
DOI 10.1007/s00165-012-0265-0
BCS © 2012
Formal Aspects of Computing (2014) 26: 251–280

Formal Aspects
of Computing

The behavioural semantics of Event-B
refinement
Steve Schneider1,∗, Helen Treharne1 and Heike Wehrheim2

1 Department of Computing, University of Surrey, Surrey, UK. E-mail: h.treharne@surrey.ac.uk
2 Department of Computer Science, University of Paderborn, Paderborn, Germany. E-mail: wehrheim@uni-paderborn.de

Abstract. Event-B provides a flexible framework for stepwise system development via refinement. The framework
supports steps for (a) refining events (one-by-one), (b) splitting events (one-by-many), and (c) introducing new
events. In each of the steps events can be indicated as convergent (to be made internal) or anticipated (treatment
deferred to a later refinement step). All such steps are accompanied with precise proof obligations. However,
no behavioural semantics has been provided to validate the proof obligations, and no formal justification has
previously been given for the application of these rules in a refinement chain. Behavioural semantics expresses
a clear relationship between the first and last machines in a refinement chain. The framework we present pro-
vides a coherent justification for Abrial’s approach to refinement in Event-B, and its generalisation to interface
extension: adding events to the interface. In this paper, we give a behavioural semantics for Event-B refinement,
with a treatment for the first time of splitting events and of anticipated events, adding to the well-understood
treatment of convergent events. To this end, we define a CSP semantics for Event-B and show how the different
forms of Event-B refinement can be captured as CSP refinement. It turns out that the appropriate CSP refinement
relationship is influenced by the particular Event-B development strategy taken. We present two such strategies,
one allowing, the other disallowing interface extensions.

Keywords: Event-B, CSP, Refinement, Traces, Divergences, Development strategy

1. Introduction

Event-B [Abr10, MAV05] provides a framework for formal system development through stepwise refinement.
Refinement allows to gradually build a complex system model by introducing more detail with every step. Indi-
vidual refinement steps in Event-B are verified with respect to their proof obligations, and the transitivity of
refinement ensures that the final system description is a refinement of the initial one. The refinement process
allows new events to be introduced through the refinement process, in order to provide the more concrete imple-
mentation details necessary as refinement proceeds.

Correspondence and offprint requests to: S. Schneider, E-mail: s.schneider@surrey.ac.uk

252 S. Schneider et al.

The framework allows for a great deal of flexibility to cover a broad range of system developments. The recent
book [Abr10] comprising case studies from rather diverse areas shows that this goal is actually met. The basic
modelling entity of Event-B are machines and their events. The flexibility of Event-B development a result of the
different ways of dealing with events during refinement. At each step existing events of an Event-B machine need
to be refined. This can be achieved by (a) simply keeping the event as is, (b) refining it into another event, possibly
because of a change of the state variables, or (c) splitting it into several events.1 Furthermore, every refinement
step allows for the introduction of new events. To help reasoning about divergence, events are in addition classified
as ordinary, anticipated or convergent. New events introduce new detail at the interface of a machine specification,
and are introduced as anticipated or convergent. Convergent events are considered internal and therefore must
not be executed forever. Their treatment within action systems refinement has been well established [But92]. For
anticipated events the decision whether this is to be an internal or external event (i.e., part of the interface) is
deferred to later refinement steps, but must be made by the end of the refinement chain. The use of anticipated
events is a more recent development, introduced within the context of Event-B [Abr10, ABH+10]. Refinement
steps come with precise proof obligations on all kinds of events; appropriate tool support helps in discharging
these [BH07, ABHV08, ABH+10]. Event-B is essentially a state-based specification technique like Z [WD96] or
Alloy [Jac02], and proof obligations therefore reason about predicates on states.

However, no behavioural semantics has been provided to validate the proof obligations, and no formal justi-
fication has previously been given for the application of these rules in a refinement chain. In fact, it is hard to find
one fixed formal semantics for Event-B at all. Instead, a recent article of Hallerstede [Hal11] advocates the absence
of one fixed semantics as an advantage because it increases the flexibility of the specification formalism and allows
to employ it in a variety of modelling domains—all with the same type of proof obligations. Nevertheless, even
Hallerstede mentions that the design of Event-B has been inspired by action systems [BvW98], and Butler [But12]
also implicitly uses an action system, i.e. weakest-precondition semantics for Event-B machines. Here we also
follow this view on Event-B and treat events like guarded commands with a weakest-precondition semantics.

Our specific interest however is in refinement, and in particular in investigating the effect of the proof obli-
gations on the various types of events with respect to the semantics. Our behavioural semantics expresses a clear
relationship between the machines in a refinement chain, in particular the initial and the final one. The framework
we present provides a coherent justification for Abrial’s approach to refinement in Event-B, and its generalisation
to interface extension: adding events to the interface. Our framework is based on the process algebra CSP which
provides us—besides a sound and large body of underlying theory—with a clear notion of refinement and a
number of operators for dealing with specific sets of events in refinement (e.g. hiding).

In order to understand the relationship between Event-B and CSP refinement, these two concepts need to be
set in a single framework. Both formalisms support a variety of different forms of refinement: Event-B by means
of several proof obligations related to refinement, out of which the system designer chooses an appropriate set;
CSP by means of its different semantic domains of traces, failures and divergences. The aim of this paper is to give
a behavioural semantics for Event-B refinement in terms of CSP’s behaviour-oriented process refinement [Hoa85].
This will also provide the underlying results that support refinement in the combined formalism Event-B‖CSP
[STW10]. It turns out that CSP supports an approach to refinement consistent with that of Event-B. It faithfully
reflects all of Event-B’s possibilities for refinement, including splitting events and new events. It also deals with
the Event-B approach of anticipated events as a means to defer consideration of divergence-freedom. Our results
involve support for individual refinement steps as well as additional results for the resulting refinement chain.
Our work is thus in line with previous studies relating state-based with behaviour-oriented refinement (see e.g.
[BD02, DB03, BD09]).

It turns out that our results closely depend on the development strategy chosen for the refinements. Devel-
opment strategies impose rules on the use of different types of events and their refinements. To the best of our
knowledge development strategies for Event-B have not been discussed so far, let alone formalised. Tools support-
ing development and proof of Event-B designs like Rodin [ABH+10] only give very weak restrictions on the use of
event types. Thus another contribution of this paper is the formal definition of two different development strate-
gies for Event-B, depending on whether or not to enable interface extension: where the machine interface (akin to
an API) is extended to allow additional events. Basically, strategy I disallows interface extensions whereas strategy
II allows them. This means that with strategy I the interface of a system is given by the initial machine specifi-
cation, and all events introduced during refinement steps are eventually hidden. This is the approach taken in
[Abr10]. Strategy II is the more general one, allowing for a greater flexibility in development, however, at the price

1 A fourth option is merging of events which we do not consider here.

The behavioural semantics of Event-B refinement 253

of achieving a weaker relationship between the machines in a refinement. Strategy II is the approach supported by
Rodin [EB11]. For both strategies we have identified results about the corresponding CSP refinement. Refinement
in Event-B does not require liveness properties to be preserved. We therefore do not consider them in this paper.

The paper is structured as follows. The next section introduces the necessary background on Event-B and CSP,
and also introduces the first part of our running example. Section 3 gives the CSP semantics for Event-B based
on weakest preconditions. In Sect. 4 we precisely fix the notion of refinement used in this paper, both for CSP and
for Event-B, and further develop our example. Section 5 then sets the two refinement definitions in relation, first
of all just for one step in a refinement and independent of the strategy used for chains of refinement. It turns out
that the appropriate refinement concept of CSP that underpins Event-B is infinite-traces-divergences refinement.
Sections 6 and 7 then present a formal definition of the two strategies I and II and set these in relation with a
CSP refinement concept for chains of refinements. The last section concludes.

This paper is an extension of [STW11b] introducing a new refinement strategy, with its associated definitions
and new results, and including a larger example used throughout the whole paper for both strategies.

2. Background

We start with a short introduction to Event-B and CSP. For more detailed information see [Abr10] and [Sch99]
respectively.

2.1. Event-B

Event-B [Abr10, MAV05] is a state-based specification formalism based on set theory. The basic modelling entity
in Event-B are machines with their events. Here we describe the basic elements of an Event-B machine required
for this paper; a full description of the formalism can be found in [Abr10].

The main modelling construct in Event-B is a machine, which encapsulates state and events which can query or
update the state. A machine specification describes state information in terms of state variables and invariants on
them. The machine describes how the state is initialised, and also describes guarded events, which describe how and
when the state may be updated. These are the core elements of Event-B that we are concerned with in this paper.

Event-B machines are structured into a number of clauses which are concerned with different aspects of the
specification. Here we concentrate on those clauses concerned with state and events. We will therefore describe a
machine M with a list of state variables v, a state invariant I (v), and a set of events ev, . . . to update the state (see
left of Fig. 1). Initialisation is a special event init which sets the initial state of the machine, and its guard is true.

Event-B also in general allows sets which introduce new types, and constants. However, for our purposes the
treatment of elements such as sets and constants are independent of the results of this paper, and so we will not
include them here. However, they can be directly incorporated without affecting our results.

A machine M will have various proof obligations on it. These include consistency obligations: that events
preserve the invariant. They can also include (optional) deadlock-freeness obligations: that at least one event
guard is always true.

Central to an Event-B description is the definition of the events, each consisting of a guard G(v) over the vari-
ables, and a body, usually written as an assignment S on the variables. The body defines a before-after predicate
BA(v, v′) describing changes of variables upon event execution, in terms of the relationship between the variable
values before (v) and after (v′). The body can also be written as v :| BA(v, v′), whose execution assigns to v any
value v′ which makes the predicate BA(v, v′) true (see right of Fig. 1, where BA is the predicate in event evt).
In Event-B an event may also introduce local variables, which can be included in the guard (which constrains
what values they can take), and in the body where they can have an effect on the change of state. Such events are
constructed as:

evt ∧�
any

x
where

G(v, x)
then

v :| BA(v, x, v′)
end

254 S. Schneider et al.

Fig. 1. Template of an Event-B machine and an event

For our purposes, the treatment of local variables is orthogonal to our results, and so we do not consider them
here. They can be directly incorporated without affecting our results. We will thus use the form of events presented
in Fig. 1.

The Event-B approach to semantics, provided in [Abr10, MAV05], is to associate proof obligations with
machines. The key proof obligation on events is that they preserve the invariant: when an event is called within
its guard, then the state resulting from executing the body should meet the invariant. For example, in the case of
the machine in Fig. 1 (which does not include sets or constants) we obtain the following proof obligation INV
on events which have the form of evt:

I (v) ∧ G(v) ∧ BA(v, v′)
�

I (v′)
INV

This is a particular case of the INV rule given in [Abr10, page 189]. Discharging this proof obligation establishes
that the event preserves the invariant, and so is well-defined.

There is no definitive presentation of the core proof obligations that any machine must satisfy, but the proof
obligations presented in [Abr10, MAV05] provide the key rules. In practice, the proof obligations generated by
the Rodin platform [ABH+10] give the de facto rules for a machine.

In this paper we will make use of weakest precondition semantics for guarded commands, applying them to B
events. We introduce this semantics in Section 3. This semantics gives a similar treatment of events as the proof
obligations approach of Event-B, but from the point of view of considering an event as defining a relation between
before- and after-states. The proof obligations approach is geared towards verification and is directly suited to
the tool support.

