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Abstract. Inspired by the relational algebra of data processing, this paper addresses the foundations of data
analytical processing from a linear algebra perspective. The paper investigates, in particular, how aggregation
operations such as cross tabulations and data cubes essential to quantitative analysis of data can be expressed
solely in terms of matrix multiplication, transposition and the Khatri–Rao variant of the Kronecker product.
The approach offers a basis for deriving an algebraic theory of data consolidation, handling the quantitative as
well as qualitative sides of data science in a natural, elegant and typed way. It also shows potential for parallel
analytical processing, as the parallelization theory of such matrix operations is well acknowledged.
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1. Introduction

In a recent article in the Harvard Business Review, Davenport and Patil [DP12] declare data scientist as the sexiest
job of the 21st century. Such high-ranking professionals should be trained to make discoveries in the world of big
data, this showing how much companies are wrestling with information that comes in volumes never encountered
before. The job calls for a lot of creativity mixed with solid foundations in maths, statistics, probability, and
computer science.

Leaving aside the enormous challenges posed by big unstructured data, a data scientist is expected to live on
data science, whatever this is. Concerning structured data, we see data science as a two-fold body of knowledge,
made of qualitative as well as quantitative ingredients. The qualitative side is provided by the solid theory of
databases [Mai83] which, formalized in logic and (relational) set theory, has led to standard querying languages
over relational data such as SQL. As for the quantitative side, we see similar efforts in the formalization of
data analytic techniques—put forward under the umbrella of the OLAP 1 acronym—but such efforts seem less
successful in setting up a thorough semantic basis for understanding and optimizing analytical processing.

Correspondence and offprint requests to: H. D. Macedo, E-mail: hugo.dos santos macedo@inria.fr
1 OLAP stands for On-line Analytical Processing [DT99, PJ01].
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It is true that formal definitions for concepts such as multi-dimension database [GL97], data aggregation
and data cube [DT99] have been given (among others), including an algebra of cube operators [DT99]. Little is
written, however, concerning algebraic properties of such operators. And those which are given either address the
qualitative side again (the dimension algebra [JLN00] rather than the measure one) or are stated without proof
(e.g. the two equalities in [GCB+97] concerning roll-up, group-by and cube).

These shortcomings are easy to understand: while relation algebra “à la Codd” [Cod70] and naive set theory
work well for qualitative data science (focus on attribute and dimension structures), they are rather clumsy in
handling the quantitative side (focus on measure structures and their operations). In this paper we propose to
solve this problem by suggesting linear algebra (LA) as an alternative suiting both sides: the qualitative one—by
regarding it as a typed theory—and the quantitative one—by internalizing all details of data consolidation and
aggregation under the operations of matrix composition (namely multiplication) and converse (transposition).

This approach builds upon previous work on typed linear algebra and its applications in computer science,
which include areas as diverse as data vectorization [MO13], probabilistic program calculation [Oli12], weighted
automata [Oli13], component-oriented design [MO11b, Oli14b] etc. Details and further examples can be found
in a technical report [MO11a] which also elaborates on the potential of the approach for OLAP parallelization.

Contribution. The ideas presented in this paper derive from the authors’ work on typing linear algebra [MO10,
Mac12, MO13] which eventually drove them into the proposed synergy between linear algebra and OLAP. Such
a synergy is, to the best of their knowledge, novel in the field. Rather than relying on standard OLAP state of
the art developments, a cross-field perspective is put forward that may open new ways of looking at this body of
knowledge.

Overview of the paper. The remainder of this paper is structured as follows. Sections 2 and 3 explain the shift
from relational to linear algebra, imposed by the shift from qualitative to quantitative processing. Section 4 gives
a brief overview of typed linear algebra. Section 5 expresses cross tabulations solely in terms of linear algebra
matrix operations. Section 6 treats cross tabulation and “rolling up” along functional dependencies, introducing
dimension hierarchies into the game. Section 7 proves that the construction of cross tabulations is incremental.
Section 8 goes higher-dimensional into the LA construction of OLAP cubes. Finally, Sect. 9 reviews related work
and Sect. 10 draws conclusions and gives a prospect of future work. Some technical details and proofs are deferred
to the two appendices.

2. From relations to matrices

On-line analytical processing [DT99, PJ01, JPT10] aims at summarizing huge amounts of information in the
form of histograms, sub-totals, cross tabulations (namely pivot tables), roll-up/drill-down transformations and
data cubes, whereby new trends and relationships hidden in raw data can be found. The need for this technology
concerns not only large companies generating huge amounts of data every day (the “big data” trend) but also
the laptop spreadsheet user who wants to make sense of the data stored in a particular workbook.

Since Codd’s pioneering work on the foundations of the relational data model [Cod70], relation algebra has
been adopted as the standard basis for formalizing data processing. Given the proximity between relation and
matrix algebra [Sch11, DGM14] the question arises: how much gain can one expect from translating results from
one side to the other? This paper will show how a particular construction in relation algebra—that of a binary
relational projection, defined in [Oli09, Oli11] to calculate with functional dependencies in databases—translates
matrix-wise into cross tabulations (namely pivot tables) which are central to data analytical processing.

On the relational side, a binary relational projection is always of the form

πf ,gR � {(f b, g a) | (b, a) ∈ R}
where R is the binary relation being projected and f and g are observation functions, usually associated to
attributes.
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Fig. 1. Collection of raw data (adapted from [GC97])

Although less common in the database literature, the alternative definition

πf ,gR � f · R · g◦ (1)

is simpler and easier to reason about, where the dot (·) between the symbols denotes relational composition and
( )◦ expresses the converse operation: pair (b, a) belongs to relation R◦ iff pair (a, b) belongs to R.2

Projection pattern (1) turns up often in relation algebra [BdM97]. When expressing data dependencies, such
projections take the form

fA · �T � · f ◦B (2)

where T is a database file, or table (a set of data records, or tuples), A and B are attributes of the schema of T , fA
(resp. fB ) is the function which captures the semantics of attribute A (resp. B )3 and �T � represents set T in the
form of a diagonal relation:

�T � � {(t, t) | t ∈ T }
This somewhat redundant construction proves essential to the reasoning, as shown in [Oli11, Oli14a]. Expressed
in set-theoretical notation, projection (2) is set-comprehension {(t [A], t [B ])|t ∈ T }where t [A] (resp. t [B ]) denotes
the value of attribute A (resp. B ) in tuple t .

Note how simple (2) is in its relying only on very basic combinators of relation algebra, namely composition
and converse, which generalize to matrix multiplication and transposition, respectively. Under this generalization,
we will show below that cross tabulations can be expressed by a formula similar to (2),

tA · �T �M · t◦B (3)

where M is a measure attribute and attributes A and B are the dimensions chosen for each particular cross
tabulation. Notation tA (resp. tB ) expresses the membership matrix of the column addressed by dimension A
(resp. B ) whose construction will be explained later. Also explained later, �T �M denotes the diagonal matrix
capturing column M of T .4

The construction of matrices tA, tB and �T �M will be first illustrated with examples. Cross tabulations will
be pictured as displayed by Microsoft Excel.

3. Cross-tabulations

In data processing, a cross tabulation (or pivot table) provides a particular summary or view of data extracted
from a raw data source. As example of raw data consider the table displayed in Fig. 1 where each row records the
number of vehicles of a given model and color sold per year.

In general, the raw data out of which cross tabulations are calculated is not normalized and is collected into
a central database, termed a data warehouse or decision support database. Different summaries answer different
questions such as, for instance, how many vehicles were sold per color and model? For this particular question, the
attributes Color and Model are selected as dimensions of interest, Sales is regarded as measure attribute and the
corresponding cross tabulation is depicted in Fig. 2, as generated via the pivot table menu in Excel.

