all of which are
object-level), and there are no class-level fields. Class D is similar except that objects use a field s instead of l ,
which keeps track of the running total of values added. This is a more efficient version of the class, assuming that
getsum is called regularly. We assume that all calls add (e) are well-formed, that is, that e evaluates to a number.

Theorem 65 Classes C and D, defined in (64), are trace equivalent.

Proof. By Theorem 61 we need only show that C c≈ D. Firstly we note that the classes and constructors are of
the forms given in (54) and (55). We next define the relationship between fields.13

{l �→ �v} s≈ {s �→ v} ⇔ ��v � v (66)

We immediately see that condition (56) is satisfied since �〈〉 � 0. Condition (57) is trivially satisfied since n � 1
and the workspaces are empty. Condition (58) is also trivially satisfied by definition. This leaves (59) as the only
non-trivial requirement, which we prove below for each m ∈ {init0, add , getsum} and well-formed �w . In all cases
we assume ��v � v .

1. init0. The proof of both (51) and (52) is trivial since the body of init0 in both cases is nil (the local fields
therefore preserve (66)).

(state {l �→ �v} • init0ρ1 ()) τ�⇒ (state {l �→ �v} • nil) and

(state {s �→ v} • init0ρ2 ()) τ�⇒ (state {s �→ v} • nil)

2. add . Recall that addρ2 (w ) � (state {x �→ w} • s +� x ). Letting v ′ � v + w (the premise for Rule 9(c)) and
recalling Rule 18, by straightforward application of the rules for executing code we get a trace of the following
form.

(s +� x ) s�v−−→ (s :� v + x ) x�w−−−→ (s :� v + w ) −→ (s :� v ′) s :� v ′−−−→ nil

13 Given a predicate e, if we let e[σ ] represent substituting the variables in the domain of σ by their corresponding values, we may define
instead

σc
s≈ σd ⇔ (�l � s)[σc ][σd ].

This is a slightly easier to read format for the coupling invariant; the format may be used provided the field names of each class are distinct.
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A similar trace is generated for addρ1 (w ), but instead operating on l . Clearly, those traces are not equivalent,
however, when executed inside the local state for the method parameter x , and the object fields s and l , all
labels are hidden. This satisfies (51).
To show (52) we observe

(state {l �→ �v} • addρ1 (w )) τ�⇒ (state {l �→ �v ′} • nil) and

(state {s �→ v} • addρ2 (w )) τ�⇒ (state {s �→ v ′} • nil)

where �v ′ � �v � w . Assuming ��v � v , we have (��v ′) � (�(�v � w )) � (��v + w ) � (v + w ) � v ′, and so (66)
is maintained by the execution of add .

3. getsum. As with add , by straightforward application of the rules for executing code, we have the following
traces.

(state {l �→ �v} • getsumρ1 ())
αi .return(v )!�������⇒ (state {l �→ �v} • nil) and

(state {s �→ v} • getsumρ2 ())
αi .return(v )!�������⇒ (state {s �→ v} • nil)

This method contains an explicit return label in the trace, but in both cases the returned value is the same
and hence satisfies (51). The fields are not modified and hence (52) holds trivially. �

Having proved trace equivalence, we may deduce that a program using the implementation class C in (64)
gives an equivalent behaviour to that using class D. For instance, consider the following Main process, which
interacts with the environment to obtain a number to add to the list.

Main �̂ o :�new c() ; o.add (input) ; output o.getsum() (67)

Since C t≈ D, we also have (Main ‖ C)
t≈ (Main ‖ D), with interactions determined by Rule 27. At the

environment level the only visible labels are input and output, and the trace of the composition is always of the
form ‘input (v ) output (v )’, regardless of whether C or D is used.

Note that in Definition 53 we set the class-level fields to empty. This was purely to avoid distraction; if the
class-level fields are the same, trace equivalence will follow as long as they are manipulated the same way in
each method instance. If the representation of the class-level fields also changes, that needs to be reflected in the

definition of
s≈, and the class-level fields added to the context in Definition 50.

In the proofs we assumed that the fields could not be accessed externally to the class. If this were not the
case, then a client of the object could distinguish them through the exposed types (and names) of the fields.
Instead of simply assuming the fields are not accessed, this can be enforced semantically with commands such as
(protectF c), defined by the following rule.

c
o.f �v?−−−−→ c′ f �∈ F

(protectF c)
o.f �v?−−−−→ (protectF c ′)

The command type (protectF c) prevents testing the value of a field f if it is in the protected set F . This com-
mand may be used to selectively specify the set of protected fields (those that are likely to have their representation
changed) within the object. Similar rules can be used to prevent updating fields, and to protect methods of an
object.

