arXiv:1604.07179v2 [cs.NI] 17 Apr 2017

Under consideration for publication in Formal Aspects of Computing

Modeling and Efficient Verification of
Wireless Ad hoc Networks

Behnaz Yousefi, Fatemeh Ghassemi and Ramtin Khosravi

School of Electrical and Computer Engineering, University of Tehran, Iran
{b.yousefi, fghassemi, r.khosravi}@ut.ac.ir

Abstract. Wireless ad hoc networks, in particular mobile ad hoc networks (MANETS), are growing very fast
as they make communication easier and more available. However, their protocols tend to be difficult to design
due to topology dependent behavior of wireless communication, and their distributed and adaptive operations
to topology dynamism. Therefore, it is desirable to have them modeled and verified using formal methods. In
this paper, we present an actor-based modeling language with the aim to model MANETSs. We address main
challenges of modeling wireless ad hoc networks such as local broadcast, underlying topology, and its changes,
and discuss how they can be efficiently modeled at the semantic level to make their verification amenable.
The new framework abstracts the data link layer services by providing asynchronous (local) broadcast and
unicast communication, while message delivery is in order and is guaranteed for connected receivers. We
illustrate the applicability of our framework through two routing protocols, namely flooding and AODVv2-
11, and show how efficiently their state spaces can be reduced by the proposed techniques. Furthermore, we
demonstrate a loop formation scenario in AODV, found by our analysis tool.

Keywords: state-space reduction; mobile ad hoc network; ad hoc routing protocol; Rebeca; actor-based
language; model checking.

1. Introduction

Applicability of wireless communications is rapidly growing from home networks to satellite transmissions
due to their high accessibility and low cost. Wireless communication has a broadcasting nature, as messages
sent by each node can be received by all nodes in its transmission range, called local broadcast. Therefore,
by paying the cost of one transmission, several nodes may receive the message, which leads to lower energy
consumption for the sender and throughput improvement [CCHO7].

Mobile ad hoc networks (MANETS) consist of several portable hosts with no pre-existing infrastructure,
such as routers in wired networks or access points in managed (infrastructure) wireless networks. In such net-
works, nodes can freely change their locations so the network topology is constantly changing. For unicasting
a message to a specific node beyond the transmission range of a node, it is needed to relay the message by

Correspondence and offprint requests to: Christiane Notarmarco, Springer-Verlag London Limited, Sweetapple House, Catteshall
Road, Godalming, Surrey GU7 3DJ, UK. e-mail: chris@svl.co.uk

http://arxiv.org/abs/1604.07179v2

2 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

some intermediate nodes to reach the desired destination. Due to lack of any pre-designed infrastructure and
global network topology information, network functions such as routing protocols are devised in a completely
distributed manner and adaptive to topology changes. Topology dependent behavior of wireless communica-
tion, distribution and adaptation requirements make the design of MANET protocols complicated and more
in need of modeling and verification so that it can be trusted. For instance, MANET protocols like the Ad
hoc On Demand Distance Vector (AODV) routing protocol [PB99] has been evolved as new failure scenarios
were experienced or errors were found in the protocol design [BOG02, NT15b, [FVGH™13].

The actor model [Agh90, Hew77] has been introduced for the purpose of modeling concurrent and dis-
tributed applications. It is an agent-based language introduced by Hewitt [Hew77], extended by Agha to an
object-based concurrent computation model [Agh90]. An actor model consists of a set of actors communicat-
ing with each other through unicasting asynchronous messages. Each computation unit, modeled by an actor,
has a unique address and mailbox. Messages sent to an actor are stored in its mailbox. Each actor is defined
through a set of message handlers, called message servers, to specify the actor behavior upon processing of
each message. In this model, message delivery is guaranteed but is not in-order. This policy implicitly ab-
stracts away from effects of the network, i.e., delays over different routing paths, message conflicts, etc., and
consequently makes it a suitable modeling framework for concurrent and distributed applications. Rebeca
[SMSdB04] is an actor-based modeling language which aims to bridge the gap between formal verification
techniques and the real-world software engineering of concurrent and distributed applications. It provides
an operational interpretation of the actor model through a Java-like syntax, which makes it easy to learn
and use. Rebeca is supported by a robust model checking tool, named Afra [afrb], which takes advantage of
various reduction techniques [JSM™10, [SST0] to make efficient verification possible. With the aim of reducing
the state space, computations, i.e., executions of message servers in actors, are assumed to be instantaneous
while message delivery is in-order. Consequently, instructions of message servers are not interleaved and
hence, execution of message servers becomes atomic in semantic model and each actor mailbox is modeled
through a FIFO queue.

In [YGK15] we introduced bRebeca as an extension to Rebeca, to support broadcast communication
which abstracts the global broadcast communications [BG92]. To abstract the effect of network, the order
of receipts for two consequent broadcast communications is not necessarily the same as their corresponding
sends in an actor model. Hence, each actor mailbox was modeled by a bag. The resulting framework is
suitable for modeling and efficient verification of broadcasting protocols above the network layer, but not
appropriate for modeling MANETS in two ways: firstly the topology is not defined, and every actor (node)
can receive all messages, in other words all nodes are connected to each other. Secondly, as there is no
topology defined, mobility is not concerned.

In this paper, we extend the actor-based modeling language bRebeca [YGKTH| to address local broadcast,
topology, and its changes. The aim of the current paper is to provide a framework to detect malfunctions
of a MANET protocol caused by conceptual mistakes in the protocol design, rather than by an unreliable
communication. Therefore, the new framework abstracts away from the data link layer services by providing
asynchronous reliable local broadcast, multicast, and unicast communications [Pen08, [SL04]. Since only
one-hop communications are considered, the message delivery is in-order and is guaranteed for connected
receivers. Consequently, each actor mailbox is modeled through a queue. The reliable communication services
of the data link layer provide feedback (to its upper layer applications) in case of (un)successful delivery.
Therefore, our framework provides conditional unicast to model protocol behaviors in each scenario (in the
semantic model, the status of the underlying topology defines the behavior of actors).

The resulting framework provides a suitable means to model the behavior of ad hoc networks in a
compositional way without the need to consider asynchronous communications handled by message storages
in the computation model. However, to minimize the effect of message storages on the growth of the state
space, we exploit techniques to reduce it. Since nodes can communicate through broadcast and a limited
form of multicast/unicast, it is possible to consider actors that have the same neighbors and local states as
identical according to the counter abstraction technique [BMWKOQ9, [PXZ02, [ET99]. Therefore, the states
whose number of actors (irrespective of their identifiers) with the same neighbors and local state are the
same for each local state value, will be aggregated, thus the state space is reduced considerably. The reduced
semantics is strongly bisimilar to the original one.

