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Abstract. FreeRTOS is an open-source real-time microkernel that has a wide community of users. We present
the formal specification of the behaviour of the task part of FreeRTOS that deals with the creation, management,
and scheduling of tasks using priority-based preemption. Our model is written in the Z notation, and we verify
its consistency using the Z/Eves theorem prover. This includes a precise statement of the preconditions for all
API commands. This task model forms the basis for three dimensions of further work: (a) the modelling of the
rest of the behaviour of queues, time, mutex, and interrupts in FreeRTOS; (b) refinement of the models to code to
produce a verified implementation; and (c) extension of the behaviour of FreeRTOS to multi-core architectures.
We propose all three dimensions as benchmark challenge problems for Hoare’s Verified Software Initiative.
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1. Introduction
1.1. FreeRTOS

FreeRTOS is a widely used real-time operating system written by a team led by Richard Barry of Witten-
stein High-Integrity Systems in the UK [Barl2a]. Introductions to FreeRTOS informally describe the appli-
cation programmers’ interface (API) for the real-time operating system kernel [Barl12b]. Verifying the cor-
rectness of FreeRTOS has been proposed as a pilot project for the international Verified Software Initiative
(VSI) [Hoa03, JOW06, Woo06, HMLS09], led by Tony Hoare. This verification experiment presents two distinct
challenges: (a) Code-level verification to automatically analyse FreeRTOS for structural integrity properties.
(b) The creation of a rational reconstruction of the refinement of the FreeRTOS code starting from an abstract
specification, discharging all verification conditions automatically. Note, refinement here indicates that the refined
version of a specification mathematically implies its abstract specification; thus, every property of the abstract
specification is preserved by refinement. The project was chosen as a contribution to the VSI at a workshop held at
Microsoft Research Cambridge in 2008 that was gathering difficult research problems from industry. Modelling
and verifying operating system kernels is considered to be scientifically interesting, pushing current capabilities
of software verification research and technology. Klein is the first to have formally verified an operating system
kernel, and describes the main scientific challenges [Kle09, KEH*09].
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FreeRTOS has a large community of users programming embedded microcontrollers: it was downloaded more
than 100,000 times during 2013, putting it high in the top 100 SourceForge codes (there are more than 200,000
available). Verification of FreeRTOS, entailing discovering residual errors, would thus have a strong impact on
the international embedded systems community. FreeRTOS has relatively sophisticated functionality, but only a
very small code base, all of which is open source and well documented (albeit informally).

FreeRTOS is a lightweight, embeddable, multi-tasking, Real-Time Operating System (RTOS). It makes the
key assumption that the target system has a single processing unit. It is really a library of types and functions
that can be used to build microkernels using a combination of C and assembly language, and has been ported to
most embedded systems architectures. It allows a very small kernel to be produced for target microcontrollers,
somewhere between 4-9kB. It provides services for embedded programming tasks, communication and synchro-
nisation, memory management, real-time events, and I/O-device control.

Fourteen different compilers are used with FreeRTOS, giving complex configuration options and extensive
parametrisation. A version of the software, SafeRTOS, has been certified to Safety Integrity Level 3 by the
Technical University of Vienna for the following safety standards: IEC 61508, FDA 510(k), and DO-178B. These
certificates are for the process of development, rather than for the correctness of the software against stated
requirements.

The objective of formally verifying FreeRTOS would be to find some errors and make some guarantees about
the code’s behaviour. Since the requirements are distributed throughout the documentation, there is a clear need
to produce a formal abstract specification. A broader aim of our work is to study the verification problem for
an entire class of software, namely real-time operating systems for embedded applications, and we have chosen to
focus on an exemplar of this class of systems, namely the FreeRTOS kernel. The techniques and methodology
developed here can be expected to be applicable to other software in this class of systems.

Specifically, our aimis to carry out a systematic exercise towards the verification of FreeRTOS that will: (a) Pro-
duce a formal specification of its intended behaviour. (b) Identify aspects of its implementation that do not
conform to this specification. (c) Produce a detailed model of the core scheduling-related functionality that can
serve as a basis for fixing the current implementation to obtain a “verified” version of FreeRTOS, engineered as
originally intended by the developers.

The main scientific difficulty with the verification of FreeRTOS is the low level of the code. The usual abstrac-
tions that make it easier to program systems software do not exist; it is the purpose of FreeRTOS to provide them.
They include: (a) communication and synchronisation; (b) scheduling guarantees; (c) interference freedom; and
(d) direct hardware interaction using clocks and interrupts. These are provided through many complex pointer-
based operations, which present yet another challenge: verifying pointer programs is a complex and difficult
business.

We specify the behaviour of FreeRTOS in the Z notation [WD96]; our specification is organised into five
parts—(a) task, (b) queue, (c) time, (d) mutex, and (e) interrupt. In this paper, we introduce the first part of our
work—the Tusk model. Sect. 1.2 summarises related work on formalising operating system kernels. We illustrate
the contribution of this paper in Sect. 1.3. Following this, a general introduction to FreeRTOS is given in Sect. 2.
Section 3 contains our formalisation in detail. Finally, in Sect. 5, we present our conclusions and make some
suggestions for future work.

1.2. Related work

There is existing work on verifying operating systems:

1. Craigdescribes the specification and refinement in the Z notation of a microkernel, Labrosse’s . C/OS operat-
ing system, which is similar to FreeRTOS [Cra06, Cra07, Lab02]. The refinement of the requirements targets
mathematical data types at a level of abstraction well above program data types. The lowest-level of the
refinement is also non-algorithmic, and there are no real-time properties. Freitas & Woodcock [FW09] have
continued Craig’s refinement to target datatypes at the level of FreeRTOS, but without a pointer implementa-
tion. Borger & Craig [BC09] extend this work by modelling with pseudo-code descriptions as Abstract State
Machines (ASMs), which produce an elegant restructuring of the model that make it easier to understand
and easier to refine to executable code.
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10.

Klein has verified seL4, a high-performance microkernel [Kle09, KlelOc, Klel0a, Klel0b, SWG*11]. An
abstract specification in Isabelle/HOL is refined into an executable specification in Haskell, which is then
manually refined into a high performance implementation in the C programming language. The theoretical
basis for the work is in separation logic. There is an almost complete handling of the features of C. The entire
exercise involved 8,700 lines of C, 200,000+ lines of proof script, and 30 man-years of effort to establish the
functional correctness of the operating system.
D¢éharbe et al. have produced a specification in the B language of a restricted subset of FreeRTOS [DGMO09].
They provide a formalisation of a subset of the API, including task and queue-related functions, verify that
all its expressions are well-defined, and demonstrate logic consistency. The model contains seven basic B-
machines, FreeRTOSConfig, Type, Task, Queue, Scheduler, Free RTOS Basic, and FreeRTOS, with which the
first model without priority is formalised. Then it is refined to the second model, which takes priority into
account. However, there are some problems with this model; for instance, it prevents task creation while the
scheduler is running, which is allowed by FreeRTOS; it forbids tasks sending and receiving messages to and
from a queue when there is no task waiting to receive or send. Comparing this with our work, we introduce
a model covering more functions of FreeRTOS, although in this paper we present only the Task part of the
specification. Due to a finer structure of definitions and abstractions, our specification has an increased proof
automation. Furthermore, we correct the problems discovered in Déharbe’s work.
Pronk has studied the verification problem for FreeRTOS [Pro10]. He discusses and compares the advan-
tages and disadvantages of theorem proving and refinement in this arena, compared with model checking.
He concentrates on the latter, using Promela and the SPIN model checker. He abstracts from the pointer
implementation.
Lin, Freitas, & Woodcock produced a specification of FreeRTOS in Z covering the top-level functional-
ity [Lin10]. This was derived from Déharbe’s B specification [DGMO09] (see item 3), but then extended
to capture all the main FreeRTOS functionality. An attempt was made at the verification of consistency
using the Z/Eves theorem prover [MS97], although this could also be proved in ProofPowerZ [Artl2],
Isabelle/HOL [Paul2], or PVS [OSR12]. Originally, there were 30 unproved theorems out of 241. We have
carried out further work to reduce their number of unproved theorems to around 10. During this process, we
found the key reason for struggling with the proofs is that the model is very concrete, which leads to proof
complexity. For example, to represent the different states in FreeRTOS, the model uses seven different type
variables, such as: functions, sequences, finite sets, etc. Furthermore, even when Z/Eves can prove a theorem,
it takes long time. Compared with this, our model is much more abstract and more tractable for proof.
Muiihlberg & Freitas report on the application of the SOCA and VeriFast tools to FreeRTOS [MF11]. They
focus on the verification of structural properties (e.g., pointer safety and arithmetic overflow) and liveness
properties, but ultimately aim at demonstrating functional correctness. This includes the reconstruction of a
formal specification of FreeRTOS in Z (actually the one mentioned in item 5), bounded model-checking of
the FreeRTOS code using the SOCAVerifier ML10], as well as annotating the source code with assertions in
separation logic to apply the VeriFast software verifier [BJ10].
Ferreira has used separation logic to verify code-level pointer structures in FreeRTOS [FHQ12].
Abrial has an unpublished specification of much of the functionality of FreeRTOS using the B method
(it excludes interrupts). The Z specification in this paper is based on his work, although the verification is
necessarily very different.
Mistry, Naylor, & Woodcock have developed a multi-core version of FreeRTOS on a Field-Programmable
Gate Array (FPGA), which is able to schedule tasks on multiple processors and support mutex in concurrent
environment [Mis11, MNW13]. They present an adapted version of FreeRTOS that is able to schedule tasks
on multiple processors, as well as provide full mutual exclusion support for use in concurrent applications that
isindependent of the chosen platform, thus preserving one of FreeRTOS’s most attractive features: portability.
In a collaboration with the authors of the current paper, Kushwah, Divakaran, & D’Souza aim to give a
proof of functional correctness by proving that the C implementation refines the abstract Z specification. The
commonality with this work is that they also focus on the task-related functionality of FreeRTOS, although
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their specification is deterministic, more detailed, and closer to the implementation than ours. They do not
carry out a consistency check or prove properties about their Z model.

