

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/152716

Comini, M.; Gallardo, M.; Titolo, L.; Villanueva, A. (2017). A program analysis framework for
tccp based on abstract interpretation. Formal Aspects of Computing. 29(3):531-557.
https://doi.org/10.1007/s00165-016-0409-8

https://doi.org/10.1007/s00165-016-0409-8

Springer-Verlag

A program analysis framework for tccp based on abstract

interpretation

Marco Comini1, Maŕıa-del-Mar Gallardo2, Laura Titolo3, and Alicia Villanueva4

1DIMI, Università degli Studi di Udine, Italy. (e-mail: marco.comini@uniud.it)
2LCC, Universidad de Málaga, Spain. (e-mail: gallardo@lcc.uma.es)∗

3National Institute of Aerospace, USA. (e-mail: laura.titolo@nianet.org)
4DSIC, Universitat Politècnica de València, Spain. (e-mail: villanue@dsic.upv.es)†

Abstract

The Timed Concurrent Constraint Language (tccp) is a timed extension of the concurrent
constraint paradigm. tccp was defined to model reactive systems, where infinite behaviors arise
naturally. In previous works, a semantic framework and abstract diagnosis method for the
language have been defined.

On the basis of that semantic framework, this paper proposes an abstract semantics that,
together with a widening operator, is suitable for the definition of different analyses for tccp
programs. The abstract semantics is correct and can be represented as a finite graph where
each node represents a hypothetical (abstract) computational step of the program. The widening
operator allows us to guarantee the convergence of the abstract fixpoint computation.

Key Words: concurrent constraint paradigm; abstract interpretation; abstract
semantics; widening operators

1 Introduction

The Concurrent Constraint Paradigm (ccp, [Sar93]) is a simple, logic model which is different from
other (concurrent) programming paradigms mainly due to the notion of store-as-constraint that
replaces the classical store-as-valuation model. It is based on an underlying constraint system that
handles constraints on variables and deals with partial information. Within this family, [dBGM00]
introduced the Timed Concurrent Constraint Language (tccp) by adding to the original ccp model
the notion of time and the ability to capture the absence of information. With these features, one
can specify naturally behaviors typical of reactive systems such as timeouts or preemption actions.

It is well-known that modeling and analyzing concurrent systems by hand can be an extremely
hard task. Thus, the development of automatic formal methods is essential. The particular charac-
teristics of ccp languages make such task even harder, since we have to deal with technical issues due
to the infinite computations (natural to reactive systems), use of negative information (particular
for timed ccp languages) and non-determinism.

One well established technique to develop semantic-based program analysis is abstract interpre-
tation [CC77], which relies on the definition of a specific approximated abstract semantics that cap-
tures the information needed to perform the analysis. Typically, one defines an over-approximation

∗This author has been supported by the Andalusian Excellence Project P11-TIC-7659.
†This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN

2015-69175-C4-1-R and TIN 2013-45732-C4-1-P and by Generalitat Valenciana PROMETEOII/2015/013.

1

of the concrete semantics that includes all possible traces of the system, possibly introducing nonex-
istent ones. This allows one to develop (correct) analysis of universal properties. However, it does
not allow one to analyze existential properties, for instance to verify that there exists a suspen-
sion trace. In our proposal, we follow such approach starting from the concrete semantics for tccp
defined in [CTV13]. This semantics addresses all thorniest difficulties of tccp (i.e., infinite com-
putations, use of negative information and non-determinism). Indeed, it is fully abstract w.r.t.
the behavior of tccp. Furthermore, it is condensed, i.e., it employs in the denotations the minimal
amount of information that is needed (to distinguish different behaviors). Therefore, such seman-
tics is particularly well-suited as the base to apply abstract interpretation techniques, which take
great advantage from a bottom-up and condensed definition. To the best of our knowledge, this is
the only bottom-up and condensed semantics which is fully abstract w.r.t. the full tccp language.
The fully-abstract denotational semantics of [dBGM00] captures just finite computations and has
a top-down definition thus it is not well-suited for our purposes.

In the sequel, we define a framework of over-approximated abstract semantics parametric w.r.t.
an abstract constraint system. This allows us to recycle all of the huge work done for developing
abstract domains for logic programs (such as groundness analysis). More interestingly, we can also
make new analyses for reactive systems such as non-suspension analysis and universal (safety and
liveness) properties.

The proposed framework follows two complementary abstraction techniques. On the one hand,
since processes in tccp communicate and synchronize through a shared store where both the presence
and absence of information are relevant for the system progress, we make use of two dual notions
of approximations (over/under-approximated relations) [AGPV05]. The combination of these two
abstract relations allows us to guarantee the correctness of the abstraction and, at the same time,
to do not lose too much precision.

On the other hand, since we need to preserve the notion of time—to be able to express properties
of interest like safety or temporal properties—the abstract semantics domains that we need to
consider are not Noetherian (even if we use finite abstract constraint systems). Thus, in order to
have an effective technique, we use the widening approach of [BHRZ05, CC77] to ensure finiteness
of the analysis. Given a tccp program, any instance of the abstraction framework computes an
abstract graph that can be used to check relevant (temporal) system properties.

Applicability of our approach is illustrated by showing different analyses over our guiding ex-
ample, a lift/passenger system. Thanks to the compositionality of the abstract semantics, we can
focus the analysis on a particular process. For instance, we show that we can analyze properties
regarding the lift process, independently from the rest of the system. More specifically, properties
such as the lift direction and floor are consistently updated or the lift never suspends depend only
on the lift process, thus we do not need to compute the semantics for the rest of the system. We
can also check properties depending on the interaction among processes by considering the whole
system. To this end, we describe how the abstract graph of the whole system lift/passenger can be
constructed, and exemplify some properties that can be directly proved on the graph.

Due to abstract interpretation, in the abstract semantics we inevitably have spurious behaviors
that can prevent us from proving specific properties. We discuss how properties such as if the lift is
going up, then it eventually will go down could also be analyzed by applying techniques to remove
spurious behaviors.

Contributions of this work. This paper is an extended version of [CGTV15], where a frame-
work of abstract semantics suitable for program analysis of tccp programs was presented. In this
paper, we present an improved version of the framework which admits richer abstract domains,
and this allows us to handle more elaborated properties and systems. More specifically, this paper
includes

2

• an abstract semantic domain schema which imposes less demanding conditions (w.r.t. [CGTV15])
on the relation between the abstract and the concrete constraint system underlying the lan-
guage;

• results and proofs for the correctness of the proposed abstract semantics;

• a widening for the abstract semantics (already presented in [CGTV15]) that allows to effec-
tively perform the analyses; and

• examples that illustrate both, the kind of properties that can be checked by means of the
proposed framework, and how the new schema allows us to use a more elaborated abstraction
for the concrete constraint system.

Plan of the paper. Section 2 introduces the tccp language and the denotational model of the
concrete semantics which is the basis for the definition of the abstract semantics. A guiding example
is also introduced. Section 3 presents the proposed abstract semantics and the defined widening,
which ensures finiteness. Section 4 proposes some specific analysis that can be defined on the
proposed abstract semantics. Section 5 compares our proposal to related work and Section 6
concludes.

Proofs of correctness results can be consulted in Appendix A.

2 The tccp language

The tccp language [dBGM00] is particularly suitable to specify both reactive and time critical
systems. As the other languages of the ccp paradigm [Sar93], it is parametric w.r.t. a cylindric
constraint system which handles the data information of the program in terms of constraints.
The computation progresses as the concurrent and asynchronous activity of several agents that can
accumulate information in a store, or query information from it. A cylindric constraint system1 is an
algebraic structure ⟨C,⪯,⊗, false, true,Var ,∃⟩ composed of a set of constraints C such that (C, ⪯)
is a (complete) algebraic lattice where ⊗ is the lub operator and false and true are respectively
the greatest and the least element of C; Var is a denumerable set of variables and ∃ existentially
quantifies variables over constraints. The entailment ⊢ is the inverse of ⪯.

Given a cylindric constraint system C and a set of process symbols Π, the syntax of agents is
given by the grammar

A ∶∶= skip ∣ tell(c) ∣ A ∥ A ∣ ∃xA ∣ ∑ni=1 ask(ci)→ A ∣ now c then A else A ∣ p(Ð→x)

where c, c1, . . . , cn are finite2 constraints in C; p/m ∈ Π, and Ð→x denotes a generic tuple of m
variables. A tccp program is an object of the form D .A, where A is an agent, called initial agent,
and D is a set of process declarations of the form p(Ð→x) ∶− A (for some agent A). The notion of
time is introduced by defining a discrete and global clock.

The operational semantics of tccp, defined in [dBGM00], is formally described by a transition
system T = (Conf ,Ð→) where configurations Conf are pairs ⟨A, c⟩ representing the agent A to be
executed in the current global store c ∈ C. Informally, the tell(c) agent adds the constraint c to
the store in the next time instant and then stops. The choice agent ∑ni=1 ask(ci) → Ai consults the
store and non-deterministically executes (at the following time instant) one of the agents Ai whose

1See [dBGM00, Sar93] for more details on cylindric constraint systems, where traditionally, the glb is not explicitly
defined.

2 The notion of finite constraints was formally defined in [SRP91] and, in the context of algebraic constraint
systems, is equivalent to the notion of compact element.

3

corresponding guard ci is entailed by the current store; otherwise, if no guard is entailed by the
store, the agent suspends. The conditional agent now c then A else B behaves in the current time
instant like A (respectively B) if c is (respectively is not) entailed by the store. A ∥ B models the
parallel composition of A and B in terms of maximal parallelism. The agent ∃xA makes variable
x local to A. To this end, it uses the ∃ operator of the constraint system. Finally, the agent p(Ð→x)
takes non-deterministically from D a declaration of the form p(Ð→x) ∶− A and then executes A at
the following time instant.

Example 2.1 (Guiding example) The following code shows a possible tccp implementation of
a simple lift/passenger system. We assume that the lift is located at a building with N + 1 floors
numbered as 0,1,⋯,N . The lift process uses variables to store the current floor where the lift is
placed and the movement direction (up/down), respectively. At each time instant, the lift moves, if
possible, to the following floor, according to the current movement direction. When the lift reaches
floors 0 or N , then it changes the movement direction.

Process pssngr models the behavior of a client that wants to take the lift to go from origin floor
O to destination floor D. This process makes use of variable St to store the passenger’s state: wait ,
when she is waiting for the lift, in, when she is inside the lift, and out , when she has arrived at the
destination floor.

The underlying concrete Cylindric Constraint System is formed by taking equivalence classes,
modulo logical equivalence, of finite conjunctions of (dis)equalities over variables, constants {up,
down, in, out , wait} and numbers {0, . . . ,N} plus two arithmetic increment and decrement opera-
tions over integers. In this specific case the instance of ⊗ is thus conjunction, while ⪯ is the opposite
of logical implication and ∃x is the operation that removes all conjuncts referring to variable x after
information has been propagated within a constraint (e.g., ∃x(x = y ∧ x = 3) = y = 3). Moreover,
due to the monotonicity of the store, we use streams (written in a list-fashion way) to simulate
imperative-style variables ([dBGM00]). In our example, CF , Dir and St are streams.

main(N ,O ,D) ∶ − ∃CF ,Dir ,St (lift(N,CF ,Dir) ∥ pssngr(CF ,O,D,St) ∥
tell(CF = [0 ∣]) ∥ tell(Dir = [up ∣]) ∥ tell(St = [wait ∣]))

lift(N ,CF ,Dir) ∶ − ∃CF l,Dir l, F (now(Dir = [up ∣] ∧CF = [N ∣])
then (tell(Dir = [up ∣ Dir l]) ∥ tell(Dir l = [down ∣]) ∥ lift(N ,CF ,Dir l))
else now (Dir = [up ∣])

then (tell(CF = [F ∣ CF l]) ∥ ask(true)→ (tell(CF l = [F + 1 ∣]) ∥ lift(N ,CF l ,Dir)))
else now (Dir = [down ∣] ∧CF = [0 ∣])

then (tell(Dir = [down ∣ Dir l]) ∥ tell(Dir l = [up ∣]) ∥ lift(N ,CF ,Dir l))
else (tell(CF = [F ∣ CF l]) ∥ ask(true)→ (tell(CF l = [F − 1 ∣]) ∥ lift(N ,CF l ,Dir))))

pssngr(CF ,O ,D ,St) ∶ − ∃St ′,O′,D′ (
ask(CF = [D ∣] ∧ St = [in ∣])→ (tell(St = [in ∣ St′]) ∥ tell(St ′ = [out ∣]))
+ ask(CF = [O ∣] ∧ St = [wait ∣])→ (tell(St = [wait ∣St′]) ∥ tell(St ′ = [in ∣]) ∥

tell(CF = [∣ CF ′]) ∥ pssngr(CF ′,O ,D ,St ′))
+ ask((CF = [O′ ∣] ∧O′ ≠ O ∧CF = [D′ ∣] ∧D′ ≠D))→

(tell(CF = [∣ CF ′]) ∥ pssngr(CF ′,O ,D ,St ′)))
+ ask((CF = [D ∣] ∧ St ≠ [in ∣]))→ (tell(CF = [∣ CF ′]) ∥ pssngr(CF ′,O ,D ,St ′)))
+ ask((CF = [O ∣] ∧ St ≠ [wait ∣]))→ (tell(CF = [∣ CF ′]) ∥ pssngr(CF ′,O ,D ,St ′)))

Note that the three last possible branches have the same behavior, namely they perform a recursive
call to the pssngr process with the updated argument values when the passenger state (wait , in or
out) does not change.