To examine resistance and adaptation of MANET protocols to changes of the underlying topology, we
address mobility via arbitrary changes of the topology at the semantic level. Since network protocols have no
control over movement of MANET nodes and mobility is an intrinsic characteristic of such nodes, the topol-
ogy should be implicitly manipulated at the semantics. In other words, with the aim of verifying behaviors of

Modeling and Efficient Verification of Wireless Ad hoc Networks 3

MANET protocols for any mobility scenario, the underlying topology is arbitrarily changed at each semantic
state. We provide mechanisms to restrict this random changes in the topology through specifying constraints
over the topology. However, these random changes make the state space grow exponentially while the pro-
posed counter abstraction technique becomes invalid. To this end, each state is instead explored for each
possible topology and meanwhile topology information is removed from the state. Therefore, two next states
only different in their topologies are consolidated together and hence, the state space is reduced considerably.
Due to arbitrary changes of the underlying topology, states with different topologies are reachable from each
other (through 7-transitions denoting topology changes). We establish that such states are branching bisim-
ilar, and consequently a set of properties such as ACTL-X [DV90] are preserved. The proposed reduction
techniques makes our framework scalable to verify some important properties of MANET protocol, e.g., loop
freedom, in the presence of mobility in a unified model (cf. generating a model for each mobility scenario).
The contributions of this paper can be summarized as follows:

e We extend the computation model of the actor model, in particular Rebeca, with the concepts of
MANETS, i.e., asynchronous reliable local broadcast/multicast/unicast, topology, and topology changes;

e We apply the counter abstraction in presence of topology as a part of semantic states to reduce state space
substantially: actors with the same neighbors, i.e., topological situations, and local states are counted
together in the counter abstraction technique;

e We show that the soundness of the counter abstraction technique is not preserved in presence of mobility,
and propose another technique to reduce the state space.

e We provide a tool that supports both reduction techniques and examines invariant properties automat-
ically. We illustrate the scalability of our approach through the specification and verification of two
MANET protocols, namely flooding and AODV.

e We present a complete and accurate model of the core functionalities of a recent version of AODVv2
protocol (version 11), abstracting from its timing issues, and investigate its loop freedom property. We
detect scenarios over which the property is violated due to maintaining multiple unconfirmed next hops for
a route without checking them to be loop free. We have communicated this scenario to the AODV group
and they have confirmed that it can occur in practice. In response, their route information evaluation
was modified, published in version 13 of the draft[] Furthermore, we verify the monotonic increase of
sequence numbers and packet delivery properties using existing model checkers.

Our framework can also be applied to Wireless Mesh Networks (WMNs). Unlike MANETSs, WSNs have
a backbone of dedicated mesh routers along with mesh clients. Hence, they provide flexibility in terms of
mobility: in contrast to MANETS, the clients mobility has limited effect on the overall network configuration,
as the mesh routers are fixed [MKKAROG].

The paper is structured as follows. Section [2] briefly introduces bRebeca, explain the idea behind the
counter abstraction technique and its relation to symmetry reduction technique, and explains equivalence
relations that validate our reduction techniques. Section [3]addresses the main modeling challenges of wireless
networks. Section [4] presents our extension to bRebeca for modeling MANETS. In Section[B] we generate the
state space compactly with the aim of efficient model checking. To illustrate the applicability of our approach,
we specify the core functionalities of AODVv2-11 in Section [6l Then, in Section [l we discuss the efficiency
of our state-space generation over two cases studies: the AODV and the flooding-based routing protocol. We
illustrate our tool and possible analysis over the models through a verification of AODV. Finally, we review
some related work in Section [8 before concluding the paper.

2. Preliminaries
2.1. bRebeca

Rebeca [SMSdB04] is an actor-based modeling language proposed for modeling and verification of concurrent
and distributed systems. It has a Java-like syntax familiar to software developers and it is also supported
by a tool via an integrated modeling and verification environment [afrb]. Due to its design principle it is
possible to extend the core language based on the desired domain [SJ11]. For example, different extensions

I nttps://tools.ietf.org/html/draft-ietf-manet-aodvv2-13

https://tools.ietf.org/html/draft-ietf-manet-aodvv2-13

4 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

1| reactiveclass MNode 20 {
2[¢ 21 if (i <my.i){
3 statevars 22 if (!done) {
4 { 23 done = true;
5 int my_i; 24 send(my-i);
6 boolean done; 25 }
7 } 26 } else {
27 my._i = i
9 msgsrv initial (int j, boolean starter) 28 done = true;
10 29 }
11 my.i = j; 30 }
12 if (starter) { 311}
13 done = true; 32 | main
14 send(myi); 33| {
15 } else 34 MNode nl(1,false);
16 done = false; 35 MNode n2(2,false);
17 } 36 MNode n3(3,true);
37 MNode n4(4,false);
19 msgsrv send(int i) 38|}

Fig. 1. An example in bRebeca: Max-algorithm with 4 nodes

have been introduced in various domains such as probabilistic systems [VK12], real-time systems [RSA™T14],
software product lines [SK13], and broadcasting environment [YGKT5|. As in this paper we intend to extend
bRebeca, we briefly review its syntax and semantics.

In bRebeca as well as in Rebeca, actors are the computation units of the system, called rebecs (short for
reactive objects), which are instances of the defined reactive classes in the model.

Rebecs communicate with each other only through broadcasting message which is asynchronous. Every
sent message eventually will be received and processed by its potential receivers. In Rebeca, the rebecs
defined as the known rebecs of a sender, the sender itself using the “self” keyword, or the sender of the
message currently processed using the keyword “sender” are considered as the potential receivers. However,
in bRebeca, it is assumed the network is fully connected and therefore, all rebecs of a model constitute the
potential receivers. In other words, a broadcast message is received by all the nodes to which a sender has a
(one-hop/multi-hop) path. So, unlike Rebeca, there is no need for declaring the known rebecs in the reactive
class definition. Due to unpredictability of multi-hop communications, the arrival order of messages must
be considered arbitrary. Therefore, as the second difference with Rebeca, received messages are stored in an
unordered bag in each node.

Every reactive class has two major parts, first the state variables to maintain the state of the rebec, and
second the message servers to indicate the reactions of the rebec on received messages. The local state of a
rebec is defined in terms of its state variables together with its message bag. Whenever a rebec receives a
message which has no corresponding message server to respond to, it simply discards the message. Each rebec
has at least one message server called “initial”, which acts like a constructor in object-oriented languages
and performs the initialization tasks.

A rebec is said to be enabled if and only if it has at least one message in its bag. The computation takes
place by removing a message from the bag and executing its corresponding message server atomically, after
which the rebec proceeds to process the other messages in its bag (if any). Processing a message may have
the following consequences:

e it may modify the value of the state variables of the executing rebec, or
e some messages may be broadcast to other rebecs.

Each bRebeca model consists of two parts, the reactive classes part and the main part. In the main part
the instances of the reactive classes are created initially while their local variables are initialized.

As an example, Fig. [l illustrates a simple max finding algorithm modeled in bRebeca, referred to as
“Max-Algorithm” [DK86]. Every node in a network contains an integer value and they intend to find the
maximum value of all nodes in a distributed manner. The initial message server has a parameter, named
starter. The rebec with the starter value true initiates the algorithm by broadcasting the first message.
Whenever a node receives a value from others, it compares this value with its current value and one of the
following scenarios happens:

Modeling and Efficient Verification of Wireless Ad hoc Networks 5

e if it has not broadcast its value yet and its value is greater than the received one, it broadcasts its value
to others;

e if its current value is less than the received one, it gives up broadcasting its value and updates its current
value to the received one;

e if it has already sent its value, it only checks whether it must updates its value.

This protocol does not work on MANETSs as nodes give up to rebroadcast their value after their first
broadcast. The Max-Algorithm should find the maximum value among the connected nodes in MANETS.
To this aim, if a node moves and connects to new nodes, it has to re-send its value as its value may be the
maximum value in the currently connected nodes.