1.3. Contribution of this paper

As can be seen from Sect.1.2, there are a number of researchers working on the verification of FreeRTOS as
part of the Verified Software Initiative, and this kind of community effort is an important aspect of the VSI.
This paper contains a complete specification in Z of FreeRTOS’s task model, together with proofs of consistency
(well-definedness, initialisation, preconditions, and a few properties). The abstract characterisation of the tasking
model is a first step towards a verified implementation of FreeRTOS on multicore. We were the first to promote
FreeRTOS as a pilot project in the VSI, and the work presented continues this by establishing a benchmark for
others to follow. We believe that this is an important contribution to both the verification community and also
the embedded systems community.

2. Introduction to FreeRTOS
2.1. Overview of FreeRTOS

The key elements of FreeRTOS are:

Tasks: user processes.
Queues: communication mechanisms between tasks and interrupts.
Semaphores and Mutexes: used for resource management, event counting, mutual exclusion locks, ezc.

They are implemented as a set of functions written in C. It provides the following functionality to the appli-
cation programmer.

1. Implement fixed-priority, preemptive scheduling.

2. Trap software interrupts: (a) Find the highest priority ready task to run. (b) Save the context of the yielding
task. (c) Restore the context of the new task.

3. Trap timer interrupts: (a) Update the tickcount. (b) Check delayed tasks, and move to ready if required, (c) Do
context switching if required.

4. Provide API functions for: (a) Creation and management of multiple tasks. (b) Inter-task communication
through queues, semaphores, and mutexes. (c) Heap memory management through malloc and free.

In this paper, we focus on the first part of FreeRTOS, Tasks.

2.2. Tasks of FreeRTOS

Tasks in FreeRTOS can be regarded as occupying one of two top-level states, running or notRunning. The
running task is recorded by the task control block handler pxCurrentTCB, and simply indicates that the task
is currently executing on the processor. The notRunning state can be decomposed into three substates: ready,
suspended, and blocked; tasks in the ready state are available for scheduling to the running state. Tasks can
also be blocked by an event for a certain period; these are the blocked tasks. suspended tasks wait until they are
resumed by another task. Tasks transit between these states as described in Fig. 1. For instance, a task cannot
transit from suspended to running, because only ready tasks can be scheduled as running [Bar12b].

In FreeRTOS, the scheduler takes responsibility for counting clock ticks, used to express time, and schedules
tasks. The scheduling policy adopted is priority-based scheduling, which means that the task with the highest
priority and in the ready state can be executed. As a result, it is impossible to use FreeRTOS in hard real-
time environments. When a ready task has a higher priority than the running task, it will displace the running
task from the CPU. The scheduler has two ways for switching tasks: preemptive and cooperative scheduling. In
preemptive mode, the task with the highest priority will block the running task immediately and take the CPU.
In cooperative mode, the running task can finish its CPU time before the task with the highest priority takes over.
API functions are provided for task creation, deletion, and control. It is worth noting that the deletion API does
not actually delete a task from the system: it only marks the task and removes its reference from related queues.
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Fig. 1. State chart for Tasks

The idle task, with permanent priority 0, the lowest priority, is used to actually do the deleting job and release
the memory allocated by the kernel; however, it does not collect the memory allocated by user, so tasks have to
release used memory by themselves before deleting.

In our specification, the function state in schema StateData is used to specify the states of tasks. Further, the
reverse function of state can be used to calculate tasks in a specific state; for instance, tasks in ready state are
represented by state™(| {ready} |). This also works for running tasks: the result of state™( {running} |) is a set with
only one element—running_task, which represents the handler pxCurrentTCB. The function priority in schema
PrioData represents tasks’ priorities. They are defined in Sect. 3.1.

2.3. A simple example of FreeRTOS

We use a simple example application to illustrate the functionality provided by FreeRTOS. Fig. 2 shows the C
code of an application that uses the FreeRTOS. Initially, the application creates two tasks: Task1 and Task2,
with priority 1 and 2 respectively (a higher number indicates higher priority), and then starts the FreeRTOS
scheduler. The scheduler then runs Task2, which immediately increases the priority of Task1 to 3. Task2 is now
preempted by Task1, which gets to execute and creates a new task—Task3 with priority 4, which is the highest
at the moment. Therefore, it preempts Task1 and gets to execute. Once Task3 is executing, it deletes itself, which
triggers the scheduler to reschedule the system. As Task1 has the highest priority at this moment, it gets to execute
again and forever.

We now describe in more detail what happens in the FreeRTOS implementation code. The application code for
main, tx1, tx2 and tx3is compiled along with the FreeRTOS code (for the scheduler, and the API calls including
xTaskCreate), and loaded into memory. The scheduler code is loaded into the Interrupt Service Routine (ISR)
code area so that it services software interrupts.

By analysing the source code of FreeRTOS, we see that execution begins with the first instruction in main,
which is the call to the xTaskCreate API function. This code is provided by FreeRTOS, allocates 1 kilobyte of
memory on the heap for the task stack, as well as space to store its Task Control Block (TCB) [Bar12a, Bar12b].
From the source code, we can find that the TCB contains all vital information about the task: where its code (tx1
in this case) is located, where its stack begins, where its current top-of-stack pointer is, what its priority is,
and so on. The API call initialises the TCB entries for Taskl. It then creates and initialises the various lists
that the OS maintains, such as pxReadyTasksLists for recording tasks in ready state, xSuspendedTaskList
for representing tasks in suspended state and so on. It finally adds Task1 to the ready list and returns. Next,
main calls xTaskCreate for Task2 and the API call sets up the stack and TCB for Task2 and adds it to the
ready list, in a similar way. The next instruction in main is a call to the vTaskStartSchedular API, which
is also provided by FreeRTOS. This call creates the idle task with priority 0, and adds it to the ready list.
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xTaskHandle txhi;

void tx1(void * xPara){
xTaskCreate(tx3, (signed char *) "Task 3", 1000, NULL, 4, NULL);
for( ;; );

}

void tx2(void * xPara){
for( ;; ){
vTaskPrioritySet (txhl, 3);
}
}

void tx3(void * xPara){
for( ;; ){
vTaskDelete (NULL) ;
}
}

int main(void){
xTaskCreate(txl, (signed char *) "Task 1", 1000, NULL, 1, & txhl);
xTaskCreate(tx2, (signed char *) "Task 2", 1000, NULL, 2, NULL);

vTaskStartScheduler () ;
return O;

Fig. 2. An example application that uses RTOS.

It also sets the timer tick interrupt to occur at the required frequency. Finally, it does a context-switch to the
highest priority ready task (i.e., it restores its execution state, namely the contents of its registers, from the task’s
stack where they were stored). The processor will next execute the instruction in the task that is resumed. In our
example, this means that Task2 will now begin execution.