4

2.1 The concrete denotational semantics

In this section, we briefly recall the concrete denotational domain and semantics of [CTV13], which
is fully abstract3 w.r.t. the small-step operational behavior of tccp. Fully detailed version of all
definitions and proof of full abstraction, as well as of all results here summarized can be found in
[CTV13].

Such semantics consists of a set of conditional (timed) traces that represent, in a compact way,
all the possible behaviors that the program can manifest when executed with a specific input (initial
store). Conditional traces can be seen as hypothetical computations in which, for each time instant,
we have a condition representing the information that the global store has to satisfy in order to
proceed to the next time instant. Briefly, a conditional trace is a (possibly infinite) sequence t1⋯tn⋯
of conditional states, which can be of three forms:

conditional store: a pair η ↣ c, where η is a condition, defined below, and c ∈ C a store;

stuttering: the construct stutt(C), with C ⊆ C ∖ {true};

end of a process: the construct ⊠, which cannot be followed by other conditional states.

The empty sequence of conditional states is denoted by ε. Intuitively, the conditional store η ↣ c
means that, if condition η is satisfied by the current store, the computation proceeds so that, in
the following time instant, the store is c. The stuttering construct stutt({c1, . . . , cn}) models the
suspension of the computation when none of the guards in an ∑ni=1 ask(ci)→ Ai is satisfied.

A condition η is a pair η = (η+, η−) where η+ ∈ C and η− ∈ ℘(C) are called positive and negative
condition, respectively. The positive/negative condition represents information that a given store
must/must not entail, thus they have to be consistent in the sense that ∀c− ∈ η−, η+ ⊬ c−. For
instance, the condition (x > 2,{x > 1}) is not consistent since x > 2 ⊢ x > 1. We also say that a
store c ∈ C is consistent with η, written c ≫ η, if η+ ⊗ c ≠ false and ∀h ∈ η−. c ⊬ h. Moreover, we
say that c satisfies η, written c⊫ η, when c ⊢ η+ and ∀h ∈ η−. c ⊬ h.

Conditional traces are monotone (i.e., for each ti = ηi ↣ ci and tj = ηj ↣ cj such that j ≥ i,
cj ⊢ ci) and consistent (i.e., each store in a trace does not entail the negative conditions of the
following conditional state). CT is the set of all maximal conditional traces, i.e., infinite traces or
finite traces ending with ⊠.

Example 2.2 (Conditional traces) It is easy to see that the sequence r1 ∶= (true,∅) ↣ y =
0 ⋅ (x > 2,∅) ↣ y = 0 ⊗ z = 3 ⋅ ⊠ is a conditional trace (composed by three conditional states)
that satisfies monotonicity and consistency. On the contrary, r′1 ∶= (true,∅) ↣ y = 0 ⋅ (x > 2,
{y ≥ 0}) ↣ y = 0⊗ z = 3 ⋅ ⊠ is not consistent since the store of the first conditional state entails the
only element in the negative condition of the successive conditional state, i.e., y = 0 ⊢ y ≥ 0.

Maximal conditional traces can be ordered, by structural induction, as follows: ∀r ∈ CT. ε ⊑ r,
⊠ ⊑ ⊠, and

(η+1 , η−1)↣ c ⋅ r1 ⊑ (η+2 , η−2)↣ c ⋅ r2 ⇐⇒ η+1 ⊢ η+2 ∧ η−2 F η−1 ∧ r1 ⊑ r2

stutt(η−1) ⋅ r1 ⊑ stutt(η−2) ⋅ r2 ⇐⇒ η−2 F η−1 ∧ r1 ⊑ r2

where C F C ′ ⇐⇒ ∀c ∈ C.∃c′ ∈ C ′. c ⊢ c′ 4. Intuitively, a trace r is smaller than another trace r′

if and only if the conditions of r are more (or equally) restrictive than those of r′. The intuition
behind C F C ′ is that C ′ contains restrictions for the behaviors it represents that are not stronger

3Recall that fully abstract means that the semantics of two programs is identical if and only if the two programs
have the same execution behavior.

4The F relation induces an equivalence relation on negative conditions (formally, C ≈ C′ ⇐⇒ C F C′ ∧C′ F C)
and in the sequel we implicitly consider negative conditions modulo such equivalence.

5

(Dir = [up ∣] ∧CF = [N ∣],∅)↣
Dir = [up ∣ Dir ′] ∧Dir ′ = [down ∣]

I(lift(CF ,Dir ′,N))

(Dir = [up ∣],{Dir = [up ∣]∧
CF = [N ∣]})↣ CF = [F ∣ CF ′]

(Dir = [up ∣] ∧CF = [F ∣ CF ′],∅)↣
CF = [F ∣ CF ′] ∧CF ′ = [F + 1 ∣]

I(lift(CF ′,Dir ,N))

(Dir = [down ∣] ∧CF = [0 ∣],
{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣]})↣
Dir = [down ∣ Dir ′] ∧Dir ′ = [up ∣]

I(lift(CF ,Dir ′,N))
(true,{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣],
Dir = [down ∣] ∧CF = [0 ∣]})↣ CF = [F ∣ CF ′]

(true,∅)↣ CF = [F ∣ CF ′] ∧CF ′ = [F − 1 ∣]

I(lift(CF ′,Dir ,N))

Figure 1: Representation of the semantics of the lift process.

than those in C. In other words, C won’t discard more behaviors than C ′ when used as the negative
condition of a conditional trace. For instance, {x > 20} F {x > 10}, but {x > 20, y > 0} /F {x > 20}
since, due to the constraint y > 0, a conditional state with the latter set as negative condition might
admit behaviors not admitted by one using the former set.

The order defined between maximal traces can be extended over sets M1,M2 ⊆ CT as M1 ⊑
M2 ⇐⇒ ∀r1 ∈ M1 ∃r2 ∈ M2. r1 ⊑ r2. This relation induces the equivalence relation M1 ≡ M2 ⇐⇒
M1 ⊑M2 ∧M2 ⊑M1. We abuse notation and denote the quotient of ⊑ over equivalence classes with
the same symbol. In the following, we use non-empty maximal conditional trace sets modulo ≡
and denote their class by C. (C, ⊑, ⊔, ⊓, [CT]≡, {ε}) is a complete lattice, where M1 ⊔M2 is the
equivalence class of set union and M1 ⊓M2 is the set of maximal conditional traces such that each
trace is less or equal than both a trace in M1 and a trace in M2 (i.e., it represents the intersection
of the behaviors represented by M1 and M2).

The concrete semantics built on domain C is based on a semantics evaluation function AJAKI
which, given an agent A and an interpretation I , builds the conditional traces associated to A. Such
concrete denotational semantics is the basis of the abstract denotational semantics in Section 3,
which is actually obtained just by replacing concrete semantics operations by their corresponding
abstract versions (and thus the structure of their definition is the same). The interpretation I is
a function which associates to each process symbol a set of maximal conditional traces “modulo
variance”.

Definition 2.3 (Interpretations) Let PC ∶= {p(Ð→x) ∣ p ∈ Π and Ð→x are distinct variables}. An
interpretation is a function I ∶PC → C modulo variance5. The semantic domain I is the set of all
interpretations ordered by the point-wise extension of ⊑.

The semantics for a set of tccp process declarations D is the fixpoint F JDK ∶= lfp(DJDK) of the
continuous operator DJDKI (p(Ð→x)) ∶= ⊔p(Ð→x)∶−A∈D AJAKI .

Example 2.4 (Semantics of our guiding example) The semantics of the lift process defined
in Example 2.1 is graphically represented in Figure 1. Each branch of the tree corresponds to one

5Two functions I, J ∶PC → C are variants, denoted by I ≅ J , if for each π ∈ PC there exists a variable renaming ρ
such that (I(π))ρ = J(πρ).

6

of the branches of the nested now agents. The first branch (in left-to-right order) represents the
case in which the direction of the lift is up and the current floor is the last one (N). The second
branch is taken when the direction is up but the current floor is not N (see the negative condition).
In that case, the current floor changes from F to F + 1. The third branch represents the case when
the direction of the lift is down and the current floor is 0, thus the direction is changed to up by
adding the constraint Dir ′ = [up ∣]. Finally, the fourth branch is taken when all the guards are
not entailed (see the negative condition, composed by all the guards of the nested now agents). In
that case, the lift moves to the lower floor F − 1. In all the aforementioned cases, a recursive call
is invoked appropriately. These calls are represented in Figure 1 by the triangles labeled with the
interpretation of the process lift .

3 The (finite) abstract semantics for tccp

In this section, we define our over-approximated abstract semantics framework for tccp. It is

parametric w.r.t. a Galois insertion (C, ⊢) −−−−−→Ð→←−−−−−−
τ

τγ (Ĉ, ⊢̂) onto the abstract constraint system

⟨Ĉ, ⪯̂, ⊗̂, ˆfalse, ˆtrue,Var , ∃̂⟩. As usual, ˆtrue and ˆfalse are the smallest and the greatest abstract
constraint, respectively. Moreover ⊢̂ (called abstract entailment) is the inverse relation of ⪯̂. The
abstraction function τ replaces exact (concrete) constraints of C by approximated (abstract) con-
straints of Ĉ and preserves the concrete order ⊢ (which is associated to information content) with
respect to the corresponding abstract order ⊢̂. The concretization function τγ associates to each
abstract constraint (of Ĉ) the maximal concrete constraint (of C) that is approximated by it.

We illustrate the abstraction of constraint systems with two examples. The first one is the
classical sign abstraction. The following one is used in Section 4 for the analysis of our guiding
example.

Example 3.1 (Sign abstraction) Given the standard constraint system with inequalities over
integer numbers, we abstract it to the abstract constraint system that contains only information
about the sign of the system variables.

We define the abstract constraint system as ⟨Ŝ,⇐,∧, false, true,Var , ∃̂⟩ where Ŝ is the set of
finite conjunctions of {posx,negx, zerox ∣ x ∈ Var}∪{false, true} and ∃̂x is the operation that deletes
all atoms referring to variable x.

The abstract approximation τ is defined by cases as follows:

τ(true) = true τ(false) = false τ(c⊗ c′) = τ(c) ∧ τ(c′) τ(∃xc) = ∃̂x τ(c)

τ(x ≤ a) =
⎧⎪⎪⎨⎪⎪⎩

negx if a ≤ 0

true if a > 0
τ(x ≥ a) =

⎧⎪⎪⎨⎪⎪⎩

posx if a ≥ 0

true if a < 0
τ(x = a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

posx if a > 0

negx if a < 0

zerox if a = 0

Example 3.2 (Floors abstraction) The concrete constraint system of Example 2.1 can be ap-
proximated by the abstract constraint system ⟨F,⇐,∧, false, true,Var , ∃̃⟩ where F is the set of
finite conjunctions of {middlex, lowerx, upperx, notLowerx, notUpperx ∣ x ∈ Var} ∪ {false, true},
ordered as depicted in the Hasse diagram of Figure 2 and ∃̃x is the operation that deletes all atoms
referring to variable x. The table in the figure shows the definition for the increment and decrement
operations in this abstract domain. These are the only two operations defined in the constraint
system (and used in the program).

The abstraction of a stream constraint τ(X = [v∣Y]) approximates the numeric value v following
the natural meaning of constants in the lattice F, that is, lowerx/upperx for v = 0/N and middlex

7

false

middlexlowerx upperx

notLowerxnotUpperx

true

x = [F ∣] y = [F + 1∣x] y = [F − 1∣x]
lowerx middley false
middlex notLowery notUppery
upperx false middley
notLowerx notLowery notUppery
notUpperx notLowery notUppery
true true true

Figure 2: Floors lattice and abstract operations

when 0 < v < N . Constants notLowerx/notUpperx (meaning 0 < v ≤ N and 0 ≤ v < N) are used to
abstract (more) precisely (different) values coming from non-deterministic computations.

The problem of abstracting constraint systems in the ccp paradigm was studied in [FGMP93,
ZGL97], where abstraction meant loss of completeness but not of correctness. However, for the tccp
case, due to the strong synchronization of parallel processes, over-approximation of stores can lead
to lose correctness [AGPV05]. Hence, similarly to [AGPV05, CTV11], given an abstract domain, we
use two binary relations (an over- and an under-approximation relation) over the abstract domain to
be able to conservatively approximate the operational behavior. For positive conditions we need to
guarantee to preserve all consistent constraints (thus over-approximate) while dually, for negative
conditions we cannot introduce solutions but possibly discard some (thus under-approximate).
Thanks to this combination, we do not lose concrete traces in the abstraction process and so we
guarantee correctness of the abstract semantics.

The over-approximation (+ between abstract constraints can be defined systematically in terms
of ⊗̂ as ∀â, b̂ ∈ Ĉ, â (+ b̂⇔ â ⊗̂ b̂ ≠ ˆfalse. This is closely related to the notion of relative-pseudo-
complement. Intuitively, over-approximation holds if there exists the possibility that the entailment
holds in the concrete domain. Namely, â (+ b̂ if τγ(â) ⊗ τγ(b̂) ≠ false.6 Note that this is not
equivalent to the abstract entailment (⊢̂) in Ĉ. Relation (+ is, in general, neither transitive nor
reflexive.

On the contrary, for the under-approximation (− we need to guarantee that, if it holds, then
it also holds in the concrete. Namely, given two abstract constraints â, b̂ ∈ Ĉ, â (− b̂ ⇐⇒ ∀a, b ∈
C.a ⊢ τγ(â), b ⊢ τγ(b̂)⇒ a ⊢ b. Note that, in general, relation (− is neither reflexive nor symmetric.