2.2. Counter Abstraction

Since model checking is the main approach of verification in Rebeca, we need to overcome state-space
explosion, where the state space of a system grows exponentially as the number of components in the system
increases. One way to tackle this well-known problem is through applying reduction techniques such as
symmetry reduction [CEJS98] and counter abstraction [BMWEKO09, [PXZ02] [ET99]. Counter abstraction is
indeed a form of symmetry reduction and, in case of full symmetry, it can be used to avoid the constructive
orbit problem, according to which finding a unique representative of each state is NP-hard [CEJS98]. The
idea of using counters and counter abstraction in model checking was first introduced in [ET99]. However,
the term of counter abstraction was first presented in [PXZ02] for the verification of parameterized systems
and further used in different studies such as [BMWKO09, [Kat11].

The idea of counter abstraction is to record the global state of a system as a vector of counters, one
per local state. Each counter denotes the number of components currently residing in the corresponding
local state. In our work, by “components” we mean the actors of the system. This technique turns a model

n+m-—1

m , where n and m

with an exponential size in n, i.e. m™, into one of a size polynomial in n, i.e.

denote the number of components and local states, respectively. Two global states S and S’ are considered
identical up to permutation if for every local state s, the number of components residing in s is the same
in the two states S and S’, as permutation only changes the order of elements. For example, consider a
system which consists of three components that each have only one variable v; of boolean type. Three global
states (true, true, false), (false, true, true), and (true, false, true) are equivalent and can be abstracted into
one global state represented as (true : 2, false : 1).

2.3. Semantic Equivalence

Strong bisimilarity [Plo81] is used as a verification tool to validate the counting abstraction reduction
technique on labeled transition systems. A labeled transition system (LTS), is defined by the quadruple
(S, —, L, sg) where S is a set of states, »C S x L x S a set of transitions, L a set of labels, and sq the initial

state. Let s = ¢ denote (s, a,t) €—.

Definition 2.1 (Strong Bisimilarity). A binary relation R C S x S is called a strong bisimilation if and
only if, for any s1, s}, s2, and s) and a € L, the following transfer conditions hold:

e 51 RsaAst sy = (3sheS:saDshAsh R sh),
o 51 RsyNso—sh=(Is) €5 :51 sy As| R sh).
Two states s and t are called strong bisimilar, denoted by s ~ ¢, if and only if there exists a strong bisimulation

relating s and ¢.

As explained in Section [I, mobility is addressed through random changes of underlying topology at each
semantic state, modeled by 7-transitions. We propose to remove such transitions while the behavior of each
semantic state is explored for all possible topologies. We exploit branching bisimilarity [vGW96] to establish

*
the reduced semantic is branching bisimilar to the original one. Let = be reflexive and transitive closure
of T-transitions:

6 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

*
ot t;

* *
et s,and s 57, thent = 7.

Definition 2.2 (Branching Bisimilarity). A binary relation R C S x S is called a branching bisimilation
if and only if, for any sy, s}, s2, and s, and « € L, the following transfer conditions hold:

*

e 51 RsaAst 5 si= ((a=TAs] Rsa)V (Ish,sh €S :s05 s S shAs RsyNAsyRsh)),
*

e 51 RsaAss > sh= ((a=7Asy Rsh)V(Ish, sy €S:s1 5 sf5shAs! RsaAsi R sh)).

Two states s and t are called branching bisimilar, denoted by s ~, t, if and only if there exists a branching
bisimulation relating s and t.

3. Modeling Topology and Mobility

In this section, we discuss issues brought up by extending bRebeca to model and verify MANETS, and our
solutions to overcome these challenges. We assume that the number of nodes is fixed (to make the state
space finite as explained in [DSZ11]).

3.1. Network Topology and Mobility

Every rebec represents a node in the MANET model. A node can communicate only with those located in
its communication range, so-called connected. bRebeca does not define a “topology” concept as the network
graph is considered to be connected, all nodes are globally connected.

Mobility is the intrinsic characteristic of MANET nodes. Furthermore, network protocols have no control
over the movement of MANET nodes, and hence, topology changes cannot be specified as a part of the
specification. Additionally, to verify a protocol with respect to any mobility scenario, we need to consider all
possible topology changes while constructing the state space. To this end, we consider the topology as a part
of the states and randomly change the underlying topology at the semantic level. To this aim, a topology is
modeled as an n x n matrix in each (global) state of the semantic model, where n is the number of nodes
in the network. Each element of this matrix, denoted by e; ;, indicates whether node; is connected to node;
(es,; = 1) or not (e; ; = 0). As the communication ranges of all nodes are assumed to be equal, connectivity
is a bidirectional concept, and hence, the resulting matrix will be symmetric. The main diagonal elements are
always 1 to make it possible for nodes to unicast messages to themselves. (However, in the case of broadcast,
our semantic rules prevent a node from receiving its own message, see Section [.2)). Changing the topology
is considered an unobservable action, modeled by a 7 transition, which alters the topology matrix. Hence,
each 7-transition represents a set of (bidirectional) link setups/breakdowns in the underlying topology.

To set up the initial topology of the network, the known-rebecs definitions, provided by the Rebeca
language, is extended to address the connectivity of rebecs. Fig. Bal shows the communication range of the
nodes in a simple network. To configure the initial topology of this network, known-rebecs of each rebec
should be defined as shown in Fig. 2H during its instantiation (cf. Fig. d). The corresponding semantic
representation (as a part of the initial state) is shown in Fig. 2d

The connectivity matrix has n X n elements which can be either 0 or 1, and since on the main diagonal we
will exclusively have 1s, we have 2(("x")=1)/2 pgsible topologies. For example, in a network of 4 nodes, we
have 2(16=4)/2 = 96 possible topologies. Considering all these topologies may lead to a state-space explosion.
Hence, we provide a mechanism to limit the possible topologies by applying some network constraints to
characterize the set of topologies in terms of (dis)connectivity relations to (un)pin a set of the links among
the nodes. We use the notations con(i,j) or !con(i,j) to show that two nodes ¢ and j are connected or
disconnected, respectively, and and(Cy,C1) to denote both C; and Cs hold. For example, !con(ny,ng) specifies
that n1 (n2) never gets connected to ny (n1), in other words, n1 never enters into ne’s communication range,
and vice versa. Therefore a topology + is called valid for the network constraint C, denoted as v F C, if:

vE con(i,j) e i =1 v E and(C1,C2) & vyECI AYECy
v Eleon(i,j) & vi; =0 v E true

where ; ; represents the element e; ; of the corresponding semantic model of vy, and true characterizes all
possible topologies.

Modeling and Efficient Verification of Wireless Ad hoc Networks 7

:/ MNode ni (ng,ng,n4) : (1,false) 1 1 1 1

' MNode no (n1,n4) : (2, false) 110 1

' - MNode ng (n1,m4) : (3, true) 10 1 1

N /’ MNode ny4 (ng,ng,nl) : (4,false) 1 1 1 1
(a) The network (b) Syntactic definition during instantiation (c) Semantic representation

Fig. 2. A sample of an initial topology and its corresponding syntactic and semantic representations

If the only valid topology of a network constraint is equal to the initial topology, then the underlying
topology will be static. This case can be useful for modeling WMNs with stable mesh routers with no mesh
clients.