More general properties of the language, such as distributivity and commutativity of operators, may be proved
with respect to general theorems about SOS formats with singleton configurations [TP97, GMR06, JGH11,
Kli11]. More language-specific properties may also be simpler to both express and prove if they are with respect
to an individual command (e.g., class invariants [LM05, DJO08, Log09]), since the context is encapsulated and
the interface specified by events. Many frameworks developed for formal verification of imperative program-
ming languages (e.g., [Spi92, Mor94, dRE01, dRdBH+01]) have been adapted for object-oriented programs (e.g.,
[CKRW99, Fru10, ÁdBdRS08, dB09, BO08, AdBOdG12, DDJO12]). In the verification above we have empha-
sised compositional reasoning [Jon03b] using the trace-based semantics, and this could be explored further with
respect to the notions of modularity defined by Müller et al. [MPHL06]. Alternatively, different program struc-
tures, such as those used in the box model [PHS06], may be more convenient for some types of properties than
the class-based structure used above.
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11. Related work

There has been much research into the semantics of object-oriented programming languages; overviews appear
in several survey papers and collected works [AF99, HM01, Nip03, LLM07]. Much of this work has focused
on developing a semantics that is amenable to analysis, and hence the emphasis has been less on the style of
the semantics and more on verification techniques and their automation. In contrast, this paper has emphasised
expressing core concepts with several goals in mind: a term structure that reflects the class hierarchy; a separation
of concerns when dealing with core concepts; straightforward composition of basic rules into more powerful
rules; a flexible communication scheme based on process algebra theory; and the semantics of local variables
(such as those in methods, or object-level fields and class-level fields) is defined so that reasoning about them may
be performed locally. On a technical level, these goals were realised by keeping contextual information (method
definitions, local variables, constructors, etc.) within the program term structure, and using labelled transitions
to represent both communication events and state modifications. More powerful rules can be derived from the
basic rules to give the semantics of individual processes, including method instances, objects, and classes. These
may in turn be composed to give the behaviour of the system as a set of interacting processes, as described in
Sect. 2.2.

The majority of approaches in the literature do not have an abstract syntax that follows the class hierarchy,
and few treat objects and classes as encapsulated processes. Typically, related information from each object, such
as fields or methods, is grouped together in a store, and hence the state of a particular object or class may be
inferred by extracting the relevant information from each store. Therefore it is not possible in such frameworks
to give high-level, structural rules such as those in Sect. 2.2. Usually a single call stack is defined (or a set of
stacks for multithreading), with successive method calls, and the relevant environment, pushed on to the stack,
and popped after completion. In contrast, in our framework active method instances are distributed across the
relevant objects.

Language formalisation is an ongoing research concern and is often tackled through either denotational
semantics [Rei95, AFL99, SSL08] or operational semantics [MTM97, MMT08, MF08, ER10]. We have pro-
vided an operational semantics because, as noted by Jones [Jon03a], this style lends itself to concurrency more
easily than denotational semantics. Below we restrict comparison to work which defines operational semantics
for object-oriented programming language features. With the notable exception of the work of Börger et al.,
discussed below, our presentation appears to cover more object-oriented concepts than those surveyed.

The work was initially inspired by Jones’ semantics for an object-oriented language [Jon07], where objects are
processes encapsulating their own state and which execute method calls locally, and classes define the relevant
methods. However, in Jones’ work there is no inheritance, and objects are not nested within their class. All paral-
lelism is at the top level, and managed through a set of objects rather than through the process-algebraic parallel
operator (‘‖’). The style results in verbose, though straightforward, rules. For the purposes of clarity and writing
correct code, Jones enforces several restrictions, particularly on parallelism, which could be straightforwardly
accommodated in our semantics.

Börger, Stark, et al. [SSB01, BFGS05] have defined comprehensive formal semantics for the Java and C#
programming languages. The treatment is based on abstract state machines (ASMs) [BS03], and covers all of
the constructs given here as well as other language features, in particular a richer set of operations on threads.
The approach has been used successfully to develop analysis techniques [Fru04, Stä05, Fru10]. A program is
dynamically structured as a stack of method calls, and in the multi-threaded case, as a set of stacks. New methods
within a thread are placed on the corresponding stack, and yield their return when completed (and popped).
The call stack is separate to other relevant information such as method definitions, globals, locals, and locks.
As a consequence, the semantics does not allow easy decomposition into individual object behaviour—method
instances of different objects are interleaved on the stack. In our semantics, an object executes its own method
instances locally, and interacts with other objects through explicit communication (invoking and returning from
methods). Arguably, our framework is more abstract, since it is in keeping with a traditional process-algebraic
view of concurrency and communication. On the other hand, the stack-based method is closer to a real imple-
mentation, and hence may be better suited to language implementation details than the framework presented
here.