As an example of an Event-B machine, consider the machine given in Fig. 2 abstractly specifying the (proto-
col of use of a) basket in a store. The machine represents the initial step of a development. In later sections we
will gradually refine this machine, and by this introduce the concept of refinement in Event-B; in particular the
different kinds of events occurring during refinement.

The machine defines a basket to be in one of two possible states: either empty or complete. Complete corre-
sponds to the case when the customer has decided to have completed his shopping. The notation for the events
is a short version of the above given as the guard for the events is true and the before-after-predicate allows
for a single after value only, thus the event is simply written as an assignment. The two events (which are both
unguarded and thus can always be executed) do the checkout and empty the basket, respectively. In addition, the
machine has an event init which is however omitted since it is empty.

The behavioural semantics of Event-B refinement 255

Fig. 2. Event-B machine Basket0

2.2. CSP

CSP, Communicating Sequential Processes, introduced by Hoare [Hoa85] is a formal specification language aim-
ing at the description of communicating processes. A process is characterised by the events it can engage in and
their ordering. Events will in the following be denoted by a1, a2, The set of all possible events is denoted �.
Process expressions are built out of events using a number of composition operators. In this paper, we will make
use of just three of them: interleaving (P1 ||| P2), executing two processes in parallel without any synchronisation;
hiding (P \ N), making a set N of events internal; and renaming (f (P) and f −1(P)), changing the names of events
according to a renaming function f . If f is a non-injective function, f −1(P) will offer a choice of events b such
that f (b) � a whenever P offers event a.

Every CSP process P has an alphabet αP. Its semantics is given using the Failures/Divergences/Infinite Traces
semantic model for CSP. This is presented as U in [Ros98] or FDI in [Sch99]. The semantics of a process can be
understood in terms of four sets, T , F , D, I , which are respectively the (finite) traces, failures, divergences, and
infinite traces of P. These are understood as observations of possible executions of the process P, in terms of the
events from αP that it can engage in.

Traces are finite sequences of events from P’s alphabet: tr ∈ αP∗. The set traces(P) represents the possible
finite sequences of events that P can perform. Since this paper is not addressing liveness, failures will not need to
be considered in this paper and are therefore not explained here.

Divergences are finite sequences of events on which the process might diverge: perform an infinite sequence
of internal events (such as an infinite loop) at some point during or at the end of the sequence. After a process has
diverged, the semantics allows any events from � to be possible. The set divergences(P) is the set of all possible
divergences for P. Infinite traces u ∈ αPω are infinite sequences of events. The set infinites(P) is the set of infinite
traces that P can exhibit. For technical reasons it also contains those infinite sequences that have some prefix
which is a divergence.

Definition 2.1 A process P is divergence-free if divergences(P) � {}.

We use tr to refer to finite traces. These can also be written explicitly as 〈a1, a2, . . . , an〉. The empty trace is 〈〉,
concatenation of traces is written as tr1

� tr2. We use u to refer to infinite traces. Given a set of events A, the
projections tr � A and u � A are the traces restricted to only those events in A. Note that u � A might be finite,
if A events appear only finitely many times in u. Conversely, tr \ A and u \ A are those traces with the events in
A removed. The length operator #tr and #u gives the length of the trace it is applied to which can be an integer
or infinity. The alphabet operator αtr and αu gives us the alphabet of a trace, i.e., the set of events occurring in
it. Given two traces tr1 and tr2, tr1 ||| tr2 defines the set of all traces presenting interleavings of the first and the
second trace, i.e., combinations which keeps the ordering of the original traces but arbitrarily mix elements from
the first with the second trace. Finally, given a renaming function f on the set of events, f (tr) is the trace in which
all elements are renamed according to f .

256 S. Schneider et al.

Interleaving and renaming are also defined in a similar way on infinite traces. As an example for all these
definitions consider the following:

〈a, b〉 � 〈c, b, c〉 � 〈a, b, c, b, c〉
〈a, b, a, c, c, c, b〉 � {a, b} � 〈a, b, a, b〉
〈a, b, a, c, c, c, b〉 \ {a, b} � 〈c, c, c〉
#〈a, b, a, c, c, c, b〉 � 7
〈a, c, d, b〉 ∈ (〈a, b〉 ||| 〈c, d〉)
〈a, d, c, b〉 �∈ (〈a, b〉 ||| 〈c, d〉)
f (〈a, b, b〉) � 〈c, d, d〉 for f : {a �→ c, b �→ d}

Such operations on traces are, for instance, used to define the semantics of the process composition operators in
CSP, like hiding, interleaving and renaming explained above. Since we make use of them later, we will give the
formal definitions for the infinite traces and divergences semantics here.

Definition 2.2 Let P be a process, A a set of events, f a renaming function.

divergences(P \ A) � {(tr \ A) � tr′ | tr ∈ divergences(P)}
∪ {(u \ A) � tr′ | u ∈ infinites(P) ∧ #(u \ A) < ∞}

infinites(P \ A) � {u \ A | u ∈ infinites(P) ∧ #(u \ A) � ∞}
∪ {tr � u′ | tr ∈ divergences(P \ A)}

divergences(P ||| Q) � {tr � tr′ | tr ∈ (trP ||| trQ), trP ∈ divergences(P) ∧ trQ ∈ traces(Q)}
∪ {tr � tr′ | tr ∈ (trP ||| trQ), trP ∈ traces(P) ∧ trQ ∈ divergences(Q)}

infinites(P ||| Q) � {u | u ∈ (uP ||| uQ), uP ∈ infinites(P) ∧ uQ ∈ infinites(Q)}
∪ {u | u ∈ (uP ||| trQ), uP ∈ infinites(P) ∧ trQ ∈ traces(Q)}
∪ {u | u ∈ (trP ||| uQ), trP ∈ traces(P) ∧ uQ ∈ infinites(Q)}
∪ {tr � u′ | tr ∈ divergences(P ||| Q)}

divergences(f (P)) � {f (tr) � tr′ | tr ∈ divergences(P)}
infinites(f (P)) � {f (u) | u ∈ infinites(P)}

∪ {tr � u′ | tr ∈ divergences(f (P))}

divergences(f −1(P)) � {tr � tr′ | f (tr) ∈ divergences(P)}
infinites(f −1(P)) � {u | f (u) ∈ infinites(P)}

∪ {tr � u′ | tr ∈ divergences(f (P))}
In this definition, tr′ ranges over finite sequences of events from �, and u′ ranges over infinite sequences of events
from �.

As a first observation on infinite traces, hiding and divergences, we get the following:

Lemma 2.3 If P is divergence-free, and for every infinite trace u of P we have #(u \ A) � ∞, then P \ A is
divergence-free.

Proof Follows immediately from the semantics of the hiding operator. �

Later, we furthermore use specifications on traces or, more generally, on CSP processes. Specifications are given
in terms of predicates. If SPEC is a predicate on a particular semantic element, then we write P sat SPEC to
denote that all relevant elements in the semantics of P meet the predicate SPEC. For example, if SPEC(u) is a
predicate on infinite traces, then P sat SPEC(u) is equivalent to ∀ u ∈ infinites(P) . SPEC(u).

The behavioural semantics of Event-B refinement 257

3. CSP semantics for Event-B machines

The development of Event-B, in particular of its notion of refinement, has been largely inspired by action systems
[Hal11]. Thus Morgan’s CSP semantics for action systems [Mor90] allows traces, failures, and divergences to be
defined for Event-B machines, in terms of the sequences of events they can and cannot engage in. Butler’s extension
to handle unbounded nondeterminism [But92] defines the infinite traces for action systems. These together give a
way of considering Event-B machines as CSP processes, and treating them within the CSP semantic framework.
Note that the notion of traces for machines is different to that presented in [Abr10], where traces are considered
as sequences of states rather than our treatment of traces as sequences of events. In this paper we use the infinite
traces model in order to give a proper treatment of divergence under hiding. This is required to establish our
main result concerning divergence-freedom under hiding of new events. Consideration of finite traces alone is
not sufficient for this result.

More specifically, infinite traces need to be explicitly recorded since in the presence of unbounded nonde-
terminism they cannot be derived from the finite traces alone. Event-B easily allows for specifying unbounded
nondeterminism. For this, consider for instance a machine initially choosing a value of some variable n from
NAT and then executing an event ev n times. This machine has no infinite trace of ev events, but finite traces of
every length n. We need to distinguish this machine from a machine which simply executes ev forever since when
hiding this event one machine will have divergent behaviour while the other does not.

The CSP semantics is based on the weakest-precondition semantics of events. Let S be a statement (of an
event). Then, following the notation of [Abr05] we will use [S]R to denote the weakest precondition for statement
S to establish postcondition R. Weakest preconditions for events of the form when G(v) then S(v) end are
given using Morgan’s semantics for guarded commands [Mor88]:

[when G(v) then S(v) end]P � G(v) ⇒ [S(v)]P

An event when G(v) then S(v) end executes S(v) when the guard G(v) is true, but it is blocked and cannot
execute when the guard is false. Intuitively, [when G(v) then S(v) end]P is true in a state when every execution
of the event from that state is guaranteed to terminate and reach a state in which P holds. Hence when G(v) is true
we require that [S(v)]P holds, that every execution of S(v) is guaranteed to terminate and reach a state in which P
holds. Conversely, when G(v) is false then it is vacuously true that every execution of when G(v) then S(v) end
terminates and reaches a state where P holds, since there are no such executions.

Similarly, events in the general form when G(v) then v :| BA(v, v′) end have a weakest-precondition
semantics as follows:

[when G(v) then v :| BA(v, v′) end]P � G(v) ⇒ ∀ v′.(BA(v, v′) ⇒ P[v′/v])

Observe that for the case P � true we have

[when G(v) then v :| BA(v, v′) end]true � true

Weakest preconditions and proof obligations are closely connected, and proof obligations associated with
machines can also be expressed and understood in weakest-precondition terms. For example the requirement
that an event ev should preserve the invariant I is naturally expressed as

I ⇒ [ev]I

This states that if the invariant I holds for an initial state then performing ev from that state should reach
a final state where I again holds. Applying the weakest precondition semantics for an event of the form
when G(v) then v :| BA(v, v′) end we obtain the requirement

I (v) ⇒ [when G(v) then v :| BA(v, v′) end]I (v)

This reduces to the equivalent requirement (where v and v′ are both under an implicit universal quantification):

(I (v) ∧ G(v) ∧ BA(v, v′) ⇒ I (v′))

Based on the weakest precondition semantics of [Mor90, But92] for action systems, we can define the traces,
divergences and infinite traces of an Event-B machine.2

2 Failures can be defined as well but are omitted since they are not needed for our approach.

258 S. Schneider et al.

Traces The traces of a machine M are those sequences of events tr � 〈a1, . . . , an〉 which are possible for M (after
initialisation init): those that do not establish false:

traces(M) � {tr | ¬[init;tr] false}
Here, the weakest precondition on a sequence of events is the weakest precondition of the sequential compo-
sition of those events: [〈a1, . . . , an〉]P is given as [a1; . . . ; an]P � [a1](. . . ([an]P) . . .).

Divergences A sequence of events tr is a divergence if the sequence of events is not guaranteed to terminate, i.e.,
¬[init; tr]true. Thus

divergences(M) � {tr | ¬[init;tr]true}
Note that any Event-B machine M with events of the form ev given in Fig. 1 is divergence-free. This is because
[ev]true � true for such events (and for init), and so [init; tr]true � true. Thus no potential divergence tr
meets the condition ¬[init; tr]true.