3.2. Restricted Delivery Guarantee

The nature of communications in the wireless networks is based on broadcast. The aim of the current paper
is to provide a framework to detect malfunctions of a MANET protocol caused by conceptual mistakes
in the protocol design, rather than by an unreliable communication. Therefore, we consider the wireless
communications in our framework, namely local broadcast, multicast, and unicast, to be asynchronous and
reliable in order to abstract the data link layer services. In this way, we abstract the issues related to
contention management and collision detection following the approach of [KLNT1]. This work abstracts the
services of data link layei] with the aim to design/analyze MANET protocols irrespective to the network
radio model that implements them (its effect is captured by three delays functions). It provides reliable
local broadcast communication, with timing guarantees on the worst-case amount of time for a message
to be delivered to all its recipients, total amount of time the sender receives its acknowledgment, and the
amount of time for a receiver to receive some message among those currently being transmitted by its
neighbors, expressed by delay functions. Therefore, our approach to specify protocols relying on the abstract
data link layer simplifies the study of such protocols, and is valid as its real implementation with such
reliable services exists [Pen08 [SLO4]. In these implementations, a node can broadcast/multicast/unicast
a message successfully only to the nodes within its communication range. Therefore, message delivery is
guaranteed for the connected nodes to the sender. In the case of unicast, if the sender is located in the receiver
communication range, it will be notified, otherwise it assumes that the transmission was unsuccessful so it
can react appropriately. Therefore, we extended bRebeca with conditional unicast so that it enables the
model to react accordingly based on the status of underlying topology (which defines the delivery status in
reliable communications).

Since we only consider one-hop communications (in contrast to the broadcast in bRebeca), the assumption
about the unpredictability of multi-hop communications (with different delays) is not valid anymore, and
message storages in wRebeca are modeled by queues instead of bags.

2 Data link layer (the second layer of Open Systems Interconnection (OSI) model) is responsible for transferring data across
the physical link. It consists of two sublayers: Logical Link Control sublayer (LLC) and Media Access Control sublayer (MAC).
LLC is mainly responsible for multiplexing packets to their protocol stacks identified by their IP addresses, while MAC manages
accesses to the shared media.

8 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

Model := ReactiveClass™ Main
Main == main {RebecDecl ConstraintPart }
List(X) == (X,)*X | ¢
RebecDecl := C R (List(R)) : (List(V));

ConstraintPart = constraint {Constraint}
Constraint := ConstrainDec | ! ConstrainDec | and(Constraint , Constraint)
ConstrainDec == con(R , R) | true
ReactiveClass := reactiveclass C' { StateVars MsgServer™ }

StateVars := statevars { VarDecl" }
MsgServer == msgsrv M (List(T V')) { Statement™ }
VarDecl := T V;
Statement = VarDecl | Assign | Conditional | Loop | Broadcast | Multicast | Unicast | break;
Assign == V = FExpr;
Conditional == if (Expr) Block else Block
Block == Statement | { Statement™ }
Loop == while(Exzpr) Block
Broadcast := M (List(Expr));
Multicast == multicast (V', M (List(Expr)));
Unicast := unicast (Rec , M (List(Expr))) succ : Block unsucc : Block
Rec = self | V

Fig. 3. wRebeca language syntax: Angle brackets ({ }) are used as metaparentheses. Superscript * indicates
zero or more times repetition. The symbols C, R, T, M, and V denote the set of classes, rebec names,
types, method and variable names, respectively. The symbol Expr denotes an expression, which can be an
arithmetic or a boolean expression.

4. wRebeca: Syntax and Semantics

In this section, we extend the syntax of bRebeca, introduced in Section 2.1l with conditional unicast and
multicast, topology constraint, and known rebecs to set up the initial topology. Next, we provide the semantics
of wRebeca models in terms of LT'Ss.

4.1. Syntax

The grammar of wRebeca is presented in Fig. Bl It consists of two major parts: reactive classes and main
part. The definition of reactive classes is almost similar to the one in bRebeca. However, the main part
is augmented with the ConstraintPart, where constraints are introduced to reduce all possible topologies
in the network. The instances of the declared reactive classes are defined in the main part, before the
ConstraintPart, by indicating the name of a reactive class and an arbitrary rebec name along with two sets
of parentheses divided by the character :. The first couple of parentheses is used to define the neighbors of the
rebec in the initial topology. The second couple of parentheses is used to pass values to the initial message
server. Rebecs here communicate through broadcast, multicast, and unicast. In the broadcast statement,
we simply use the message server name along with its parameters without specifying the receivers of a
message. In contrast, when unicasting/multicasting a message, we also need to specify the receiver /receivers
of the message. However, there is no delivery guarantee, depending on the location of the receiver. In case
of unicasting, the sender can react based on the delivery status. Let unicast(Rec, M (List(Fzpr))) indicate
unicast(Rec, M (List(Expr))) succ :{} unsucc :{} when the delivery status has no effect on the rebec behavior.

In addition to communication statements, there are assignment, conditional, and loop statements. The

Modeling and Efficient Verification of Wireless Ad hoc Networks 9

1| reactiveclass Node 22 relay_packet (data,hopNum,destination);
2|{ 23
3 statevars 24
4 25 msgsrv deliver_packet (int data)
5 int IP; 26 {
6|)
28 }
8 msgsrv initial (boolean source,int ip_) 29 |}
9
10 IP=ip_; 31 | main
11 if (source==true) 32 {
12 relay_packet (55,0,3) ; 33 Node node0 (nodel):(true,0);
13 } 34 Node nodel (node0,node2,node3):(false,1);
35 Node node2 (nodel,node3):(false,2);
15 msgsrv relay_packet(int data,int hopNum,int 36 Node node3 (nodel,node2):(false,3);
destination)
16 { 38 constraint
17 if (IP==destination) 39
18 unicast (self , deliver_packet (data)); 40 and(con(node0,nodel),!con(node0,node2))
19 else if (hopNum<3) 41 }
20 { 42}
21 hopNum++;

Fig. 4. Flooding protocol in a network consisting of four nodes

first one is used to assign a value to a variable. The second is used to branch based on the evaluation
of an expression: if the expression evaluates to true, then the if part, and otherwise the else part will be
executed. Let if (Expr) Block denote if (Expr) Block else { }. Finally, the third is used to execute a set of
statements iteratively as long as the loop condition, i.e., the boolean expression Expr, holds. Furthermore,
break can be used to terminate its nearest enclosing loop statement and transfer the control to the next
statement. For the sake of readability, we use for (T © = Fxpry; Ezpre; Exprs){ Statement™ } to denote
T x = Exprq;while (Expre){ Statement™ Fxprs }. A variable can be defined in the scope of message servers
as a statement similar to programming languages.

A given wRebeca model is called well-formed if no state variable is redefined in the scope of a message
server, no two state variables, message servers or rebec classes have identical names, identifiers of variables,
message servers and classes do not clash, and all rebec instance accesses, message communications and
variable accesses occur over declared/specified ones and the number and type of actual parameters correctly
match the formal ones in their corresponding message server specifications. Each break should occur within
a loop statement. Furthermore, the initial topology should satisfy the network constraint and be symmetric,
i.e., if n1 is the known rebec of ng, then ns should be the known rebec of n;. By default, the network
constraint is true if no network constraint is defined, and all the nodes are disconnected if no initial topology
is defined.