We use this relation in order to achieve better precision of the abstract semantics when handling
negative information, i.e., to discard traces that do not correspond with real ones. Obviously, this
is a very demanding notion. However, we have to guarantee correctness, thus we cannot discard a
path to construct an abstract trace if there exists a single possibility (a single concretization) that
follows such path. Hence, in general, we cannot use a less demanding notion.

Example 3.3 (Approximation relations for Example 3.1) For the sign abstraction, we have
that posx (+ negx since τγ(posx) ⊗ τγ(negx) = x = 0. For instance, if a positive value (≥ 0) for x
is required (by a condition) in the concrete domain (like x = 0), and the current abstract store is
negx, the over-relation accepts negx since x could be 0.

The under-approximation is â (− b̂⇔ (â = false)∨(â = zerox∧ b̂ = zerox). As already mentioned,
in contrast to (+, relation (− is used to discard traces. For instance, given the now x = 0 then A1 else
A2 agent, if the current abstract store is zerox and thanks to this under-approximation, we are able

6Recall that, the concretization function τγ is a part of the Galois insertion between constraint systems and that
it is the adjoint of the abstraction function.

8

to detect that the value of x cannot be different from zero and then our semantics does not include
spurious traces representing the else branch.

Example 3.4 (Approximation relations for Example 3.2) By observing Figure 2, we see,
for instance, that middlex /(+ upperx and lowerx /(+ notLowerx, but notLowerx (+ notUpperx and
middlex (+ notLowerx. We also observe clearly that the relation is not transitive. For instance,
lowerx (+ notUpperx, notUpperx (+ middlex but lowerx /(+ middlex.

For this example, the under-approximation relation is â (− b̂⇔ (â = false) ∨ (â = lowerx ∧ b̂ =
lowerx) ∨ (â = upperx ∧ b̂ = upperx). Observe that, in this case, relation (− is not reflexive. For
instance, middlex /(− middlex since constraint middlex is too imprecise to discard traces. For
example, assume that the system asks whether the current floor CF is the second one, and the
abstract store contains value middleCF . It is clear that we cannot exactly know the current lift
floor and, in consequence, we have to take into account both possibilities, i.e., the case when CF is
2, and the case when it is not.

It is worth remarking that the abstract entailment relation ⊢̂ and the over-relation (+ are
supported by different intuitions. Let us illustrate this by using the sign abstraction domain of
Example 3.1. Whereas the first relation is the partial order of the lattice (for instance, we have that
τ(x ≥ 5) ⊬̂ τ(x = 0)), the second one checks, in some way, whether there exist two concretizations
of the abstract constraints that are related by ⊢ (for instance, we have that τ(x ≥ 5) (+ τ(x = 0),
since x = 0 ⊢ τγ(τ(x ≥ 5))).

3.1 The abstract semantic domain

The abstract denotational semantics A is formed by abstract conditional traces, which (essentially)
are conditional traces (recalled in Section 2.1) where conditions and stores are formed by approxi-
mated constraints instead of concrete ones.

Definition 3.5 (Abstract conditions) Let Ĉ be an Abstract Cylindric Constraint System. Ab-
stract conditions over Ĉ are pairs (η̂, η̌) where

• η̂ ∈ Ĉ is called abstract positive condition,

• η̌ ∈ N̂CĈ is called abstract negative condition, and

• N̂CĈ ∶= ℘(Ĉ)/
≈
, where, for each pair C,C ′ ⊆ Ĉ, C ≈ C ′ ⇐⇒ C F̂ C ′ ∧ C ′ F̂ C and

C F̂ C ′ ⇐⇒ ∀c ∈ C.∃c′ ∈ C ′. c ⊢̂ c′.

We simply denote N̂CĈ by N̂C when clear from the context. Moreover, we abuse notation and

denote F̂/
≈

simply by F̂. We also define [C]≈ ⊎̂ [C ′]≈ ∶= [C ∪C ′]≈.
The conjunction of two abstract conditions η̃1 = (η̂1, η̌1) and η̃2 = (η̂2, η̌2) is defined as η̃1 ⊗̂ η̃2 ∶=

(η̂1 ⊗̂ η̂2, η̌1 ⊎̂ η̌2).
An abstract condition (η̂, η̌) is consistent when η̂ ≠ ˆfalse and, moreover, ∀η′ ∈ η̌.η̂ /(− η′. We

denote ∆̂Ĉ the set of abstract consistent conditions.

An abstract store ĉ ∈ Ĉ is consistent with η̃ = (η̂, η̌) ∈ ∆̂Ĉ, written ĉ ≫̂ η̃, if ĉ ⊗̂ η̂ ≠ ˆfalse and
∀η′ ∈ η̌.ĉ /(− η′. Moreover, we say that ĉ satisfies η̃, written ĉ ⊫̂ η̃, when ĉ ⊢̂ η̂ and ∀η′ ∈ η̌, ĉ /(− η′.

We define the existential quantification on conditions as ∃̂x η̃ ∶= (∃̂x η̂, ∃̂x η̌)7.
Finally, we define τ̄ ∶ ℘(C)→ N̂C as τ̄(C) ∶= [{τ(c) ∣ c ∈ C}]≈.

7We abuse notation and, given a set of abstract constraints C, we write by ∃̂xC the natural extension of ∃̂ to sets.

9

Constraint abstractions τ and τ̄ enjoy some interesting properties. Namely, given c ∈ C and a
(concrete) condition (η+, η−),

(η+, η−) is consistentÔ⇒ (τ(η+), τ̄(η−)) is (abstractly) consistent (3.1)

c≫ (η+, η−)Ô⇒ τ(c) ≫̂ (τ(η+), τ̄(η−)) (3.2)

c⊫ (η+, η−)Ô⇒ τ(c) ⊫̂ (τ(η+), τ̄(η−)) (3.3)

Those properties follow directly from the definition of the concrete and abstract relations and
from the Galois insertion between the concrete and the abstract constraint system.

Definition 3.6 (Abstract conditional traces) An abstract conditional trace is a (possibly infi-
nite) sequence t̂1⋯t̂n⋯ of abstract conditional states, which can be of three forms.

Abstract conditional store: a pair η̃ ↣ ĉ, where η̃ ∈ ∆̂Ĉ and ĉ ∈ Ĉ;

Abstract stuttering: the construct stutt(η̌), with η̌ ∈ N̂C;

Abstract end of a process: the construct ⊠, which cannot be followed by other abstract condi-
tional states.

The empty sequence of abstract conditional states is denoted by ε.
Abstract conditional traces must respect the following properties:

(monotonicity) for each t̂i = η̃i ↣ ĉi and t̂j = η̃j ↣ ĉj such that j ≥ i, ĉj ⊢̂ ĉi and

(consistency) for each t̂i = η̃i ↣ ĉi and t̂i+1 = (η̂i+1, η̌i+1)↣ ĉi+1, ∀η′ ∈ η̌i+1, ĉi /(− η′.

Definition 3.7 (Abstract semantic domain) We denote the set of all abstract conditional traces
for the abstract constraint system Ĉ by ATĈ, or simply AT when clear from the context. We (par-
tially) order abstract conditional traces by their information content as ∀r ∈ AT. ε t r, ⊠ t ⊠, and
(∀ĉ, η̂1, η̂2 ∈ Ĉ, ∀η̌1, η̌2 ∈ N̂C, ∀r1, r2 ∈ AT)

(η̂1, η̌1)↣ ĉ1 ⋅ r1 t (η̂2, η̌2)↣ ĉ2 ⋅ r2 ⇐⇒ η̂1 ⊢̂ η̂2 ∧ η̌2 F̂ η̌1 ∧ ĉ1 ⊢̂ ĉ2 ∧ r1 t r2

stutt(η̌1) ⋅ r1 t stutt(η̌2) ⋅ r2 ⇐⇒ η̌2 F̂ η̌1 ∧ r1 t r2

We extend t to sets of abstract conditional traces A1,A2 as A1 ≤ A2 ⇐⇒ ∀r1 ∈ A1∃r2 ∈ A2.r1 t
r2. Moreover, we define A1 ≡ A2 ⇐⇒ A1 ≤ A2 ∧ A2 ≤ A1. In the sequel, we abuse notation and
denote ≤/

≡
as ≤.

In the following, we use sets of non-empty abstract conditional traces modulo ≡ and denote
their class by A. (A, ≤, ⋁, ⋀, [AT]≡, {ε}) is a complete lattice, where A1 ∨A2 = [A1 ∪A2]≡ and
A1 ∧A2 = [{r ∈ AT ∣ ∃r1 ∈ A1. r t r1, ∃r2 ∈ A2. r t r2}]≡.

We can now define the abstraction of conditional traces.

Definition 3.8 (Conditional trace abstraction) We define the abstraction function ατ ∶ C →
A as the extension to sets (modulo ≡) of function ατ ∶ CT → AT defined as follows. Given a
conditional trace t ∈ CT, ατ(ε) = ε, ατ(⊠) = ⊠, ατ((η+, η−)↣ c ⋅ t′) = (τ(η+), τ̄(η−))↣ τ(c) ⋅ ατ(t′)
and ατ(stutt(C) ⋅ t′) = stutt(τ̄(C)) ⋅ ατ(t′). The concretization function γτ that, given a set of
abstract traces, produces all the concrete traces that can be approximated by it, is defined as the
adjoint of ατ .

For example, given the trace r = stutt({X > 5}) ⋅ (X > 6,{Y < 0}) ↣ X > 9 for the sign abstraction
τ of Example 3.1 we have ατ(r) = stutt({posX}) ⋅ (posX ,{negY })↣ posX .

10

3.2 The abstract semantics

The Galois insertion defined before can be naturally lifted to the domain of interpretations. We
denote as IA ∶= [PC → A] the abstract counterpart of I.

The abstract semantics for a tccp program is based on the evaluation function for tccp agents
shown in the following Definition 3.18. First, we need some auxiliary operators and properties. For
the sake of readability, some (correctness) results together with their proofs can be consulted in
the appendix.

To propagate information when composing traces, we use two propagation operators. The
abstract (strong) propagation operator ↡̂ is a partial function AT × Ĉ → AT that instantiates an
abstract conditional trace with a given abstract constraint and checks the consistency of the new
information with the conditional states in the trace. This information needs to be propagated to
all conditional states (including future states) in order to maintain the monotonicity of the store.

Following these intuitions, operator r↡̂ĉ propagates ĉ in the stores and conditions occurring in r,
whereas the abstract weak propagation operator r↓̂ĉ propagates ĉ only in the conditions.

Definition 3.9 (Abstract propagation operator) The abstract propagation partial function

↡̂ ∶ AT × Ĉ→AT is defined by structural induction as: ε↡̂ĉ = ε, ⊠↡̂ĉ = ⊠ and

((η̂, η̌)↣ d̂ ⋅ r′)↡̂ĉ =
⎧⎪⎪⎨⎪⎪⎩

(η̂ ⊗̂ ĉ, η̌)↣ d̂ ⊗̂ ĉ ⋅ (r′↡̂ĉ) if ĉ ≫̂ (η̂, η̌), d̂ ⊗̂ ĉ ≠ ˆfalse

(η̂ ⊗̂ ĉ, η̌)↣ ˆfalse ⋅ ⊠ if ĉ ≫̂ (η̂, η̌), d̂ ⊗̂ ĉ = ˆfalse

(stutt(η̌) ⋅ r′)↡̂ĉ = stutt(η̌) ⋅ (r′↡̂ĉ) if ∀η′ ∈ η̌. ĉ /(− η′

It is worth noting that if η̂ ⊗̂ ĉ = ˆfalse, then the condition is not consistent, thus no conditional trace
is produced.

Example 3.10 (Abstract propagation operator) Given r = (posx,{zeroy})↣ posy ⋅ ⊠, by def-

inition, r↡̂zerox
= (zerox,{zeroy}) ↣ posy ⊗̂ zerox ⋅ ⊠. On the contrary, r↡̂zeroy

is not defined since

zeroy /̂≫ (posx,{zeroy}).

Definition 3.11 (Abstract weak propagation operator) The abstract weak propagation par-
tial function ↓̂ ∶ AT × Ĉ→AT is defined by structural induction as: ε↓̂ĉ = ε, ⊠↓̂ĉ = ⊠ and

((η̂, η̌)↣ d̂ ⋅ r′)↓̂ĉ = (ĉ ⊗̂ η̂, η̌)↣ d̂ ⋅ (r′↓̂ĉ) if ĉ ≫̂ (η̂, η̌)
(stutt(η̌) ⋅ r′)↓̂ĉ = stutt(η̌) ⋅ (r′↓̂ĉ) if ∀η′ ∈ η̌. ĉ /(− η′

Analogously to ↡̂, note that if η̂ ⊗̂ ĉ = ˆfalse, then the condition is not consistent, thus no conditional
trace is produced by r↓̂ĉ.

Example 3.12 (Abstract propagation operator) Given the same r = (posx,{zeroy}) ↣ posy ⋅
⊠ as in the Example 3.10, r↓̂zerox = (zerox,{zeroy})↣ posy ⋅ ⊠. Also the weak propagation of zeroy
(r↓̂zeroy) is not defined.

The ∥̂ operator composes two traces by consistently merging their conditions and stores. To this
end, it uses the two propagation operators in order to merge the information from the traces.
Information in the stores is (strongly) propagated, whereas information in the conditions is weakly
propagated.