Infinite Traces The technical definition of infinite traces is given in [But92], in terms of least fixed points of pred-
icate transformers on infinite vectors of predicates. Informally, an infinite sequence of events u � 〈u0, u1, . . .〉
is an infinite trace of M if there is an infinite sequence of predicates Pi such that ¬[init](¬P0) (i.e., some
execution of init reaches a state where P0 holds), and Pi ⇒ ¬[ui](¬Pi+1) for each i (i.e., if Pi holds then some
execution of ui can reach a state where Pi+1 holds).

infinites(M) � {u | there is a sequence〈Pi〉i∈N . ¬[init](¬P0) ∧
for all i . Pi ⇒ ¬[ui](¬Pi+1) }

These definitions give the CSP Traces/Divergences/Infinite Traces semantic model of Event-B machines in
terms of the weakest-precondition semantics of events. For the above given Event-B machine Basket0 we for
instance get 〈empty, empty, complete, empty〉 ∈ traces(Basket0), 〈empty, empty, empty, . . .〉 ∈ infinites(Basket0)
and divergences(Basket0) � {}. The infinite sequence of predicates Pi for deriving infinite traces is here always
Pi � true for all i.

4. Refinement

In this paper, we intend to give a CSP account of Event-B refinement. The previous section provides us with a
technique for relating Event-B machines to the semantic domain of CSP processes. Next, we will briefly rephrase
the refinement concepts in CSP and Event-B before explaining Event-B refinement in terms of CSP refinement.

4.1. Event-B refinement

In Event-B, the (intended) refinement relationship between machines is directly written into the machine defini-
tions. As a consequence of writing a refining machine, a number of proof obligations come up. Here, we assume
a machine and its refinement take the following form:

machine M0
variables v
invariant I (v)
events init0, ev0, ev′

0, . . .
end

machine M1
refines M0
variables w
invariant J(v, w)
variant V (w)
events init1, ev1, ev′

1, . . .
end

The machine M0 is actually refined by machine M1, written M0 � M1, if the given linking invariant J on the
variables of the two machines is established by their initialisations, and preserved by all events. Any transition
performed by a concrete event of M1 can be matched by a step of the corresponding abstract event of M0 (or skip
for newly introduced events) to maintain J . This is similar to the approach of downwards simulation data refine-
ment [DB01]. We next look at this in more detail, and give the proof obligations associated with these conditions.
Formally, the refinement relation M0 � M1 between abstract machine M0 and concrete machine M1 holds if the
four proof obligations given below all hold: FIS REF, GRD REF, INV REF and WFD REF. The first three
must hold for all events, and the fourth gives the additional requirement for convergent and anticipated events.

The behavioural semantics of Event-B refinement 259

Fig. 3. An event and a refinement of it

Fig. 4. A new event not refining any event

First of all, we need to look at events again. Figure 3 gives the shape of an event and a refinement of it. Fig. 4
gives the shape of a new event, which (implicitly) refines skip. We see that an event in the refinement now also
gets a status. The status can be ordinary (not noted in this case), or anticipated or convergent. There are different
strategies on how these types of events are systematically used in an Event-B development via refinement. The
basic idea however is that convergent events are those which are considered internal and must not be executed
forever, and anticipated events are those which will take on their roles in later refinement steps only and in these
might become convergent. Later, we present two development strategies which precisely fix the use of convergent
and anticipated events: Sect. 6 will give rules for the use of convergent and anticipated events in strategy I, and
Sect. 7 will do so for strategy II.

Both convergent and anticipated events introduce further proof obligations: to prevent execution “forever”
the refining machine has to give a variant V (see above in M1), and V has to be decreased by every convergent
event and must not be increased by anticipated events. Before going into the proof obligations in detail, we extend
the example of the last section by another machine Basket1 refining Basket0.

The machine Basket1, given in Fig. 5, introduces one new possible state for the basket, state changing. This
describes the state of the basket during shopping when the customer inserts or removes goods into/from the
basket. A corresponding event change brings the basket into this state. This event has status anticipated: we have
not yet decided on its real use. Besides defining the possible values for state, the invariant now also specifies the
link between the variables of Basket0 and Basket1, and we see that the new state state changing matches both of
the old states.

To see that Basket1 is indeed a refinement of Basket0 we next describe each of the proof obligations in turn.
We have simplified them from their form in [MAV05] by removing explicit references to sets and constants.
Alternative forms of these proof obligations are given in [Abr10, Section 5.2: Proof Obligation Rules].

260 S. Schneider et al.

Fig. 5. Event-B machine Basket1

FIS REF: Feasibility Feasibility of an event is the property that, if the event is enabled (i.e., the guard is true),
then there is some after-state. In other words, the body of the event will not block when the event is enabled.
The rule for feasibility of a concrete event is:

I (v) ∧ J(v, w) ∧ H(w)
�

∃w′.BA1(w, w′)
FIS REF

The proof obligation FIS REF is easy to show for all the events of Basket1 as all events have simple assign-
ments instead of before-after-predicates.

GRD REF: Guard Strengthening This requires that when a concrete event is enabled, then so is the abstract one.
The rule is:

I (v) ∧ J(v, w) ∧ H(w)
�

G(v)
GRD REF

Showing GRD REF for Basket1 is straightforward as well as both abstract and concrete events have guards
equal to true. Later, we will see more complicated refinements. Observe that this proof obligation is trivial if
the abstract event is skip, since in that case G(v) is true.

INV REF: Simulation This ensures that the occurrence of events in the concrete machine can be matched in the
abstract one (including the initialization event). If there is an abstract event then the rule is:

I (v) ∧ J(v, w) ∧ H(w) ∧ BA1(w, w′)
�

∃ v′.(BA0(v, v′) ∧ J(v′, w′))
INV REF

New events are treated as refinements of skip. In this case the abstract state does not change (i.e., BA0 is the
identity relation), and the rule is

I (v) ∧ J(v, w) ∧ H(w) ∧ BA1(w, w′)
�

J(v, w′))
INV REF

The behavioural semantics of Event-B refinement 261

For Basket1, event change is a new event. It corresponds to skip as it is always enabled and only changes the
state into state changing, which corresponds to both of the abstract states state empty and state complete.

The two parts of the variant rule WFD REF below must hold respectively for all convergent and anticipated
events.

WFD REF: Variant This rule ensures that the proposed variant V satisfies the appropriate properties: that it is
a natural number, that it decreases on occurrence of any convergent event, and that it does not increase on
occurrence of any anticipated event:

I (v) ∧ J(v, w) ∧ H(w) ∧ BA1(w, w′)
�

V (w) ∈ N ∧ V (w′) < V (w)

WFD REF
(convergent event)

I (v) ∧ J(v, w) ∧ H(w) ∧ BA1(w, w′)
�

V (w) ∈ N ∧ V (w′) ≤ V (w)

WFD REF
(anticipated event)

The variant used for Basket0 is a constant and thus kept by the anticipated event change. This completes the
proof that Basket1 is a refinement of Basket0.

Event-B also allows a variety of further optional proof obligations on refinement steps, depending on what is
appropriate for the application. These capture additional properties concerned with liveness (enabledness of sets
of events) and deadlock-freedom (enabledness of at least one event), and are not the concern of this paper.

4.2. CSP refinement

Based on the semantic domains of traces, failures, divergences and infinite traces, different forms of refinement
can be given for CSP. The basic idea underlying these concepts is, however, always the same: the refining process
should not exhibit a behaviour which was not possible in the refined process. The different semantic domains
then supply us with different forms of “behaviour”. In this paper we will use the following refinement relation,
based on traces and divergences:

P �TDI Q �̂ traces(Q) ⊆ traces(P)
∧ divergences(Q) ⊆ divergences(P)
∧ infinites(Q) ⊆ infinites(P)

Refinement in Event-B also allows for the possibility of introducing new events. CSP refinement as defined above,
however, assumes the alphabet of the processes to be the same. As our objective is to formally state the relationship
between Event-B machines in a refinement chain via a form of CSP refinement, we need a way of incorporating
additional events into process refinement. As a first idea, we could hide the new events in the refining process, and
only afterwards check for refinement. Hiding potentially introduces divergences, namely, when there is an infinite
sequence of new events in the infinite traces. When this is the case, we have no �TDI relationship. Thus hiding gives
us the appropriate treatment of new events only in the case where no infinite sequences of new events occur (and
this is what Event-B proof obligations guarantee for some sort of new events). As an alternative way of treating
new events, we will use P ||| RUNN as a lazy abstraction operator [Ros98]. RUNN defines a divergence-free process
capable of executing any order of events from the set N :

divergences(RUNN) � {}
traces(RUNN) � N∗

infinites(RUNN) � Nω

This process together with the interleaving operator will enable us to characterise Event-B refinement introducing
new events in CSP terms. The RUNN process gives no restriction on the behaviour of new events. Thus comparing
Event-B machines P (or better, its CSP semantics) and P′ which has introduced new events N via checking of
P ||| RUNN �TDI P′ would mean that we check whether there is a refinement relation concerning the “old” events
while allowing for every behaviour of the new events.

262 S. Schneider et al.

The following lemma gives the relationship between refinement involving interleaving, and refinement involv-
ing hiding.

Lemma 4.1 If P0 ||| RUNN �TDI P1 and N ∩ αP0 � {} and P1 \ N is divergence-free, then P0 �TDI P1 \ N .

Proof Assume that (1) P0 ||| RUNN �TDI P1, (2) N ∩ αP0 � {} and (3) P1 \ N is divergence-free. We need to
show that the (finite and infinite) traces as well as divergences of P1 \ N are contained in those of P0.

Traces Let tr ∈ traces(P1 \ N). By semantics of hiding there is some tr′ ∈ traces(P1) s.t. tr′ \ N � tr. By (1)
tr′ ∈ traces(P0 ||| RUNN). By (2) and the semantics of ||| we get tr′ \ N ∈ traces(P0) and thus tr ∈ traces(P0).

Divergences By (3) divergences(P1 \ N) � {}, thus nothing to be proven here.
Infinites Let u ∈ infinites(P1 \ N). By the semantics of hiding there is some u′ ∈ infinites(P1) such that u′ \ N � u

and #(u′ \ N) � ∞. By (1) u′ ∈ infinites(P0 ||| RUNN) and by (2) and semantics of interleave we get
u′ \ N � u ∈ infinites(P0).

�

As a side remark: The reverse direction holds as well. Note that we do not need the condition on alphabets here
(as N ∩ αP0 � {} follows from P0 �TDI P1 \ N).

Lemma 4.2 If P0 �TDI P1 \ N and P1 \ N divergence-free, then P0 ||| RUNN �TDI P1.

Proof Assume that (1) P0 �TDI P1 \ N and (2) P1 \ N divergence-free.

Traces Let tr ∈ traces(P1). Then by semantics of hiding tr \ N ∈ traces(P1 \ N), and thus by (1) tr \ N ∈
traces(P0). Furthermore tr � N ∈ traces(RUNN), and tr ∈ (tr \ N ||| tr � N). Thus tr ∈ traces(P0 ||| RUNN).