When Task2 begins execution, it makes an API call to vTaskPrioritySet. The code for this API call compares
the new priority and the current priority to decide whether scheduling is needed. If the API increases the priority
of a task or decreases the priority of the current running task, a reschedule will be requested. It then assigns the
new priority to the target task, and moves the task to the proper position in the ready list, if it is a ready task.
In our case, the priority of Task1 is changed to 3, it is moved to its proper position in pxReadyTasksLists.
The API code then does a yield (a software interrupt) that is trapped by the scheduler. The scheduler picks the
longest waiting, highest priority ready task, which in this case is Task1, and makes it the running task. Before
this, the scheduler saves the registers of Task2 on its stack, and restores the register context of Task1 from its
stack.

Task1 now creates the new task Task3. The process is similar to the xTaskCreate call to create Taskl and
Task2. The difference is that this time xTaskCreate triggers scheduling to make Task3 running.

When Task3 begins execution it makes a call to the vTaskDelete API call. The code for this API is
simple. It removes the target task from state list and related events list, in this case, Task3 is removed from
pxReadyTasksLists. As it is the current running task, the API code triggers scheduling again to makes the
highest priority ready task running, which is Task1. Task1 then executes its trivial for-loop, ad infinitum.

The animation and formal verification of our specification for this process will be illustrated in Sect. 4.

3. Formalising FreeRTOS tasks in Z

Normally, the development process in formal methods starts from requirements, modelling the behaviour of
the system, refining several steps to executable code. Because FreeRTOS does not have an explicitly articulated
requirement and it has been implemented in C code, we consider the user manual and the practical guide of
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FreeRTOS [Barl2a, Bar12b] as the basis of the requirements. However, these sources are not detailed enough for
us to build the model, they just provide the basic functional description of the APIs. In this case, we also take
the source code of the FreeRTOS into consider for modelling. Therefore, this model is mainly based on the API
documentation to verify the functional correctness of FreeRTOS. Some of the details of the specification are
derived from the source code. For instance, the documentation of the xTaskCreate API function mentions that
if the API returns pdTRUE, the task has been created. (Note, to simplify the model, we just consider the success
case of APIs.) Nevertheless, it does not indicate how it was created. Thus, we analyse the source code to find out
how it works and formalise the behaviour of xTaskCreate based on that.

In this paper, we formalise the behaviour of FreeRTOS using the Z notation; those unfamiliar with Z may
consult the Z Reference Manual [Spi92] or a tutorial introduction, such as [WD96]. In addition, as we introduce
our model we also summarise the related Z notation we use. We use the Z/Eves theorem prover to reason about
the Z specification; see [MS97, Saa99b, Saa99a]. We give a summary of the proof commands in Appendix A, so
that the reader can follow the general argument behind the formal proofs or even recreate the proof in Z/Eves.!

3.1. Basic statements

We introduce only the first part of our model: the formal specification of Task. First of all, it is essential to state
some basic context that will be used in the specification.

The given sets CONTEXT and TASK are provided as given sets to represent the environment of the processor
and the tasks, respectively; in Z, given sets are basic, maximal types.

[CONTEXT, TASK]

Two constants, bare_context and idle, are introduced by an axiomatic definition, which contains a declaration
and a constraint. Here, the constraint is trivially true and is omitted. The constant bare_context is an element of
the set CONTEXT ; it represents the initial state of the processor. The constant idle is of type TASK it represents
the system task that runs when no other task is scheduled.

bare_context : CONTEXT
idle : TASK

STATE is defined using a free type in its simplest form as enumerating exactly five distinct constants.
STATE ::= nonexistent | ready | blocked | suspended | running

The set of legal state transition is described by an abbreviation: transition names the appropriate set that models
the diagram in Fig. 1.

transition == ({blocked} x {nonexistent, ready, running, suspended})
U ({nonexistent} x {ready, running})
U ({ready} x {nonexistent, running, suspended})
U ({running} x {blocked, nonexistent, ready, suspended})
U ({suspended} x {nonexistent, ready, running})

Transitions (blocked, running) and (suspended, running) are included because when a task is woken up from the
blocked state or resumed from the suspended state, its state actually transits to ready; however, if it has a higher
priority than the running task, it will be scheduled to running. At this level of abstraction, we consider these
two steps as a single step, which makes state transition (blocked, running) and (suspended , running) possible. This
definition turns out not to be very useful in automating proofs about transitions, because Z/Eves would expand
transition into the set in all possible proof contexts. This increases the load on the prover massively. So we disable
the definition and add two theorems that are more helpful. The first is a typing lemma that states that transition
is a set of pairs of STATE; its proof is a very simple consequence of the definition of transition.

' Z/Eves project file and other related files can find on the web page: https://code.google.com/p/z-spec-freertos/source/browse/.
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Theorem 1 (gTransitionType)

transition € P(STATE x STATE)
proof [gTransitionType]
with enabled (transition) prove by reduce;

Next, we add the following lemma to tell Z/Eves about each individual pair in transition, which is helpful to
Z/Eves for automatically proving; again, the proof is very simple.

Theorem 2 (rule lInTransition)

Vi, r:STATE

| (1, r) € {(nonexistent — ready), (running — ready),
(blocked +— ready), (suspended — ready),
(ready — running), (blocked — running),
(suspended +— running), (nonexistent — running),
(running — suspended), (ready — suspended),
(blocked — suspended), (running +— blocked),
(running — nonexistent), (ready +— nonexistent),
(blocked +— nonexistent), (suspended — nonexistent)}

e (I, r) € transition

proof [/InTransition]
with normalization with enabled (transition) prove by reduce;
|

Based on these definitions, the state schema of the model can be specified, describing basic system properties.
Due to the scope of this paper, we focus only on task-related information in FreeRTOS. To simplify the proof
and the specification, we verify system only when the scheduler is running; therefore, we assume the scheduler is
always running.

To describe the tasks in FreeRTOS, the following four kinds of data are needed, which are defined by schema
definition. In the Z notation, the schema is used to structure and compose descriptions. Once a schema is assigned
a name, it is possible to use that name to reuse the schema in other expressions or schemas.

1. Task data. The variables recorded in this category are directly related to tasks. First, to simplify the description
of the model and the following proofs, we need to distinguish tasks that are known to the system from
others; therefore, a set tasks is defined as a finite subset of TASK. Second, according to the source code of
FreeRTOS, task.c file, a pointer (pxCurrentTCB) is used to record the current running task, which is useful
in several cases, such as scheduling. In the specification, a variable running_task in the type TASK is used
to represent this. Two constraints are specified: the idle task and the running_task have to be known to the
system at all times.

_TaskData
tasks : P TASK
running_task : TASK

running_task € tasks
idle € tasks

2. State data. As described in Sect. 2.2, FreeRTOS uses different lists to manage the tasks known to the system.
Abstractly, two tasks in different lists have different states. Therefore, the variable szate is used to indicate the
state of the tasks. Specifically, the idle task, which is a system task and responds to do some maintenance job
for the system (such as garbage collection), can only be ready or running; it cannot be blocked, suspended, or
deleted (nonexistent).

__StateData
state : TASK — STATE

state(idle) € {ready, running}
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3. Context data. The two variables phys_context and log_context, respectively, represent the physical context of
the system and the logical context for all the tasks that are not running.

ContextData
’/ phys_context : CONTEXT

log_context : TASK — CONTEXT

4. Priority data. FreeRTOS is a priority-based operating system: all the tasks in the system have their own
priority, and a total function, priority, is introduced to record this. The priority of idle task must be the lowest
priority all the time, which is 0.

__PrioData
priority : TASK — N

priority(idle) = 0

Invariant Based on these definitions, we can now describe the state data for tasks that is maintained by this part
of FreeRTOS.

__ Task
TaskData
StateData
ContextData
PrioData

tasks = TASK \ (state™ (| {nonexistent} |))
state”™ (| {running} |) = {running_task}
V pt : state™ (| {ready} |) e priority(running_task) > priority(pt)

Apart from the four schemas describing the task, state, context, and priority data, there are three more constraints
added in this schema. They show that

e All the tasks whose state is not nonexistent are known to the system. Here, as mentioned above, the state is a
function, a special case of a relation. The operator, ~, takes the inverse relation, so that state™ is a relation in
STATE <> TASK. The operand, (| and |) calculates relational image. The result for this predicate is a set that
contains all the TASK's whose states are nonexistent.

e There is only one task that can occupy the running state at any given time.
e The priority of running_task is the greatest one amongst all the ready tasks.