Definition 3.13 (Abstract parallel composition) The abstract parallel composition partial op-

erator ∥̂∶AT ×AT → AT is the commutative closure of the following partial operation defined by
structural induction as: r ∥̂ ε ∶= r, r ∥̂ ⊠ ∶= r and

(stutt(η̌1) ⋅ r1) ∥̂ (stutt(η̌2) ⋅ r2) ∶= stutt(η̌1 ⊎̂ η̌2) ⋅ (r1 ∥̂ r2)

11

Moreover, if η̃1 ⊗̂ η̃2 is consistent , then

(η̃1 ↣ ĉ1 ⋅ r1) ∥̂ (η̃2 ↣ ĉ2 ⋅ r2) ∶=
⎧⎪⎪⎨⎪⎪⎩

η̃1 ⊗̂ η̃2 ↣ ĉ1 ⊗̂ ĉ2 ⋅ ((r1↓̂η̂2 ↡̂ĉ2) ∥̂ (r2↓̂η̂1 ↡̂ĉ1)) if ĉ1 ⊗̂ ĉ2 ≠ ˆfalse

η̃1 ⊗̂ η̃2 ↣ ˆfalse ⋅ ⊠ if ĉ1 ⊗̂ ĉ2 = ˆfalse,

Finally, if ∀η′ ∈ η̌2. η̂1 /(− η′, then

((η̂1, η̌1)↣ ĉ1 ⋅ r1) ∥̂ (stutt(η̌2) ⋅ r2) ∶= (η̂1, η̌1 ⊎̂ η̌2)↣ ĉ1 ⋅ (r1 ∥̂ (r2↓̂η̂1 ↡̂ĉ1))

Clearly, by definition, ∥̂ is commutative. Moreover, because of ⊗̂ associativity, ∥̂ is also associative.
It is worth noting that if the propagated constraint is in contradiction with a condition of trace r,
then the parallel composition is not defined on that r.

Example 3.14 (Parallel operator) Given r̂1 = (posx,∅)↣ posy ⋅⊠ and r̂2 = stutt({posx,posy}) ⋅
(ˆtrue,∅) ↣ posx ⋅ ⊠, the parallel composition r̂1 ∥̂ r̂2 = (posx,{posx,posy}) ↣ posy ⋅ (posx ⊗̂ posy,
∅) ↣ posx ⊗̂ posy ⋅ ⊠. Following the definition, the first conditional state corresponds to that of r̂1

updated with the negative condition of the stuttering conditional state. Then, the information in
the first conditional state of r̂1 is propagated to the rest of conditional trace of r̂2. Note that since
the second conditional state of r̂2 is the end-of-process mark, no other merges are needed.

We remark the fact that the initial condition in the resulting abstract conditional trace is
consistent since posx /(− posx. This corresponds to the idea of not discarding abstract traces unless
we are sure that they do not admit concrete real behaviors. Let us illustrate this issue. Consider
the concrete traces r1 = (x ≥ 0,∅) ↣ y = 1 ⋅ ⊠ and r2 = stutt({x ≥ 2, y ≥ 2}) ⋅ (true,∅) ↣ x ≥ 0 ⋅ ⊠
which are in the concretization of r̂1 and r̂2, respectively. Their (concrete) parallel composition is
a consistent trace, i.e., (x ≥ 0,{x ≥ 2, y ≥ 2})↣ y = 1 ⋅ (x ≥ 0⊗ y = 1,∅)↣ x ≥ 0 ⊗̂ y = 1 ⋅ ⊠.

Let us now show the (natural) loss of precision of the abstract domain. Also r′1 = (x = 1,
∅)↣ y = 1 ⋅ ⊠ and r′2 = stutt({x ≥ 0, y ≥ 0}) ⋅ (true,∅)↣ x ≥ 0 ⋅ ⊠ are in the concretization of r̂1 and
r̂2, respectively. However this time their (concrete) parallel composition is not defined because the
first conditional state would be (x = 1,{x ≥ 0, y ≥ 0}) ↣ y = 1 but since x = 1 ⊢ x ≥ 0, the condition
is not consistent.

The abstract hiding operator hides the information regarding some given variables in a trace.

Definition 3.15 (Abstract hiding operator) The abstract hiding operator is the partial func-
tion ∃̂∶ ℘(Var) ×AT →AT defined by structural induction as:

∃̂V r ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∃̂V η̂, ∃̂V η̌)↣ ∃̂V ĉ ⋅ ∃̂V r′ if r = (η̂, η̌)↣ ĉ ⋅ r′

stutt(∃̂V η̌) ⋅ ∃̂V r′ if r = stutt(η̌) ⋅ r′

r if r = ε or r = ⊠

where, for all ĉ ∈ Ĉ, ∃̂{x1,...,xn} ĉ ∶= ∃̂x1 ⋯∃̂xn ĉ and, for all C ∈ N̂C, ∃̂V C ∶= {∃̂V ĉ ∣ ĉ ∈ C}.

We abuse notation and write ∃̂x r for ∃̂{x} r.

Definition 3.16 (Abstractly self-sufficient and x-self-sufficient conditional trace) An ab-
stract trace r ∈ AT is said to be abstractly self-sufficient if the first condition is (ˆtrue,∅) and, for
each t̂i = (η̂i, η̌i) ↣ ĉi and t̂i+1 = (η̂i+1, η̌i+1) ↣ ĉi+1, ĉi ⊫̂ ηi+1. In other words, each abstract store
(abstractly) satisfies the successive abstract condition.

Moreover, r is abstractly self-sufficient w.r.t. x ∈ Var (x-self-sufficient) if ∃̂Var∖{x} r is self-
sufficient. In other words, for abstractly self-sufficient conditional traces, no additional information
(from other agents) is needed in order to complete the computation.

12

Example 3.17 (Abstractly self-sufficient and x-self-sufficient conditional trace) Let us con-
sider the abstract constraint system of Example 3.2. The abstract conditional trace r̂ = (ˆtrue,

∅)↣ posx ⋅ (zerox,∅)↣ zerox ⊗̂ posy ⋅ ⊠ is not self-sufficient since posx /̂⊫ (negx,∅).
Now consider a variation where we add the information zerox to the stores, namely r̂′ ∶= (true,

∅) ↣ posx ⊗̂ zerox ⋅ (zerox,∅) ↣ zerox ⊗̂ posy ⋅ ⊠. It is easy to see that r̂′ is a self-sufficient condi-
tional trace, essentially because we add enough information in the first store to satisfy the second
condition, i.e., zerox ⊫̂ (zerox,∅).

Moreover, r̂′ is also x-self-sufficient since ∃̂Var∖{x} r̂′ = (true,∅) ↣ posx ⊗̂ zerox ⋅ (zerox,∅) ↣
zerox ⋅ ⊠, which is a self-sufficient trace.

Now we are ready to define the semantics evaluation function for agents, which is the core of
the abstract semantics. As already said, this definition is structurally identical to the definition of
the concrete evaluation function.

Definition 3.18 (Abstract Semantics Evaluation Function for Agents) Given a tccp agent
A and an (abstract) interpretation Iα ∈ IA, we define by structural induction the semantics evalua-
tion AαJAKIα ∈ A as follows.

AαJskipKIα ∶= {⊠} (3.4a)

AαJtell(c)KIα ∶= {(ˆtrue,∅)↣ τ(c) ⋅ ⊠} (3.4b)

AαJA ∥ BKIα ∶=⊔{rA ∥̂ rB ∣ rA ∈ AαJAKIα , rB ∈ AαJBKIα} (3.4c)

AαJ∃xAKIα ∶=⊔{ ∃̂x r ∣ r ∈ AαJAKIα , r is abstractly x-self-sufficient} (3.4d)

AαJp(Ð→x)KIα ∶= {(ˆtrue,∅)↣ ˆtrue ⋅ r ∣ r ∈ Iα(p(Ð→x))} (3.4e)

AαJ
n

∑
i=1

ask(ci)→ AiKIα ∶=⊔{stt ⋅ . . . ⋅ stt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅r ∣m ∈ N, r ∈M} ⊔ {stt ⋅ . . . ⋅ stt ⋅ . . .} (3.4f)

where stt ∶= stutt([τ̄({c1, . . . , cn})]≡) and M = ⊔{(τ(ci),∅)↣ ˆtrue ⋅ (r′↓̂τ(ci)) ∣1 ≤ i ≤ n, r
′ ∈ AαJAiKIα}

AαJnow c then A else BKIα ∶= {(τ(c),∅)↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AJAKIα} ⊔

⊔{(τ(c) ⊗̂ η̂, η̌)↣ d̂ ⋅ (r↓̂τ(c)) ∣ (η̂, η̌)↣ d̂ ⋅ r ∈ AαJAKIα , ∀η′ ∈ η̌, τ(c) ⊗̂ η̂ /(− η′} ⊔

⊔{(τ(c), η̌)↣ ˆtrue ⋅ r↓̂τ(c)) ∣ stutt(η̌) ⋅ r ∈ AαJAKIα ,∀η′ ∈ η̌, τ(c) /(− η′} ⊔

⊔{(ˆtrue,{τ(c)})↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AαJBKIα} ⊔

⊔{(η̂, η̌ ⊎̂ {τ(c)})↣ d̂ ⋅ r ∣ (η̂, η̌)↣ d̂ ⋅ r ∈ AαJBKIα , η̂ /(− τ(c)} ⊔
⊔{(ˆtrue, η̌ ⊎̂ {τ(c)})↣ ˆtrue ⋅ r ∣ stutt(η̌) ⋅ r ∈ AαJBKIα} (3.4g)

The semantics for a set of process declarations D is the fixpoint FαJDK ∶= lfp(DαJDK) of the
continuous operator DαJDKIα(p(Ð→x)) ∶= ⋁p(Ð→x)∶−A∈DAαJAKIα.

We explain in detail some significant cases. The semantics of the tell(c) agent (3.4a) has a trace
with two conditional states: the first one with condition (ˆtrue,∅), which is the less demanding
condition since c must be added to the store in any case (in the next time instant). Next, the
computation terminates with the end-of-process symbol ⊠. The parallel and hiding cases are defined
in terms of the corresponding auxiliary operators, whereas the case of a process call p(Ð→x) is the
abstract behavior of the process specified by the interpretation Iα (i.e., r ∈ Iα(p(Ð→x))) but starting
at the following time instant (since in tccp process calls introduce a delay of one time unit).

The case for the non-deterministic choice deserves special attention since, without the under-
approximation relation, due to suspension, concrete behaviors might be lost, which would make
the abstract semantics incomplete and the subsequent analysis unsound. Intuitively, we need to

13

guarantee that, in the abstract semantics, we keep a conditional trace modeling suspension. The
abstract conditional trace that models suspension will be discarded just in case that it becomes
inconsistent when merged (by means of the parallel operator) with another (abstract) conditional
trace. Thus, the semantics for the (non-deterministic) choice (3.4f) collects, for each guard ci, a
conditional trace of the form (τ(ci),∅) ↣ ˆtrue ⋅ (r↓̂τ(ci)). This trace requires that τ(ci) has to be
satisfied by the current store. Then, the constraint τ(ci) is propagated to the conditions in trace
r (the continuation of the computation, which belongs to the semantics of Ai). Furthermore, we
collect the stuttering traces, which correspond to the case when the computation suspends. These
traces are of the form stt ⋅ . . . ⋅ stt ⋅ r, where r is one of the traces above, plus the infinite stuttering
behavior stt ⋅ . . . ⋅ stt ⋅

The definition (3.4g) for the conditional agent now c then A else B is similar to the previous
case. However, since the now construct must be instantaneous, in order to correctly model the
timing of the agent, we have six cases depending on the possible forms of the first conditional state
of the semantics of A (respectively B) and on the fact that the guard c is satisfied or not in the
current time instant.

Abstract semantic operators Aα and Dα are correct abstractions of A and D, as stated in the
theorem below. Hence, abstract interpretation theory ensures that FαJDK is a correct approxima-
tion of F JDK.

Theorem 3.19 Given an interpretation Iα ∈ IA and p(Ð→x) ∈ PC,

ατ(AJAKγτ (Iα)) ≤ AαJAKIα (3.5)

ατ(DJDKγτ (Iα)(p(Ð→x))) ≤ DαJDKIα(p(Ð→x)) (3.6)

Proof Proof sketch. The complete proof of this result can be found in Appendix A. It proceeds
by structural induction on the form of the agents by applying ατ to the various cases of the concrete
agent evaluation and, by correctness of ατ , one obtains as over-approximation the corresponding
cases of the definition of the abstract version. In particular, when the abstraction is applied
to concrete constraints, the correctness is guaranteed by our assumptions on the approximation
relations (+ and (−. When the abstraction is applied to concrete auxiliary operators, the proof
relies on their correctness, which is stated by means of four lemmas, also included in the appendix.

3.3 From infinite to finite semantics

Since the domain of abstract conditional traces is not Noetherian (i.e., it admits infinite increasing
chains), the computation of the abstract least fixpoint does not necessarily converge in finite time.
Our solution is to use a widening operator [BHRZ05, CC77] that ensures convergence to an over-
approximation of the abstract fixpoint in a finite number of steps.

In the following, we use a representation of sets of abstract conditional traces in terms of
conditional graphs. These graphs are enriched with the information about the process calls, which
is necessary to identify the part of the graph corresponding to each iteration of DαJDK at the
moment of applying the widening operator.