Divergence As P1 \ N is divergence-free, so is P1, hence nothing to be shown here.
Infinites Let u ∈ infinites(P1). As P1 \ N is divergence-free, #(u \ N) � ∞. Thus by (1) u \ N ∈ infinites(P0). The

projection onto N , u � N is either finite or infinite, and u � N ∈ traces(RUNN) or u � N ∈ infinites(RUNN).
In both cases u ∈ (u \ N ||| u � N) and thus u ∈ infinites(P0 ||| RUNN).

�

Both an interleaving with the RUNN process and hiding of N can be used as a way of abstracting away from
particular new events N occurring in a process P1 but not in P0. The two lemmas show that in the absence of
a divergence on N in P1 (i.e., P1 has no infinite sequence with events eventually only from N) these two can be
considered as dual.

5. Event-B refinement as CSP refinement

With these definitions in place, we can now look at our main issue, the characterisation of Event-B refinement via
CSP refinement. Here, we in particular need to look at the different forms of events in Event-B during refinement.
Events can have status convergent or anticipated, or might have no status. This partitions the set of events of M
into three sets: anticipated A, convergent C, and the remaining ones, ordinary events O (neither anticipated nor
convergent). The alphabet of M, the set of all possible events, is thus given by αM � A ∪ C ∪ O. In the CSP
refinement, these will take different roles.

A system development in Event-B via refinement usually proceeds in several steps, gradually introducing more
detail into the specification, i.e., we will have a sequence of machines M0, M1, . . . , Mn related by refinement. Now
consider an Event-B Machine Mi and its refinement Mi+1 : Mi � Mi+1. The machine Mi has anticipated events
Ai, convergent events Ci, and ordinary events Oi, and Mi+1 similarly has event sets Ai+1, Ci+1, and Oi+1. Each
event evi in Mi is refined by at least one event of Mi+1 (if no such event appears in Mi+1 we assume the event
to be refined by itself). Each event evi+1 in Mi+1 either refines a single event evi in Mi (indicated by the clause
‘refines evi ’ in the description of evi+1) or does not refine any event of Mi . The set of new events Ni+1 comprises
those events which are not refinements of events in Mi . Mi � Mi+1 thus induces a partial surjective function
fi+1 : αMi+1 �→→ αMi where fi+1(evi+1) � evi ⇔ evi+1 refines evi . Observe that αMi+1 is partitioned by f −1

i+1(αMi)
and Ni+1.

The behavioural semantics of Event-B refinement 263

For the two Event-B machines Basket0 and Basket1 we have O0 � {empty, checkout}, A0 � C0 � {}, and O1 �
{empty, checkout} and N1 � A1 � {change}. The function f1 thus is the mapping {empty �→ empty, checkout �→
checkout}.

5.1. New events

The above definitions fix the relation between events in Mi and Mi+1 independent of a particular development
strategy. With these at hand, we can look at the CSP semantics of Event-B and see what the corresponding notion
of refinement in CSP is. First of all, for the new events arising in the refinement we can use the lazy abstraction
operator via the RUN process to get our desired result, disregarding the issue of divergence for a moment.

The following lemma gives our first result on the relationship between Event-B refinement and CSP refine-
ment. Observe that we use priming notation when considering the general relationship between a machine M
and its refinement M ′, rather than the indexing notation used for refinement chains.

Lemma 5.1 If M �M ′ and the refinement introduces new events N ′ and uses the mapping f ′, then f ′−1(M) ||| RUNN ′
�TDI M ′.

Proof We assume state variables of M and M ′ named as given above, i.e., state variables of M are v and of M ′
are w. Let tr � 〈a1, . . . , an〉 ∈ traces(M ′). We need to show that tr ∈ traces(f ′−1(M) ||| RUNN ′). First of all note
that the interleaving operator merges the traces of two processes together, i.e., the traces of f ′−1(M) ||| RUNN ′ are
simply those of f ′−1(M) with new events arbitrarily inserted. The proof proceeds by induction on the length of
the trace.

Induction base Assume n � 0, i.e., tr � 〈〉. This case is trivial, since 〈〉 ∈ traces(f ′−1(M) ||| RUNN ′).
Induction step Assume that for a trace tr0 � 〈a1, . . . , aj−1〉 ∈ traces(M ′) we have already shown that tr0 ∈

traces(f ′−1(M) ||| RUNN ′) and this has led us to a pair of states vj−1, wj−1 such that J(vj−1, wj−1). (Observe
that in the case where tr0 � 〈〉 the initialisation event init′ has been executed bringing the machine M ′ into a
state w0. By INV REF on init, we find a state v0 such that J(v0, w0).)
Now two cases need to be considered:

1. aj �∈ N ′: Assume aj in M ′ to be of the form

when H(w) then w :| BA′(w, w′) end

and f ′(aj) in M of the form

when G(v) then v :| BA(v, v′) end

Since aj is executed in wj−1 we have H(wj−1). By GRD REF we thus get G(vj−1). Furthermore, for wj
with BA′(wj−1, wj) we find, by INV REF, a state vj such that J(vj, wj) and BA(vj−1, vj). Hence tr0

� 〈aj〉 ∈
traces(f ′−1(M) ||| RUNN ′).

2. aj ∈ N ′: Similar to the previous case. Here, aj refines skip and thus vj � vj−1 and the event aj comes from
RUNN ′ .

In the same way we can carry out a proof for infinite traces. For divergences it is trivial since divergences
(M ′) � {}. �

For our example, we thus get f −1
1 (Basket0) ||| RUN{change} �TDI Basket1.

This lemma can be generalised to a chain of refinement steps. For this, we assume that we are given a sequence of
Event-B machines Mi with their associated processes Pi, and every refinement step introduces some set of new
events Ni .

Theorem 5.2 If a sequence of processes Pi, mappings fi, and sets Ni are such that

f −1
i+1(Pi) ||| RUNNi+1 �TDI Pi+1 (1)

for each i, then

f −1
n (. . . (f −1

1 (P0)) . . .) ||| RUNf −1
n (...f −1

2 (N1)...)∪...∪f −1
n (Nn−1)∪Nn

�TDI Pn

264 S. Schneider et al.

Fig. 6. Event-B machine Basket2

Proof Two successive refinement steps combine to provide a relationship between P and P′′ of the same form as
Line 1 above, as follows:

f ′′−1(P′) ||| RUNN ′′ �TDI P′′ (given)
f ′′−1(f ′−1(P) ||| RUNN ′) ||| RUNN ′′ �TDI P′′ (line (1), monotonicity of f ′′−1, transitivity of �)
f ′′−1(f ′−1(P)) ||| RUNf ′′−1(N ′) ||| RUNN ′′ �TDI P′′ (Law: f −1(P ||| Q) � f −1(P) ||| f −1(Q))
f ′′−1(f ′−1(P)) ||| RUNf ′′−1(N ′)∪N ′′ �TDI P′′ (Law: RUNA ||| RUNB � RUNA∪B)

Hence the whole chain of refinement steps can be collected together, yielding the result. �

To see how this works for our example, we extend our chain of refinements by another machine, Basket2, shown in
Fig. 6. In Basket2 we split one event, namely change, into two, adding and removing goods from the basket. Both
these events are tagged as anticipated. For this refinement we thus have N2 � {}, A2 � {add, remove}, C2 � {}
and f2 : {add �→ change, remove �→ change}.

The above lemma on refinement chains and new events then gives us the following result, relating the initial
machine Basket0 and Basket2.

f −1
2 (f −1

1 (Basket0)) ||| RUN{add,remove} �TDI Basket2.

This result states that traces, infinite traces, and divergences of Basket2 must also be possible for
f −1
2 (f −1

1 (Basket0)) ||| RUN{add,remove}. For example, consider the trace

〈add, add, checkout, remove, remove, empty〉 ∈ traces(Basket2)

We find that

〈checkout, empty〉 ∈ traces(f −1
2 (f −1

1 (Basket0)))

and

〈add, add, remove, remove〉 ∈ traces(RUN{add,remove})

The behavioural semantics of Event-B refinement 265

so indeed we find that

〈add, add, checkout, remove, remove, empty〉 ∈ traces(f −1
2 (f −1

1 (Basket0)) ||| RUN{add,remove})

The infinite trace 〈add〉ωinfinites(Basket2), and it is also in infinites(RUN{add,remove}), hence in infinites(f −1
2 (f −1

1
(Basket0)) ||| RUN{add,remove}).

There are no divergences at any refinement level: no divergences can be introduced through refinement.

5.2. Convergent and anticipated events

The previous result lets us relate the first and last Event-B machine in a chain of refinements. Due to the lazy
abstraction operator (and the resulting possibility of defining refinement without hiding new events), we con-
sidered divergence-free processes there: all processes Pi representing Event-B machines, are divergence free by
definition. However, Event-B refinement is concerned with a particular form of divergence and its avoidance.
A sort of divergence would arise when new events (or more specifically, convergent events) could be executed
forever, and this is what the proof obligations for variants rule out.

We would like to capture the impact of convergence and anticipated sets of events in the CSP semantics as
well. To do so, we first of all define the specification predicate

CA(C, O)(u) �̂ (#(u � C) � ∞ ⇒ #(u � O) � ∞)

Intuitively, this states that all infinite traces having infinitely many convergent (C) events also have infinitely
many (O) ordinary events (and thus cannot execute convergent events alone forever). In this case we say that the
Event-B machine does not diverge on C events.

Definition 5.3 Let M be an Event-B machine with its alphabet αM containing event sets C and O with C ∩ O �
{}.M does not diverge on C events if M sat CA(C, O).

Observe that if a machine has no convergent events (C � {}) then it trivially satisfies the specification CA(C, O).
Note that the first machine M0 in an Event-B refinement chain has no convergent events—convergent events
only come into play during refinement—so it will satisfy CA(C, O).

Lemma 5.4 If M � M ′, and M ′ has convergent, anticipated, and ordinary sets of events C ′, A′, and O′ respectively,
then M ′ sat CA(C ′, O′).

Proof We prove this by contradiction. Assume ¬M ′ sat CA(C ′, O′). Then there is some u ∈ infinites(M ′) such
that #(u � C ′) � ∞ and #(u � O′) < ∞. Then there must be some tr0, u′ such that u � tr0

�u′ with u′ ∈ (C ′ ∪A′)ω
(i.e., tr0 is a prefix of u containing all the O′ events). Moreover, #u′ � C ′ � ∞.

Now since M � M ′ we have by GRD REF and INV REF that there is some pair of states (v, w) (abstract
and concrete state) reached after executing tr0 for which J(v, w) and I (v) is true. Furthermore, V (w) is a natural
number. Also by M � M ′ we have an infinite sequence of pairs of states (vi, wi) (for the remaining infinite trace
u′) such that J(vi, wi). Since each event in u′ is in A′ or C ′ we have from WFD REF that V (wi+1) ≤ V (wi)
for each i. Further, for infinitely many i’s (i.e., those events in C ′) we have V (wi+1) < V (wi). Thus we have a
sequence of values V (wi) decreasing infinitely often without ever increasing. This contradicts the fact that the
V (wi) ∈ N. �

A number of further interesting properties can be deduced for the specification predicate CA.

Lemma 5.5 Let P be a CSP process and C, C ′, O ⊆ αP nonempty finite sets of events.