2 Recall from discrete maths that, given two relations R and S , pair (c, a) will be in the composition R ·S iff there is some b such that (c, b)
is in R and (b, a) is in S . Thus, (y, x ) ∈ f · R · g◦ in (1) means that y � f b and x � g a for some (b, a) ∈ R, that is, (y, x ) � (f b, g a).
Altogether, f ·R · g◦ � ⋃

(b,a)∈R{(f b, g a)} which reduces to the given set comprehension.
3 That is, given a tuple t ∈ T , fA(t) yields the value of attribute A in t , usually denoted by t [A] (similarly for attribute B).
4 The shift from the binary relations of (2) to the matrices in (3) will be detailed in the sequel. Although relations can be represented by
Boolean matrices containing only 0s and 1s (more about this in Appendix A), matrix �T �M will be a numeric matrix in general holding
real-life quantities and measures.
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Fig. 2. Pivot table as extracted by Excel from the data in Fig. 1

Large scale cross tabulation generation is an essential part of quantitative data analysis. As already mentioned,
OLAP refers to the set of techniques performing such analysis over information stored in data warehouses,
whose complexity is well-known [PKL02]. Quoting [DT99]: The complexity of queries required to support OLAP
applications makes it difficult to implement using standard relational database technology. Feeling the lack of a
standard conceptual model for OLAP, the same authors [DT99] propose one based on first order logic. Reference
[VS99] provides a review of other efforts in defining logical models for OLAP.

Rather than trying to extend existing logic models towards accommodating OLAP semantics, the approach
put forward in this paper changes strategy and calls for a synergy with the field of linear algebra. The key resides
in expressing analytic operations in the form of matrix algebra expressions. In the particular case of reporting
multi-dimensional analyses of data, one should be able to build three matrices as hinted by formula (3): two
associated to the dimensions (attributes) A and B being analysed and a third one recording which measure or
metric data are to be considered for consolidation.

This encoding of data into LA is quite smooth if matrix operations are typed in the way presented in e.g.
[MO13]. For self-containedness we give a very brief overview of such typed LA notation below.

4. Typed linear algebra

Matrices as arrows. A matrix M with n rows and m columns is a function which tells the value r M c which
occupies the cell addressed by row r and column c, for 1 ≤ r ≤ n, 1 ≤ c ≤ m. Note that we prefer infix notation
r M c to e.g. Mrc or even M (r , c) for reasons to be explained later.

Following the arrow notation of [MO13] and writing n mM�� to denote that matrix M is of type n←m
(m columns, n rows), matrix multiplication can be expressed by arrow composition:

n mM�� k
N��

C�M ·N
�� (4)

Point-wise, this operation is defined by:5

y (M ·N )x � 〈
� z :: y M z × z N x

〉
(5)

n

M

��

n
idn��

M

��M����
��

��
��

m m
idm

��

For every n there is a matrix of type n n�� which is the unit of composition.

This is nothing but the identity matrix of size n, denoted by n n
idn�� or n n1�� ,

indistinguishably. Therefore (diagram aside):

idm ·M � M � M · idn

Subscripts m and n can be omitted wherever the underlying diagrams are well-defined and can be inferred from
the context.

5 This and other pointwise definitions and rules to come are expressed in the style of the Eindhoven quantifier calculus, see e.g. [BM06].
Matrix multiplication is so-called because it can be regarded as an extension of numeric multiplication to matrices. Phrase matrix composition
emphasises the underlying categorial basis [MO13] of this operation, which is less widely acknowledged. As types are central to the approach
proposed in this paper, we will write composition instead of multiplication unless quoting work which explicitly uses the latter terminology.
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Vectors as arrows. Vectors are special cases of matrices in which one of the dimensions is 1, for instance

v �
⎡

⎢
⎣

v1
...

vm

⎤

⎥
⎦ and w � [

w1 . . . wn

]

Column vector v is of type m← 1 (m rows, one column) and row vector w is of type 1← n (one row, n columns).
Our convention is that lowercase letters (e.g. v ,w ) denote vectors and uppercase letters (e.g. M , N ) denote
arbitrary matrices.

Converse of a matrix. One of the kernel operations of linear algebra is transposition, whereby a given matrix

changes shape by turning its rows into columns and vice-versa. Given matrix n mM�� , notation m nM ◦
��

denotes its transpose, or converse. The following laws hold: (M ◦)◦ � M (idempotence) and (M ·N )◦ � N ◦ ·M ◦
(contravariance).

m

n

M

������������

i1

�� n + p

[
M N

]

��

π1�� π2 �� p
i2

��

N

		����������

t

P

		����������

[
P

Q

]

��

Q

������������

Block notation. Matrices can be built of other matrices using block notation. Two
basic binary combinators are identified in [MO13] for building matrices out of other

matrices, say M and N , regarded as blocks, either stacking these vertically,
[
M
N

]
,

or horizontally,
[
M N

]
. Dimensions should agree, as shown in the diagram aside,

taken from [MO13], where m, n, p and t are types. Special matrices i1, i2, π1 and π2
are fragments of the identity matrix and play an important role in explaining the
semantics of the two combinators. This, however, can be skipped for the purposes
of the current paper 6, sufficing to know a number of laws which emerge from the
underlying mathematics, namely converse-duality

[
M N

]◦ �
[
M ◦

N ◦

]
(6)

divide-and-conquer

[
M N

] ·
[

P
Q

]
� M · P + N ·Q (7)

which captures the essence of (parallelizable) matrix multiplication, two fusion laws

P · [M N
] � [

P ·M P ·N ]
(8)

[
M
N

]
· P �

[
M · P
N · P

]
(9)

and the abide law 7

[ [
M N

]
[
P Q

]
]
�

[[
M
P

] [
N
Q

]]
�

[
M N
P Q

]
(10)

which establishes the equivalence between row-major and column-major construction of matrices by blocks.
(Thus the four-block notation on the right.)

6 The rich algebra of matrix block-operations arises essentially from the fact that vertical and horizontal block aggregation form a biproduct.
The interested reader is referred to [MO13] for details.
7 Neologism “abide” (= “above and beside”) was introduced by Richard Bird [Bir89] as a generic name for algebraic laws in which two
binary operators written in infix form change place between “above” and “beside”, e.g.

a

b
× c

d
� a × c

b × d

in fraction calculus.
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Direct sum and Kronecker product. Given two matrices M and N , the direct sum of M and N is defined as follows,
using block notation:

M ⊕ N �
[
M 0
0 N

]
(11)

Mind the type k + j n + m
M⊕N�� for M and N of types k←n and j←m, respectively. Direct sum is a standard

linear algebra operator enjoying many useful properties [MO13]. The following equation, termed the absorption
law, specifies how block operator

[ ]
absorbs direct sum ⊕, for suitably typed matrices M ,N ,P and Q :

[
M N

] · (P ⊕ Q) � [
M · P N ·Q ]

(12)

M ⊗ N �

⎡

⎢⎢
⎣

x11N x1nN

xk1N xknN

⎤

⎥⎥
⎦

Given the same two matrices k nM�� and j mN�� , an-
other standard construction in linear algebra is the so-called Kro-

necker product k × j n ×mM⊗N�� . This operator can be defined by
block-wise decomposition,

[
M N

]⊗ P � [
M ⊗ P N ⊗ P

]

[
M
N

]
⊗ P �

[
M ⊗ P
N ⊗ P

]

x ⊗ N � xN

where x is a scalar (1-to-1 matrix) and xN denotes scalar multiplication. The picture above describes the outcome
of the operation.