Definition 3.20 A conditional graph G is a triple (Init ,Nodes,Edges) where

• Init is the set of initial nodes, each one labeled with a (unique) process symbol, denoted by
init(G)

• Nodes is a set of nodes, each one containing a conditional step, and

14

• Edges is a set of edges between nodes that can be of two kinds: either simple edges n → n′,

or edges of the form n
ρ
Ô⇒
p
n′ representing a call to process p with variable renaming ρ. Edges

represent the passage of one time unit.

G denotes the set of all conditional graphs. Moreover, n /→ denotes a node n that has no outgoing
edges.

We define the function paths ∶G → A which, given a conditional graph, returns the set of all

paths of the graph. When an arc of the form
ρ
Ô⇒
p

is traversed, a variant with fresh variables in the

co-domain of the renaming ρ is applied to the nodes that follow in the path and the information
of the store is propagated to the positive conditions, similarly to what happens when a process
call is done. The order relation over graphs ≼ is defined as G1 ≼ G2 ⇐⇒ paths(G1) ≤ paths(G2).
(G, ≼, ⋎, ⋏, ⊺G, �G) is a complete lattice where ⋎ is the least upper bound operator that joins a
set of graphs by combining all the sequences that have a prefix in common in the same path, ⋏
is the greatest lower bound operator that returns the common parts of a set of graphs, �G is the
graph composed only of an empty initial node and ⊺G is the graph such that paths(⊺G) = AT.

The semantics of a tccp process p(Ð→x) can be seen as a conditional graph G with the initial
node labeled with p and such that paths(G) = FαJDK(p(Ð→x)). The graph for the process p(Ð→x) is
built by linking the initial node of p to the nodes corresponding to the first conditional states of
the semantics of an agent A such that p(Ð→x) ∶ −A ∈ D. The rest of the graph is built following the
denotational semantics of Definition 3.18: each conditional state becomes a node in the graph and
it is connected to the following one by a simple edge. When a call to a process q(Ð→y) is found and

the declaration q(Ð→z) ∶− A′ is in D, an arrow
[z⃗/y⃗]
ÔÔ⇒
q

is added, thus linking the current node to the

graph labeled with q by using the variable renaming [z⃗/y⃗].
Now we are ready to define our widening operator. Widening operators provide an efficacious

solution to the convergence problem by over-approximating infinite increasing chains in a finite
number of steps. A widening operator [BHRZ05, CC77] on the lattice (L, ≤) is a partial function
▽∶L ×L→ L satisfying:

(covering) for all x, y ∈ L such that x ≤ y, x▽ y is defined and y ≤ x▽ y; and

(termination) for each increasing chain x0 ≤ x1 ≤ . . . the chain defined as y0 = x0 and yi+1 =
yi▽xi+1 is not strictly increasing.

We propose a widening operator8 ▽ that looks for repeated patterns in consecutive iterations
of DαJDK and converges, in a finite number of steps, in a conditional graph that represents an over-

approximation of the abstract fixpoint Fα. In the sequel, we abuse in notation and write t̂
ρ2Ô⇒
p
t̂′1 →

⋅ ⋅ ⋅→ t̂′n to denote the set of the edges occurring in this path, i.e., {t̂
ρ2Ô⇒
p
t̂′1, t̂

′
1 → t̂′2 . . . , t̂

′
n−1 → t̂′n}.

Definition 3.21 (Graph widening) Let G1,G2 ∈ G such that G1 ≼ G2. The graph widening of
G1 w.r.t. G2 is defined as G1▽G2 ∶= G1 ⋎ (I,N,E) where I ∶= init(G2), N is the set of nodes that
occur in the set of edges E, and

E ∶={t̂
ρ2Ô⇒
p
t̂1 ∣ it exists a subpath in G2 of the form t̂

ρ2Ô⇒
p
t̂′1 . . . t̂

′
n /→ s.t. an edge Ô⇒

p
does not

occur in t̂′1 . . . t̂
′
n and it exists a subpath in G1 of the form

ρ1Ô⇒
p
t̂1 . . . t̂n

ρ′1Ô⇒
p

, s.t.

an edge Ô⇒
p

does not occur in t̂1 . . . t̂n and ∀1 ≤ i ≤ n ρ1(t̂i) = ρ2(t̂′i)} ∪

8In defining our widening operator, we follow the approach of [BHRZ05] instead of the original in [CC77].

15

t̂1

ρ1

t̂

t̂nρ′1

(a) G1

t̂1

ρ1

t̂

t̂′1

ρ2

t̂n

t̂′n

ρ′1

(b) G2

t̂1

ρ1

t̂

t̂nρ′1

ρ2

(c) G1▽G2

Figure 3: The graph widening behavior.

⋃{t̂
ρ2Ô⇒
p
t̂′1 → ⋅ ⋅ ⋅→ t̂′n ∣ it exists a subpath in G2 on the form t̂

ρ2Ô⇒
p
t̂′1 . . . t̂

′
n /→ s.t. in t̂′1 . . . t̂

′
n it does

not occur an edge Ô⇒
p

and it does not exist a subpath in G1 of the form
ρ1Ô⇒
p
t̂1 . . . t̂n

ρ′1Ô⇒
p
,

s.t. in t̂1 . . . t̂n it does not occur an edge Ô⇒
p

and ∀1 ≤ i ≤ n ρ1(t̂i) = ρ2(t̂′i)}

At each iteration, the widening checks if a suffix r of a path b in the graph of a process p (which
corresponds to the trace produced at the last iteration of p) has already appeared in a previous
iteration of p (modulo variables renaming). In this case, it adds an edge, labeled with the necessary
variable renaming ρ2, from the node t̂ precedent to the pattern r to the first node of the equivalent
pattern found in the previous widening iteration (first case of Definition 3.21). Otherwise, if no
equivalent pattern (modulo variable renaming) is found, the path b is added to the graph (second
case of Definition 3.21). Figure 3 shows a graphical representation of the graph widening behavior.
To improve readability, in the figure we assume that all process calls involve the same process, thus
we just include the renaming for variables in the edges.

Lemma 3.22 If the underlying abstract Cylindric Constraint System is Noetherian, then the op-
erator ▽ is a widening operator on G.

Proof Proof sketch. The covering property is a consequence of the fact that the branches of G2

that are not included by the widening are already present in G1 modulo variable renaming; that
is the reason why a direct edge is added from the last node before the repetition to the equivalent
branch detected in G1.

Termination of the widening is a consequence of the properties of the abstract constraint systems
and of the finiteness of the program syntax. By definition, just a finite number of conditional steps
can be computed, thus iteration’s length is finite. Furthermore, when a repeated pattern is detected,
that (possibly cyclic) branch is not further expandable.

Because of Lemma 3.22 and the results in [BHRZ05] is guaranteed that, for any tccp set of
declarations D, the chain

I0 = {ε} Ii+1 =
⎧⎪⎪⎨⎪⎪⎩

Ii if DαJDKIi ≤ Ii
Ii▽ (Ii ∨DαJDKIi) otherwise

converges to a graph which is a correct approximation of the abstract semantics in a finite number
of steps. That graph contains an initial node for each process declaration such that the subgraph
reachable from the initial node represents the behaviors of the corresponding process. Subgraphs
corresponding to different processes are linked by edges with renamings when process calls occur.

Example 3.23 Figure 4 shows the conditional graph corresponding to the abstract semantics of
the lift process. We abstract streams of the concrete Constraint System by posing a depth limit

16

lift

(Dir = [up ∣] ∧CF = [N ∣],∅)↣
Dir = [up ∣ Dir ′] ∧Dir ′ = [down ∣]

(Dir = [up ∣],{Dir = [up ∣]∧
CF = [N ∣]})↣ CF = [F ∣ CF ′]

(Dir = [up ∣] ∧CF = [F ∣ CF ′],∅)↣
CF = [F ∣ CF ′] ∧CF ′ = [F + 1 ∣]

(Dir = [down ∣] ∧CF = [0 ∣],
{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣]})↣
Dir = [down ∣ Dir ′] ∧Dir ′ = [up ∣]

(true,{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣],
Dir = [down ∣] ∧CF = [0 ∣]})↣ CF = [F ∣ CF ′]

(true,∅)↣ CF = [F ∣ CF ′] ∧CF ′ = [F − 1 ∣]

Dir/Dir ′

Dir/Dir ′

Dir/Dir ′

Dir/Dir ′
CF /CF ′

CF /CF ′ CF /CF ′

CF /CF ′

Figure 4: Graph representation of the abstract semantics of the lift process.

for streams, i.e., we keep the first k values of a stream, and then we use the top of the domain. All
other constraints are abstracted to themselves. The resulting abstract Constraint System is thus
finite.

Due to the application of the widening operator it can be noted how the recursive calls (rep-
resented as triangles in Figure 1) are replaced in Figure 4 with the (set of) arcs pointing to the
possible continuations of the computation.

4 Abstract analysis with an over-approximation

The abstract semantics we have proposed so far is an over-approximation of the concrete semantics.
Thus, it allows us to check universal properties, i.e., properties that all the possible behaviors of
the system must satisfy. For instance, it is possible to analyze some temporal properties such as
safety (i.e., something bad never happens) or liveness (i.e., something good eventually happens) or
to check if a program never suspends. In order to check whether some invariant property is satisfied
by our program, it is necessary to check if every node of the graph respects this property. The
properties that can be checked strongly depend on the abstraction of the constraint system. If we
want to guarantee that a given abstract constraint ĉ never holds in a computation, we need to check
that for every node, either its store is in contradiction with ĉ, or its negative condition contains a
store that satisfies ĉ or the positive condition η̂ is in contradiction with ĉ (i.e., η̂ ⊗̂ ĉ = ˆfalse). This
ensures that, for every possible input, ĉ is never produced in the computation.

Similarly, in order to check if an abstract constraint ĉ is always entailed by the current store,
it is sufficient to check if for each conditional step occurring in the graph of the form (η̂, η̌) ↣ d̂,
the positive condition merged with the store entails ĉ (i.e., η̂ ⊗̂ d̂ ⊢̂ ĉ). This ensures that for every
possible initial constraint, ĉ is entailed by the store.

Example 4.1 We may be interested in proving several invariant properties on the lift process in
Example 2.1. For instance, we can try to verify that “the current floor stream CF never gets a
negative number”. To this end, we check all the conditions in the graph in Figure 4, and since we
find (at least) a node that does not contradict that CF is negative (see the first node of the right
branch), we conclude that it cannot be ensured that the lift process respects this safety property.
As a matter of fact, provided we start the computation with an initial state where CF is initialized
to a negative number, then the last else branch of the program can be taken, and CF would remain
negative in the subsequent trace.

17

Consider now the invariant property “each time the direction of the lift is updated, also its floor
is updated”. In this case, it can be noticed that all the conditional steps in Figure 4 satisfy this
property, since whenever the positive condition in the step is merged with the store, it entails that
Dir has a value, then it is also entailed that CF is instantiated.

Verifying liveness properties is harder since it involves analyzing unknown length sequences of
steps. For instance, given a process p(Ð→x), assume that we want to check that “every time an
abstract constraint ĉ holds, then it exists a future state where another abstract constraint d̂ holds”.
Given the conditional graph for p(Ð→x), this property would hold if for each node labeled with a
conditional step whose positive condition and store entails ĉ then all paths starting from such node
contain a conditional step whose positive condition and store entails d̂.

Example 4.2 Observe that lift process in Example 2.1 satisfies the property “every time the
current floor is 0 and the direction is down, the direction will be up eventually”. In fact, the first
node of the third branch from the left in Figure 4 is the sole step that contains in its positive
condition CF = [0 ∣] and Dir = [down]. Furthermore, for each possible path from this node we
find a conditional step where Dir = [up ∣] appears in the positive condition or in the store.

Another interesting liveness property that can be analyzed on the lift process is “whenever the
current floor is 0 it exists a future state when this value changes”, i.e., we do not stay indefinitely
in floor 0.

Since the number of nodes in the graph is finite, the aforementioned analysis terminates in a finite
number of steps.

Let us now analyze non-suspension. Non-suspension analysis consists in ensuring that no exe-
cution of a tccp program suspends. In conditional graphs, in order to check whether p(Ð→x) never
suspends, it is sufficient to check that there is no node N in G labeled with a stutt construct with
an outgoing arc pointing to N itself. Inversely, if the graph contains a stuttering node, we can not
guarantee suspension, due to over-approximation of the semantics.

Example 4.3 Consider the semantics of the lift process in Figure 4. It is worth noting that the
graph does not contain any node labeled with stutt . Therefore, we can ensure that the lift process
never suspends.

In the previous paragraphs, we have discussed the analysis of the lift process in isolation, without
taking into account the rest of processes which are concurrently in execution. The verification of
properties on systems composed of more than one process involves the construction of complex
graphs in which each node contains the positive and negative conditions along with the accumulated
store obtained by the synchronous execution of all active processes. Clearly, the size of this graph is
a key parameter to determine the complexity of verification algorithms based on graph exploration.
For example, assume that we try to analyze properties on the system composed by processes lift
and pssngr of our guiding example. The graph corresponding to the initial process

main(N ,O ,D) ∶ − ∃CF ,Dir ,St (lift(N,CF ,Dir) ∥ pssngr(CF ,O,D,St) ∥
tell(CF = [0 ∣]) ∥ tell(Dir = [up ∣]) ∥ tell(St = [wait ∣]))

contains nodes where both the lift and the pssngr evolve synchronously following the behavior
defined by the semantics in Section 3. The size of this graph strongly depends on the initial value
of variable N , i.e., the number of the floors, since the lift process iteratively changes its current
floor in the range [0..N] and, each time it changes, the pssngr process compares the current floor
with the parameters origin and destination. In order to model all the possibilities, the parallel
composition results in a graph that can be seen as the composition of the lift graph in Figure 4
(fed with the initial constraints given by the two tell agents, and unfolded by making the possible
floors explicit) with the pssngr graph. We could also complicate the structure of the system by

18

considering more than one lift moving up and down in the building or adding more passengers.
In any case, the analysis of real systems would clearly benefit from data abstraction following the
methodology described in Section 3.1.