Initialization Based on the state definition and the assumptions mentioned above, we describe the initialisation of
the Task state in a similar piecewise fashion: we separately initialise the four sub-states, and then combine them.

1. Task data. Initially, there are no user-defined tasks in the system; there is only one task in the system: idle. It
is also the initial running_task.

__Init_TaskData
TaskData’

tasks' = {idle}
running_task’ = idle

2. State data. Furthermore, every other task is in the nonexistent state, except idle whose state is running.

__Init_StateData
StateData’

state’ = (A x : TASK e nonexistent) @ {(idle — running)}
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3. Context data. Also, initially, the logical and physical contexts of all tasks are the bare_context.

__Init_ContextData
ContextData’

phys_context’ = bare_context
log_context’ = (A x : TASK e bare_context)

4. Priority data. Finally, all tasks have the lowest priority, 0.

__Init_PrioData
PrioData’

priority = (Ax : TASK e 0)

The initial state for Task can be defined using these four definitions.

__Init_Task
Task’

Init_TuaskData
Init_StateData
Init_ContextData
Init_PrioData

In order to prove that all these initial states are reachable, the following five theorems are introduced. They
assert that there is at least one possible postcondition for initialising each sub-state schema and the overall schema.
Due to the simplicity of these theorems, Z/Eves is able to prove them fully automatically.

Theorem 3 (TaskDatalnit)
JTaskData’ e Init_TaskData
proof [ Task Datalnit)

prove by reduce;
|

Theorem 4 (StateDatalnit)

dStateData’ e Init_StateData
Theorem 5 (ContextDatalnit)

J ContextData’ e Init_ContextData
Theorem 6 (PrioDatalnit)

3 PrioData’ e Init_PrioData

It is easy to prove these theorems with the proof command “prove by reduce”, except for TasklInit, because it
has more constraints on its state variables.

Theorem 7 (TasklInit)
JTask’ e Init_Tuask

proof [ TuskInit]
prove by reduce;
apply extensionality;
with enabled (apply Override) prove;
|
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After the automatic proving ordered by prove by reduce, Z/Eves is confused about the equivalence between
sets defined in schema 7ask. The application of override also confuses the prover. Therefore, we need to guide
the prover to apply theorems, extensionality and apply Override, to discharge them. These theorems are provided
by the Z/Eves toolkit.

We can check whether the state change respects the transition relation as a dynamic invariant that must be
satisfied by all the operations on the Task state by redefining A Task:

_ ATask
Task
Task’

Vst : TASK | state'(st) # state(st) e state(st) — state'(st) € transition

It is worth mentioning that in this schema we use 7Task’ to refer the post state of the 7ask. Initially, the
expression “ASchema” (Schema refers to a state schema) has been defined to contain both the pre and post state
of Schema. We redefine it here to add further constraints for 7ask.

Based on these fundamental definitions, operations related to tasks can be specified.

3.2. Additional schema for reschedule

In a multi-tasking real-time operating system, rescheduling tasks is essential and occurs frequently. Generally,
depending on the purpose of the system, the operating system would follow some suitable algorithm to determine
the task to be scheduled. Afterwards, other system states can be updated accordingly. Therefore, at this level
of abstract specification, it is possible to define the rescheduling process nondeterministically. However, the
model described in this paper focuses on FreeRTOS. We will follow the algorithm used in FreeRTOS to specify
rescheduling, which is based on the priority of tasks. Specifically, once a ready task obtains higher priority than
the running task, it will be scheduled as the new running task. Subsequently, the system will switch the context
of the current running task out and swap in the context of a new running task. It is also necessary to manage
related lists and system states properly; for instance, by setting the selected task as the running task and inserting
the current running task in a suitable list. In this specification, we introduce the schema Reschedule to perform
the swapping part of the rescheduling process, which can then be reused by other schemas. The priority-based
scheduling algorithm is embedded in the operation schemas for different APIs that need rescheduling, being
specialised by the destination to which the current running task is moved. For example, when suspending the
running task, the destination of the running task is the suspended list; but when we create a task with a higher
priority than the running task, the destination of the current running task is actually the ready list. These lists
are represented by the function state, so updating the state with the variable s? is the way to manage these lists.
In the Z notation, the variables marked with “?” and “!” indicate that they are I/O variables, respectively, for a
schema. When other schemas reuse the Reschedule schema, st? will be introduced within these schemas with the
value of the destination of the current running task. Because both schemas contain the variable with the same
name, these two variables will be bound together. Consequently, the schema Reschedule can get the destination
of the running task by accessing the value of s7?. The operator, @, is normally used to update functions in the Z
notation. If the first element of a pair exists in the domain of the function, it would update the second element of
the pair in the function to the new value; otherwise it appends the pairs to the function. Therefore, it is used here
to update the state of running_task and target?. Similarly, for each case the new running task, the final state of
tasks, and the priority of tasks may also be different. We leave these decisions to the calling schemas. Therefore,
variables—target?, tasks? and pri?—are introduced to represent these properties respectively.
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__ Reschedule
ATuask
target? : TASK
tasks? : P TASK
st?: STATE
pri? : TASK — N

tasks' = tasks?

running_task’ = target?

state’ = state ® {(target? — running), (running_task > st?)}
phys_context’ = log_context(target?)

log_context’ = log_context @ {(running_task — phys_context)}
priority’ = pri?

The calling schema just needs to specify the values for these variables properly, then Reschedule schema can
handle the rest of work.

3.3. Creating and deleting tasks

After initialising the system, there is only one task (idle); in order to add more tasks into the system, the Create
operation can be used. Once a task finishes its job, it should be Deleted to allow other tasks to use the resources held
by it. They are also the first group of the API interface provided by FreeRTOS, xTaskCreate and vTaskDelete.
Generally, there are two cases for each of these two operations: one is simply to add or remove a task from the
system; the other one leads to a re-scheduling of tasks.

First Case of Creating Tasks If the assigned priority is not greater than the priority of the current running task, it
simply adds the new task that does not already exist. The input zarget? represents the task that will be created. The
input newpri? contains the priority assigned to the new task. Therefore, the precondition is specified as: first, targer?
is not known by the system; second, the assigned priority, newpri? is no more than the priority of running_task.
After the operation, the rarget? is known by the system, the task target? is added to tasks and updates the state
function to record that the state of rarget? is ready. The input newpri? is assigned to the task rarget? by updating
the function priority. Because this operation will not cause rescheduling, besides these changes, other properties
of Task remain unchanged. The “E” operation has been used in here: it is defined in the Z notation to show that
the pre and the post states are unchanged. The schema CreateTaskN_T can be introduced, which indicates that
this schema is for Create Task operation in the normal case for Tusk model. Generally, we use postfix N to stand
for Normal case of the operation, which does not lead to rescheduling; and S stands for Scheduling case. The
postfix after the dash indicates which model it is specified for, like 7" in this case shows the schema is part of task
model.

__CreateTaskN_T

ATask
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? < priority(running_task)
tasks' = tasks U {target?}
running_task’ = running_task
state’ = state ® {(target? — ready)}
EContextData
priority’ = priority & {(target? — newpri?)}
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Having defined this operation as a relation on 7ask states, we need to work out what its precondition is. We
posit that the before-state, the input, and the first two predicates are exactly the precondition, and collect these
into the following schema, where the suffix FSBSig in the schema name stands for Feasibility Signature.

__CreateTaskN_TFSBSig

Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? < priority(running_task)

These declarations and predicates are clearly necessary for the actual precondition as we stated above; we show
that they are also sufficient in the next theorem, which can be automatically generated. Specifically, for any
“state” that satisfies the definition of CreateTuskN_TFSBSig, the precondition of CreateTuskN_T is satisfied.
The operator “pre” is defined in the Z notation to calculate the precondition schema of a schema [WD96,
Chap. 14]. For instance, the predicate “pre CreateTaskN_T” in the following theorem obtains the precondition
schema by calculating 3 Task’ e CreateTaskN_T \ (outputs), where output refers to the list of output variables
related to the operation, which will be hidden, and is empty in this case. The schema hiding operator, \, hides the
variables list in the outputs from the declaration of the operation by introducing them in predicate part of schema
with existential quantifier.