Example: The flooding protocol is one of the earliest methods used for routing in wireless networks. The
flooding protocol modeled in wRebeca is presented in Fig. @l Every node upon receiving a packet checks
whether it is the packet’s destination. If so it processes the message, otherwise it broadcasts the message to
its neighbors. To reduce the number of transferred messages, each message contains a counter, called hopNum,
which shows how many times it has been re-broadcast. If the hopNum is more than the specified bound, it
quits re-broadcasting.

4.2. Semantics

The formal semantics of a well-formed wRebeca is expressed as an LTS. In the following, we formally define
the states, transitions, and initial states of the semantic model generated for a given wRebeca specification. To
this aim, the given specification is decomposed into its constituent components, i.e., rebec instances, reactive
classes, initial topology, and network constraint represented by the wRebeca model M. The topology is
implicitly changed as long as the given network constraint is satisfied. As explained in Section [Il message
server executions are atomic and their statements are not interleaved. Intuitively, the global state of a

10 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

wRebeca model is defined by the local states of its rebecs and the underlying topology. Consequently, a
state transition occurs either upon atomic execution of a message server (i.e., when a rebec processes its
corresponding message in its queue), or at a random change in the topology (modeled through unobservable
T-transitions).

Let V' denote the set of variables ranged over by z, and Val denote the set of all possible values for
the variables, ranged over by e. Furthermore, we assume that the set of types T consists of the integer and
boolean data types, i.e., T = {int, bool}. We consider the default value 0 € Val for the integer and boolean
variables since the boolean values true and false can be modeled by 1 and 0 in the semantics, respectively.
The variable assignment in each scope can be modeled by the valuation function V' — Val ranged over by
6. An assignment can be extended by writing 6 U {y — e}. To monitor value assignments regarding scope
management, we specify the set of all environments as Env = Stack(V — Val), ranged over by v. Let
upd(v, {y — e}) extend the variable assignments of the current scope, i.e, the top of the stack, by {y — e}
if the stack is not empty. Assume Stack() denotes an empty environment. By entering into a scope, the
environment v is updated by push(6,v) where 6 is empty if the scope belongs to a block (which will be
extended by the declarations in the block). Upon exiting from the scope, it is updated by pop(v) which
removes the top of the stack. Let eval(expr,v) denote the value of the expression expr in the context of
environment v, and v[z := €] the environment identical to v except that z is assigned to e.

Assume Seq(D) denotes the set of all sequences of elements in D; we use notations (d; ...d,) and € for
a non-empty and empty sequence, respectively. Note that the elements in a sequence may be repeated. A
FIFO queue of elements of D can be viewed as a Seq(D). For instance, (2 3 2 4) € Seq(N) denotes a FIFO
queue of natural numbers where its head is 2. For a given FIFO queue f : Seq(D), assume f >d denotes the
sequence obtained by appending d to the end of f, while d> f denotes the sequence with head d and tail f.

A wRebeca model is defined through a set of reactive classes, rebec instances, an initial topology, and a
network constraint. Let C' denote the set of all reactive classes in the model ranged over by ¢, R the set of
rebec instances ranged over by r, and C the set of network constraints ranged over by C. Assume I is the set
of all possible topologies ranged over by ~y. Each reactive class ¢ is described by a tuple ¢ = (V,, M), where
V. is the set of class state variables and M, the set of message types ranged over by m that its instances can
respond to. We assume that for each class ¢, we have the state variable self € V., and ¢ € M, which can be
seen as its constructor in object-oriented languages. For the sake of simplicity, we assume that messages are
parameterized with one argument, so Msg,, where M, = Val — Msg, defines the set of all messages that
rebec instances of the reactive class ¢ can respond to. The formal parameter of a message can be accessed
by fm : M. — V. Let Statement denote the set of statements ranged over by o,d (we use o*,* to denote
a sequence of statements), and body : M, — Seq(Statement) specify the sequence of statements executed
by a message server. A block, denoted by 3, is either defined by a statement or a sequence of statements
surrounded by braces.

A rebec instance r is specified by the tuple (c,eg) where ¢ € C is its reactive class, and ey defines the
value passed to the message ¢ which is initially put in the rebec’s queue. We assume a unique identifier is
assigned to each rebec instance. Let T = {1...n} denote a finite set of all rebec identifiers ranged over by 4
and j. Furthermore, we use r; to denote the rebec instance r with the assigned identifier i. As explained in
Section 2] a rebec in wRebeca, like Rebeca, holds its received messages in a FIFO queue (unlike bRebeca,
in which messages are maintained in a bag).

All rebecs of the model form a closed model, denoted by M = (||;cr74, C,70,C), where r; = (c,e}) for
some ¢ € C and C € C. By default, C = true and Vi,j < n(yo,, = 1 A (i # j = v0,, = 0)) if no network
constraint and initial topology were defined. The (global) state of the M is defined in terms of rebec’s local
states and the underlying topology.

Definition 4.1. The semantics of a wRebeca model M = (||;cs74, C,70,C) is expressed by the LTS (S, L, —
, 80) where

e 5 C Syx...x8,xT is the set of global states such that (s1,...,s,,7) € Siff y EC,and S; = Envx FIFO;
is the set of local states of rebec r; = {c, e})) where FIFO; = Seq(Msg,) models a FIFO queue of messages
sent to the rebec r;. Therefore, each s; can be denoted by the pair (v;, f;). We use the dot notations s;.v
and s;.f to access the environment and FIFO queue of the rebec i, respectively.

o L = Act U {7} is the set of labels, where Act = |J . Msg.. ;
e The transition relation —C S x L x S is the least relation satisfying the semantic rules in Table [T}
e 3q is the initial state which is defined by the combination of initial states of rebecs and the initial topology,

Modeling and Efficient Verification of Wireless Ad hoc Networks 11

Table 1. wRebeca natural semantic rules

Term: V’iaflv"'afnve/\’)'yV’iaflv"'afnv—r

Assign: Vio f1, -+, fn, @ i= expri~, vi[x = eval(expr,v;)], fi,. ..\ fn, T
VDecl: Vi f1,- o fn, T @3~ upd (vi, {x = 0}), f1,. . fn, T

Bl . pUSh(Q],Vi),fl,---7fn,0'*”\’>'y V{af{v"'va/wc
ock: * N £/ 7
V’iaflv"'afnv{g}M’Ypop(yi)aflv"'afnvc

eval(ewpr,l/i) = true Viuflw' '7fn761 Py Véuf{w' '7f1/z7<

Cond;: -
Vivfla"'vfnalf expr Bl else ﬂQ/\’)’Y V'L{vf]ia"'vffr/wc
Conds: eva’l(exprayi):fa’lse Vi7f17"'7fn7ﬁ2/\’)v V;uf{a'"ufflwéh
I/iaflu"wfnuif expr ﬁl else B?MV Vl(af]{u"wf*rlwc
eval(expr,v;) = true
, , V’vala"'afnvﬂ/\’) Vz)fl?'/‘/').,/f/l/ T "
Loop,: Vi,fl,...,fn,whzle(empr)ﬁv Vl, Y
Viy f1, -+, fn, while(expr) B~y v f1 o0 f1LT
eval (expr,v;) = true
Loop.: V’iafla"'afnvﬁ/\’)’y V{af{v"'vffr/pJ—
2- -
Vis fi, -+, fn, while(expr) B~y vl f1, . fL, T
Loopy: eval(expr,v;) = false