Example 4.4 As an example of data abstraction for the guiding example, consider the Floors
abstract domain of Example 3.2. With this abstraction, we could construct the abstract graph of
the main agent above which is independent of the actual number N of building floors. Clearly, the
price to pay is the loss of precision when analyzing some properties on the system. For instance, we
could prove that the system lift/pssngr does not block irrespective of the number of floors in the
building. It could be also possible to analyze properties which are not affected by the abstraction
such as “if the lift is at floor 0 and the lift direction is down, then the lift does not move until the
direction changes to up.”

However, observe that due to the imprecision when carrying out operations on abstract values,
the abstract graph contains spurious behaviors that make impossible to directly prove some live-
ness properties. For instance, since adding 1 to the abstract value notLowerx returns notLowerx,
the abstract graph includes paths where the current floor is always increasing, which is clearly
unrealistic. Several techniques may be utilized to eliminate these false behaviors. For instance, in
[CGJ+00], the semantics is gradually refined by using spurious counterexamples. It is also possible
to prune the part of the graph explored by assuming fairness conditions as described in [GMP02].
For example, by imposing condition “the lift will reach floor 0 infinitely often”, it could be possible
to prove liveness properties as “if the origin and destination floors for the pssngr are 0 and N ,
respectively, then the pssngr will enter in the lift at floor 0 at some future time, and she will leave
the lift at floor N , eventually”.

5 Related work

The recent work [CGTV15] was the first attempt to propose a program analysis framework based
on abstract interpretation for a concurrent constraint language adhering to the characteristics of
tccp (negative information, non-determinism and infinite behaviors). The new proposed framework
improves the applicative domain of the work in [CGTV15]. More specifically, we have relaxed the
condition on the abstract domain so that now we can use abstract domains that better capture
the relations of practical interest in the concrete domain. For instance, the domain of Example 3.2
does not satisfy the conditions required in [CGTV15].

Previously, in [FOP15], a framework for dataflow analysis of programs written in two other
languages of the ccp family, tcc and utcc, is presented. The two main differences between these
two languages and tccp are the notion of time (tcc and utcc use dedicated timing constructs) and
determinism (vs. non-determinism of tccp). Moreover, in the case studies, [FOP15] uses a depth(k)
abstraction to ensure convergence, which consists in a non-selective cut at some point in time
(instead of the selective cut that we can use by widening like in Example 3.23).

In [FV06], it was defined a model checking algorithm for tccp which allowed us to verify timed-
depending properties. Their algorithm was based on the exploration of a graph representation of
the program behavior which resembles the graph representation of the semantics defined in this
paper. Thus we could as well employ our graph representation to perform (an efficient) model
checking. Note however that the abstract semantics that we propose now is not limited to the
verification of temporal properties.

Finally, [AGPV05] proposes an abstract semantic framework for tccp that, differently from our
approach, was based on source-to-source transformations. The two approaches are completely dif-
ferent: [AGPV05] aimed at using the concrete semantics to execute the transformed (abstract)
program. This could be done thanks to a non-trivial transformation of the program (an analysis

19

on the structure of the program was necessary as a preprocess of the transformation). Our ap-
proach aims at defining an abstract semantics that, thanks to the characteristics of the concrete
denotational semantics, is guaranteed to be correct and we argue that is precise enough to allow
the definition of interesting analyses.

6 Conclusions and future work

We have proposed a program analysis framework based on an abstract semantics that, together
with a widening operator, is suitable for the definition of different analyses for full tccp programs.
This is a difficult task because of the presence of infinite computations, use of negative information
and non-determinism. However, it is essential to consider these features of the language since these
are the ones that make tccp well-suited to model reactive systems.

The abstract semantics is an over-approximation, which makes possible to define analysis tools
for universal properties. To the best of our knowledge, this is the first proposal that defines an
analysis which adaptively ensures termination depending on the program (by means of widening).
This should give better results than the non-selective approaches.

We have also improved the framework previously defined in [CGTV15] by relaxing the properties
of the abstract domain and we have shown its applicability by means of examples.

This work culminates the first step towards our final goal of defining a rich abstract semantic
framework for the analysis of tccp programs. As future work, we are interested in defining an under-
approximating framework for tccp. Under-approximations do not capture all possible program’s
behaviors, but no spurious ones are included. These kind of abstractions allows one to analyze
existential properties, for instance the existence of a suspension trace.

References

[AGPV05] M. Alpuente, M.M. Gallardo, E. Pimentel, and A. Villanueva. A Semantic Framework
for the Abstract Model Checking of tccp Programs. Theoretical Computer Science,
346(1):58–95, 2005.

[BHRZ05] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise Widening Operators for
Convex Polyhedra. Science of Computer Programming, 58(1-2):28–56, 2005.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
Los Angeles, California, January 17–19, pages 238–252, New York, NY, USA, 1977.
ACM Press.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, number 1855 in Lecture Notes in Computer Science,
pages 154–169. Springer Verlag, 2000.

[CGTV15] M. Comini, M.M. Gallardo, L. Titolo, and A. Villanueva. Abstract Analysis of Universal
Properties for tccp. In M. Falaschi, editor, Logic-based Program Synthesis and Transfor-
mation, 25th International Symposium, LOPSTR 2015. Revised Selected Papers, vol-
ume 9527 of Lecture Notes in Computer Science, pages 163–178. Springer International
Publishing, 2015.

[CTV11] M. Comini, L. Titolo, and A. Villanueva. Abstract Diagnosis for Timed Concurrent
Constraint programs. Theory and Practice of Logic Programming, 11(4-5):487–502,
2011.

20

[CTV13] M. Comini, L. Titolo, and A. Villanueva. A Condensed Goal-Independent Bottom-Up
Fixpoint Modeling the Behavior of tccp. Technical report, DSIC, Universitat Politècnica
de València. Available at http://riunet.upv.es/handle/10251/34328, 2013.

[dBGM00] F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint Language.
Information and Computation, 161(1):45–83, 2000.

[FGMP93] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compositional Analysis
for Concurrent Constraint Programming. In Proceedings of the Eighth Annual IEEE
Symposium on Logic in Computer Science, pages 210–221, Los Alamitos, CA, USA,
1993. IEEE Computer Society Press.

[FOP15] M. Falaschi, C. Olarte, and C. Palamidessi. Abstract Interpretation of Temporal Con-
current Constraint Programs. Theory and Practice of Logic Programming (TPLP),
15(3):312–357, 2015.

[FV06] M. Falaschi and A. Villanueva. Automatic verification of timed concurrent constraint
programs. Theory and Practice of Logic Programming, 6(3):265–300, 2006.

[GMP02] M. M. Gallardo, P. Merino, and E. Pimentel. Refinement of LTL formulas for abstract
model checking. In Static Analysis, 9th International Symposium, SAS 2002, Madrid,
Spain, September 17-20, 2002, Proceedings, pages 395–410, 2002.

[Sar93] V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge,
Mass., 1993.

[SRP91] V. A. Saraswat, M. Rinard, and P. Panangaden. The Semantic Foundations of Con-
current Constraint Programming. In Proceedings of the 18th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 333–352, New York, NY,
USA, 1991. ACM.

[ZGL97] E. Zaffanella, R. Giacobazzi, and G. Levi. Abstracting Synchronization in Concurrent
Constraint Programming. Journal of Functional and Logic Programming, 1997(6), 1997.

A Proofs

The two abstract propagation operators are correct w.r.t. the concrete ones, as formally stated by
the following lemma.

Lemma A.1 (Correctness of strong and weak abstract propagation) Let r ∈ CT and c ∈
C. Then ατ(r↡c) t ατ(r)↡̂τ(c) and ατ(r↓c) t ατ(r)↓̂τ(c).

Proof. First we prove that ατ(r↡c) t ατ(r)↡̂τ(c). Note that the concrete and abstract versions
of the operators are structurally identical. They differ in using and abstract constraints and the
related abstract operations instead of their concrete versions. The proof proceeds by structural
induction, proving that, for each case, the abstract conditional traces resulting by applying the
abstract operators is greater or equal (less precise) than the traces resulting from applying ατ to
the output of the concrete operation.

Let us first recall the definition for the concrete operator from [CTV13].

Definition A.2 (Concrete propagation operator) Let r ∈ CT and c ∈ C. We define the prop-
agation of c in r, written r↡c, by structural induction as ε↡c = ε, ⊠↡c = ⊠, and

((η+, η−)↣ d ⋅ r′)↡c =
⎧⎪⎪⎨⎪⎪⎩

(c⊗ η+, η−)↣ d⊗ c ⋅ (r′↡c) if c≫ (η+, η−), c⊗ d ≠ false

(c⊗ η+, η−)↣ false ⋅ ⊠ if c≫ (η+, η−), c⊗ d = false

21

http://riunet.upv.es/handle/10251/34328

(stutt(η−) ⋅ r′)↡c = stutt(η−) ⋅ (r′↡c) if ∀c− ∈ η−. c ⊬ c−

Now we proceed by cases:

r = ε ∀c ∈ C. ατ(ε↡c) = ε = ατ(ε)↡̂τ(c).
r = ⊠ ∀c ∈ C. ατ(⊠↡c) = ⊠ = ατ(⊠)↡̂τ(c).

r = (η+, η−)↣ d ⋅ r′ In case cÉ (η+, η−), r↡c and ατ(r↡c) are not defined. Otherwise, if c≫ (η+, η−)
we can distinguish two cases.

c⊗ d ≠ false ατ(r) = (τ(η+), τ̄(η−))↣ τ(d)⋅ατ(r′). Moreover, from Equation (3.2), c≫ (η+, η−)⇒
τ(c) ≫̂ (τ(η+), τ̄(η−)) and from the insertion between concrete and abstract domain, c⊗ d ≠
false ⇒ τ(c) ⊗̂ τ(d) ≠ ˆfalse.

ατ(r↡c) =ατ(((η+, η−)↣ d ⋅ r′)↡c)
[since c≫ (η+, η−) and c⊗ d ≠ false]

=ατ((c⊗ η+, η−)↣ c⊗ d ⋅ (r′↡c))
[by Definition 3.8 (ατ)]

=(τ(c⊗ η+), τ̄(η−))↣ τ(c⊗ d) ⋅ ατ(r′↡c)
[by Inductive Hypothesis]

t(τ(c⊗ η+), τ̄(η−))↣ τ(c⊗ d) ⋅ ατ(r′)↡̂τ(c)
[by the abstract domain properties and order]

t (τ(c) ⊗̂ τ(η+),{τ(η−n) ∣ η−n ∈ η−})↣ (τ(c) ⊗̂ τ(d)) ⋅ ατ(r′)↡̂τ(c)
[since τ(c) ≫̂ (τ(η+), τ̄(η−)) and τ(c) ⊗̂ τ(d) ≠ ˆfalse, and by Definition 3.9]

=ατ(r)↡̂τ(c)

c⊗ d = false Similarly to the previous case, by Equation (3.2), c≫ (η+, η−)⇒ τ(c) ≫̂ (τ(η+), τ̄(η−))
and from the insertion between concrete and abstract domain, c ⊗ d = false ⇒ τ(c) ⊗̂ τ(d) =

ˆfalse.

ατ(r↡c) =ατ(((η+, η−)↣ d ⋅ r′)↡c)
[since c≫ (η+, η−) and c⊗ d = false]

=ατ((c⊗ η+, η−)↣ false ⋅ ⊠)
[by Definition 3.8 (ατ)]

=(τ(c⊗ η+), τ̄(η−))↣ ˆfalse

[by the abstract domain properties]

t(τ(c) ⊗̂ τ(η+),{τ(η−n) ∣ η−n ∈ η−})↣ ˆfalse

[since τ(c) ≫̂ (τ(η+), τ̄(η−)) and τ(c) ⊗̂ τ(d) = ˆfalse, and by Definition 3.9]

=ατ(r)↡̂τ(c)

r = stutt(η−) ⋅ r′ In case cÉ (η+, η−), r↡c and ατ(r↡c) are not defined. Otherwise, if c≫ (η+, η−),
we have:

ατ(r↡c) = ατ(stutt(η−) ⋅ r′↡c)
[by Definition 3.8 (ατ)]

22

= stutt(τ̄(η−)) ⋅ ατ(r′↡c)
[by Inductive Hypothesis]

t stutt(τ̄(η−)) ⋅ ατ(r′)↡̂τ(c)
= stutt({τ(η−n) ∣ η−n ∈ η−}) ⋅ ατ(r′)↡̂τ(c)

[by Definition 3.9]

= ατ(r)↡̂τ(c)

Now we prove that ατ(r↓c) t ατ(r)↓̂τ(c) by induction on the structure of r. Again, we first
recall the definition for the concrete operator from [CTV13].