Theorem 8 (CreateTaskN_T _vc_ref)
V CreateTaskN _TFSBSig | true e pre CreateTaskN_T

Itis interesting to understand the proof of this theorem. First of all, as we mentioned above, the Z/Eves prover
is used to verify our specification. All the proof scripts shown in this paper are used for helping Z/Eves to finish
the proving work. Generally, there are two ways to finish a proof ?: (a) exploratory proof—directly prove the
theorem without any previous plan and address any proof goals returned by prover; (b) planned proof—carry
out a detailed plan for the proof, which is enough to finish the proof by hand, then transfer the plan to a proof
script for the prover. To maximise the benefit of the proof automation, we adopt the exploratory proof approach
in many cases. The general idea for this approach is:

1. Expand terms such as schema references, and let Z/Eves prove the proof goal automatically.

2. When Z/Eves is stuck, stop at some proof goals, guide Z/Eves by using or applying related theorems or lemmas
to rewrite the proof goals, provide more conditions, efc.

3. Let Z/Eves progress based on the new goal.
4. Repeat step 2 and step 3 until the proof is finished.

For efficiency issues, it is necessary to expend as few terms as possible in step 1. This can significantly reduce the
proof time, especially when the system is complex. This is also the reason for defining our system in parts.

Specifically, we first use the following proof command to expand all necessary terms and then let the prover
automatically apply rules and theorems, which are included by Z/Eves, to prove the goal.

with disabled (ContextData) prove by reduce;

Meanwhile, because in this schema the ContextData is unchanged, we keep it unexpanded. The prefix
with disabled (ContextData) can achieve this by making the prover ignore ContextData, when expending the
terms. Note that, as some theorems are rarely used when proving and some other theorems are time consuming,
Z/Eves disables them by default. This is helpful for improving the efficiency of the proof process; however, it is
also one of the reasons why Z/Eves may be stuck in some cases. As a result, the original proof goal is transferred
to the following four goals.?

2 This idea is suggested by Leo Freitas.
3 Because the proof goals are too long to present in this paper, we just list the most important part here. Please download the Z/Eves project
file from the web page and open it with Z/Eves to find the details.
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1. The running_task remains the same before and after the operation:
(state @ {(target?, ready)})” (| {running} |) = state™ (| {running} |)

As we defined in CreateTaskN_T, the expression state @ {(target?, ready)} is equal the post state. Therefore
the image of running under the inverse function (state @ {(target?, ready)})™ represents the running_task after
the operation.

2. The target? task is added into the system by the operation:

TASK \ ((state @ {(target?, ready)})” (| {nonexists} |))
= {target?} U (TASK \ (state™ (| {nonexistent} |)))

Similarly, the left side of equation indicates all the tasks known by the system after the operation. It should
be the same as the known tasks of the pre state of the system plus the created task, which is targer?.

3. The priority of the target? task is less than or equal to the running task:

((state @ {(target?, ready)})(pt) = ready A (pt = target? Vv pt € TASK)
=
priority(running_task) > (priority & {(target?, newpri?)})(pt))
Comparable to state, the post state of the priority function can also be written as: priority @ {(target?, newpri?)}.
In this case, this expression is easy to understand.

4. Every state transition made by any task respects the transition relation.

(st € TASK A — (state @ {(target?, ready)})(st) = state(st)
=
(state(st), (state @ {(target?, ready)})(st)) € transition)

For the first two goals, the prover is confused by the equivalence relation between two sets. Therefore, the second
and the third commands in the script

apply extensionality to predicate
(state @ {(target?, ready)})”( {running} |) = state™ (| {running} ));
apply extensionality to predicate
TASK \ ((state @ {(target?, ready)})” (| {nonexistent} |)) =
{target?} U (TASK \ (state” (| {nonexistent} )));

are used to discharge them.
After this, the proof goal 3 is given by the constraint in 7ask schema. Tasks other than farget? maintain the
requirement that the priority of running task is at least as great as that of all the ready tasks:

V pt : state” {ready} e priority(running_task) > priority(pt)

A copy of this constraint is in the assumption part of the goal as well, and to distinguish p¢ in these two, Z/Eves
renames one from pz to pt__0. Therefore, to prove that tasks other than rarger? obey the constraint, we just
need to indicate that pz__0 and pt¢ are the same. For target?, the priority is defined as newpri?, which is specified
to be no more than the priority of running_task as the precondition of this schema. The rule applyOverride is
applied to analyse the expressions that contain the operator @. Finally, the command with normalization prove,
is used to finish the proof.* Thus, the theorem CreateTuskN_T _vc_ref can be proved by following script
in Z/Eves.

4 The details about the proof command, with normalization prove; , can be found in the appendix A.
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proof [CreateTaskN _T _vc_ref
with disabled (ContextData) prove by reduce;
apply extensionality to predicate
(state @ {(target?, ready)}) ~ (| {running} |) = state ~ (| {running} ));
apply extensionality to predicate
TASK \ ((state & {(target?, ready)}) ~ (| {nonexistent} |)) =
{target?} U (TASK \ (state ~ (| {nonexistent} |));
instantiate pt__ 0 == pt;
with enabled (apply Override) prove;
apply apply Override;
with normalization reduce;

Second Case of Creating Tasks If the priority assigned to the new task is greater than the priority of the running
task, then rescheduling is required; this is achieved by calling the Reschedule schema. The current running task
will be moved into the ready state; the new priority and initial context is allocated for the new task, which is
then scheduled to be running. To reuse Reschedule, the variables st?, pri? and tasks? are declared and assigned
appropriately. Note, the default logical context for new tasks is bare_context, we do not need to set it separately.
Therefore, the schema for the second case of the create task operation can be defined as follows:

__ CreateTaskS_T

ATask
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running_task)
dst?: STATE; tasks? : P TASK; pri?: TASK — N
| 5?7 = ready
A tasks? = tasks U {target?}
A pri? = priority ® {(target? — newpri?)} e Reschedule

Similarly to the previous case, the signature schema and the precondition theorem can be defined.

— CreateTaskS_TFSBSig

Task
target? : TASK
newpri? : N

state(target?) = nonexistent
newpri? > priority(running_task)

Theorem 9 (CreateTaskS_T _vc_ref)
V CreateTaskS_TFSBSig | true e pre CreateTaskS_T

This indicates that the new task is unknown by the system before the operation and the priority of new task
is higher than the priority of the running task; this is sufficient and necessary for the precondition of schema
CreateTaskS_T .

Deleting Tasks The first case for deleting a task is that it is not the running task: the state of this task—
provided it is not the idle task—can be ready, blocked, or suspended. Because, normally the handle of idle task,
xIdleTaskHandle, is private to the system and impossible for user to obtain, after the operation, the deleted
task will become unknown to the system by deleting it from zasks, setting its state to nonexistent, and setting its
logical context to the bare_context. It is worth mentioning that in the source code of vTaskDelete in FreeRTOS,
the context of the deleted task is not actually deleted, but instead moved to the xTasksWaitingTermination
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list. It is the id1e task that actually performs garbage collection to recover the resources allocated by the system.
At this level of abstraction, we consider all this as part of the deletion operation, resetting the log_context of
the deleted task to the bare_context. Note, due to space limitations, we list parts of our model where there is
something special; the rest of the specifications, precondition theorems, and proof scripts can be found on the
web page.

Secondly, if the task to be deleted is the running task—but not the idle task—then we remove it from the
system. This leaves a vacuum to be filled: we need to schedule another process to use the CPU. Of course, we
will choose the task in a ready state with the highest priority. However, we cannot use Reschedule to achieve
this because the logical context of the running task will be reset, which is requested by this operation but not
supported by Reschedule. The output variable fopReady! is introduced. The universally quantified expression
specifies that the ftop Ready! holds the highest priority. It is worth mentioning here that if there are several solu-
tions, then top Ready! is chosen nondeterministically. Similarly, the tasks, state, phys_context and log_context are
updated.

— DeleteTaskS_T
ATask
target? : TASK
topReady! : TASK

target? € tasks \ {idle}

state(target?) € {running}

state(top Ready!) = ready

Vt: state™ (| {ready} |) e priority(topReady!) > priority(t)

tasks’ = tasks \ {target?}

running_task’ = top Ready!

state’ = state ® {(topReady! — running), (target? — nonexistent)}
phys_context’ = log_context(top Ready!)

log_context’ = log_context @ {(target? — bare_context)}
EPrioData

The signature schema of this can be obtained as follows.