Abadi and Cardelli [AC95, AC96] provide a comprehensive treatment of the underlying concept of objects,
classes, and object-oriented programming. Their framework is particularly rigorous in defining the meaning of
subclassing, subtyping and interfaces, and is extended to include higher-order programming features. The mean-
ing of a (concrete) programming language is defined by translating it to the abstract theory, for which they provide
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a big-step execution semantics. Their treatment is more abstract than that given here, where we have focused on
the definition of programming language features, and define our rules directly on a familiar programming syn-
tax. Their language is object-based, which means that, instead of calling constructors of a class, new objects are
generated by cloning existing objects. They show that this is more flexible than class-based languages, such as
that presented here. The distinction leads them to introduce the powerful method update primitive, where the
methods of an individual object can be dynamically altered, and which generalises field update. We have focused
on defining the semantics of an object-oriented programming language like Java, and hence have kept the struc-
ture of a class-based framework and have not introduced the method update command. Because our method
declarations are mappings from identifiers to parameterised commands, rules can be defined for updating them
using a similar pattern to that for updating fields. By then moving the method declarations from the class level
to the object level, our framework can be extended to adopt Abadi and Cardelli’s more abstract approach.

Klein and Nipkow [KN06] give an operational semantics for a subset of Java which which does not include
subclassing or multithreading (however see Lochbihler [Loc10] for a multithreaded extension of the frame-
work). All rules, and several properties of the language, were encoded in the theorem prover Isabelle/HOL
[NPW02]; furthermore, they define the Java virtual machine, the bytecode verifier, and a compiler. Ábrahám
et al. [ÁdBdRS03, ÁdBdRS08] give operational semantics for subsets of Java that include exceptions and mul-
tithreading. The languages are less expressive than ours in that subclassing is not tackled, and expressions are more
restricted, e.g., method calls cannot appear in expressions. de Boer [dB09] treats a similar subset of object-oriented
programming features to that of [ÁdBdRS08], but in his framework the threads are the top-level processes (each
process is a thread). In contrast, our threads are spread throughout the structure of the program, and are not
represented by any one process. de Boer’s treatment simplifies thread-based verification conditions. Jeffrey and
Rathke [JR05] present a trace-based operational semantics for a subset of Java, where the traces include method
calls and constructor invocations, but their language does not directly support multithreading, local variables, or
class-level fields.

The box model [PHS06, PHS07, BDDL+10] is a framework for describing the cooperation of collections of
objects, which may be unrelated by the class hierarchy. In this setting the focus is not on the structure of the class
hierarchy, but on relationships between objects that have access to each other, for instance, a group of objects
that cooperate to implement a particular function. Due to encapsulation and the potentially nested nature of
boxes, it may be possible to adapt the semantics in this paper to apply to the very different program structure of
the box model.

In earlier work with Hayes [CH09], we investigated the same technique of using labels and contexts to add
state, guards and assignments to the process algebra CSP [Hoa85], and defined the meaning of a sequential pro-
gramming language with procedure calls and recursion [CH11]. Owens [Owe08] and Abadi and Harris [AH09]
used variable test and update labels for simplifying their operational semantics. Brookes [Bro07] uses similar
basic labels in a denotational semantics for a concurrent language, and in particular for defining the semantics
of local variables. The work we present here goes beyond these papers in defining interactions between processes
on otherwise inaccessible local contexts, in an object-oriented setting.

12. Conclusions

In this paper we have presented an operational semantics for a set of core object-oriented programming concepts.
The abstract syntax of a program conforms to the class hierarchy [DGC95]. The semantics is based around the
promotion of labels and their interaction with the context. The language uses a CCS-based semantics [Mil82]
for interprocess communication. With the notable exception of the work of Börger et al. [SSB01, BFGS05], the
language we have presented covers more object-oriented features than most formal treatments in the literature.
We conjecture that this is because for large and complex languages standard approaches to operational semantics
become unwieldy, with the rules becoming cluttered by the amount of information required for execution. This is
less of a problem in our framework because information is stored as context in the language, and the behaviour
of a process can be observed through its traces (the sequence of labels it generates). This is less convenient in
semantics where information about the entire program, i.e., the state and environment, appears in every rule.