1. If P sat CA(C, O) then f −1(P) sat CA(f −1(C), f −1(O)).

2. If P sat CA(C, O) and N ∩ C � {} then P ||| RUNN sat CA(C, O).

3. If P sat CA(C, O) and P sat CA(C ′, C ∪ O) then P sat CA(C ∪ C ′, O).

4. If P sat CA(C, O) and C ∩ O � {} then P \ C is divergence-free.

5. If P sat CA(C, O) then P sat CA(C, O ∪ X) for every set X of events.

266 S. Schneider et al.

Proof

1. Assume that u ∈ infinites(f −1(P)) and #(u � f −1(C)) � ∞. From the first we get f (u) ∈ infinites(P). From
the latter it follows that #(f (u) � C) � ∞. With P sat CA(C, O) we have #(f (u) � O) � ∞ and hence
#(u � f −1(O)) � ∞.

2. Let u ∈ infinites(P ||| RUNN) and #(u � C) � ∞. With N ∩ C � {} we get #((u \ N) � C) � ∞. By definition
of ||| we have u \ N ∈ infinites(P)(u \ N is infinite since #((u \ N) � C) � ∞). By P sat CA(C, O) we get
#((u \ N) � O) � ∞, hence #(u � O) � ∞.

3. Let u ∈ infinites(P) such that #(u � (C ∪ C ′)) � ∞. Both C and C ′ are finite sets hence either #(u � C) � ∞
or #(u � C ′) � ∞ (or both). In the first case we get #(u � O) � ∞ by P sat CA(C, O). In the second case it
follows that #(u � (C ∪ O)) � ∞ and hence again #(u � C) � ∞ or directly #(u � O) � ∞.

4. First of all note that if P sat CA(C, O) then P is divergence free. Now assume that there is a trace tr ∈
divergences(P \ C). Then there exists a trace u ∈ infinites(P) such that tr � u \ C, and so #(u \ C) < ∞.
Hence #(u � C) � ∞. However, as C ∩ O � {}, #(u � O) �� ∞ which contradicts P sat CA(C, O).

5. Follows from the fact that if #(u � O) � ∞ then #(u � O ∪ X) � ∞.

�

The most interesting of these properties is probably the fourth one: it relates the specification predicate to the
definition of divergence freedom in CSP. In CSP, a process does not diverge on a set of events C if P \ C is
divergence-free.

We also obtain a result for the specification predicate CA with respect to the relationship between a machine
and a refinement of it.

Lemma 5.6 Let M � M ′ with an associated refinement function f ′. Let C, C ′, O and O′ be convergent and ordinary
sets such that M sat CA(C, O) and M ′ sat CA(C ′, O′), and O′ � f ′−1(C) ∪ f ′−1(O) ∪ X . The set X is the ordinary
events in M ′ that do not refine ordinary or convergent events in M . Then:

M ′ sat CA(f ′−1(C) ∪ C ′ , f ′−1(O) ∪ X)

Proof Assume u ∈ infinites(M ′) and #(u � (f ′−1(C)∪C ′)) � ∞. We aim to establish that #(u � f ′−1(O)∪X) � ∞.
We have #(u � f ′−1(C)) � ∞ or #(u � C ′) � ∞.

In the former case, Lemma 5.1 yields that f ′(u � f −1(αM)) ∈ infinites(M). Then

#(u � f ′−1(C)) � ∞ (given)
#(f ′(u � f ′−1(C)) � C) � ∞ (since renaming preserves length)

#(f ′(u � f ′−1(αM)) � C) � ∞ (since C ⊆ αM)
#(f ′(u � f ′−1(αM)) � O) � ∞ (by M sat CA(C, O))

#(u � f ′−1(αM)) � f ′−1(O) � ∞ (since renaming preserves length)
#(u � f ′−1(O)) � ∞ (since O ⊆ αM)

#(u � f ′−1(O) ∪ X) � ∞ (since f ′−1(O) ⊆ f ′−1(O) ∪ X)

In the latter case Lemma 5.4 yields that #(u � O′) � ∞. Then

#(u � O′) � ∞
#(u � f ′−1(C) ∪ f ′−1(O) ∪ X) � ∞ (since O′ � f ′−1(C ∪ O) ∪ X)

#(u � f ′−1(O) ∪ X) � ∞ ∨ #(u � f ′−1(C)) � ∞
The first disjunct is the desired result, the second is the one already treated above. �

We use the CA specification predicate to reason about (the absence of) divergence on particular events in an
Event-B machine. However, from now on our results will be specific to a particular development strategy, and
the way it imposes rules on convergent and anticipated events. Therefore, we next present our first development
strategy.

The behavioural semantics of Event-B refinement 267

6. Strategy I

In an Event-B machine the status of an event fixes its type and thus the proof obligations derived for the event.
However, it is not only the status and its proof obligations which influences the corresponding notion of refine-
ment in CSP. Another decisive issue is the development strategy. A development strategy essentially fixes how
anticipated, convergent and ordinary events are used in a development via refinement, in particular, how the sta-
tus of an event may change in a refinement step. Though development strategies have not been discussed explicitly
in the Event-B literature so far, let alone formalised, it is clear that Event-B designers actually follow strategies
(though not necessary all the same). So, in the following we will (for the first time) define (two) development
strategies for Event-B.

The first strategy, which we have already presented in [STW11b], assumes that the initial specification M0
already fixes the interface of the system to the environment, and later refinement steps only make the internals
of the system more precise. We call this approach refinement with no interface extension. The second approach
assumes that the interface can be extended in every refinement step, called refinement with interface extension.
The role of anticipated and convergent events in these approaches is the following. One idea behind the Event-B
refinement proof obligations is that internal events should not be executed forever, i.e., there should not be an infi-
nite sequence of internal events only so as to enable interaction with the environment via the interface. Therefore
we have particular proof obligations (using variants) on anticipated and convergent events. In the non-extensible
interface approach, all newly introduced events are internal and thus eventually need to be shown to converge. In
the extensible interface approach there is the option of a newly introduced event to become part of the interface
and thus not to be shown to be convergent.

In this section we will follow the strategy I (no interface extension), and in particular precisely define what rules
this approach imposes on refinement. The next section will look at strategy II. With non-extensible interfaces we
have the following restrictions on the event sets in a development M0 � M1 � · · · � Mn.

1. in the initial machine all events are ordinary (and thus fix the interface of the system),
2. each event of Mi is refined by at least one event of Mi+1;
3. each new event in Mi is either anticipated or convergent;
4. each event in Mi+1 which refines an anticipated event of Mi is itself either convergent or anticipated;
5. refinements of convergent or ordinary events of Mi are ordinary in Mi+1, i.e., they are not given a status;
6. no anticipated events remain in the final machine.

The conditions imposed by the rules are formalised as follows:

1. A0 � C0 � {};
2. ran(fi+1) � Ai ∪ Ci ∪ Oi ;
3. Ni � (Ai ∪ Ci) \ dom(fi);
4. f −1

i+1(Ai) ⊆ Ai+1 ∪ Ci+1;

5. f −1
i+1(Ci ∪ Oi) � f −1

i+1(Ci) ∪ f −1
i+1(Oi) � Oi+1;

6. An � {}.
These relationships between the classes of events are illustrated in Fig. 7.

Note that condition 5 satisfies the condition of Lemma 5.6 (with X � {}), and so that lemma applies to refinement
steps in strategy I.

To be able to apply this to our example, we extend it with a new machine Basket3.I (depicted in Fig. 8)
containing for the first time convergent events. In the second development strategy we will take a different route
here and instead make a refinement to machine Basket3.II . Here, the basket is extended with variable tot count-
ing the number of goods in the basket, and a boolean variable scanning as a flag for the start of the scanning
procedure at the counter. Event checkout starts the scanning procedure and event scan scans every good in the
basket. Event empty can happen when the basket is empty. It stops scanning and thereby enables event add again.
Observe that while the basket is not scanning, scan cannot occur before checkout occurs. This ensures that the
trace 〈add, remove〉ω cannot occur. Since this trace violates CA(C3.I , O3.I), ruling it out is necessary to ensure
that CA(C3.I , O3.I) holds on Basket3.I .

Since Basket2 � Basket3.I we have that

f −1
3.I (Basket2) ||| RUN{} �TDI Basket3.I

268 S. Schneider et al.

Fig. 7. Relationship between events in a refinement step in the non-extensible interface approach: fi+1 maps events in Mi+1 to events in Mi
that they refine

No new event is introduced in Basket3.I , and this is equivalent to the simpler formulation

f −1
3.I (Basket2) �TDI Basket3.I

For example, the trace 〈add, add, checkout, scan, scan, empty〉 ∈ traces(Basket3.I) corresponds, via the renaming
function f3.I , to the trace 〈add, add, checkout, remove, remove, empty〉 ∈ traces(Basket2). The results states that
any trace of Basket3.I must correspond to some trace of Basket2.

The converse need not hold. The trace 〈add, remove〉 ∈ traces(Basket2) does not have any associated trace in
Basket3.I .

The event scan is tagged convergent and thus the proof obligation WFD REF needs to be shown. The variant
specified in the machine is if scanning � true then tot else 0. It is decreased by scan as it sets tot to tot − 1. Hence
we obtain that Basket3.I \ {scan} is divergence-free.

Thus we obtain
We require the following lemma in order to establish Theorem 6.2 subsequently:

Lemma 6.1 If M0 � M1 � · · · � Mn then

On � (f −1
n (. . . f −1

1 (C0) . . .) ∪ . . . f −1
n (Cn−1)) ∪ f −1

n (. . . f −1
1 (O0) . . .)

Proof By induction on n.

Induction base Assume n � 0. In this case the statement reduces to O0 � O0 which is trivially true.
Induction step Assume the result for i, we aim to establish it for i + 1. By Condition 5 of strategy I we have that

Oi+1 � f −1
i+1(Ci) ∪ f −1

i+1(Oi). Hence

Oi+1 � f −1
i+1(Ci) ∪ f −1

i+1(Oi) (condition 5)

� f −1
i+1(Ci) ∪ f −1

i+1(f −1
i (. . . f −1

1 (C0) . . .) ∪ . . . f −1
i (Ci−1))
∪ f −1

i (. . . f −1
1 (O0) . . .) (inductive hypothesis)

� (f −1
i+1(. . . f −1

1 (C0) . . .) ∪ . . . f −1
i+1(Ci)) ∪ f −1

i+1(. . . f −1
1 (O0) . . .)) (reordering)

which establishes the case.

The behavioural semantics of Event-B refinement 269

Fig. 8. Event-B machine Basket3.I

The result follows by induction. �

We now obtain the following result on refinement chains:

Theorem 6.2 If M0 � M1 � · · · � Mn then

Mn sat CA((f −1
n (. . . f −1

1 (C0) . . .) ∪ . . . f −1
n (Cn−1) ∪ Cn) , f −1

n (. . . f −1
1 (O0) . . .))

Proof By induction on n.

Induction base Assume n � 0. In this case C0 � {} since M0 contains no convergent events, and so
M0 sat CA(C0, O0) is vacuously true. Observe that C0 � (f −1

n (. . . f −1
1 (C0) . . .) ∪ . . . f −1

n (Cn−1) ∪ Cn), and
O0 � f −1

n (. . . f −1
1 (O0) . . .)) with n � 0, establishing the case.