_DeleteTaskS_TFSBSig
Task
target? : TASK

target? € tasks \ {idle}
state(target?) € {running}

Theorem 10 (DeleteTaskS_T_vc_ref)
Y DeleteTaskS_TFSBSig | true e pre DeleteTaskS_T

As mentioned above, the “pre” operator calculates the precondition schema for DeleteTaskS_T, which is
the result of 3 Tusk’ e DeleteTaskS_T \ (topReady!). When the prover automatically discharges this predicate,
it attempts to eliminate existentially quantified variables. Because the post state of the system, Task, has been
defined in the operation, the one-point rule’ is applied to handle them. However, for the variable running_task’
and topReady! it can only eliminate one of them, because the output variable top Read)y! is assigned the value of
running_task’ in this operation. Therefore, the proof goal will become:

> One-pointrule: 3x: X |peg Ax =1t p[t/x] A q[t/x] A t € X, provided that x is not free in 7.



Using formal reasoning on a model of tasks for FreeRTOS 183

I running_task’ : TASK e
Task[log_context := log_context & {(target?, bare_context)},
phys_context := log_context(running_task’), running_task = running_task’,
state = state @ ({(target?, nonexistent)} U {(running_task’, running)}),
tasks := tasks \ {target?}]
A (Vst € TASK |
— (state @ ({(target?, nonexistent)} U
{(running_task’, running)}))(st) = state(st) o
(state(st), (state & ({(target?, nonexistent)} U
{(running_task’, running)}))(st)) € transition)
A state(running_task’) = ready
A (V10 : state™( {ready) | e priority(running_task’) > priority(t__0)
Meanwhile, as defined in the specification, a highest priority ready task is nondeterministically assigned to
the variable running_task’. In this case, with the existential-elimination rule, if we can find an instance of these

tasks that satisfies this predicate, the proof goal can be verified. Therefore, we introduce the following function
to discover a member of a set of tasks that has the highest priority among other tasks in that set.

f:PTASK 5 TASK

0 & domf
{ topReadyTask ))
V Task; a : P TASK

e f(a)ean (Vt:a e priority(f(a)) > priority(t))
Afterwards, it is possible to use this function to find out the highest priority task in ready state and use it to

instantiate the running_task’. If we let p, 3x : X e ¢ represent the conditions and the goal of proof above, the
predicate to be proved can be considered as

p=>3x:X egq. (1)

Further, let 7 represents f(state™(| {ready} |)). When we instantiate the running_task’ with the delegate, with one-
point rule, we have 3x : X e g Ax =t t € X A g[t/x], whichgivesIx: X egeIx: X egV (te X A
q[t/x]). Therefore, the equation (1) transfers into:

p=3x:Xeq)Vv(teX Aqlt/x)]. 2
Reorganising the equation, the relation

pA—-(teX Ag[t/x])=Tx: X eq. 3)
can be acquired.

Therefore, applying the proof command “instantiate running_task’ == f(state™( {ready} )); ”, a negative

copy of this proof goal will be added to the condition part, of which running_task’ will be replaced by f'(state™(
{ready} ))). Analysing this negative copy of the goal, we will find
Task[log_context := log_context @ {(target?, bare_context)},
phys_context := log_context(f (state™ (| {ready} ))),
=
t e TASK A
state(t) = ready A
— priority(f (state™ (| {ready} |))) > priority(t) 4)
which conflicts with the definition of function f; therefore, it is not true. However, according to the implication,
if we can prove that the condition is false, the result of proof is true. Due to the complication for proving

this condition is false, an assistant theorem, [DeleteTuskS_T _Lemma, is introduced. When we use it to prove
DeleteTuskS_T _vc_ref , the variable top Ready! can be substituted by f(state™( {ready} )).
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Theorem 11 (IDeleteTaskS_T_Lemma)

V Task; topReady!, target? : TASK
| target? € tasks \ {idle}
A state(target?) € {running}
A state(topReady!) = ready
A (Vrtsk : state™ (| {ready} ) e priority(topReady!) > priority(rtsk))
o — (Task[log_context := log_context @ {(target?, bare_context)},
phys_context := log_context(top Ready"),
running_task := topRead)y!,
state := state®
({(target?, nonexistent)} U {(topReady!, running)}),
tasks := tasks \ {target?}]
A (st € TASK
A = (state ® ({(target?, nonexistent)}J
{(topReady!, running)}))(st) = state(st)
= (state(st), (state & ({(target?, nonexistent)}U
{(topReady!, running)}))(st)) € transition)
=t e TASK
A state(t) = ready
A — priority(top Ready') > priority(t))

Generally, the purpose of Theorem 11 is to prove and notify Z/Eves that for all the state that satisfies the
definition of Tusk, based on the precondition of schema Delete TaskS_T , the proof goal (4) is false. With this infor-
mation and the following script, Z/Eves can easily prove the result of Theorem 10 is true. DeleteTaskS_T _vc_ref
can be continued.

proof [ DeleteTuskS_T _vc_ref ]
use topReadyTask[a := state ~ (| {ready} )I;
with disabled (Task) prove by reduce;
instantiate running_task’ == f(state ~ ( {ready} ));
prove;
use [DeleteTaskS_T_Lemma[topReady! := f(state ~ ( {ready} ))];
prove;
instantiate t__0 == rtsk;
prove;

3.4. Executing tasks

In FreeRTOS, there is no API for this: once the task scheduled, it will be executed automatically. However, it
is helpful for specifications to show the task be executed, especially when executing the specification with an
animator. In detail, when the processor executes a task, it updates registers, flags, memory locations, and so on.
‘We model this by updating the physical context of the processor. Here, we are not interested in the new value after
the operation. What we would like to know is that it is changed and the new value has some special property.
Therefore, we use a nondeterministic definition again for updating phys_context. Because this schema describes
executing the task, if the new value of phys_context is different from the original one, it would be satisfied.

3.5. Suspending/resuming tasks

Just like creating and deleting, suspending and resuming tasks also have two cases. When the system suspends a
ready or blocked task, it does not lead to rescheduling; however, if the task to be suspended is the running task,
then the system needs to find another task to take the processor. If a resumed task has a higher priority than
the running task, it becomes the new running task; otherwise, it goes to the ready state. As mentioned above,
normally the handle of the idle task is not obtainable. Even though the user may extend the behaviour of the idle
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task by modifying the vApplicationIdleHook function, the idle task must never be suspended [Bar12b], and
consequently can never be resumed. It is possible to suspend a suspended task: the system just keeps everything
the same as before. So the first case concerns suspending a task that is ready or blocked; the only change necessary
is to update the task’s state. The following script shows the precondition theorem and proof script of the schema
of this case.

Theorem 12 (SuspendTaskN_T _vc_ref)
V SuspendTaskN _TFSBSig | true e pre SuspendTaskN_T

proof [SuspendTaskN_T _vc_ref]
prove by reduce;
apply extensionality to predicate TASK \ (state ™ (| {nonexistent} |)) =
TASK \ ((state & {(target?, suspended)}) ~ (| {nonexistent} |) );
apply extensionality to predicate (state &
{(targer?, suspended)}) ™ (| {running} |) = state ~ (| {running} |);

instantiate pt__0 == pt;

prove;

apply apply Override;

with normalization prove;
[ |

Due to the complication of the proof goal, the final proof command “with normalization prove; “requires a
significant amount of time to complete. However, if we use the “cases, next” commands to separate the proof
goals into different cases and then apply “with normalization prove; ”, it becomes much more efficient.

The second case of the suspend operation is that the suspended task is the running task. Clearly, this leads to
rescheduling. This operation ensures that the running task is not the idle one. It selects a target that is running and
is one with the greatest priority of all ready tasks (there may be many such tasks). The Reschedule schema is used
to achieve the necessary rescheduling. Similar to DeleteTaskS_T, a nondeterministically chosen value is assigned
to running_task’. The prover is confused about its value. An additional theorem, [SuspendTaskS_T _Lemma, is
introduced to help the prover with the precondition. Finally, it is also possible to suspend a suspended task.
According to the reference manual of FreeRTOS [Bar12a], nothing changes when a suspended task is suspended.
A single call to vTaskResume can resume the task that has been suspended several times. For this case, in schema
SuspendTaskO_T , predicate E Task is used to represent the pre and post value of all variables within Task schema
are consistent.

Similarly, the first case of resuming a task does not cause rescheduling. The priority of the resumed task must
be no higher than the running task. The task is simply moved to ready state and keeps everything else unchanged.

In the second case, the resumed task has a higher priority than the running task, and rescheduling is required.
Again, the schema Reschedule is used to approach this.