Khatri–Rao matrix product. Given matrices n mM�� and p mN�� , the so-called Khatri–Rao [RR98]

matrix product of M and N , denoted n × p mM � N�� is a column-wise version of the Kronecker product operator
given above,

u � v � u ⊗ v[
M1 M2

]
�

[
N1 N2

] � [
M1 � N1 M2 � N2

] (13)

where u, v are column-vectors and Mi , Ni are suitably typed matrices 8. As an example of operation relying on
this product consider row vector

s � [
5 87 64 99 8 7

]

of type 1 6
s�� , capturing the transposition of the Sales column of Fig. 1. The Khatri–Rao product s � id

yields the corresponding diagonal matrix:

6 6
s � id�� �

⎡

⎢
⎢⎢⎢⎢
⎣

5 0 0 0 0 0
0 87 0 0 0 0
0 0 64 0 0 0
0 0 0 99 0 0
0 0 0 0 8 0
0 0 0 0 0 7

⎤

⎥
⎥⎥⎥⎥
⎦

(14)

This conversion is essential to the LA encoding of cross tabulations, as shown in the sequel.
One can reduce over a matrix defined by rows on the right-hand side of a Khatri–Rao product whose left-hand

side is a row vector:

v �

[
M
N

]
�

[
v � M
v � N

]
. (15)

8 As shown in [Mac12], this product generalizes to arbitrary matrices the tupling operator known as split in the functional setting [BdM97]
or as fork in the relational one [Fri02, Sch11].
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Should the shape of the matrix on the right hand side be a direct sum, the equation can be rewritten into:
[
v w

]
� (M ⊕ N ) � (v � M )⊕ (w � N ) (16)

This follows from (15) and (13).

Type generalization. Matrix types (the end points of arrows) can be generalized from traditional numeric dimen-
sions to arbitrary denumerable types thanks to addition and multiplication of matrix elements being commutative
and associative. This ensures unambiguous definition of matrix composition because the summation inside the
inner product of two vectors (5) can be calculated in any order. Typewise, our convention is that lowercase letters
(e.g. n, m) denote the traditional dimension types (natural numbers), letting uppercase letters (e.g. A, B ) denote
other types and taking disjoint union A + B for m + n, Cartesian product A×B for mn, unit type 1 for number
1, the empty set Ø for 0 and so on. Conversely, dimension n corresponds to the initial segment {1, 2, . . . ,n} of
the natural numbers up to n.

There is another “type” associated with matrices, namely the type of the elements (cells). The default view in
linear algebra is to regard them as complex or real numbers, or (more generically) as inhabitants of an algebraic
field. The minimal structure for composition (5) to work is that of a semiring, e.g. the natural numbers (IN0)
under addition and multiplication. Matrices whose cells are IN0-valued are referred to as counting matrices and
addressed in Appendix A. They include so-called Boolean matrices, whose cells are either 0 or 1.9

5. Cross tabulations in LA

Recall that the core of cross tabulation generation is formula (3), which is the matrix counterpart to relational
projection (2). This section explains this construct starting by showing how the move from relations to matrices
is obtained by encoding functions as matrices.

Building projection functions. Let A be an attribute of raw-data table T and let n be the number of records in
T (namely rows, or lines in a spreadsheet). We write T (A) to denote the column of T identified by attribute A,
T (A, y) to denote the element occupying the y-th position (row) in such a column, and | A | to denote the range
of values which can be found in T (A). Column T (A) can be regarded as a function which tells, for each row
number 1 ≤ r ≤ n, which value in | A | can be found in row r of such a column. Such a function can be encoded
as an elementary matrix tA of type | A | ←n, defined as follows:

a tA r �
{

1 if T (A, r ) � a
0 otherwise (17)

These projections can be identified with the bitmaps of [WOS06], regarded as matrices. In our running exam-
ple (Figs. 1, 2) n � 6 and we want to build these matrices for attributes Model and Color . The projection

| Model | n
tModel�� associated to dimension Model is matrix

1 2 3 4 5 6
Chevy 1 1 0 0 0 0
Ford 0 0 1 1 1 1

(18)

and projection | Color | n
tColor�� associated to dimension Color is matrix

1 2 3 4 5 6
Blue 0 1 0 1 0 1

Green 0 0 1 0 0 0
Red 1 0 0 0 1 0

(19)

9 Boolean operations can be implemented in {0, 1} ⊆ IN0 by defining a ∧ b � ab, a ∨ b � a + b − ab and ¬a � 1− a , which are all closed
in {0, 1}. This is not, however, required in the sequel.
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Note that, typewise, the composition of matrices tColor and t◦Model makes sense, leading to matrix

tColor · t◦Model �
Chevy Ford

Blue 1 2
Green 0 1

Red 1 1

(20)

of type | Color | ← | Model |, which essentially counts the number of sale records per color and model. In general,
given attribute values a ∈| A | and b ∈| B |, the cell in tA · t◦B addressed by a and b counts the number of rows
of the source dataset T in which both a and b occur in the A and B columns, respectively:

a (tA · t◦B )b � 〈
� n : T (A,n) � a ∧ T (B ,n) � b : 1

〉
(21)

The derivation of (21) will be given shortly.10

The diagonal construction. In order to sum up the number of vehicles sold rather than just counting sale records
we need to identify a measure attribute, that is, a numeric attribute of T to be used for consolidation. In the case
of Fig. 1 only Sales applies. Because such numeric data have to become available for both projection matrices of
(3), to the left and to the right, the chosen column is converted into a diagonal matrix as already shown in (14).

Notation �T �M will be used to denote the diagonal matrix representation of measure attribute M in T .
Index-wise, this corresponds to the following definition:

j �T �M i �
{

T (M , j ) if i � j
0 otherwise (22)

Definition (72) in Appendix B gives a pointfree alternative to (22) which is better suited for calculational purposes.

LA script for cross tabulation. We are in position to run formula (3) for T as in Fig. 1, A � Color and B � Model .
The evaluation of tColor · �T �Sales · t◦Model yields another matrix of type | Color | ← | Model |

Chevy Ford
Blue 87 106

Green 0 64
Red 5 8

(23)

which we will denote by ctabSales
Color←Model (T ) relying on the definition

ctabM
A←B (T ) :| A | ← | B |

ctabM
A←B (T ) � tA · �T �M · t◦B (24)

—recall (3)—whose pointwise meaning is

a (ctabM
A←B (T ))b � 〈

� n : T (A,n) � a ∧ T (B ,n) � b : T (M ,n)
〉

(25)

as will be shown briefly. In words: we sum all cells T (M ,n) with n ranging over all rows such that T (A,n) and
T (B ,n) respectively hold the attribute values a and b being consolidated (ie. related). The derivation of (25) relies
on some rules for pointwise matrix manipulation given in Appendix A.

10 This situation (counting), which is what Excel outputs wherever the measure attribute chosen in pivot table calculation is not numeric,
corresponds to formula (3) wherever the middle matrix is the identity.
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Note the style of the equational proof where each step is labeled with references to the laws applied, written
inside the curly braces that follow the equality symbol (�):

a (ctabM
A←B (T ))b

� { definition (24) }
a (tA · �T �M · t◦B )b

� { matrix composition (5) twice ; converse of tB }
〈
� n :: (a tA n)× 〈

� m :: (n �TM �m)× (b tB m)
〉〉

� { �TM � is diagonal (22) }
〈
� n :: (a tA n)× 〈

� m : m � n : (n �TM �m)× (b tB m)
〉〉

� { one point rule (quantifying over m � n) }
〈
� n :: (a tA n)× (n �TM �n)× (b tB n)

〉

� { “trading” over Boolean cells a tA n and b tB n (see Appendix A) }
〈
� n : a tA n ∧ b tB n : n �TM �n

〉

� { pointwise meaning of projections tA, tB (17) and diagonal �TM � (22) }
〈
� n : T (A,n) � a ∧ T (B ,n) � b : T (M ,n)

〉

�

Clearly, (21) is a corollary of (25) since, for �TM � � id , n �TM �n � 1:

a (tA · t◦B )b � a (tA · id · t◦B )b � 〈
� n : T (A,n) � a ∧ T (B ,n) � b : 1

〉

Grand totals. If compared to Fig. 2, cross tabulation (23) misses the two row and column grand totals. These are
easily obtained via “bang” matrices. Let us explain what these are and our choice of terminology. In functional
programming, the popular “bang” function, which is of type 1← A (parametric on A, ∀A) and usually denoted
by symbol “!”, is a polymorphic constant function yielding the unique value which inhabits the singleton type 1.