Vi, fla R fn7 whzle(e:tpr) B/\’)'y V’vala R fan
BCast: Vs, f1,..., fn,m(expr);~y vi, f1,..., f1, T, where Vk < n(k £ i A (v, == 1) =
[f5 = fio > m(eval(expr, vi))][f}, = fi])

MCast: Vs, f1,..., fn, multicast(rcvs, expr);~> Vi, f1, ..., fl,, T, where Vk < n(k € rcvs A (v, == 1) =
[f5, = m(eval(ezpr,vi)) > fillfy, = fil)

/ (vij==1)
f; = fj»>m(eval(expr, Uz)) /\Vk #3(fe = fr)
UCast: Vivf{a"'vfnaﬂl/\’) Vzv 17"'7 nac
Vi, f1, .+, fn, unicast(j, m(expr)) succ : B1 unsucc : By~ v, fI', ..., [, C
UcC . (77,,]::0) Viuflu"'ufn7ﬁ2’\’77V;af{u"'ufqlwc
asto: - . 7 g7 7
Vi, fis oo, fn, unicast(j, m(expr)) succ : B unsucc : So ~>ny VL, f1, .0, frs €
S . Viuflu"'ufnao—l’\’)’yI/z{uf{w"ufrlm V{7f]{7"'7f7/7,70-2/\’) V'Lu 17"'7f1/zl7<
eqq: 77 7
I/i7f17"'7fn70-10-2’\’) 1/17 1y nuc
S€Q2: V’iaflv"'afnvbreak; o oy V’L'aflv"'afan—
S;- f m()D fz A VEk # ’L(fk = Skf)
vi = push({fm(m) = e}, siv)
Handle: Vi’fl’”"fmlmdy(m) i V“fl"”’f"’—r , where Vk # i(s}, = (sk.v, f},)) A s; = (pop(v}), f])

(6)
(517---7571,7) (17"'7521’7)

Mov (81,...,Sn,’y)l>(51,...,.9",”)/),whcreﬁ/':C

12 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

ie., s0 ={(sd,--,50,7%)}, where for the rebec r; = (c, el), si = (push(0y, stack()), (c(e}))) which denotes
that the class variables (i.e., V) are initialized to the default value, denoted by 6, and its queue includes
only the message c(e}), and v F C.

To describe the semantics of transitions in wRebeca in Table [I, we exploit an auxiliary transition rela-
tion ~,C (Env X FIFOq X ... x FIFO,, x Seq(Statement)) — (Env x FIFO1 X ... x FIFO, x {T,L}) to
address the effect of statement executions on the given environment of the rebec (which executes the state-
ments) and the queue of all rebecs. Upon execution, the statements are either successfully terminated,
denoted by T, or abnormally terminated, denoted by L. Let ¢ range over {T, L}. Rule Term explains that
an empty statement terminates successfully. The effect of an assignment statement, i.e., x := expr;, is that
the value of variable = is updated by eval(expr,v;) in v; as explained by the rule Assign. The variable
declaration T" x; extends the variable valuation corresponding to the current scope by the value assignment
x +— 0, where 0 is the default value for the types of T', as explained in the rule VDecl. The behavior of a block
is expressed by the rule Block, based on the behavior of the statements (in its scope) on the environment
push(0, v;), where the empty valuation function may be extended by the declarations in the scope (by rule
VDecl). Thereafter, to find the effect of the block, the last scope is popped from the environment. Rules
Cond; o specify the effect of the if statement: If eval(ezpr,v;) evaluates to true, its effect is defined by
the effect of executing the if part, otherwise the else part. Rules Loop;_s; explain the effect of the while
statement; If the loop condition evaluates to true, the effect of the while statement is defined in terms of the
effect of its body by the rules Loop, 5, otherwise it terminates immediately as specified by the rule Loop;.
If the body of the while statement terminates successfully, the effect of the while statement is defined in
terms of the effect of the while statement on the resulting environment and queues of its body execution as
explained by Loop,. Rule Loop, expresses that if the body of the while statement terminates abnormally
(due to a break statement) while its condition evaluates to true, then it terminates successfully while taking
the effect of its body execution into account. The effect of a sequence of statements is specified by the rules
Seq 5. Upon successful execution of a statement, the effect of its next statements is considered (rule Seq,).
A break statement makes all its next statements be abandoned (rule Seg,).

The expression b = [C4][C2] in the post-conditions of rules BCast and M Cast abbreviates (b = C1) A
(=b = C3). The effects of broadcast and multi-cast communications are specified by the rules BCast and
MCast, respectively: the message m(eval(expr,v;)) is appended to the queue of all connected nodes to
the sender in case of broadcast, and all connected nodes among the specified receivers (i.e., rcvs) in case
of multi-cast. Rules UCast; 2 express the effect of unicast communication upon its delivery status. If the
communication was successful (i.e., the sender was connected to the receiver), the message is appended to
the queue of the receiver while the effect of the succ part is also considered (rule UCast;), otherwise only
the effect of the unsucc part is considered (rule UCasts).

The rule Handle expresses that the execution of a wRebeca model progresses when a rebec processes the
first message of its queue. In this rule, the message m(e) is processed by the rebec r; as s;.f = m(e) > f;. To
process this message, its corresponding message server, i.e. body(m) is executed. The effect of its execution
is captured by the transition relation ~+, on the environment of r;, updated by the variable assignment
{fm — e} for the scope of the message server of m, and the queue of all rebecs while message m(e) is
removed from the queue of r;. Finally, the rule Mov specifies that the underlying topology is implicitly
changed at the semantic level, and the new topology satisfies C.

Example: Consider the global state (sg, s1, 2, $3,7) such that so
1

(({IP ~ 03}, (relay_packet(55,0,3))), s1 =

1
(HIP — 1}, €), s2 = ({{IP — 2}},¢€), s3 = ({{IP ~ 3}},¢), and ~ : }) for the wRebeca model in Fig. [

1
0
0 1
where {{IP +— i}} denotes push({IP — i}, Stack()). Regarding our rules, the following transition is derived:

0
1
0
1

V2, €, €, €,€, hopNum + + ~», U3, €,€,€,€, T U3, €, €, €, €, rel(data, . ..) ~~ v3,€, (rel(55,1,3)),€,€, T
V2, €, €€, €, hopNum + +; rel(data, . ..) ~~ v3,€, (rel(55,1,3)),¢,e, T
V1, € € €, €, {hopNum + +; rel(data, .. .)} ~>~ va,€,(rel(55,1,3)),e,6, T : (%)

Seq,

Block

The following inference tree uses the result of the first tree, denoted by (x), as a part of its premise to
derive the transition.