3.6. Changing priority of tasks

Because the priority of the idle task is permanently 0, if the target task is idle, the newpri? should equal 0.
Specifically, to change the priority of tasks, there are three different cases that need to be considered. In the first
case, there is no scheduling required, and this follows if one of the following conditions hold.

1. The target is the running task and the new priority is at least as high as every other ready task.

2. The target is ready and the new priority does not have a greater priority than the running task.

3. The target is the idle task and the new priority is 0.

4. The target is blocked.

5. The target is suspended.

Note that we cannot change the priority of nonexistent tasks. Further, as the set TASK is composed of running,
ready, blocked , suspend, and nonexistent, tasks in these states are disjoint. Therefore, the predicate state(target?) #
nonexistent could imply that the zarger? is one of the other four states. That means for the conditions related to
the blocked and suspended states, we do not need other predicates. Finally, the effect of the operation is to change
only the priority of the target, nothing else. Then, we update the function priority by overriding the priority of
the rarget? task with newpri?.
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Table 1. API mappings & preconditions for operations

API Operation Precondition
xTaskCreate CreateTask_T = CreateTaskN_T state(target?) = nonexistent
V CreateTaskS_T
CreateTauskN_T state(target?) = nonexistent
newpri? < priority(running_task)
CreateTaskS_T state(target?) = nonexistent
newpri? > priority(running_task)
vTaskDelete DeleteTask_T = DeleteTaskN_T target? € tasks \ {idle}
V DeleteTaskS_T state(target?) = running =

(topReady! : state™ (| {ready} |)
o (V1 :state™( {ready} )
o priority(top Ready!) > priority(t)))

DeleteTaskN_T target? € tasks \ {idle}
state(target?) € {ready, blocked, suspended}
DeleteTuskS_T target? € tasks \ {idle}

state(target?) € {running}
JtopReady! : state™ (| {ready} |
o (Vt: state™( {ready} |
e priority(topReady!) > priority(t))

- Execute RunningTask_T dphys_context’ : CONTEXT
o phys_context’ # phys_context
vTaskSuspend SuspendTask_T = SuspendTaskN_T target? € tasks \ {idle}
Vv SuspendTaskS_T state(target?) = running =
V SuspendTaskO_T (AtopReady! : state™ (| {ready} |)

o (Vt:state™( {ready} |
o priority(topReady!) > priority(t)))

SuspendTaskN_T target? € tasks \ {idle}
state(target?) € {ready, blocked}
SuspendTaskS_T target? € tasks \ {idle}

state(target?) € {running}
JtopReady! : state™ (| {ready} |
o (V1 :state™( {ready} )
e priority(topReady!) > priority(t))

SuspendTaskO_T state(target?) = suspended
vTaskResume ResumeTask_T = ResumeTaskN_T state(target?) = suspended
V ResumeTaskS_T
ResumeTuskN_T state(target?) = suspended
priority(target?) < priority(running_task)
ResumeTaskS_T state(target?) = suspended

priority(target?) > priority(running_task)

In the second case, the target is a ready task whose new priority is higher than that of the running task. The
target displaces the running task as the tasks are rescheduled. Similarly, the Reschedule schema is used to achieve
this.

Third, similar to the second case, rescheduling is required. However, the target task, whose priority we wish
to change, is the running task. Meanwhile, the new priority is not the greatest one among the ready tasks. The
schema for this would firstly pick up the task with the highest priority among the ready tasks. It updates the value
of the priority of the running task. Finally, it reschedules the system with the Reschedule schema. The variable
“topReady!” here, similar to the schedule case of delete task and suspend task, is used to represent which ready
task holds the highest priority among other ready tasks and would be scheduled as the new running task after the
operation. Also, the schema /ChangeTask PriorityD_T _Lemma is introduced to handle the nondeterministically
chosen value of “running_task’”.
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Table 2. API mappings & preconditions for operations(continue)

vTaskPrioritySet ChangeTask Priority_T state(target?) # nonexistent
= ChangeTuaskPriorityN_T target? = idle = newpri? =0
Vv ChangeTaskPriorityS_T JtopReady! : state™ (| {ready} |
Vv ChangeTask PriorityD_T o (state(target?) € {running}

A = (Vrtsk : TASK | state(rtsk) = ready
o newpri? > priority(rtsk)))
= newpri? < priority(topReady!)
A (Yt : state™ (| {ready} )
o priority(topReady!) > priority(t))
ChangeTask PriorityN_T state(target?) = ready =
newpri < priority(running_task)
state(target?) = running
= (V¢ : state™( {ready} |) e newpri? > priority(t))
state(target?) # nonexistent
target? = idle = newpri? =0
ChangeTask PriorityS_T state(target?) = ready
newpri? > priority(running_task)
target? = idle = newpri? =0
ChangeTask PriorityD_T state(target?) € {running}
target? = idle = newpri? =0
JtopReady! : state™ (| {ready} |
e newpri < priority(top Ready!)
A (Yt :state™ (| {ready} )
o priority(topReady!) > priority(t))

3.7. Summary of interface

We collect together the preconditions for the interface, and the API mapping in Tables 1 and 2. When we define
the schemas for APIs, to simplify the specification, we use different schemas to define the different cases of a API.
Therefore, we use disjunction to connect them together to get the schema that represents the API in FreeRTOS.
Meanwhile, the precondition for these new schemas is also obtained from the preconditions of the old schemas,
which are disjoined as well. For instance, the FreeRTOS API for creating a task, xTaskCreate, is represented
by the schema CreateTusk_T, which has two cases, CreateTuskN_T and CreateTuskS_T, as we defined above.
Therefore, it is defined by these two sub-schemas linked by “Vv”. For the first case, the precondition is that rarget?
is unknown by the system and the priority of new task is lower than or equal to the priority of running task.
Meanwhile, the precondition for the second case is that zarget? is unknown by the system as well, plus the priority
of new task is greater than the one of the running task. Therefore, the precondition for the new schema is only
that zarget? is unknown by the system before the operation.

Based on the content of this table, it is possible to produce the code-level annotations for VCC. These pre-
conditions can be used in VCC as the content of requires clauses, _(requires . . .). Further, the postconditions of
the schemas can also be transferred into ensures clauses, _(ensures . . .), of the notation of VCC. In our research,
we also verified the task-related functions with VCC. Due to the limitation of the scope and the length of this
paper, we have not included these details.

3.8. Some properties

Finally, there are some properties that need to be verified for our specifications. Some of them help us to ensure
our specifications have correct behaviours, the properties of the system are consistent with the API document
and source code, efc. Meanwhile, others are used to help Z/Eves prove our model correct. These theorems may
seem trivial to the human eye; however, they are particularly helpful for the prover. Therefore, in this section, we
present only a few of these theorems as examples. The details can be found on the web page.

1. As described above, in some schemas we need to find the task with the highest priority among all ready tasks.
In these cases, it is important to ensure that the running task is not a member of the ready tasks. Otherwise,
the reschedule algorithm would be chaotic. Moreover, it also important for the prover to prove the related
properties of the task. For instance, it helps proving the theorem Tusk Property6.
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Theorem 13 (TaskProperty3)
Y Task; t : state™(| {ready} |) o t € tasks \ {running_task}

2. The variable tasks is used to record tasks known in the system. In other words, if the task is not recorded by
tasks, it should unknown by the system. This theorem is helpful for the prover to sort out the state of this task
1S nonexistent.

Theorem 14 (TaskProperty4)
V Task; t : TASK \ tasks e state(t) = nonexistent

3. Asdefined by the FreeRTOS, the idle task has the lowest priority all the time. If the priority of a task is greater
than 0, this task cannot be idle task. The command prove by reduce can be used for proving this.

Theorem 15 (TaskPriorityS)
V Task; t : tasks | priority(t) > 0 e t # idle

4. Ttis also interesting to check that the behaviour of the operation schemas are properly described. To illustrate
this, we select the schema SuspendTaskS_T to check. This theorem will check for any proper case of Tusk,
after the SuspendTuskS_T operation, the old running task should be suspended and the new running_task has
the highest priority among the ready tasks. To prove this theorem, the theorem TaskProperty3 will be used.
Following that, we apply the one-point rule to the condition. Then the goal can be proved.

Theorem 16 (TaskProperty6)

V Task | SuspendTaskS_T
e state’(running_task) = suspended
A (Yt : state™ (| {ready} |) e priority(running_task'’) > priority(t))

proof [ Task Property6]
with disabled (A Task, Task) prove by reduce;
use TaskProperty3[t := target!];
instantiate 0 == t;
prove;

4. Case study

As promised in Sect. 2.2, we show how our specification illustrates the execution of FreeRTOS code in Fig. 2.