Definition A.3 (Concrete weak propagation operator) Let r ∈ CT and c ∈ C. We define
the weak propagation of c in r, denoted r↓c, as ε↓c ∶= ε, ⊠↓c ∶= ⊠, and

((η+, η−)↣ d ⋅ r′)↓c ∶= (c⊗ η+, η−)↣ d ⋅ (r′↓c) if c≫ (η+, η−)
(stutt(η−) ⋅ r′)↓c ∶= stutt(η−) ⋅ (r′↓c) if ∀c− ∈ η−. c ⊬ c−

Now we proceed by cases:

r = ε ∀c ∈ C. ατ(ε↓c) = ε = ατ(ε)↓̂τ(c).
r = ⊠ ∀c ∈ C. ατ(⊠↓c) = ⊠ = ατ(⊠)↓̂τ(c).
r = (η+, η−)↣ d ⋅ r′ In case c É (η+, η−), r↓c and ατ(r↓c) are not defined. Otherwise, from Equa-
tion (3.2), c≫ (η+, η−)⇒ τ(c) ≫̂ (τ(η+), τ̄(η−)).

ατ(r↓c) =ατ(((η+, η−)↣ d ⋅ r′)↓c)
[since c≫ (η+, η−)]

=ατ((c⊗ η+, η−)↣ d ⋅ (r′↓c))
[by Definition 3.8 (ατ)]

=(τ(c⊗ η+), τ̄(η−))↣ τ(d) ⋅ ατ(r′↓c)
[by Inductive Hypothesis]

t(τ(c⊗ η+), τ̄(η−))↣ τ(d) ⋅ ατ(r′)↓̂τ(c)
[by the abstract domain properties]

t (τ(c) ⊗̂ τ(η+),{τ(η−n) ∣ η−n ∈ η−})↣ τ(d) ⋅ ατ(r′)↓̂τ(c)
[since τ(c) ≫̂ (τ(η+), τ̄(η−)), and by Definition 3.11]

=ατ(r)↓̂τ(c)

r = stutt(η−) ⋅ r′ In case cÉ (η+, η−), r↓c and ατ(r↓c) are not defined. Otherwise, if c≫ (η+, η−),
we have:

ατ(r↓c) = ατ((stutt(η−) ⋅ r′)↓c)
[since c≫ (η+, η−)]

= ατ(stutt(η−) ⋅ r′↓c)
[by Definition 3.8 (ατ)]

= stutt(τ̄(η−)) ⋅ ατ(r′↓c)
[by Inductive Hypothesis]

23

t stutt({τ(η−n) ∣ η−n ∈ η−}) ⋅ ατ(r′)↓̂τ(c)
[by Definition 3.11]

= ατ(r)↓̂τ(c)

The following lemma states the soundness of ∥̂ w.r.t. the concrete parallel composition operator.

Lemma A.4 (Correctness of the abstract parallel) Let r1, r2 ∈ C. Then ατ(r1 ∥̄ r2) t ατ(r1) ∥̂
ατ(r2)

Proof. First let us recall the definition for the concrete operator from [CTV13].

Definition A.5 (Concrete parallel composition) The parallel composition partial operator ∥̄∶CT×
CT → CT is the commutative closure of the following partial operation defined by structural in-
duction as9 r ∥̄ ε ∶= r, r ∥̄ ⊠ ∶= r and

(stutt(η−1) ⋅ r′1) ∥̄ (stutt(η−2) ⋅ r′2) ∶= stutt(η−1 ⊎ η−2) ⋅ (r′1 ∥̄ r′2)

Moreover, if η1 ⊗ η2 is consistent, then

(η1 ↣ c1 ⋅ r′1) ∥̄ (η2 ↣ c2 ⋅ r′2) ∶=
⎧⎪⎪⎨⎪⎪⎩

η1 ⊗ η2 ↣ c1 ⊗ c2 ⋅ ((r′1↓η+2 ↡c2) ∥̄ (r′2↓η+1 ↡c1)) if c1 ⊗ c2 ≠ false

η1 ⊗ η2 ↣ false ⋅ ⊠ if c1 ⊗ c2 = false,

Finally, if ∀c− ∈ η−2 . η+1 ⊬ c−, then

((η+1 , η−1)↣ c1 ⋅ r′1) ∥̄ (stutt(η−2) ⋅ r′2) ∶= (η+1 , η−1 ⊎̂ η−2)↣ c1 ⋅ (r′1 ∥̄ (r′2↓η+1 ↡c1))

Note that the concrete and abstract versions of this operator are structurally identical. The abstract
version is obtained from the concrete by replacing concrete constraints and operations on them by
their abstract versions.

The proof proceeds by structural induction on the structure of r1. The cases for r2 are sym-
metric.

r1 = ε and any r2 ατ(r1 ∥̄ r2) = ατ(r2) = ε ∥̂ ατ(r2) = ατ(r1) ∥̂ ατ(r2).
r1 = ⊠ and any r2 ατ(r1 ∥̄ r2) = ατ(r2) = ⊠ ∥̂ ατ(r2) = ατ(r1) ∥̂ ατ(r2).
r1 = η1 ↣ c1 ⋅ r′1 and r2 = η2 ↣ c2 ⋅ r′2 In case η1 ⊗ η2 is not a consistent condition r1 ∥̄ r2 is not
defined and, as a consequence, also ατ(r1 ∥̄ r2) is not defined. Otherwise, if η1 ⊗ η2 is a consistent
condition, by the properties of the abstract domain and Equation 3.2, its abstraction is consistent
too, thus, we can distinguish two cases.

c1 ⊗ c2 ≠ false From the insertion between the concrete and abstract domains, it follows that
τ(c1) ⊗̂ τ(c2) ≠ ˆfalse.

ατ(r1 ∥̄ r2) =
= ατ((η1 ⊗ η2)↣ c1 ⊗ c2 ⋅ (r′1↓η+2 ↡c2 ∥̄ r

′
2↓η+1 ↡c1))

[by Definition 3.8 (ατ)]

9We have omitted some technical details of the concrete domain, but operators ⊎ and conjunction (written ⊗) of
two concrete conditions are defined similarly to the corresponding operators in the abstract domain.

24

= (τ(η+1 ⊗ η+2), τ̄(η−1 ⊎ η−2))↣ τ(c1 ⊗ c2) ⋅ ατ(r′1↓η+2 ↡c2 ∥̄ r
′
2↓η+1 ↡c1)

[by Inductive Hypothesis]

t (τ(η+1 ⊗ η+2), τ̄(η−1 ⊎ η−2))↣ τ(c1 ⊗ c2) ⋅ ατ(r′1↓η+2 ↡c2) ∥̂ α
τ(r′2↓η+1 ↡c1)

[by the abstract domain properties]

t ((τ(η+1) ⊗̂ τ(η+2), τ̄(η−1) ⊎̂ τ̄(η−2))↣ τ(c1) ⊗̂ τ(c2) ⋅ ατ(r′1↓η+2 ↡c2) ∥̂ α
τ(r′2↓η+1 ↡c1))

[by Lemma A.1]

t ((τ(η+1) ⊗̂ τ(η+2), τ̄(η−1) ⊎̂ τ̄(η−2))↣ τ(c1) ⊗̂ τ(c2) ⋅ ατ(r′1)↓̂τ(η+2)↡̂τ(c2) ∥̂ α
τ(r′2)↓̂τ(η+1)↡̂τ(c1))

[by Definition 3.13 and since τ(c1) ⊗̂ τ(c2) ≠ ˆfalse]

= (τ(η+1), τ̄(η−1))↣ τ(c1) ⋅ ατ(r′1)↓̂τ(η+2)↡̂τ(c2) ∥̂ (τ(η+2), τ̄(η−2))↣ τ(c2) ⋅ ατ(r′2)↓̂τ(η+1)↡̂τ(c1)
= ατ(r1) ∥̂ ατ(r2)

c1 ⊗ c2 = false From the insertion between the concrete and abstract domains, it follows that
τ(c1) ⊗̂ τ(c2) = ˆfalse.

ατ(r1 ∥̄ r2) =
= ατ((η1 ⊗ η2)↣ false ⋅ ⊠)

[by Definition 3.8 (ατ)]

= (τ(η+1 ⊗ η+2), τ̄(η−1 ⊎ η−2))↣ τ(false) ⋅ ⊠
[by the abstract domain properties]

t (τ(η+1) ⊗̂ τ(η+2), τ̄(η−1) ⊎̂ τ̄(η−2))↣ τ(c1) ⊗̂ τ(c2) ⋅ ⊠
[by Definition 3.13]

= (τ(η+1), τ̄(η−1))↣ τ(c1) ⋅ ατ(r′A) ∥̂ (τ(η+2), τ̄(η−2))↣ τ(c2) ⋅ ατ(r′B)
[since τ(c1) ⊗̂ τ(c2) = ˆfalse]

= ατ(r1) ∥̂ ατ(r2)

r1 = η1 ↣ c1 ⋅ r′1 and r2 = stutt(η−2) ⋅ r′2 In case (η+1 , η−1 ⊎ η−2) is not a consistent condition r1 ∥̄ r2

is not defined and, as a consequence, ατ(r1 ∥̄ r2) is not defined. Otherwise, if (η+1 , η−1 ⊎ η−2) is a
consistent condition, by the properties of the abstract domain and Equation 3.2, its abstraction is
consistent too, thus

ατ(r1 ∥̄ r2) =
= ατ((η+1 , η−1 ⊎ η−2)↣ c1 ⋅ r′1 ∥̄ r′2↓η+1 ↡c1)

[by Definition 3.8 (ατ) and property (3.2)]

= (τ(η+1), τ̄(η−1 ⊎ η−2))↣ τ(c1) ⋅ ατ(r′1 ∥̄ r′2↓η+1 ↡c1)
[by Inductive Hypothesis]

t (τ(η+1), τ̄(η−1 ⊎ η−2))↣ τ(c1) ⋅ (ατ(r′1) ∥̂ ατ(r′2↓η+1 ↡c1))
[by Lemma A.1]

t (τ(η+1), τ̄(η−1 ⊎ η−2))↣ τ(c1) ⋅ (ατ(r′1) ∥̂ ατ(r′2)↓̂τ(η+1)↡̂τ(c1))

= (τ(η+1), τ̄(η−1) ⊎̂ τ̄(η−2))↣ τ(c1) ⋅ (ατ(r′1) ∥̂ ατ(r′2)↓̂τ(η1)↡̂τ(c1))

[by Definition 3.13]

25

= (τ(η+1), τ̄(η−1))↣ τ(c1) ⋅ ατ(r′1) ∥̂ stutt(τ̄(η−2)) ⋅ ατ(r′2)↓̂τ(η1)↡̂τ(c1)
= ατ(r1) ∥̂ ατ(r2)

r1 = stutt(η−1) ⋅ r′1 and r2 = stutt(η−2) ⋅ r′2

ατ(r1 ∥̄ s2) =
= ατ(stutt(η−1 ⊎ η−2) ⋅ r′1 ∥̄ r′2)

[by Definition 3.8 (ατ)]

= stutt(τ̄(η−1 ⊎ η−2)) ⋅ ατ(r′1 ∥̄ r′2)
= stutt(τ̄(η−1) ⊎̂ τ̄(η−2)) ⋅ ατ(r′1 ∥̄ r′2)

[by Inductive Hypothesis]

t stutt(τ̄(η−1) ⊎̂ τ̄(η−2)) ⋅ ατ(r′1) ∥̂ ατ(r′2)
[by Definition 3.13]

= stutt(τ̄(η−1)) ⋅ ατ(r′1) ∥̂ stutt(τ̄(η−1)) ⋅ ατ(r′2)

= ατ(r1) ∥̂ ατ(r2)

The abstract hiding operator ∃̂ is sound w.r.t. its concrete counterpart.

Lemma A.6 Given r ∈ CT and V ∈ ℘(Var), ατ(∃̄V r) t ∃̂V ατ(r).

Proof. Let us first recall the definition for the concrete operator, technically adapted from [CTV13].

Definition A.7 (Concrete hiding operator) The concrete hiding operator is the partial func-
tion ∃̄∶ ℘(Var) ×CT →CT defined by structural induction as: ∃̄V ε ∶= ε, ∃̄V ⊠ ∶= ⊠,

∃̄V ((η+, η−)↣ c ⋅ r′) ∶= ((∃V η+,∃V η−)↣ ∃V c) ⋅ ∃̄V r′

∃̄V (stutt(η−) ⋅ r′) ∶= stutt(∃V η−) ⋅ ∃̄V r′

where, for all c ∈ C, ∃{x1,...,xn} c ∶= ∃x1 ⋯∃xn c and, for all C ∈ ℘(C), ∃V C ∶= {∃V c ∣ c ∈ C}.
We abuse notation and write ∃x r for ∃{x} r.

We proceed by structural induction on r.

r = ε or r = ⊠ In this case the statement follows directly from Definition 3.15.

r = (η+, η−)↣ c ⋅ r′

ατ(∃̄V r) =ατ(∃̄V ((η+, η−)↣ c ⋅ r′))
=ατ((∃V η+,∃V η−)↣ ∃V c ⋅ ∃̄V r′)

[by Definition 3.8]

=(τ(∃V η+), τ̄(∃V η−))↣ τ(∃V c) ⋅ ατ(∃̄V r′)
[by Inductive Hypothesis]

t(τ(∃V η+), τ̄(∃V η−))↣ τ(∃V c) ⋅ ∃̂V ατ(r′)
[by the abstract domain properties]

t(∃̂V τ(η+), ∃̂V τ̄(η−))↣ ∃̂V τ(c) ⋅ ∃̂V ατ(r′)
[by Definition 3.15]

=∃̂V ατ(r)

26

r = stutt(η−) ⋅ r′

ατ(∃̄V r) =ατ(∃̄V (stutt(η−) ⋅ r′))
=ατ((stutt(∃̄V η−) ⋅ ∃̄V r′))

[by Definition 3.8]

=stutt(τ̄(∃V η−)) ⋅ ατ(∃̄V r′)
[by Inductive Hypothesis]

tstutt(τ̄(∃V η−)) ⋅ ∃̂V ατ(r′)
[by the abstract domain properties]

tstutt(∃̂V τ̄(η−)) ⋅ ∃̂V ατ(r′)
[by Definition 3.15]

=∃̂V ατ(r)

It follows directly from Lemma A.6 and Equation (3.3) that, given a conditional trace r ∈ C and
a variable x ∈ Var :

r is x-self-sufficientÔ⇒ ατ(r) is abstractly x-self-sufficient (A.1)

Proof Proof of Theorem 3.19 (Correctness of the abstract semantics operators). We prove
by induction on the structure of any agent A that ατ(AJAKγτ (Iα)) ≤ AαJAKIα (3.5).