Induction step Assume the result for i, we aim to establish it for i + 1. The inductive hypothesis gives:

Mi sat CA((f −1
i (. . . f −1

1 (C0) . . .) ∪ . . . f −1
i (Ci−1) ∪ Ci) , f −1

i (. . . f −1
1 (O0) . . .))

and from Lemma 5.4 we have:

Mi+1 sat CA(Ci+1, Oi+1)

Now for Mi � M and Mi+1 � M ′ we define

C � (f −1
i (. . . f −1

1 (C0) . . .) ∪ . . . f −1
i (Ci−1) ∪ Ci)

O � f −1
i (. . . f −1

1 (O0) . . .)
C ′ � Ci+1

O′ � Oi+1

270 S. Schneider et al.

Fig. 9. Constructing NEW

We observe from Lemma 6.1 that O′ � f −1
i+1(C) ∪ f −1

i+1(O). It follows from Lemma 5.6 (with X � {}) that

Mi+1 sat CA(f −1
i+1(f −1

i (. . . f −1
1 (C0) . . .) ∪ . . . f −1

i (Ci−1) ∪ Ci) ∪ Ci+1 , f −1
i+1(f −1

i (. . . f −1
1 (O0) . . .))),

i.e.,

Mi+1 sat CA(f −1
i+1(. . . f −1

1 (C0) . . .) ∪ . . . f −1
i+1(Ci) ∪ Ci+1 , f −1

i+1(. . . f −1
1 (O0) . . .))

establishing the case.

The result follows by induction. �

Finally, we would like to put together these results into one result relating the initial machine M0 to the final
machine Mn in the refinement chain. This result should use hiding for the treatment of new events, and—by stating
the relationship between M0 and Mn \ {new events} via infinite-traces-divergences refinement—show that Event-
B refinement actually does not introduce divergences on new events. This will be shown in Theorem 6.5 below.
For such chains of refinement steps we have, by definition of strategy I, A0 � C0 � {} (initially we have neither
anticipated nor convergent events), and An � {} (at the end all anticipated events have become convergent).

For this, we first of all need to find out what the “new events” are in the final machine. Define gi,j as the
functional composition of the event mappings from fj to fi : (note that g1,0 is the identity function)

gi,j � fj ; fj−1; . . . ; fi

Then by repeated application of

Cj ∪ Aj ∪ Oj � f −1
j (Cj−1 ∪ Aj−1 ∪ Oj−1) ∪ Nj

we obtain

Cj ∪ Aj ∪ Oj � g−1
1,j (C0 ∪ A0 ∪ O0) ∪ g−1

2,j (N1) ∪ . . . ∪ g−1
j,j (Nj−1) ∪ Nj (2)

Also, by repeated application of

Oj � f −1
j (Oj−1) ∪ f −1

j (Cj−1)

we obtain

Oj ∪ Cj � g−1
1,j (O0) ∪ g−1

1,j (C0) ∪ g−1
2,j (C1) ∪ . . . ∪ g−1

j,j (Cj−1) ∪ Cj (3)

In a full refinement chain M0 � · · · � Mn we have, by the conditions of strategy I, that A0 � {}, C0 � {},
and An � {}.
Definition 6.3 The sets NEW and CON are defined as follows:

NEW � g−1
2,n(N1) ∪ . . . ∪ g−1

n,n(Nn−1) ∪ Nn

CON � g−1
2,n(C1) ∪ . . . ∪ g−1

n,n(Cn−1) ∪ Cn

These constructions are illustrated in Figs. 9 and 10.

The behavioural semantics of Event-B refinement 271

Fig. 10. Constructing CON

Lemma 6.4 NEW � CON

Proof From Eq. 2 above with j � n, and using A0 � C0 � An � {} we obtain

Cn ∪ On � g−1
1,n(O0) ∪ NEW

From Eq. 3 above with j � n we obtain

Cn ∪ On � g−1
1,n(O0) ∪ CON

Observe that g−1
1,n(O0) ∩ NEW � {} and g−1

1,n(O0) ∩ CON � {}, hence

(Cn ∪ On) \ g−1
1,n(O0) � NEW � CON

which yields the result. �

From Theorems 5.2 and 6.2 above respectively we obtain that

f −1
n (. . . (f −1

1 (M0)) . . .) ||| RUNNEW �TDI Mn

and Mn sat CA(CON, f −1
n (. . . f −1

1 (O0) . . .))

Lemma 5.5(4) yields that Mn \ CON is divergence-free, i.e., Mn \ NEW is divergence-free by Lemma 6.4. Hence
by Lemma 4.1 we obtain that

g−1
1,n(M0) �TDI Mn \ NEW (4)

or, equivalently, that the following theorem holds true.

Theorem 6.5 Let M0 � M1 � · · · � Mn be a chain of refinement steps obeying strategy I and refining events
according to functions fi, and let NEW be as defined in Definition 6.3. Then

M0 �TDI g1,n(Mn \ NEW)

Proof This follows from the result in Line 4 above, using the CSP law f (f −1(P)) � P. �

This result guarantees that Event-B refinement in strategy I neither introduces “new traces on old events”, nor
introduces divergences on new events. This gives us the precise account of Event-B refinement in terms of CSP.

Again, we make yet another extension of our example to demonstrate this result on a full refinement chain.
Our final machine for strategy I shown in Fig. 11 is Basket4.I . This machine is introducing a capacity for a basket
and now allows adding only when the basket is not yet full. It furthermore makes event add, which has been
anticipated so far, convergent. The corresponding variant to be shown to be decreased is CAP − tot. Note that
Basket4.I now has no anticipated events anymore and can thus serve as the final machine in our refinement chain.
The function f4.I is the identity (no renaming or splitting of events).

This completes the chain of refinements Basket0 � Basket1 � Basket2 � Basket3.I � Basket4.I . Figure 12
shows the events appearing in the machines together with their status. By Theorem 6.5 we get our final result
relating the CSP semantics of the initial with the final machine:

Basket0 �TDI f1(f2(f3.I (f4.I (Basket4.I \ {add, scan}))))
Following the non-extensible interface approach all newly introduced events have been made convergent and
thus can safely be hidden without introducing divergence in the CSP semantics.

272 S. Schneider et al.

Fig. 11. Event-B machine Basket4.I

Fig. 12. Machines and events in the development according to strategy I

7. Strategy II: interface extension

In this section we will look at the second development strategy which allows the interface of an Event-B machine
to be extended. The main difference to the first strategy is that (a) new events can immediately have status ordinary,
and (b) not all anticipated events need to be made convergent, but can also be made ordinary. For a development
M0 � M1 � · · · � Mn we thus get the following rules:

1. in the initial machine all events are ordinary;

2. each event of Mi is refined by at least one event of Mi+1;

3. each new event in Mi is either anticipated or convergent or ordinary;

4. each event in Mi+1 which refines an anticipated event of Mi is itself either convergent or anticipated or ordinary;

5. refinements of convergent or ordinary events of Mi are ordinary in Mi+1;

6. no anticipated events remain in the final machine.

The behavioural semantics of Event-B refinement 273

Fig. 13. Relationship between events in a refinement step in the extensible interface approach: fi+1 maps events in Mi+1 to events in Mi that
they refine. The differences with the non-extensible interface approach are highlighted in bold

The first as well as the last condition is just added to make reasoning about refinement relationships clearer. Both
conditions impose no real restrictions on the development: given a sequence of machines which do not adhere to
condition 1 and 6, we can simply extend it with two new machines without getting additional proof obligations. The
first condition can be met by introducing an extra initial machine with just the ordinary events of the (previously
initial) machine, and then in a first refinement steps introduce all the (initially wanted) anticipated and convergent
events; the last condition can be similarly achieved by introducing an extra final machine which makes all antic-
ipated events ordinary. Note also that some conditions do not impose any restrictions on refinements; they are
merely stated here for getting a closer correspondence to the rules of strategy I. Again, we formalise the conditions.

1. A0 � C0 � {};
2. ran(fi+1) � Ai ∪ Ci ∪ Oi ;

3. Ni � (Ai ∪ Ci ∪ Oi) \ dom(fi);

4. f −1
i+1(Ai) ⊆ Ci+1 ∪ Ai+1 ∪ Oi+1;

5. f −1
i+1(Ci ∪ Oi) ⊆ Oi+1;

6. An � {}.

These relationships between the events are illustrated in Fig. 13. We observe that strategy II is the more flexible
one. At each step in the refinement it allows the addition of new events, which (a) are added to the interface (new
ordinary events), or (b) are added to the set of internal events (new convergent events) or for which the decision
is deferred to later steps (anticipated events).

To see how this kind of development fits into a CSP refinement, we again calculate two sets of events introduced
in a development. However, they play a different role this time. The first set, called IF , is the set of events which
will be added during development as external events. Together with the ordinary events of the initial machine they
constitute the interface of the system. Events are considered external when they are never shown to be convergent.
We get additional external events when we have new events being ordinary, or new events being anticipated and
never made convergent in the subsequent refinement steps. IF can be incrementally defined:

274 S. Schneider et al.

Definition 7.1

IF0 � {}
IF1 � (f −1

1 (A0) ∩ O1) ∪ (N1 ∩ O1)

IF2 � f −1
2 (IF1) ∪ (f −1

2 (A1) ∩ O2) ∪ (N2 ∩ O2)
. . .

IFj � f −1
j (IFj−1) ∪ (f −1

j (Aj−1) ∩ Oj) ∪ (Nj ∩ Oj)

Finally, IF � IFn.
The second set of events is INT , the set of events added during development and considered internal in the

final machine. Here, we find all those events which have been proven to be convergent in some of the development
steps. Again, this set can be incrementally defined:

Definition 7.2

INT0 � {}
INT1 � C1

INT2 � f −1
2 (INT1) ∪ C2

. . .

INTj � f −1
j (INTj−1) ∪ Cj

Here, we get INT � INTn � g−1
2,n(C1) ∪ g−1

3,n(C2) ∪ . . . ∪ Cn. The two sets of events IF and INT are disjoint.

Lemma 7.3 Let IF, INT be the extended interface set and the set of internal events, respectively, as constructed in
Definitions 7.1 and 7.2. Then

IF ∩ INT � {}.
Proof We show this by induction on the number of steps in the development. More precisely, we show for every
machine Mi, 0 ≤ i ≤ n, that INTi ∩ IFi � {} (and INTi ∩ Ai � {}). As a first observation note that IFi ⊆ Oi .

Induction base Initially, both IF0 and INT0 are empty as is A0, thus all three sets are mutually disjoint.
Induction step Assume INTi ∩ IFi � {}, INTi ∩ Ai � {} and IFi ∩ Ai � {}.

• Proof of INTi+1 ∩Ai+1 � {}. By definition INTi+1 � f −1
i+1(INTi)∪Ci+1. The intersection of Ai+1 and Ci+1 is

empty since every event can only have one status in a refinement step. Furthermore, f −1
i+1(INTi)∩Ai+1 � {}

since INTi ⊆ Ci ∪ Oi and by rule 5 of the strategy none of these events can become anticipated.
• Proof of IFi+1 ∩ INTi+1 � {}. We have

IFi+1 � f −1
i+1(IFi) ∪ (f −1

i+1(Ai) ∩ Oi+1) ∪ (Ni+1 ∩ Oi+1)
INTi+1 � f −1

i+1(INTi) ∪ Ci+1

For their intersection we look at several cases: (1) f −1
i+1(IFi)∩ f −1

i+1(INTi) � {} follows from fi+1 being a func-
tion and the induction hypothesis IFi ∩ INTi � {}; (2) f −1

i+1(IFi) ∩ Ci+1 � {} since IFi ⊆ Oi , f −1
i+1(Oi) ⊆ Oi+1

(rule 5 of the strategy) and Oi+1 ∩ Ci+1 � {}; (3) f −1
i+1(Ai) ∩ Oi+1 ∩ Ci+1 � {} since Oi+1 ∩ Ci+1 � {};

(4) f −1
i+1(Ai) ∩ Oi+1 ∩ f −1

i+1(INTi) � {} follows from Ai ∩ INTi � {} and fi+1 being a function, and (5)
Ni+1 ∩ Oi+1 ∩ Ci+1 � {} since the sets of ordinary and convergent events are disjoint, and finally (6)
Ni+1 ∩ Oi+1 ∩ f −1

i+1(INTi) � {} since new and existing events are always different. �

Note furthermore the event set NEW constructed in the last section is the set INT : all newly introduced events
are internal in strategy I. The set IF would be empty in refinement chains of strategy I.