Modeling and Efficient Verification of Wireless Ad hoc Networks 13

eval(hopNum < 3,v1) = true (*) Cond
on.
eval(IP == des,v1) = false V1, € € € €, if (hopNum < 3)...~>y va,€ (rel(55,1,3)),€,€, T o dl
Vi, €666 ¢€4f (IP == ...~ v}, € (rel(55,1,3)),€,¢6, T onaz
Handle
rel(55,0,3)

(s, 51, 52,83,7)

where v; = push({data — 55, hopNum — 0, des — 3}, {{IP + 0}}), va = push(0, 1), vs = va[hopNum := 1],
vy = pop(vs), v; = pop(va), st = ({{IP — O}},e), and 8§ = ({{IP — 1}}, (rel(55,1,3))). Note that des
denotes destination, and rel refers to relay _packet message. By the rule Handle, the message rel(55,0, 3)
in the queue of nodey is processed. To this aim, the body of its message server, i.e., if (IP == ... is executed.
Since eval(IP == des,v1) = false, by the rule Conds, the else part (i.e., if (hopNum < 3) ...) is executed.
Due to eval(hopNum < 3,v1) = true, by the rule Condy, the if part is executed.

(s0,81,52,53,7)

5. State-Space Reduction

We extend application of the counter abstraction technique to wRebeca models when the topology is static.
To this end, the local states of rebecs and their neighborhoods are considered. Later, we inspect the soundness
of the counter abstraction technique in the presence of mobility. As a consequence, we propose a reduction
technique based on removal of T-transitions. Recall that the topology is static when the only valid topology
of the network constraint is equal to the initial topology.

5.1. Applying Counter Abstraction

Assume S, is the set of local states that the instances of the reactive class ¢ can take (i.e., S, = Env.x FIFO,)
and I is the set of rebec identifiers. To apply counter abstraction, rebecs with an identical local state and
neighbors that are topologically equivalent are counted together. Two nodes i, j € I are said to be topologically
equivalent, denoted by i ~., j, iff Vk € I'\ {¢,7}(vir = 7). Intuitively, two topologically equivalent nodes
have the same neighbors (except themselves). So if either one broadcasts, the same set of nodes (except
themselves) will receive, and if they are also connected to each other, their counterpart (that is symmetric
to the sender) will receive. Nodes in N/ C I are called topologically equivalent iff Vi,j € N (i =, j).
This definition implies that all topologically equivalent nodes should be either all connected to each other,
or disconnected, while they should have the same neighbors (except themselves). Therefore, topologically
equivalent nodes will affect the same nodes when either one broadcasts. Hence, topologically equivalent nodes
with an identical local state can be aggregated. To this aim, nodes of the underlying topology are partitioned
into the maximal sets of topologically equivalent nodes, denoted by N1, ..., ;. We define the set of distinct
local states as S% = U.cc Se, and the set of topology equivalence classes as T = {N, ..., N¢}. Consequently,

each global state (s1,...,sn,) is abstracted into a vector of elements (sf,/\/l) : ¢; where sf € S84 N; €T,
and ¢; is the number of nodes in the topology equivalence class A; that reside in the very local state s¢. The
reduced global state, called abstract global state, is presented as follows, where n and m donate the number

of all rebecs and distinct local states (i.e., m = |Sd‘), respectively:

S = ((Stlile) Cy ey (SZaNk) : Ck)a Vi < k(cz > O/\M € T)?ZC’L =n, k <n
i=1
For instance, nodes n1, ng, and ns, ng in Fig. 2al have the same neighbors, so if their state variables and
queue contents are the same, then they can be counted together.

Recall that when the underlying topology is static, a global state may only change upon processing a mes-
sage by a rebec, since in wRebeca the bodies of message servers execute atomically. Thus, its corresponding
abstract global state may also only change upon processing a message by a rebec.

Counting abstraction is beneficial when the reactive classes do not have a variable that will be assigned
uniquely to its instances, such as “unique address” as a state variable. (Note that at the semantics, rebecs
have identifiers which are not a part of their local states.) For example, counter abstraction is not effective
on the specification of the flooding protocol given in Fig. [l since its nodes are identified uniquely by their IP
addresses, and hence their state variables can not be collapsed. Therefore, to take benefit of this abstraction,
we revise the example in the way that nodes are not distinguished by their IP addresses. To this aim, the

14 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

1| reactiveclass Node 21
2 { 22 hopNum++;
3 statevars 23 relay_packet (data,hopNum);
4 24
5 boolean destination; 25
6 } 26 msgsrv deliver_packet (int data)
27 {
8 msgsrv initial (boolean source,boolean dest)
9 { 29 }
10 destination=dest; 30|}
11 if (source==true)
12 relay_packet (55,1) ; 32 | main
13 } 33| {
34 Node node0 (nodel):(true,false);
35 Node nodel (node0,node2,node3):(false,false);
16 msgsrv relay_packet(int data,int hopNum) 36 Node node2 (nodel,node3):(false,false);
17 { 37 Node node3 (nodel,node2):(false,true);
18 if (destination ==true)
19 unicast (self , deliver_packet (data)); 39|}
20 else if (hopNum<2)

Fig. 5. The revised version of the flooding protocol to make counter abstraction applicable in a network
consisting of four nodes

(f{i— 1}, 0), 1101
(U2 s, (111 0)) (i 179, 1.3)) {1.3],
(f{i— 14,0, 01 11 ((i 2}, (msg)), {2,4}) - {2},)
(i 0}, 10011 ({i > O3 0), 2,41) : {4}
(a) Before applying counter abstraction (b) After applying counter abstraction

Fig. 6. An abstract global state and its corresponding transposed global state: assume {{i — e}} denotes
push({i — e}, Stack())

IP variable is replaced by the boolean variable destination which identifies the sink node, while the last
parameter of the relay_packet message server is removed. The revised version is shown in Fig.

The reduction takes place on-the-fly while constructing the state space. To this end, each global state
(81, 8n,7) is transformed into the form ((s¢,N7) : n1, (s§,Na) : na, ..., (s, Ni) : ng) such that n; C N;
is the set of node identifiers that are topologically equivalent with the local state equal to s;-i, where N; € T.
This new presentation of the global state is called transposed global state. The sets n; are leveraged to update
the states of the potential receivers (known by the underlying topology) when a communication occurs. To
generate the abstract global states, each transposed global state is processed by taking an arbitrary node
from the set assigned to a distinct local state and a topology equivalence class if the distinct local state
consists of a non-empty queue. The next transposed global state is computed by executing the message
handler of the head message in the queue. This is repeated for all the pairs of a distinct local state and a
topology equivalence class of the transposed global state. After generating all the next transposed global
states of a transposed state, the transposed state is transformed into its corresponding abstract global state
by replacing each n; by |n;|. A transposed global state is processed only if its corresponding abstract global
state has not been previously computed. During state-space generation, only the abstract global states are
stored. Fig. [Blillustrates a global state and its corresponding transposed global state. It is assumed that the
network consists of four nodes of the reactive class with only one state variable ¢ and message server msg.
Each row in Fig. represents a local state, i.e., valuation of the local state variable and message queue,
while each row in Fig. [6H represents a distinct local state and a set of topologically equivalent identifiers
together with those nodes of the set that reside in that distinct local state. As the topology is static, it can be
removed from the abstract/transposed global states. Furthermore, each topology equivalence class of nodes
can be represented by its unique representative, e.g., the one with the minimum identifier.