The encoding of this function in LA format will be the row vector 1 A
!A�� wholly filled up with 1s. For

instance, !|Model | will be the vector with | Model |-many positions all holding number 1.11

Clearly, the composition of row vector 1 A
!�� with any column vector of type A 1

v�� computes a
scalar: the sum of all cells in v . Thus one can define a generic totalizer operator,

tot X �
[
id
!

]
·X ·

[
id
!

]◦
(26)

which equips X with three other blocks
[

X X · !◦
! ·X ! ·X · !◦

]
(27)

two sum (row and column) vectors and the grand total scalar ! ·X · !◦.12

11 For the purposes in this paper, type 1 can be regarded as the singleton set {all}. This corresponds to the Grand Total in Fig. 2 and is
consistent with the way all is used in e.g. [GCB+97], as explained later in Sect. 8.
12 The transformation of (26) into (27) follows immediately from the matrix laws of Sect. 4.
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By adding totals to ctab (24) we define

tctabM
A←B (T ) :| A | +1←| B | +1

tctabM
A←B (T ) � tot(ctabM

A←B (T )) �
[
tA
!

]
· �T �M ·

[
tB
!

]◦
(28)

which computes the standard cross-tabulation of raw data table T with respect to dimensions A, B and measure
M . Note how types (dimensions) are added with 1, the singleton type containing the distinguished element all
labelling grand totals. In our running example, this corresponds to enriching (23) with the extra row and column
corresponding to the bang vectors of (26), both labeled with all:

Chevy Ford all
Blue 87 106 193

Green 0 64 64
Red 5 8 13
all 92 178 270

(29)

Such is the outcome of evaluating tctabSales
Color←Model (T ), which finally achieves the effect of Fig. 2 involving LA

operations only.
As illustration of how these LA-based operations can be encoded in commercial languages dealing with

matrices, such as e.g. Matlab 13, listing 1 provides Matlab code for the generation of the bang vector of size r ,
the tot operator (26) and the calculation of cross tabulations (24,28).

Finally, among several properties of bang vectors we single out
[

! !
] � ! (30)

! � A � A � A � ! (31)

where (31) identifies ! as the unit of Khatri–Rao product. Since this is associative too, one can rely on its finitary
extension to a sequence of n matrices Ai (all sharing the same input type, for 1 ≤ i ≤ n) by writing�n

i�1 Ai or even

�
i←s

Ai (32)

where s is a finite sequence of indices.14 This extension will be useful in the generation of data cubes to be given
in Sect. 8. Prior to this, we address below another operation central to OLAP: roll-up.

function R = bang(r)
R = ones(1,r);

end

function R = tot(M)
[n,m] = size(M);
R = [ eye(n) ; bang(n) ] ∗ M ∗ [ eye(m) ; bang(m)]’;

end

function R = ctab(tA,c,tB)
[n,k] = size(c);
[a,i] = size(tA);
[b,j] = size(tB);
if ˜(k==1 & i==n & j == n)

error(‘Dimensions must agree’);
else id = eye(n);

D = kr(c’,id);
R = tA∗D∗tB’;

end
end

function R = tctab(tA,c,tB)
R = tot(ctab(tA,c,tB))

end

Listing 1: Matlab encoding of bang (!), tot and of cross table calculation (ctab and tctab), where the measure
column is parameter c (a vector). This is converted to a diagonal as in (14) via the Khatri–Rao auxiliary operator
kr taken from the Tensorlab library [SBL14].

13 Matlab TM is a trademark of The MathWorks R©.
14 Thus �i←[] Ai � ! and �i←(k :s) � Ak � (�i←s Ai ), where [] denotes the empty sequence and (k : s) denotes the appending of head
k to sequence s.
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Fig. 3. Augmented collection of raw data

6. “Rolling up” on functional dependencies

Rolling up means replacing a dimension by another which is more general in some sense (e.g. grouping, clas-
sification, containment). The latter is therefore “higher” in a dimension hierarchy which somehow acts as a
classification or taxonomy of data records.

A simple way of seeing roll-up at work is the acknowledgement of functional dependencies (FDs) in data
[Mai83]. Let us, for instance, augment the raw data of our running example with two new columns recording
the month and season of each sale, as displayed in Fig. 3. Look, for instance, at the column labelled Season
telling in which season (Spring , Summer , Autumn or Winter ) the particular sales took place. Clearly, FD
Season ← Month holds, as no sales are recorded in the same month and in different seasons. This possibly
happens because the Season and Month columns result from a join of the original table with some other table
recording that Season is higher than Month in the temporal dimension hierarchy.15

Roll-up matrices. In general, a functional dependency B ← A will hold in a table T iff no pair of rows can be
found in T in which the values of attribute A are the same and those of attribute B differ (“B is determined by
A”):

〈∀ n,m : T (A,n) � T (A,m) : T (B ,n) � T (B ,m)〉 (33)

In the style of [Oli14a], we will write B A
T�� to mean (33), abbreviated to B←A wherever T is implicit. As

is shown in Appendix A (33) can be expressed solely in terms of projection matrices:

B A
T�� ⇔ t◦A · tA ≤ t◦B · tB (34)

Whenever B A
T�� holds, B acts as a classifier for A, meaning that every cross tabulation involving A

can be rolled-up into another (less detailed) one involving B instead. In general, we define the roll-up matrix

| B | | A |tB←A�� associated to FD B ← A by

tB←A � �tB · t◦A� (35)

where �M � denotes the support of a given matrix M (59): the matrix of the same type whose non-zero cells are
mapped to 1.

January March April August October
Spring 0 1 1 0 0

Summer 0 0 0 1 0
Autumn 0 0 0 0 1
Winter 2 0 0 0 0

For instance, let us compute tSeason · t◦Month (aside). This
is a matrix of natural numbers counting the number of records
in which a particular relationship holds, for instance January
versus Winter , which turns up twice. Quantities are not that
important here; what matters is the univocal relation between

15 The fact that T is not normalized in general reflects the preparation process of merging into the same data warehouse different tables of a
(normalized) database.



294 H. D. Macedo, J. N. Oliveira

Month and Season (January belongs to Winter only, not to two or more seasons) and this is obtained by
taking the support of this matrix, yielding the roll-up matrix

tSeason←Month � �tSeason · t◦Month� �
January March April August October

Spring 0 1 1 0 0
Summer 0 0 0 1 0
Autumn 0 0 0 0 1
Winter 1 0 0 0 0

(36)

So, given a cross tabulation matrix | A | | C |X�� , the effect of rolling it up across a given FD B ← A
is another cross tabulation given by matrix tB←A · X of type | B | ← | C |, to which totals can be added, e.g.
tot(tB←A ·X ). Converse (transpose) caters for the same effect on the right-hand side: rolling X up across another

FD C ← D yields matrix X · t◦C←D of type | A | | D |X�� . We illustrate this below by instantiating X with
a cross tabulation from Model to Month

ctabSales
Month←Model (T ) �

Chevy Ford
January 0 15

March 5 0
April 87 0

August 0 64
October 0 99

(37)

which, once composed with roll-up matrix (36) yields the expected rolling up effect, once equipped with totals:

tot(tSeason←Month · ctabSales
Month←Model (T )) �

Chevy Ford all
Spring 92 0 92

Summer 0 64 64
Autumn 0 99 99
Winter 0 15 15

all 92 178 270

(38)

Note that we could have computed tctabSales
Season←Model (T ) in one go, without the help of the roll-up matrix,

obtaining the same result as (38). The general result expresses the fusion between roll-up matrices and cross-
tabulations as follows:

tot(tB←A · ctabM
A←C (T )) � tctabM

B←C (T ) ⇐ B A
T�� (39)

January March April August October
Blue 1 0 1 0 1

Green 0 0 0 1 0
Red 1 1 0 0 0

Chevy Ford
Blue 87 114

Green 0 64
Red 5 15

Chevy Ford
Blue 87 106

Green 0 64
Red 5 8

To prove (39) if suffices, looking at the definition of
tctab (28), to cancel tot on both sides and prove that
tB←A ·ctabM