Next, we need to find out how this type of development fits into CSP refinement. We will see that the main
difference to the first development strategy is that not all newly introduced events are made convergent but some
are instead used to extend the interface. All convergent events can safely be hidden without introducing new diver-
gences; all events in the interface extension can however only be tackled by the RUN process. Our relationship
between the initial and final machine will thus take the form (renamings omitted):

M0 ||| RUNIF �TDI Mn \ INT .

The behavioural semantics of Event-B refinement 275

Again, we first of all consider just two machines M0 and M1. Our first step is a generalisation of Lemma 4.1,
which allows to split the events over the RUN process into two sets, one of which is kept in RUN and the other
moved to the right hand side process and hidden.

Lemma 7.4 IF P0 ||| RUNN1∪N2 �TDI P1 and N1 ∩ N2 � {} and (N1 ∪ N2) ∩αP0 � {} and P1 \ N2 divergence-free,
then P0 ||| RUNN1 �TDI P1 \ N2.

Proof Assume that (1) P0 ||| RUNN1∪N2 �TDI P1 and (2) N1 ∩ N2 � {} and (3) (N1 ∪ N2) ∩ αP0 � {} and (4)
P1 \ N2 divergence-free.

Traces Let tr ∈ traces(P1 \ N2). By semantics of hiding there is some tr′ ∈ traces(P1) such that tr′ \ N2 � tr. By
(1) tr′ ∈ traces(P0 ||| RUNN1∪N2). By (2) and (3) tr′ \ N2 � tr ∈ traces(P0 ||| RUNN1).

Divergences By (3) divergences(P1 \ N2) � {}, thus nothing to be proven here.

Infinites Let u ∈ infinites(P1 \ N2). By semantics of hiding there is some u′ ∈ infinites(P1) such that u′ \ N2 � u
and #(u′ \ N2) � ∞. By (1) u′ ∈ infinites(P0 ||| RUNN1∪N2). By (2) and (3) u′ \ N2 � u ∈ infinites(P0 |||
RUNN1).

�

This result can be used in a way similar to the usage of Lemma 4.1.

Lemma 7.5 Let M0 � M1 with events refined according to function f1. Then

f −1
1 (M0) ||| RUNN1∩(A1∪O1) �TDI M1 \ (N1 ∩ C1)

Proof By Lemmas 5.5 (4) and 5.4 we get M1 \ C1 divergence-free. By Lemma 5.1 we furthermore have f −1
1 (M0) ||

RUNN1 �TDI M1. We now distribute N1 into disjoint partitions N1 ∩ (A1 ∪ O1) and N1 ∩ C1 and can now apply
Lemma 7.4 which gives us the result. �

Again similar to the previous section, we need a result about the CA-predicate in refinement chains constructed
according to strategy II. The following lemma can be seen as the generalisation of Lemma 5.6 to strategy II. This
time we have to take into account that anticipated events can be refined straight into ordinary events during a
refinement step, and also ordinary events can be introduced as new events in a refinement step. Hence the O′
referred to in the CA predicate which the refinement machine needs to satisfy must also take these new sets into
account.

Lemma 7.6 Let M � M ′ be constructed according to strategy II with an associated refinement function f ′ and let
M sat CA(C, O). Then M ′ sat CA(f ′−1(C) ∪ C ′ , f ′−1(O) ∪ (f ′−1(A) ∩ O′) ∪ (N ′ ∩ O′)).

Proof Assume u ∈ infinites(M ′) and #(u � (f ′−1(C) ∪ C ′)) � ∞. We aim to establish that #(u � f ′−1(O) ∪
(f ′−1(A) ∩ O′) ∪ (N ′ ∩ O′)) � ∞. We have #(u � f ′−1(C)) � ∞ or #(u � C ′) � ∞.

In the former case, Lemma 5.1 yields that f ′(u � f −1(αM)) ∈ infinites(M). Then

#(u � f ′−1(C)) � ∞ (given)
#(f ′(u � f ′−1(C)) � C) � ∞ (since renaming preserves length)

#(f ′(u � f ′−1(αM)) � C) � ∞ (since C ⊆ αM)
#(f ′(u � f ′−1(αM)) � O) � ∞ (by M sat CA(C, O))

#(u � f ′−1(αM)) � f ′−1(O) � ∞ (since renaming preserves length)
#(u � f ′−1(O)) � ∞ (since O ⊆ αM)

In the latter case Lemma 5.4 yields that #(u � O′) � ∞. Then we have #(u � f ′−1(C ∪ O) ∪ (f ′−1(A) ∩ O′) ∪ (N ′ ∩
O′)) � ∞ (since O′ is by definition of strategy II f ′−1(C∪O)∪(f ′−1(A)∩O′)∪(N ′∩O′)). Hence #(u � f ′−1(C)) � ∞
or #(u � f ′−1(O)) � ∞ or #(u � f ′−1(A) ∩ O′) � ∞ or #(u � (N ′ ∩ O′)) � ∞. The second, third and fourth cases
make up the desired result, the first is the case already treated above. �

276 S. Schneider et al.

For our next theorem we first require a lemma:

Lemma 7.7 If M0 � M1 � · · · � Mn then for each i ≤ n:

Oi � f −1
i (INTi−1) ∪ IFi ∪ g−1

1,i (O0)

Proof By induction on n.

Induction base Assume n � 0. This case reduces to O0 � O0, which establishes the case.
Induction step Assume the result for i, we aim to establish it for i + 1. The inductive hypothesis gives:

Oi � f −1
i (INTi−1) ∪ IFi ∪ g−1

1,i (O0)

We have

Oi+1 � (f −1
i+1(Oi ∪ Ci ∪ Ai) ∩ Oi+1) ∪ (Ni ∩ Oi)

� f −1
i+1(Oi) ∪ f −1

i+1(Ci) ∪ f −1
i+1(Ai) ∩ Oi+1 ∪ (Ni+1 ∩ Oi+1)

� f −1
i+1(f −1

i (INTi−1) ∪ IFi ∪ g−1
1,i (O0)) ∪ f −1

i+1(Ci) ∪ f −1
i+1(Ai) ∩ Oi+1 ∪ (Ni+1 ∩ Oi+1)

� f −1
i+1((f −1

i (INTi−1) ∪ Ci) ∪ (f −1
i+1(IFi) ∪ f −1

i+1(Ai) ∩ Oi+1 ∪ (Ni+1 ∩ Oi+1) ∪ (f −1
i+1(g−1

1,i (O0)))

� f −1
i+1(INTi) ∪ IFi+1 ∪ g−1

1,i+1(O0)

which establishes the case. �

We now obtain the following result on refinement chains:

Theorem 7.8 If M0 � M1 � · · · � Mn then

Mn sat CA(INTn, g−1
1,n(O0) ∪ IFn)

Proof By induction on n.

Induction base Assume n � 0. In this case INT0 � {}, and g−1
1,0(O0) ∪ IF0 � O0. The result immediately follows

since g1,0 is the identify, and M0 sat CA({}, O0) holds vacuously, establishing the case.
Induction step Assume the result for i, we aim to establish it for i + 1. The inductive hypothesis gives:

Mi sat CA(INTi, g−1
1,i (O0) ∪ IFi)

and from Lemma 5.4 we have:

Mi+1 sat CA(Ci+1, Oi+1)

Now for Mi � M and Mi+1 � M ′ we define

C � INTi

O � g−1
1,i (O0) ∪ IFi

C ′ � Ci+1

O′ � Oi+1

X � (f −1
i+1(Ai) ∩ Oi+1) ∪ (Ni+1 ∩ Oi+1)

Now

O′ � Oi+1

� (f −1
i+1(Oi ∪ Ci ∪ Ai) ∩ Oi+1) ∪ (Ni+1 ∩ Oi+1)

� f −1
i+1(Oi) ∪ f −1

i+1(Ci) ∪ ((f −1
i+1(Ai) ∩ Oi+1) ∪ (Ni+1 ∩ Oi+1))

� f −1
i+1(f −1

i (INTi−1) ∪ IFi ∪ g−1
1,i (O0)) ∪ f −1

i+1(Ci) ∪ X (by Lemma 7.7)

� f −1
i+1(f −1

i (INTi−1) ∪ f −1
i+1(IFi) ∪ f −1

i+1(g−1
1,i (O0)) ∪ f −1

i+1(Ci) ∪ X

� f −1
i+1(f −1

i (INTi−1)) ∪ f −1
i+1(Ci) ∪ f −1

i+1(IFi) ∪ f −1
i+1(g−1

1,i (O0)) ∪ X (reordering terms)

� f −1
i+1(INTi) ∪ f −1

i+1(IFi ∪ (g−1
1,i (O0))) ∪ X

� f −1
i+1(C) ∪ f −1

i+1(O) ∪ X

The behavioural semantics of Event-B refinement 277

Fig. 14. Alternative development of the basket following approach 2

It follows from Lemma 5.6 that

Mi+1 sat CA(f −1
i+1(INTi) ∪ Ci+1, f −1

i+1(g−1
1,i (O0) ∪ IFi) ∪ (f −1

i+1(Ai) ∩ Oi+1) ∪ (Ni+1 ∩ Oi+1))

By the definitions of INTi+1 and IFi+1 this reduces to

Mi sat CA(INTi+1, g−1
1,i+1(O0) ∪ IFi+1)

which establishes the case.

The result follows by induction. �

Since INT ∩ (g2,n(O0) ∪ IF) � {} we furthermore get Mn \ INT divergence-free. Together with Lemma 7.4
we finally obtain

Theorem 7.9 Let M0 � M1 � · · · � Mn be a chain of refinement steps following strategy II, refining events
according to functions fi, and let IF and INT be the two sets calculated above. Then

g−1
1,n(M0) ||| RUNIF �TDI Mn \ INT

In Fig. 14 we see an alternative development of Basket2 following this second development strategy. Instead of
making the anticipated event add of Basket2 convergent (or keep it anticipated), we put it into the interface
and make it ordinary. The event remove of Basket2 is now split into an ordinary event remove and a convergent
event scan. The machine thus ends up with having an interface {checkout, empty, add, remove} while having only
one internal event which is scan. Thus for the development Basket0 � Basket1 � Basket2 � Basket3.II with
event sets and event status as shown in Fig. 15 we obtain IF � {add, remove} (the extension of the interface) and
INT � {scan}, and thus by Theorem 7.9 we get

f −1
3.II (f −1

2 (f −1
1 (Basket0))) ||| RUN{add,remove} �TDI Basket3.II \ {scan}

For example, one trace of Basket3.II \ {scan} is the trace

〈add, add, remove, checkout, scan, empty〉 \ {scan} � 〈add, add, remove, checkout, empty〉

278 S. Schneider et al.

Fig. 15. Machines and events in the development according to strategy II

This can be separated out into

〈checkout, empty〉 ∈ traces(f −1
3.II (f −1

2 (f −1
1 (Basket0))))

and

〈add, add, remove〉 ∈ traces(RUN{add,remove})

This shows that the trace is also a trace of the interleaving of these two component processes,
f −1
3.II (f −1

2 (f −1
1 (Basket0))) ||| RUN{add,remove}, in line with Theorem 7.9.