Let us first recall the definition for the concrete evaluation function from [CTV13].

Definition A.8 (Semantics Evaluation Function for Agents) Given A ∈ AΠ
C and I ∈ IΠ, we

define the semantics evaluation AJAKI ∈ C by structural induction as follows.

AJskipKI ∶= {⊠} (1a)

AJtell(c)KI ∶= {(true,∅)↣ c ⋅ ⊠} (1b)

AJA ∥ BKI ∶=⊔{rA ∥̄ rB ∣ rA ∈ AJAKI , rB ∈ AJBKI} (1c)

AJ∃xAKI ∶=⊔{ ∃̄x r ∣ r ∈ AJAKI , r is x-self-sufficient} (1d)

AJp(Ð→x)KI ∶= (true,∅)↣ true ⋅ I(p(Ð→x))10 (1e)

AJ
n

∑
i=1

ask(ci)→ AiKI ∶=⊔{stt ⋅ . . . ⋅ stt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅R ∣m ∈ N} ⊔ {stt ⋅ . . . ⋅ stt ⋅ . . .} (1f)

where stt ∶= stutt({c1, . . . , cn}) and R ∶= ⊔{(ci,∅)↣ true ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI}

AJnow c then A else BKI ∶=
{(c,∅)↣ true ⋅ ⊠ ∣ ⊠ ∈ AJAKI} ⊔
⊔{(c⊗ η+, η−)↣ d ⋅ (r↓c) ∣ (η+, η−)↣ d ⋅ r ∈ AJAKI ,∀c− ∈ η−. c⊗ η+ ⊬ c−} ⊔
⊔{(c, η−)↣ true ⋅ (r↓c) ∣ stutt(η−) ⋅ r ∈ AJAKI , ∀c− ∈ η−. c ⊬ c−} ⊔
{(true,{c})↣ true ⋅ ⊠ ∣ ⊠ ∈ AJBKI} ⊔
⊔{(η+, η− ⊎ {c})↣ d ⋅ r ∣ (η+, η−)↣ d ⋅ r ∈ AJBKI , η+ ⊬ c} ⊔
⊔{(true, η− ⊎ {c})↣ true ⋅ r ∣ stutt(η−) ⋅ r ∈ AJBKI} (1g)

Now we proceed by cases.

10Recall that we denote {s1 ⋅ s2 ∣ s2 ∈ S} by s1 ⋅ S.

27

A = skip In this case, the proof is straightforward: ατ(AJskipKγτ (Iα)) = {⊠} = AαJskipKIα

A = tell(c)

ατ(AJtell(c)Kγτ (Iα)) = ατ({(true,∅)↣ c ⋅ ⊠})
[by Definition 3.8 (ατ)]

= (τ(true), τ̄(∅))↣ τ(c) ⋅ ⊠
[since τ(true) = ˆtrue and τ̄(∅) = ∅]

= (ˆtrue,∅)↣ τ(c) ⋅ ⊠
[by Equation (3.4b)]

= AαJtell(c)KIα

A = ∑n
i=1 ask(ci)→Ai

ατ(AJ
n

∑
i=1

ask(ci)→ AiKγτ (Iα)) =

ατ(⊔{stt ⋅ . . . ⋅ stt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅r ∣m ∈ N, r ∈M} ⊔ {stt ⋅ . . . ⋅ stt ⋅ . . .})

where stt ∶= stutt({c1, . . . , cn}) and M =⊔{(ci,∅)↣ true ⋅ (r′↓ci) ∣1 ≤ i ≤ n, r
′ ∈ AJAiKγτ (Iα)}.

[by Definition 3.8 (ατ)]

=⋁{sttα ⋅ . . . ⋅ sttα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅r̂ ∣m ∈ N, r̂ ∈ M̂} ∨ {sttα ⋅ . . . ⋅ sttα ⋅ . . .}

where sttα ∶= stutt(τ̄({c1, . . . , cn}))
and M̂ =⋁{(τ(ci),∅)↣ ˆtrue ⋅ ατ(r′↓ci) ∣1 ≤ i ≤ n, r

′ ∈ AJAiKγτ (Iα)}.

[by Induction Hypothesis and Lemma A.1]

≤⋁{sttα ⋅ . . . ⋅ sttα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅r̂ ∣m ∈ N, r̂ ∈ M̂ ′} ∨ {sttα ⋅ . . . ⋅ sttα ⋅ . . .}

where M̂ ′ =⋁{(τ(ci),∅)↣ ˆtrue ⋅ r̂′↓̂ci ∣1 ≤ i ≤ n, r̂
′ ∈ AαJAiKIα}.

[by Equation (3.4f)]

=AαJ
n

∑
i=1

ask(ci)→ AiKIα

A = now c thenA1 elseA2

ατ(AJnow c then A1 else A2Kγτ (Iα))
= ατ({(c,∅)↣ true ⋅ ⊠ ∣ ⊠ ∈ AJA1Kγτ (Iα)} ⊔

⊔{(c⊗ η+, η−)↣ d ⋅ (r↓c) ∣ (η+, η−)↣ d ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c⊗ η+ ⊬ c−} ⊔
⊔{(c, η−)↣ true ⋅ (r↓c) ∣ stutt(η−) ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c ⊬ c−} ⊔
{(true,{c})↣ true ⋅ ⊠ ∣ ⊠ ∈ AJA2Kγτ (Iα)} ⊔
⊔{(η+, η− ⊎ {c})↣ d ⋅ r ∣ (η+, η−)↣ d ⋅ r ∈ AJA2Kγτ (Iα), η

+ ⊬ c} ⊔
⊔{(true, η− ⊎ {c})↣ true ⋅ r ∣ stutt(η−) ⋅ r ∈ AJA2Kγτ (Iα)})

[by Definition 3.8 (ατ)]

28

= {(τ(c), τ̄(∅))↣ τ(true) ⋅ τ(⊠) ∣ ⊠ ∈ AJA1Kγτ (Iα)} ∨
⋁{ (τ(c⊗ η+), τ̄(η−))↣ τ(d) ⋅ ατ(r↓c) ∣

(η+, η−)↣ d ⋅ r ∈ AJA1Kγ̃(Iα),∀c− ∈ η−. c⊗ η+ ⊬ c−} ∨
⋁{(τ(c), τ̄(η−))↣ τ(true) ⋅ ατ(r↓c) ∣ stutt(η−) ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c ⊬ c−} ∨
{(τ(true), τ̄({c}))↣ τ(true) ⋅ τ(⊠) ∣ ⊠ ∈ AJA2Kγτ (Iα)} ∨
⋁{(τ(η+), τ̄(η− ⊎ {c}))↣ τ(d) ⋅ ατ(r) ∣ (η+, η−)↣ d ⋅ r ∈ AJA2Kγτ (Iα), c ⊬ η+} ∨
⋁{(τ(true), τ̄(η− ⊎ {c}))↣ τ(true) ⋅ ατ(r) ∣ stutt(η−) ⋅ r ∈ AJA2Kγτ (Iα)}

[by Lemma A.1]

≤ {(τ(c),∅)↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AJA1Kγτ (Iα)} ∨

⋁{ (τ(c⊗ η+), τ̄(η−))↣ τ(d) ⋅ ατ(r)↓̂τ(c) ∣
(η+, η−)↣ d ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c⊗ η+ ⊬ c−} ∨

⋁{(τ(c), τ̄(η−))↣ ˆtrue ⋅ ατ(r)↓̂τ(c) ∣ stutt(η−) ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c ⊬ c−} ∨
{(ˆtrue, τ̄({c}))↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AJA2Kγτ (Iα)} ∨
⋁{(τ(η+), τ̄(η− ⊎ {c}))↣ τ(d) ⋅ ατ(r) ∣ (η+, η−)↣ d ⋅ r ∈ AJA2Kγτ (Iα), c ⊬ η+} ∨

⋁{(ˆtrue, τ̄(η− ⊎ {c}))↣ ˆtrue ⋅ ατ(r) ∣ stutt(η−) ⋅ r ∈ AJA2Kγτ (Iα)}
[by Induction Hypothesis and the abstract domain properties]

≤ {(τ(c),∅)↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AαJA1KIα} ∨

⋁{ (τ(c) ⊗̂ τ(η+), τ̄(η−))↣ τ(d) ⋅ (r̂↓̂τ(c)) ∣
(τ(η+), τ̄(η−))↣ τ(d) ⋅ r̂ ∈ AαJA1KIα ,∀c− ∈ τ̄(η−). τ(c) ⊗̂ τ(η+) /(− c−} ∨

⋁{(τ(c), τ̄(η−))↣ ˆtrue ⋅ (r̂↓̂τ(c)) ∣ stutt(τ̄(η−)) ⋅ r̂ ∈ AαJA1KIα ,∀c− ∈ τ̄(η−). τ(c) /(− c−} ∨
{(ˆtrue, τ̄({c}))↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AαJA2KIα} ∨
⋁{ (τ(η+), τ(c) ⊎̂ τ̄(η−))↣ τ(d) ⋅ r̂ ∣

(τ(η+), τ̄(η−))↣ τ(d) ⋅ r̂ ∈ AαJA2KIα , τ(c) /(− τ(η+)} ∨
⋁{(ˆtrue, τ(c) ⊎̂ τ̄(η−))↣ ˆtrue ⋅ r̂ ∣ stutt(τ̄(η−)) ⋅ r̂ ∈ AαJA2KIα}

[by Equations (3.4g)]

= AαJnow c then A1 else A2KIα

A =A1 ∥A2 This case is straightforward by Lemma A.4.

ατ(AJA1 ∥ A2Kγτ (Iα)) = ατ(⊔{r1 ∥̄ r2 ∣ r1 ∈ AJA1Kγτ (Iα), r2 ∈ AJA2Kγτ (Iα)})
[by Definition 3.8 (ατ)]

=⋁{ατ(r1 ∥̄ r2) ∣ r1 ∈ AJA1Kγτ (Iα), r2 ∈ AJA2Kγτ (Iα)}
[by Lemma A.4]

≤⋁{ατ(r1) ∥̂ ατ(r2) ∣ r1 ∈ AJA1Kγτ (Iα), r2 ∈ AJA2Kγτ (Iα)}
[by Inductive Hypothesis]

≤⋁{r̂1 ∥̂ r̂2 ∣ r̂1 ∈ AαJA1KIα , r̂2 ∈ AαJA2KIα}
[by Equation (3.4c)]

= AαJA1 ∥ A2KIα

A = ∃xA1 This case is straightforward by Lemma A.6.

ατ(AJ∃xA1Kγτ (Iα)) = ατ(⊔{ ∃̄x r ∣ r ∈ AJA1Kγτ (Iα), r is x-self-sufficient})

29

=⋁{ατ(∃̄x r) ∣ r ∈ AJA1Kγτ (Iα), r is x-self-sufficient}
[by Lemma A.6]

≤⋁{∃̂x ατ(r) ∣ r ∈ AJA1Kγ̃(Iα), r is x-self-sufficient}
[by Inductive Hypothesis and Property (A.1)]

≤⋁{∃̂x r̂ ∣ r̂ ∈ AαJA1KIα , r̂ is abstractly x-self-sufficient}
[by (3.4d)]

= AαJ∃xA1KIα

A = p(z)

ατ(AJp(z)Kγτ (Iα)) = ατ(⊔{(true,∅)↣ true ⋅ r ∣ r ∈ γτ(Iα)(p(z))})
[by Definition 3.8 (ατ)]

=⋁{(τ(true), τ̄(∅))↣ τ(true) ⋅ ατ(r) ∣ r ∈ γτ(Iα)(p(z))}
[since τ(true) = ˆtrue, τ̄(∅) = ∅ and ατ ○γτ = id]

=⋁{(ˆtrue,∅)↣ ˆtrue ⋅ r̂ ∣ r̂ ∈ Iα(p(z))}
[by (3.4e)]

= AαJp(z)KIα

Now we prove that ατ(DJDKγτ (Iα)(p(Ð→x))) ≤ DαJDKIα(p(Ð→x)) (3.6).

ατ(DJDKγτ (Iα)(p(Ð→x))) = [by D definition]

ατ
⎛
⎝ ⊔
p(Ð→x)∶−A∈D

AJAKγτ (Iα)
⎞
⎠
= [by ατ additivity]

⋁
p(Ð→x)∶−A∈D

ατ(AJAKγτ (Iα)) ≤ [since ατ(AJAKγτ (Iα)) ≤ AαJAKIα]

⋁
p(Ð→x)∶−A∈D

AαJAKIα = [by Dα definition]

DαJDKIα(p(Ð→x))

30