A←C (T ) � ctabM
B←C (T ) holds modulo the same

side-condition.
Before doing this, let us see a counter-example in

which the side condition does not hold: we compose (37)
with tColor←Month (adjacent matrix, on top) obtaining the
bottom-left adjacent matrix. This differs from the direct cal-
culation of ctabSales

Color←Model (T ) (bottom-right adjacent ma-
trix) because roll-up matrix tColor←Month does not capture
a functional dependence: Month does not determine Color ,
as the January column shows.16

16 The support of matrix (20), given earlier, is another example of roll-up matrix which does not capture a functional dependence: Ford
cars can be of any color, for instance.
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The rest of the proof of (39) relies on properties of matrix supports which are deferred to Appendix A. Mind
that projections are matrices which represent functions:

tB←A · ctabM
A←C (T ) � ctabM

B←C (T )

⇔ { unfold definitions (35) and (24) }
�tB · t◦A� · tA · �T �M · t◦C � tB · �T �M · t◦C

⇐ { Leibniz }
�tB · t◦A� · tA � tB

⇐ { (66) in Appendix A }
t◦A · tA ≤ t◦B · tB

⇔ { (34) }

B A
T��

�

Checking for FDs. Construction (35) enables us to check data sets for functional dependencies. In general, FD
B ← A will hold wherever matrix tB · t◦A is functional, or simple, equivalent to tB←A being so. This terminology
is imported from relational algebra [BdM97]: a matrix S will be said to be simple iff its image S ·S ◦ is diagonal.17

Instantiating S with tSeason · t◦Month , for instance, it can be checked that its image

Spring Summer Autumn Winter
Spring 2 0 0 0

Summer 0 1 0 0
Autumn 0 0 1 0
Winter 0 0 0 4

is diagonal, while that of (20)

Blue Green Red
Blue 5 2 3

Green 2 1 1
Red 3 1 2

is not. Thus, FD Color ← Model does not hold.

7. Incremental (parallel) construction

Cross tabulations as defined by formula (28) can be built incrementally under certain conditions. For instance,
suppose one is given yesterday’s cross tabulation and today’s new data. Then today’s cross tabulation (in matrix
form) will be obtained by adding (matrix-wise) to yesterday’s cross tabulation the cross tabulation of today’s raw
data.

Viewed from another perspective, this property allows one to parallelize the computation of a cross tabulation
by partitioning the raw data and then summing up the cross tabulation of each partition of the raw data. Such a
property, which can be regarded as generalization of the linearity property that makes linear applications parallel,
can be stated by writing, given dimensions A and B , measure M and raw data sources T and T ′,

tctabM
A←B (T ; T ′) � tctabM

A←BT + tctabM
A←BT ′ (40)

where T ′′ � T ; T ′ denotes the append of the two data sources, i.e. T ′′ is a raw data table with the records
of database T catenated with those of T ′. T can be regarded as yesterday’s raw data and T ′ as the new data,

17 See Appendix A for more details on this diagonal characterization of FDs.
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assuming that T has remained the same (no updates, no deletes). Alternatively, one may regard T ; T ′ as a
partition of T ′′ intended for divide-and-conquer construction of its tctabM

A←B cross tabulation.
We show below that (40) follows from facts

t ′′A �
[
tA t ′A

]
(41)

t ′′B �
[
tB t ′B

]
(42)

�T ; T ′�M � �T �M ⊕ �T ′�M (43)

where ⊕ builds a diagonal matrix by direct sum (11) of two diagonal matrices. Equations (41) and (42) express
that projection matrices for T ′′ can be built by gluing the corresponding projection matrices tA, t ′A and tB , t ′B
built for T and for T ′, respectively. Note that, for (41) and (42) to be properly typed, tA and t ′A (resp. tB and t ′B )
must have the same target type | A | (resp. | B |) which can be easily ensured by taking sufficiently large | A | and
| B |.

To prove facts (41) to (43) we need better definitions for projections (17) and diagonals (22) saving expensive
pointwise reasoning. Such definitions and proofs (given in Appendix B) can be regarded as a detour needed to
smoothly move from first order database notation to linear algebra notation, linking projections (bitmaps) and
diagonals to the basic linear algebra of Sect. 4.

Assuming (41) to (43), the proof of (40) follows from the definition of cross tabulation (28) by a simple
equational argument resorting to the laws of matrix algebra:

tctabM
A←B (T ; T ′)

� { (28) }
[
t ′′A
!

]
· �T ; T ′�M ·

[
t ′′B
!

]◦

� { (41) ; (42) and (43) }
[ [

tA t ′A
]

!

]
· (�T �M ⊕ �T ′�M ) ·

[ [
tB t ′B

]

!

]◦

� { (30) twice ; abide law (10) twice }
[[

tA
!

] [
t ′A
!

]]
· (�T �M ⊕ �T ′�M ) ·

[[
tB
!

] [
t ′B
!

]]◦

� { absorption (12) ; converse-duality (6) }

[[
tA
!

]
· �T �M

[
t ′A
!

]
· �T ′�M

]
·

⎡

⎢⎢
⎣

[
tB
!

]◦

[
t ′B
!

]◦

⎤

⎥⎥
⎦

� { divide and conquer (7) }
[
tA
!

]
· �T �M ·

[
tB
!

]◦
+

[
t ′A
!

]
· �T ′�M ·

[
t ′B
!

]◦

� { (28) twice }
tctabM

A←BT + tctabM
A←BT ′

�

In retrospect, this proof establishes tctab (28) as a structure preserving map (homomorphism) between raw
data collection and (cross tabulation) matrix addition, enabling the extraction of parallelism in a formal and direct
way.
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8. Higher-dimensional OLAP

This section extends cross tabulations towards higher dimensions. The aim is to formulate a basis for a general
LA theory for n-dimensional OLAP, dealing with all data summary levels presented in [GCB+97], from 0 to
3-dimensional summaries, respectively: aggregate, group-by, cross-tab and cube. The approach goes further by
allowing any number n of dimensions.

The proposed generalization depends on the Khatri–Rao product (13) that works as a Cartesian product on
matrix types, thus a Cartesian product of the dimensions. As an illustration, remember the projections of our
running example and apply the Khatri–Rao product to tModel (18) and tColor (19). The outcome is matrix

1 2 3 4 5 6
Chevy Blue 0 1 0 0 0 0
Chevy Green 0 0 0 0 0 0
Chevy Red 1 0 0 0 0 0
Ford Blue 0 0 0 1 0 1
Ford Green 0 0 1 0 0 0
Ford Red 0 0 0 0 1 0

bearing type | Model × Color | ← 6. This tells in which rows the particular dimension pairs appear, compare
with Fig. 1. Put in other words, this matrix is the higher-rank projection tModel×Color of the Cartesian product
of the two dimensions. In general,

tA×B � tA � tB (44)

Thus tModel×Year×Color � tModel � tYear � tColor , which is projection

1 2 3 4 5 6
Chevy 1990 Blue 0 1 0 0 0 0
Chevy 1990 Green 0 0 0 0 0 0
Chevy 1990 Red 1 0 0 0 0 0
Chevy 1991 Blue 0 0 0 0 0 0
Chevy 1991 Green 0 0 0 0 0 0
Chevy 1991 Red 0 0 0 0 0 0
Ford 1990 Blue 0 0 0 1 0 0
Ford 1990 Green 0 0 1 0 0 0
Ford 1990 Red 0 0 0 0 0 0
Ford 1991 Blue 0 0 0 0 0 1
Ford 1991 Green 0 0 0 0 0 0
Ford 1991 Red 0 0 0 0 1 0

(45)

capturing the whole dimensional part of the raw-data table of Fig. 1.
Multidimensional cross tabulations are obtained via the same formula (28) just by supplying higher-rank

projections, for instance tctabSales
Model×Color←Year (T ) which yields:

1990 1991 all
Chevy Blue 87 0 87
Chevy Green 0 0 0
Chevy Red 5 0 5
Ford Blue 99 7 106
Ford Green 64 0 64
Ford Red 0 8 8
all 255 15 270

corresponding to A � Model × Color and B � Year in (28). Furthermore, by composing �T �Sales with the
projection of all dimensions given by (45) on the left and totalizing by !◦ on the right, we obtain the following
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column-vector representation of Fig. 1,

tModel×Year×Color · �T �Sales · !◦ �

all
Chevy 1990 Blue 87
Chevy 1990 Green 0
Chevy 1990 Red 5
Chevy 1991 Blue 0
Chevy 1991 Green 0
Chevy 1991 Red 0
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1990 Red 0
Ford 1991 Blue 7
Ford 1991 Green 0
Ford 1991 Red 8

(46)

which, as we shall soon see, is a fragment of the CUBE operator. MYC

���
� ���

�

MY

���� MC

����
���� YC

����

M

����� Y C

�����

∅

A generalization follows from this example. Given a finite, ordered set of dimensions
D , one calculates the corresponding cube over some given measure attribute by iterating
over the powerset 2D of D , for instance that represented aside for D � {M ,Y ,C }where
M , Y and C abbreviate Model , Year and Color , respectively.

Let us denote by 2D
� the sequence of all elements of 2D ordered in some predefined

way induced by the ordering on the dimensions (e.g. M < Y < C ). Thus 2D
� is a

sequence of (dimension) sequences and we can build the following projection matrix as
an iteration of (44) via (32)

t2D
�

:| 2D
� | ←n

t2D
�
�

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

s←2D
�

( �
d←s

td ) (47)

all
Chevy 1990 Blue 87
Chevy 1990 Red 5
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1991 Blue 7
Ford 1991 Red 8
Chevy 1990 all 92
Ford 1990 all 163
Ford 1991 all 15
Chevy all Blue 87
Chevy all Red 5
Ford all Blue 106
Ford all Green 64
Ford all Red 8
all 1990 Blue 186
all 1990 Green 64
all 1990 Red 5
all 1991 Blue 7
all 1991 Red 8
Chevy all all 92
Ford all all 178
all 1990 all 255
all 1991 all 15
all all Blue 193
all all Green 64
all all Red 13
all all all 270

where

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

denotes the finitary extension of vertical blocking (recall Sect. 4)

thus stacking up the intermediate projection matrices provided by the innermost
iteration.

Note that (47) is not a function (functional matrix) although each contribution
�d←s td is so.18 This redundancy is intentional, as (47) is intended to record all
possible combinations of dimension attributes—the shape of the cube. To fill such
a shape with the cube contents we multiply by the measure diagonal and totalize
with bang converse:

cubeM
D (T ) :| 2D

� |← 1

cubeM
D (T ) � t2D

�
· �T �M · !◦ (48)

Thus the LA representation of a cube is a (column) vector. Aside we show a tabular
representation of cubeSales

{Model,Year ,Color}(T ) for our running example. Note the
usual convention of filling with all marks the “missing attributes” in each s in
2D

� .
Report [MO11a] gives a Matlab script which implements (48). A generic

formula for calculating other aggregations on given sub-sequences S of 2D
� and

measure M from a database table T is given by

aggM
S (T ) :| S |← 1

aggM
S (T ) � tS · �T �M · !◦ (49)

18 Given two functions f and g ,
[

f

g

]

is never a function—it is a relation. Also note that | 2D
� |��s←2D�

| s |.
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where tS generalizes (47). S tells which dimensions in D are handled and in what order, thus yielding different
standard operations for different S . For instance, for S containing only the empty sequence [] one has t[] � !
in (49), thus obtaining an aggregate [GCB+97]—the grand total block of tot (26,27). At the other extreme,
for S � 2D

� (49) is of course the same as (48), the whole data cube. Somewhere between these limit cases one
finds, for S � [s ] some singleton subsequence of 2D

� , the group- by s aggregation. Finally, for S a prefix-closed
subsequence of 2D

� —for instance, [[Model ,Color ], [Model ], []]—(49) evaluates a roll-up.

SELECT Color, Sum(Sales)
FROM T
GROUP BY Color

The authors of [GCB+97] regard group- by as “an unusual relational opera-
tor”. While the operator may look “unusual” in the context of the relation algebra
which supports the semantics of relational databases, it makes perfect sense in
the linear algebra semantics proposed in the current paper for such constructions.
Moreover, note that our LA semantics for group- by not only covers the one-
attribute case—captured e.g. the SQL syntax above, which evaluates to

aggSales
[[Color ]](T ) �

all
Blue 193

Green 64
Red 13

—but also covers any sequence of grouping attributes—recall e.g. (46), which is the outcome of
aggSales

[[Model,Year ,Color ]](T ). Clearly, any group- by, aggregate or roll- up is always a fragment of the cube which
represents the whole multi-dimensional analysis of the source data.

9. Related work

An overview of data warehousing and OLAP technology can be found in [CD97]. Since Gray et al delivered their
seminal data cube paper in 1996 [GBLP96], most work in the field has been concerned with techniques for efficient
OLAP, given the small time window (usually at night) when warehouses can go offline for data refreshing.

Another evolution since 1996 is the development of industry standards and specifications. Query languages
such as MDX [WZP02] relying on multidimensional expressions have emerged as SQL extensions providing the
features needed to perform OLAP queries. Our work can be seen as the beginning of a “SQL-free” alternative to
provide the same features. We focus on defining a semantics for such features which expresses their meaning in
terms of linear algebra operations, ultimately using such meaning to calculate the results.

Yang et al [YJA03] focus on the problem of data cube construction and show how a cluster middleware,
called ADR (originally developed for scientific data intensive applications) can be used for carrying out scalable
implementations of the construction of data cubes.

Bearing the ideal of making OLAP “truly online”, Ng et al [NWY01] develop a collection of parallel algorithms
directed towards online and offline creation of data cubes using low cost PC clusters to parallelize computations.

Goil and Choudhary [GC01] address scalability in multidimensional systems for OLAP and multidimensional
analysis and describe the Parsimony system providing a parallel and scalable infrastructure for multidimensional
online analytical processing, used for both OLAP and data mining. Parallel algorithms are developed for data
mining on the multidimensional cube structure for attribute-oriented association rules and decision-tree-based
classification.

Literature on “end-to-end” system proposals for parallel OLAP servers is scarce. Sidera [EDD+10] is one
such proposal, providing OLAP-specific functionality gathering recent results in a common framework: “the
most comprehensive OLAP platform described in the current research literature” [EDD+10].

Closer to our approach, Sun and others [STF06, STP+08] introduce a technique based on the use of tensors in
the area of pattern discovery. (Tensors generalize vectors and matrices, as happens in the mathematical domain,
and can be used to represent data-cubes.) To capture temporal evolution one uses tensor streams or sequences that
are time indexed structures of tensors, the advantage being a generalization of traditional streams and sequences.
On the background stays singular value decomposition (SVD), whose matricial expression conspicuously resembles
our starting point (3) and suggests a link between the two approaches which we intend to study in the future.
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Our work also intersects with the area of index-based database-query (response time) optimization, namely
in what respects bitmap indices [WOS06]. Clearly, the projection matrices built in the current paper are bitmaps
regarded as matrices. Bitmaps were first implemented in IBM’s Model 204 [O’N89], becoming a “de facto” device
after compression techniques solved their outrageous memory space demands. They are still in use in today’s
commercial database systems, see [WOS06] for details.