Trace equivalence emerges naturally from the semantics as a verification technique due to several reasons.
Firstly, operations on local variables are hidden, which handles the change in state space from one class to
another, and the communication through method calls is handled using synchronisation; and secondly, because
the processes involved in the proof (classes, objects, and methods) are encapsulated we can partition the proof at
different levels. In practice, many aspects of the proof are satisfied trivially by the structure of the processes.
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Following Börger et al. [SSB01, BFGS05], we presented the semantics incrementally. The rule framework
is defined so that language extensions do not typically require the redefining of earlier rules—the simple rules
remain simple, regardless of the complexity of the language. The exception was when introducing threads: two
new rules replaced earlier non-threaded rules, although in both cases the structure of the rule remained the same.
Although a minor issue in this paper, maintaining modularity of the rules [Mos02] may be addressed by using a
record structure in the label and adopting the style developed by Mosses [Mos04b, Mos04a, MN09].

The semantics we have presented here followed from a general principle of keeping the syntax familiar to
programmers, that is, as close as possible to concrete syntax. We also took a “separation of concerns” approach;
for instance, separating the fields and methods of an object from the reference for the object. An advantage of this
approach is the syntax and semantics for fields and methods is simpler than if the reference was not separated; the
trade off is that rules are required to ensure the correct reference is used. The approach taken was always the one
which conformed to a simple syntax and separation of concerns, even if some rules were therefore more complex.
One of the major decisions was to keep method definitions in the class, rather than in the object. This decision
was taken because it seems more intuitive for there to be only one copy of the definitions (as in a program),
and so that the semantics of dynamic dispatch are constructed dynamically. However, it would be valid to define
object constructors so that each new object is given its own copy of the correct methods, collecting all of the
inherited methods and renaming those that are overridden in subclasses. This approach places a greater burden
on the translation from concrete syntax to abstract syntax, and to some extent loses the nested nature of method
definitions; on the other hand, it would simplify the semantics of method calls, and class-specific method calls,
to associate method definitions directly with the object, and this approach may be better for some applications.

Most real object-oriented programming languages contain more features than those presented here, for
instance, Java has a richer set of thread operations, polymorphism, class initialisation, etc. We have focused
on a set of core aspects of object-orient languages (objects, classes, fields, methods, constructors, inheritance and
synchronisation), with the intention that the framework is flexible enough to be extended to incorporate extra
features. A notable language feature which is inherently not compatible with the framework in its current state
is multiple inheritance [WNST06, BCV09, DP11], which would require a term (object) to be a subterm of two
distinct parent terms, something that is not directly achievable.
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A. More on exceptions

A.1. Null reference

To avoid distraction, in the paper we assume that all object references are defined. However it is common to use a
special value, say null, for an undefined reference. The rules required to throw an exception when a null reference
is encountered are of the following form.

null.f
throw(nullref )−−−−−−−−→ null null.f :� v

throw(nullref )−−−−−−−−→ nil null.m(v )
throw(nullref )−−−−−−−−→ nil . . .

A.2. Finally clauses

Based on the Java language specification [AGH00, Sect. 14.20.2] (see also, e.g., [Jac01]), the ‘try/catch/finally ’
command may be decomposed into a try/catch command inside the special finally command, i.e., try { c1 }
catch (exc) { c2 } finally { c3 } becomes

(try c1 catch (exc) c2) finally c3.
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The semantics of the finally command is given below.

Command (c1 finally c2) promotes � through c1
for � not equal to throw(exc)

c1
throw(exc)−−−−−−→ c′

1

(c1 finally c2) −→ (c2 ; throw exc)
(nil finally c2) −→ c2

Hence, a finally clause postpones an exception which has been thrown (uncaught) by c1 until after c2 has
executed. If c2 throws an exception, exc2, then the original thrown exception is lost.

A.3. Exceptions as objects

In the body of the paper we treated exceptions as simple values. A richer, and more realistic, treatment, is to
define exceptions as classes, and for the throw command to throw a reference to an exception object. This allows
information to be stored with the exception, which can be accessed in the catch clause.

The expression of a throw command is evaluated to a reference before being thrown, as given by the following
rules.

(Command (throw e) promotes � through e) (throw o
throw(o)−−−−→ nil)

To catch an exception object, we let catch commands specify a class e for the exception being caught, (try
c1 catch (e exc) c2). This command catches an object reference o if it is an object of class e, which becomes the
value of local variable exc in the command c2, and otherwise throws the exception.

c1
throw(o)−−−−→ c′

1

(try c1 catch (e exc) c2) −→ if (o instOf e) then (state {exc �→ o} • c2) else (throw o)
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[ÁdBdRS03] Ábrahám E, de Boer FS, de Roever WP, Steffen M (2003) A compositional operational semantics for Java mt. In: Dershowitz

N (ed) Verification: theory and practice, vol 2772 of lecture notes in computer science. Springer, Berlin, pp 290–303
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