This completes the basket example for which we now have two different developments and the corresponding
results in terms of CSP refinement.

8. Conclusion

In this paper, we have given a behavioural semantics account of Event-B refinement. The approach builds on But-
ler’s semantics for action systems [But92]. Butler’s refinement rules allow new convergent events to be introduced
into action systems, so that a refinement step from machine Mi to machine Mi+1, introducing new events Ni+1,
satisfies Mi �TDI (Mi+1 \ Ni+1), thus ensuring that hiding the new events does not introduce divergence. Abrial’s
approach to Event-B refinement [Abr10] generalises this approach, allowing new events to be anticipated (defer-
ring making it internal) as well as convergent (to be considered as internal), and also allowing splitting of events.
The approach requires that anticipated events become convergent at some refinement step, so that all events intro-
duced during refinement are shown at some point to be convergent. This corresponds to strategy I described in
Section 6. The Rodin tool for Event-B [BH07, EB11, ABH+10] generalises Abrial’s approach in supporting a more
liberal treatment of anticipated events, and does not require that they are eventually made convergent but allows
them to be added to the interface instead. In this approach treatment of an event as anticipated therefore defers the
decision as to whether it will ultimately be internal or external. This is strategy II as described in Sect. 7. Rodin does
have some superficial differences with strategy II, notably that it allows refinements of convergent events to also
be labelled as convergent, whereas strategy II requires them to be ordinary. In fact they are treated as ordinary by
Rodin, since the proof obligations generated do not require them to decrease the variant. Rodin allows such events
to be labelled as convergent to allow the developer to record that they were shown to be convergent at some stage.

Our approach to refinement using CSP semantics reflects the introduction of anticipated events and splitting,
and thus extends Butler’s approach, in order to encompass these different forms of event treatment in Event-B
refinement. We obtain a clear statement of the relationship between the first and the last machines in a refinement
chain, which follows from the transitivity of refinement along the chain, together with the additional requirements
on the first and last machines: that the first should contain only ordinary events, and that the last should not
contain any anticipated events. For strategy I the relationship is given by Theorem 6.5, and for strategy II by
Theorem 7.9. We do not yet handle merging events, and this is the subject of current research. The handling of
divergence in refinement, though not in an Event-B setting, has also been investigated in [BD09]. Proofs of diver-
gence freedom for particular events also come into play when studying liveness properties of Event-B machines.
This has recently been investigated in [HA11], looking at properties specified in temporal logic.

The behavioural semantics of Event-B refinement 279

Recently, an Event-B‖CSP approach has been introduced [STW10]. It aims to combine Event-B machine
descriptions with CSP [Sch99] control processes, in order to support a more explicit view of control. In this, it
follows previous works on integration of formal methods [But00, WC02, DS03, OW05, ST05, Ili09], which aim
at complementing a state-based specification formalism with a process algebra.

The account of refinement presented here provides the basis for a flexible refinement framework in Event-
B‖CSP, and this is presented in [STW11c]. The semantics justifies the introduction of a new status of devolved,
for refinement events which are anticipated in the Event-B machine but convergent in the CSP controller. This
approach has been applied to an initial Event-B‖CSP case study of a Bounded Retransmission Protocol [STW11a].
We aim to investigate further case studies. We are in particular interested in finding out whether the work of show-
ing divergence-freedom (and also deadlock-freedom) can be divided onto the Event-B and CSP part such that
for some events convergence is guaranteed by showing the corresponding proof obligations in Event-B while for
others we just look at divergence-freedom of the CSP process. The latter part could then be supported by model
checking tools for CSP, like FDR [For]. Another strand of future work would be an investigation of decomposition
techniques for Event-B [But09, HA10, SHWI11] and their impact on the CSP semantics.

Acknowledgments

Many thanks to Thai Son Hoang for numerous discussions on Event-B development strategies. Thanks also to
the anonymous referees for their careful reading of the paper and for their constructive suggestions.

References

[ABH+10] Abrial, J-R, Butler MJ, Hallerstede S, Hoang TS, Mehta F, Voisin L (2010) Rodin: an open toolset for modelling and reasoning
in Event-B. STTT 12(6):447–466

[ABHV08] Abrial J-R, Butler MJ, Hallerstede S, Voisin L (2008) A roadmap for the Rodin toolset. In: Börger E, Butler MJ, Bowen JP,
Boca P (eds) ABZ. Lecture notes in computer science, vol 5238. Springer, Berlin, p 347

[Abr05] Abrial J-R (2005) The B-book—assigning programs to meanings. Cambridge University Press
[Abr10] Abrial J-R (2010) Modeling in Event-B: system and software engineering. Cambridge University Press
[BD02] Bolton C, Davies J (2002) Refinement in object-Z and CSP. In: Butler M, Petre L, Sere K (eds) IFM 2002: integrated formal

methods. LNCS, vol 2335, pp 225–244
[BD09] Boiten EA, Derrick J (2009) Modelling divergence in relational concurrent refinement. In: Leuschel M, Wehrheim H (eds)

Proceedings of 7th international conference on integrated formal methods, IFM 2009, Düsseldorf, Germany, February 16–19,
2009. Lecture notes in computer science, vol 5423. Springer, Berlin, pp 183–199

[BH07] Butler MJ, Hallerstede S (2007) The Rodin formal modelling tool. In: BCS-FACS Christmas 2007 Meeting—formal methods
in industry

[But92] Butler MJ (1992) A CSP approach to action systems. DPhil thesis, Oxford University
[But00] Butler MJ (2000) csp2B: a practical approach to combining CSP and B. In: FACS, pp 182–196
[But09] Butler MJ (2009) Decomposition structures for Event-B. In: Leuschel M, Wehrheim H (eds) Proceedings of 7th international

conference on integrated formal methods, IFM 2009, Düsseldorf, Germany, February 16–19, 2009. Lecture notes in computer
science, vol 5423. Springer, Berlin, pp 20–38

[But12] Butler M (2012) External and internal choice with event groups in Event-B. Form Asp Comput 24(4–6):555–567
[BvW98] Back R-J, von Wright J (1998) Refinement calculus: a systematic introduction. In: Graduate texts in computer science. Springer,

Berlin
[DB01] Derrick J, Boiten EA (2001) Refinement in Z and object-Z. Springer, Berlin
[DB03] Derrick J, Boiten EA (2003) Relational concurrent refinement. Form Asp Comput 15(2–3):182–214
[DS03] Derrick J, Smith G (2003) Structural refinement of systems specified in object-Z and CSP. Form Asp Comput 15(1):1–27
[EB11] Event-B.org (2011) Rodin platform version 2.2.2. Released 6 Jan 2011. http://www.event-b.org/
[For] Formal Systems (Europe) Ltd (2011) The FDR model checker. http://www.fsel.com/. Accessed 8 Mar 2011
[HA10] Hoang TS, Abrial J-R (2010) Event-B decomposition for parallel programs. In: Frappier M, Glässer U, Khurshid S, Laleau

R, Reeves S (eds) ABZ. Lecture notes in computer science, vol 5977. Springer, Berlin, pp 319–333
[HA11] Hoang TS, Abrial J-R (2011) Reasoning about liveness properties in Event-B. In: Qin S, Qiu Z (eds) ICFEM. Lecture notes

in computer science, vol 6991. Springer, Berlin, pp 456–471
[Hal11] Hallerstede S (2011) On the purpose of Event-B proof obligations. Form Asp Comput 23(1):133–150
[Hoa85] Hoare CAR (1985) Communicating sequential processes. Prentice-Hall
[Ili09] Iliasov A (2009) On Event-B and control flow. Technical report CS-TR-1159, School of Computing Science, Newcastle Uni-

versity, August 2009
[Jac02] Jackson D (2002) Alloy: a lightweight object modelling notation. ACM Trans Softw Eng Methodol 11(2):256–290
[MAV05] Métayer C, Abrial J-R, Voisin L (2010) Event-B language, 2005. RODIN Project Deliverable 3.2. http://rodin.cs.ncl.ac.uk/

deliverables/D7.pdf . Accessed 25 May 2010
[Mor88] Morgan CC (1988) The specification statement. ACM Trans Program Lang Syst 10(3):403–419
[Mor90] Morgan CC (1990) Of wp and CSP. Beauty is our business: a birthday salute to E. W. Dijkstra, pp 319–326

http://www.event-b.org/
http://www.fsel.com/
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

280 S. Schneider et al.

[OW05] Olderog E-R, Wehrheim H (2005) Specification and (property) inheritance in CSP-OZ. Sci Comput Program 55(1–3):227–257
[Ros98] Roscoe AW (1998) Theory and practice of concurrency. Prentice-Hall
[Sch99] Schneider S (1999) Concurrent and real-time systems: the CSP approach. Wiley, New York
[SHWI11] Silva RA, Hoang TS, Wei W, Iliasov A (2001) A survey on Event-B decomposition. In: Workshop on automated verification

of critical systems (AVOCS 2011)
[ST05] Schneider S, Treharne H (2005) CSP theorems for communicating B machines. Form Asp Comput 17(4):390–422
[STW10] Schneider S, Treharne H, Wehrheim H (2010) A CSP approach to control in Event-B. In: IFM, pp 260–274
[STW11a] Schneider S, Treharne H, Wehrheim H (2011) Bounded retransmission in Event-B‖CSP: a case study. In: Workshop B 2011,

ENTCS
[STW11b] Schneider S, Treharne H, Wehrheim H (2011) A CSP account of Event-B refinement. In: Derrick J, Boiten EA, Reeves S (eds)

Refine 2011. EPTCS, vol 55, pp 139–154
[STW11c] Schneider S, Treharne H, Wehrheim H (2011) Stepwise refinement in Event-B‖CSP. Technical Report CS-11-03, University

of Surrey
[WC02] Woodcock J, Cavalcanti A (2002) The semantics of circus. In: Bert D, Bowen JP, Henson MC, Robinson K (eds) ZB 2002.

Lecture notes in computer science, vol 2272. Springer, Berlin, pp 184–203
[WD96] Woodcock JCP, Davies J (1996) Using Z: specification, refinement, and proof. Prentice Hall

Received 7 October 2011
Accepted in revised form 10 September 2012 by E. Boiten, J. Derrick, and S. Reeves
Published online 23 October 2012

	The behavioural semantics of Event-B refinement
	Abstract
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 CSP

	3 CSP semantics for Event-B machines
	4 Refinement
	4.1 Event-B refinement
	4.2 CSP refinement

	5 Event-B refinement as CSP refinement
	5.1 New events
	5.2 Convergent and anticipated events

	6 Strategy I
	7 Strategy II: interface extension
	8 Conclusion
	Acknowledgments
	References