10. Conclusions and future work

This paper addresses the foundations of quantitative data science [DP12] from a linear algebra perspective. In
particular, it shows how aggregation operations such as cross tabulations and data cubes used in quantitative data
analysis can be expressed solely in terms of matrix multiplication, transposition and the Khatri–Rao product. The
approach offers potential for deriving a truly algebraic theory of data consolidation, handling the quantitative as
well as qualitative sides of data science in an elegant and typed way. Moreover, all operations involved, namely

• the conversion of dimension attributes into projection matrices
• the conversion of measure attributes into diagonal matrices
• the calculation of cross tabulations, and
• the calculation of data cubes

become parallel (“for free”) as immediate consequence of the very basic law of divide and conquer (7).
Our main aim is to set up a framework allowing for algebraic reasoning about data analysis operations that

have hitherto been described informally or by program code only. The approach is generic and extensible, as
much as the underlying mathematics is so. Take for instance the following matrix capturing the Season←Month
relationship in a more refined way:
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Spring 0 0 0.3 1 1 0.7 0 0 0 0 0 0
Summer 0 0 0 0 0 0.3 1 1 0.7 0 0 0
Autumn 0 0 0 0 0 0 0 0 0.3 1 1 0.7
Winter 1 1 0.7 0 0 0 0 0 0 0 0 0.3

(50)

In this case, FD Season ← Month does not strictly hold, for equinoctial and solsticial months are doubly
classified in the seasons they border, in different proportions (70% for the season which ends, 30% for the one
which starts).

One may say that a “fuzzy” data dependency holds in (50). In spite of the possible complexity that this
extension to the standard situation might raise from a traditional OLAP perspective, in our setting it doesn’t
change anything, as such a “fuzzy” months-into-seasons roll-up process would work precisely in the same way:
using this matrix 19 in (38), for instance, one would obtain

Chevy Ford all
Spring 88.5 0 88.5

Summer 0 64 64
Autumn 0 99 99
Winter 3.5 15 18.5

all 92 178 270

indicating that some (between 3 and 4) of the 92 Chevys sold are likely to have been Winter sales rather than
Spring sales. Note that (50) can be regarded as a probabilistic function, meaning that the linear algebra semantics
of such functions as studied in e.g. [Oli12] can also be useful in this data (rather than algorithmic) context.

19 Pre-composed with the obvious 5→ 12 type coercion matrix embedding five into twelve months, of course.
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Future work. Further research in the direction of thoroughly justifying our approach is under way [MO14].
In the current paper, the data cube construction is derived from that of cross tabulation. [MO14] exploits the
alternative view of regarding the data cube as the primitive construction wherefrom the other 2D, 1D and 0D
aggregators are derived. This makes it easier to prove a number of results, for instance the commutation between
cube construction and generic vectorization [MO13].

Moreover, we have to better cross-check our matrix encoding of OLAP (and FDs) with already existing OLAP
formal models [DT99, PKL02]. Mimicking OLAP algebra (whatever this means) in terms of linear algebra may
provide better and simpler proofs for existing results and generate new ones, as our experience in pointfree
calculation already shows in the relational algebra field [Oli14a]. This research agenda should also include, of
course, a closer look at [STF06].

Extending the LA encoding to other forms of data consolidation such as e.g. averaging is within reach.
Averaging rather than summing up measure vectors is obtained once again via bang matrices and scalar division,

avg v � (! · v )/(! · !◦), for n 1
v�� and 1 n!�� , where ! · v reduces vector v to the scalar which records the

sum of its elements. Averaging holds since (! · !◦) is 1 1
n�� , also a scalar. It is easy to see that obtaining cross

tabulations consolidated by averaging is a question of augmenting equation (3) with the (index-wise) division of
the cross tabulation matrix by the corresponding counting matrix (taking care of divisions by 0, of course):

tA · �T �M · t◦B
tA · t◦B

Extremes (min and max) are achievable by tuning multiplication and sum of matrix elements to suitable semirings.
But calculating more exotic data consolidation forms as e.g. population’s standard deviation is challenging due to
the complexity of the formulas. This is achievable with intensive use of Khatri–Rao products and other non-trivial
matrix operations, but further research is needed to evaluate the practicality of such usage.

Another direction for future work is to benchmark a realistic implementation of our approach (derivable from
the Matlab scripts) against existing OLAP systems (e.g. those mentioned in Sect. 9) thus testing whether the
parallelism inherent in the LA scripts materializes in real-life applications. Recall that our approach is column-
driven. Given that column-store databases for OLAP are being used as an alternative to ROLAP (relational
row-driven OLAP) or MOLAP (multidimensional OLAP), it would be interesting to analyze if our LA semantics
for OLAP could also improve its processing [Sor12].

Clearly, one needs to be able to process sparse matrices (which our projection bitmaps and diagonals are) as
efficiently as possible. Bell and Garland [BG09] explore the design of efficient sparse matrix-vector kernels for
throughput oriented processors and implement these kernels in a parallel computing architecture developed by
NVIDIA. The OSKI Library [WOV+09] is a collection of low-level C primitives that provide automatically tuned
computational kernels on sparse matrices, for use in solver libraries and applications. OSKI has a BLAS-style
interface, providing basic kernels like sparse matrix-vector multiply and sparse triangular solve, among others.

Last but not least, Yang et al [YPS11] propose architecture-aware optimizations for sparse matrix multipli-
cation on GPUs and study the impact of their efforts on graph mining. This work is another piece of evidence
suggesting that future OLAP and data mining should rely on linear algebra.
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Appendix A: Appendix on counting matrices and function injectivity

This appendix is concerned with functional dependencies and their relationship with counting matrices, that is,
matrices whose cells are natural numbers. Although some results below hold for arbitrary matrices, we shall
restrict to counting matrices for economy of presentation. As special case we have the Boolean matrices, so called
because they hold either 0 or 1 in their cells, which can be interpreted as the Boolean truth values. Clearly, a
counting matrix B is Boolean iff B ≤ �, where � denotes the everywhere-1 matrix of its type obtainable by
composing “bang” (30) with its converse: � � !◦ · !.

Boolean matrices represent binary relations in matricial form. Given Boolean matrices B and B ′, B ≤
B ′ expresses inclusion of the binary relations represented by such matrices, that is

〈∀ y, x :: y B x ⇒ y B ′ x
〉

recalling our use of infix notation y M x to express the cell of matrix M addressed by row y and column x .20

Any function f is a special case of the Boolean matrix such that y f x � 1 if y � f x and y f x � 0 otherwise.
Note the use of symbol f to denote two mathematical objects, the function itself (as in y � f x ) and its matrix
representation (as in y f x � 1). This abuse of notation (common in relation algebra) enables the following rules
interfacing index-free and index-wise matrix notation, where f and g functional matrices:

y (g◦ ·M · f )x � (g y)M (f x ) (51)
y (f ·M )x � 〈

� z : y � f z : z M x
〉

(52)

y (M · f ◦)x � 〈
� z : x � f z : y M z

〉
(53)

These rules are expressed in the style of the Eindhoven quantifier calculus (see e.g. [BM06]) and are convenient
shorthands for the corresponding instances of matrix composition (5). Rule (51) extends to typed matrix algebra
a similar rule known from relation algebra [BB04]. Note how (52) is obtained from (5) by “trading” Boolean cell
y f z with the corresponding Boolean formula y � f z , as explained in [Oli13]. This can be done with any other
Boolean term y B x .

Rule (51) is enough to derive the equalities

! · f � ! (54)
g◦ · (M θ N ) · f � (g◦ ·M · f ) θ (g◦ ·N · f ) (55)

for suitably typed functions f and g and matrix-cell binary operation θ promoted to a matrix operator (with the
usual notation overloading), that is, y (M θ N )x � (y M x ) θ (y N x ). From (54) and � � !◦ · ! one immediately
draws:

� · f � � (56)

Supports. Let n ∈ IN0 be a natural number and define its support �n� � if n ≥ 1 then 1 else 0, that is, �n� � n↓1
where m ↓ n denotes the least of m or n. Clearly,

x ≤ �n� ⇔ x ≤ n ∧ x ≤ 1 (57)

that is, �n� is the largest “Boolean number” (0 or 1) at most n. Thus �0� � 0, �1� � 1 and, in general �n� � n ⇔
n ≤ 1: the support of a “Boolean number” (0 or 1) is itself.