Firstly, ProZ is used to animate the model. Before animation, we set the size of our given sets to 4; the
maximum integer needs to be set to 4 as well. This is because we have four tasks in the application, idle, Taskl,
Task2, and Task3, and the maximum number used is the priority of Task3, namely 4. Afterwards, the . tex file is
loaded in ProZ. Although we have three tasks in the application, it executes in a single-core processor. Therefore,
it is possible to sort out the sequence of API calling, which is

xTaskCreate Create Task1 with priority of 1;

xTaskCreate Create Task2 with priority of 2;

vTaskPrioritySet Change the priority of Task1 to 3;

xTaskCreate Create Task3 with priority of 4;

vTaskDelete Delete Task3;

After initialising the machine in ProZ, we call the API in this order (See Fig. 3). As we analysed in Sect. 2.2, the
expected final state of execution should be:

1. There are three tasks left in the system, idle, Task1, and Task2;
2. Task1 is the running task, as it has priority of 3.

3. Task2 is in ready state with priority 2.

4. Task3 is unknown to the system, therefore its state is nonexistent.
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History

s =] ‘ State Properties

DeleteTask_T(TASK4)-->TASK2
CreateTask_T(4,TASK4)

ChangeTaskPriority_T(3,TASK2)-->TA

CreateTask_T(2,TASK3)
CreateTask_T(1,TASK2)
INITIALISATION({(idle|->bare_context

log_context(idle) = bare_context
log_context(TASK2) = bare_context
log_context(TASK3) = bare_context
log_context(TASK4) = bare_context
phys_context = bare_context
priority(idle) = 0

priority(TASK2) = 3

priority(TASK3) = 2

priority(TASK4) = 4

running_task = TASK2

state(idle) = ready

state(TASK2) = running
state(TASK3) = ready

state(TASK4) = nonexistent

tasks = {idle, TASK2,TASK3}

Fig. 3. Screen shot for API execution history and result from ProZ
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As we can see from the screen shot of the state properties, the result generated from our model matches our

expectation.

Besides this, we also let Z/Eves verify our result. We use a theorem, similar to Theorem 16, to show that
the behaviour of the API matches our expectation. The API call xTaskCreate is repeated three time in the
application; we only show the theorem for one of these calls. Therefore, we have the following theorems to show
our model works for the application.

1. Create Taskl. When we execute this, there is only the id1le task in the system, which is the running task; there-

fore, we have to indicate this situation to the prover. The input variables need to be introduced and we need to
specify the value of newpri? as 1. After this operation, we expect that the new task is created, which means it
is in the set tasks’. It should be the running task with priority 1, which is higher than the priority of the idle
task.

Theorem 17 (CaseStudyStep1)

V Task; target? : TASK; newpri? : N
| tasks = {idle} A running_task = idle A newpri? = 1 A CreateTask_T
o target? € tasks' A state'(target?) = running A priority'(target?) = 1

To prove this, we know that the system needs to be scheduled. Therefore, we try to eliminate the non-schedule
part of the specification of CreateTask_T. The key condition to distinguish these two cases is whether the
priority of the new task is greater than the running task. Thus, we expand the necessary schemas of the proof
goal and then let the prover discharge the proof goal automatically by the prove by reduce; command.

proof [ CaseStudyStep1]
with disabled (CreateTaskS_T, StateData, TaskData, ContextData) reduce;
prove by reduce;

. Change the priority of Task1 to 3. Similarly, we need to inform the prover about the pre-state of the system.
The key element of the expected result of this API call is that Task1 is scheduled as running task with priority
of 3. By eliminating the unrelated case of ChangeTaskPriority_T, like the previous case for CreateTask_T, it
is easy to prove this theorem.
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Theorem 18 (CaseStudyStep3)

Y Task; Taskl, Task2, target? : TASK; newpri? : N
| tasks = {idle, Task1, Task2}
A priority(Task1) = 1 A priority(Task2) = 2
A state(Task1) = ready A running_task = Task?2
A target? = Task1 A newpri? =3
A ChangeTask Priority_T e priority (Task1) = 3 A running_task’ = Task1

3. Finally, we verify the properties related to the last step of the API call, delete Task3. Following the strategy
introduced before, the theorem and proof can be obtained. The only difficulty in proving this theorem is the
nondeterministic definition for zop Ready!. In order to solve this, it is necessary to inform Z/Eves that (a) The
possible value of top Ready! is one of the elements of tasks. (b) The priority of top Ready! is the greatest amongst
all ready tasks, i.e., the priority of topReady! has to be greater than or equal to the priority of Task1.

Theorem 19 (CaseStudyStep5)

V Task; Taskl, Task?2, Task3, target? : TASK; newpri? : N
| tasks = {idle, Task1, Task?2, Task3}
A priority(Task1) = 3 A priority(Task2) = 2 A priority(Task3) = 4
A state(Task1) = ready A state(Task2) = ready A state(Task3) = running
A target? = Task3
A DeleteTask_T e state'(Task3) = nonexistent A running_task’ = Task1

5. Conclusions

We have produced the first completely abstract specification of the task model of FreeRTOS. The model can
be animated by the ProZ tool to show how FreeRTOS works. We have shown that the model is internally con-
sistent by discharging all the verification conditions for well-definedness of the specification and by calculating
the exact preconditions for the successful operation of each part of the FreeRTOS API. The model contains
about 77 Z paragraphs. It also includes 88 theorems. All verification conditions and theorems have been proved
by the Z/Eves theorem prover, either automatically (59 out of 88 theorems) or interactively (29 out of 88 theo-
rems). The web-presentation contains all these proofs, so that the entire verification can be replayed to check its
authenticity: crucially, our experiment is repeatable.

For future work, the model will be extended to include the behaviour of Queues, Time, Mutexes, and Interrupts.
We are going to refine the entire development of our formal specification into running code, as close as possible to
the existing code of FreeRTOS. This is not a trivial matter, even for a small system such as FreeRTOS. Due to the
requirements for portability, there are different implementations for some interrupt-related operations, such as
taskENTER_CRITICAL() and task EXIT _CRITICAL(). Our work will involve targeting code using Microsoft’s
Verifying C Compiler, with separate verification of assembly language inserts. Finally, we plan to extend the work
to multicore following the strategy laid out in [Misl1, MNW13].

We are keen to encourage others to use our specifications and proofs as benchmarks for comparing other
notations and tools. This is in a similar spirit to our work on the Mondex smart-card [WSC*08], where we
invited others to use a range of different formalisms and tools on the same problem to gather evidence about the
current state of the art in mechanical verification (see [JW08]). As well as our formalisation and mechanisation in
Z/Eves [FWO08], the problem was tackled in Alloy [Ram08], ASM [HSGRO08], Event-B [BY08], Maud [KOF07],
OCL [KG08], PerfectDeveloper (unpublished), the 7 -calculus [JP07], RAISE [GHO08], and VDM [ABF*11].
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A. Summary of Z/Eves proof commands

We summarise the proof commands used in proving of the model. For full instruction of the proof commands,
please see Chap. 5 of [MS97].

prove The prover automatically applies sequences of proof commands. For example, simplify, rewrite, rearrange.
Besides this, the mathematical rules included in Z/Eves’ mathematical toolkit [Saa99a] are applied, if possible.

prove by reduce The prover repeatedly reduces the current proof goal. In addition to what prove does, the prover
expands all names.

with enabled (theorem) This is a prefix that is applied to the prove, prove by reduce, or an already prefixed com-
mand. Many inefficient rules are disabled by default, and this prefix enables them for the current command.
For example, with enabled (apply Override) prove allows the prover to use the disabled theorem apply Override
within the scope of the prove command.

with disabled (theorem) This is similar to the previous command, except that it disables the theorem rather than
enabling it.

with normalization Thisisalso a prefix for prove commands. It allows the prover to use “if-then-else” normal-form
to represent all logical connectives [Saa99a].

instantiate This command allows the prover to instantiate quantified variables (universal in the assumptions,
existential in the goal).

apply theorem As mentioned above, there are plenty of disabled rules in Z/Eves’ mathematical toolkit. This
command applies the specified theorem to rewrite the goal.

use theorem This command allows a specified theorem to be used to deduce additional assumptions.
extensionality A theorem included in Z/Eves Mathematical Toolkits [Saa99a], which defined as:

X=YoWVx:XexeY)ANVy:YeyelX)
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