Let us now extend �n� from naturals to matrices of naturals (counting matrices): 0 becomes⊥, the everywhere-
0 matrix of its type; 1 becomes �, the everywhere-1 matrix of its type and (57) becomes

X ≤ �N � ⇔ X ≤ N ∧ X ≤ � (58)

equivalent to the following, closed definition

�M � � M ↓ � (59)

where y (M ↓N )x � (y M x ) ↓ (y N x ), overloading m ↓ n.
Cancellation in (58) yields �N � ≤ N and �N � ≤ �, the latter saying that �N � is a Boolean matrix. All equalities

above extend to counting matrices, e.g. �N � � N ⇔ N ≤ �: the support of a Boolean matrix is itself. Moreover,
� � is a monotonic function from counting to Boolean matrices. From (58) one also obtains (via converses):

�M ◦� � �M �◦ (60)

20 As advocated in [Oli13], this notation finds its inspiration in terms such as e.g. y ≤ x which one is familiar with since school maths.
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In general �M ·N � �� �M � ·�N �, since composition is not closed over Boolean matrices (�·� > �, for instance).
Nevertheless, the special case

�M · f � � �M � · �f � � �M � · f (61)

holds:

�M · f �
� { (59); (56) }

(M · f ) ↓ (� · f )

� { (55) }
(M ↓ �) · f
� { (59) }
�M � · f

�

From (61) the more general rule

�g◦ ·M · f � � g◦ · �M � · f (62)

can be derived by taking converses:

�g◦ ·M · f �
� { contravariance ; idempotence }
�(M ◦ · g)◦ · f �
� { (61) ; (60) }
�M ◦ · g�◦ · f
� { (61) ; (60) }

(�M �◦ · g)◦ · f
� { contravariance }

g◦ · �M � · f
�

A counting matrix M is diagonal iff �M � ≤ id , that is, 〈∀ y, x : y �� x : y M x � 0〉. An example of diagonal
matrix is the image g · g◦ of a function g since, by (53), b ′ (g · g◦)b � 〈

� a : b � g a : b ′ g a
〉

which is the same
as

〈
� a : b ′ � g a ∧ b � g a : 1

〉
trading term b ′ � g a, since g is a function. Thus

b ′ (g · g◦)b � 〈
� a : b ′ � g a ∧ b � g a ∧ b ′ � b : 1

〉
(63)

and therefore b ′ (g · g◦)b � 0 for b ′ �� b.

Functional injectivity. For M :� id one draws from (62) that g◦ · f is Boolean, �g◦ · f � � g◦ · f . Thus the kernel
of a function f [Oli14a]

f ◦ · f � �f ◦ · f � (64)

is Boolean. By (51), Leibniz rule x ′ � x ⇒ f x ′ � f x encodes into id ≤ f ◦ · f , whereby one obtains (by
monotonicity) g ≤ g · f ◦ · f and

g ≤ �g · f ◦� · f (65)

by taking supports and (61).
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Functions can be compared by comparing their kernels: by unfolding f ◦ · f ≤ g◦ · g once again by (51), we
get:

x ′ (f ◦ · f )x ≤ x ′ (g◦ · g)x

⇔ { (51) twice }
(f x ′)id (f x ) ≤ (g x ′)id (g x )

⇔ { b (id)a encodes b � a and ≤ over {0, 1} encodes implication }
f x ′ � f x ⇒ g x ′ � g x

Colloquially: “g does not distinguish what f regards as equal”. Formally: g is less injective than f .21 The following
result

�g · f ◦� · f � g ⇐ g is less injective than f (66)

is required in Sect. 6 of the current paper and relies on the injectivity ordering on functions:

�g · f ◦� · f � g

⇔ { (65) }
�g · f ◦� · f ≤ g

⇐ { �g · g◦� · g ≤ g by monotonicity of composition since g · g◦ is diagonal (63) }
�g · f ◦� · f ≤ �g · g◦� · g

⇔ { (61) twice }
�g · f ◦ · f � ≤ �g · g◦ · g�

⇐ { monotonicity of � � and of composition }
f ◦ · f ≤ g◦ · g

�

Appendix B: Appendix on bitmaps, projections and diagonals

Bitmaps. Suppose an array a � [
d1 d2 ... dn

]
holds n elements of data type D . This uniquely determines the

function fa : n → D such that fa (i ) � di for 1 ≤ i ≤ n, that is, fa tells which datum lives in which position of
array a. Once such a function is represented as a Boolean matrix of type D← n one obtains a bitmap matrix
representation of a. Note that a itself can be regarded as a generalized 22 D-valued row vector of type 1← n. Let
this change of representation can be captured by function

bm : (1 D ← n)→ (D← n)

where notation 1 D←n is intended to warn the reader that cells in bm ’s input are of type D , possibly not a semiring
essential for matrix composition to work. (More about this below.) We define bm inductively as follows: for n � 1,

bm d1 � D 1
d1�� , the Boolean (column) vector representing constant function d1; for n > 1—bm—is defined

by:

bm
[
a1 a2

] � [
bm a1 bm a2

]
(67)

Let a given raw data table T have n rows (records) and as many columns as the set of its attributes S �
{A,B , . . .}. Then T may also be regarded as a generalized matrix of type n← S whereby the raw-data append

21 Cf. e.g. [Oli14a], where the same inequality is handled relationally.
22 Generalized in the sense that it will hold any kind of heterogeneously typed data, not just numerical data.
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operation T ; T ′ (catenation of T with T ′) is faithfully captured in matrix block notation by

T ; T ′ �
[

T
T ′

]
(68)

since both T and T ′ share the same input type S . For A ∈ S , constant function S 1
A�� is a Boolean vector

with 0s everywhere but a 1 in the row addressed by attribute A ∈ S . Then T (A,n), the value of attribute A in the
n-th row of T can be re-written as follows:

T (A,n)

� { using infix notation once T is regarded as a n← S matrix }
n T A

� { since S 1
A�� is a constant function }

n T (A 1)

� { (51) }
n (T ·A)1

Thus

n 1
T ·A�� (69)

is the (column) vector which represents the A-column of T . This can be turned into a bitmap via bm,

tA � bm (T ·A)◦ (70)

providing a pointfree alternative to (17), as well as

t ′A � bm (T ′ ·A)◦ (71)

for another raw-data set T ′ sharing A-values in the same range type | A |.
Fact (41) can then be calculated as follows:

[
tA t ′A

]

� { (70) twice }
[

bm (T ·A)◦ bm (T ′ ·A)◦
]

� { (67) }
bm

[
(T ·A)◦ (T ′ ·A)◦

]

� { converse-duality (6) }

bm

[
T ·A
T ′ ·A

]◦

� { fusion (9) }

bm (
[

T
T ′

]
·A◦)

� { define T ′′ �
[

T

T ′

]

� T ; T ′ (68) }
bm (T ′′ ·A◦)
� { (70) }

t ′′A
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�

The proof of (42) is the same, for attribute B instead of A.

Diagonals. Back to (22), let M ∈ S be a measure attribute and let us rely on (69) to capture its diagonalization,
via (14):

�T �M � (T ·M )◦ � id (72)

This definition is convenient for proving fact (43), as follows:

�T ; T ′�M
� { (68) }

�

[
T
T ′

]
�M

� { definition (72) }

(
[

T
T ′

]
·M )◦ � id

� { fusion (9) ; id ⊕ id � id }
[

T ·M
T ′ ·M

]◦
� (id ⊕ id )

� { converse-duality (6) }
[

(T ·M )◦ (T ′ ·M )◦
]

� (id ⊕ id )

� { (16) since T ·M and T ′ ·M are row vectors }
((T ·M )◦ � id )⊕ ((T ′ ·M )◦ � id )

� { definition (72) twice }
�T �M ⊕ �T ′�M

�

Recall from Sect. 7 that (43) is central to showing that cross tabulation evaluation is parallelizable (40).
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