The following theorem states that applying counter abstraction preserves semantic properties of the
model modulo strong bisimilarity. To this aim, we prove that states that are counted together are strong

Modeling and Efficient Verification of Wireless Ad hoc Networks 15

({{des — F}}, (rel))

and(con(Ny, N2), and(con(Ny, N3),
and(con(Ns, Ny), and(!con(Ny, N2),
lcon(Na, N3)))))

(¢) An example of network topology
(a) Topology 1 (b) Topology 2 constraint

Fig. 7. Two possible topologies for the given constraint on the flooding protocol

bisimilar. For instance, the global state similar to the one in Fig. [Gal except that the distinct local states of
nodes 2 and 4 are swapped, is mapped into the same abstract global state that corresponds to Fig. bl

Theorem 5.1 (Soundness of Counter Abstraction). Assume two global states S; and S such that for
all pair of s € S¢ and N € T, the number of topologically equivalent nodes of N that have the distinct
local state s? are the same in S; and Sy. Then they are strongly bisimilar.

Proof. Since the topology is static, the only transitions these states have are the result of processing messages

in their rebec queues. Suppose 51 & 51 since there is a node ¢ with the local state (v, f;) in the topology
equivalence class N, where m(e) is the head of f; using the semantic rule Handle in Table[Il Assume that
belongs to the topologically equivalent nodes N7 C N, where ((v;, f;),N) : N7 is an element of the transposed
global state corresponding to S;. Due to the assumption, there exist topologically equivalent nodes N5 C N
in Sy with the distinct local state (v, f;) where |N7| = |Na2|. We choose an arbitrary node j in Ay and
prove that it triggers the same transition as i. We claim that V(s¢, N”), the number of nodes in the topology
equivalence class N that are a neighbor of 4, denoted by nb;, and reside in the local state sg is the same to
the number of the nodes in the topology equivalence class N that are a neighbor of j, denoted by nb;, with
the local state s¢. Assume for the arbitrary transposed global state element (s¢, N”’) this does not hold, and
we consider the case where nb; has more topologically equivalent nodes than nb; in (sf, N’). As the links
are bidirectional, due to the definition of abstract/transposed global states, i is the neighbor of nodes in N/”’.
Furthermore, as the topology is the same for S; and S and 7,5 € N, then j is also the neighbor of nodes
in N””’. However, due to the assumption, the number of topologically equivalent nodes of A"/ in S; and S5
that have the distinct local state sf are the same. So there are some topologically equivalent nodes of N/
with the local state s{ that are not in nb;, which contradicts to fact that j is the neighbor of nodes in N

As both ¢ and j handle the same message, they execute the same message server, and consequently the

effects on their own local state and their neighbors will be the same. Therefore, S e, S% while V(s4, N'*)
the number of topologically equivalent nodes from the equivalence class A™* in S} that have the distinct local

state s¢ is the same to S7. A similar argumentation holds when Sy m> S% while the inequality between
nb; and nb; goes the other way. [

As mentioned before, the reduction is only applicable if the network is static. This is due to the fact that
if node neighborhoods may change, then nodes which are in the same equivalence class in some state may no
longer be equivalent in the next state. Consider the flooding protocol (Fig.) for the two topologies shown
in Fig. [7al and Fig. [(D] (satisfying the network constraint in Fig. [7d). By applying counter abstraction, nodes
Ny and N3 are considered equivalent under topology 1, but not under topology 2.

To illustrate that counter abstraction is not applicable to systems with a dynamic topology, Fig. Bl shows
a part of the state space of the flooding protocol with a change in the underlying topology (from Fig. [Tal
to Fig. [7B)) with/without applying counter abstraction, where only these two topologies are possible. As
predicted, the reduced state space is not strong bisimilar (see Section for the definition) to its original
state space. During transposed global state generation, the next state is only generated for node 2 with the
distinct local state ({{des — F}}, (rel)) from the equivalence class {2,3}. Therefore, it is obvious that the
next states in the left LTS of Fig. [can be matched to the states with the solid borders in the right LTS.
However, the solid bordered states are not strong bisimilar to the dotted ones in the right LTS. As explained
in Section [T the reduced LTS should be strong bisimilar to its original one to preserve all properties of its
original model.

16

(({{dGSHF}}) {L:4}): {1},
(({{des — I}y, <7€l>> {2,3}) :{2,3},)
(({{des = T}, e), {1,4}) : {4}

rel

N

Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

(
(
(

{des — F}},¢),

{des — F}}, (rel)),
{des — F}}, (rel)),

{des — T}},e),

O
— (=]
[
S~ —
—

1
1
1
0

(({{des — F}}, (rel)), {1,4}) : {1}, ({{des — F}},(rel)), /1 1 1 0O ({{des — F}} (rel)), (1 1 1 0\ :
((({{des — F}},€),{2,3}) : {2},) (({{des — F}},e), 1101) (({{des — F}}, <rel>)-, 1101)
(({des — F}}, (rel)) {2,3}): {3}, ({{des — F}}, (rel)), |1 0 1 1 ({{des — Fl}}, e 101 1)/
(tdes = T, b)), {1,4D) < {4) (Hdeo Th i), 0 1 1 1 ...ﬁ{.{.il".‘.ﬁ.f}.}..?.".lz.*....‘?...1...1...1.....

T T T

(fdes = B, (red), (D) {11, ({{des > L (rel)), /1 1 10 (des 5 FR Gy, 7T

((({des = F}},€),{2}) : {2},) (({des — F}},e), 1100) (({des — F}}, <rel>)., 1100)5

(({{des — F'}}, (rel)), {3}) : {3}, ({{des — F}}, (rel)), |1 0 1 1 ({{des — F}},e 101 1)/

(({{des — T}, (rel)), {4}) : {4} ({{des — T3}, (rel)), \O 0 1 1 o ({des — T}, nl)), 00 1 1
__________ :el_____________ ___________7‘51 ______________________7‘3_1_____________
' ({{des = FJ, (rel, el 111 < (11, ' : ({(des — P (rel,rel)), /1 1 10 F({{des Y, el ret)), 1710\
b e o P02 L] (e i), Lo o) ftde pie) Lo o)
' (({{des — F}},€),{3}) : {3}, 1 1| Y ({{des — F}}e), 101 1 ({{des — F}}, e) 101 1)z
: (({des — T}, (rel, rel)), {4} {4} : : ({{des — T3}, (rel, rel)), \O 11 ({{des — T}}, (rel)), 001 1/: :

Fig. 8. Comparing a part of the flooding protocol’s state space with/without applying counter abstraction
in a dynamic network. The two dashed bordered states are not strong bisimilar since in the right figure
there is a global state in which only one node has two rel messages in its queue while in the left figure there
are two nodes with queues containing two rel messages. Note that T, F' stand for true, false, des denotes
destination, and rel refers to relay_packet messages. For simplicity the message parameters are not shown
in the figure.

To take a better advantage of the reduction technique, the message storages can be modeled as bags.
However, such an abstraction results in more interleavings of messages which do not necessarily happen in
reality, and hence, an effort to inspect if a given trace (of the semantic model) is a valid scenario in the
reality is needed. This effort is only tolerable if the state space reduces substantially.

5.2. Eliminating 7-Transitions

Instead of modifying the underlying topology, modeled by 7-transitions, messages can be processed with
respect to all possible topologies (not only to the current underlying topology). Therefore, all T-transitions
are eliminated and only those that correspond to processing of messages are kept. The following theorem
expresses that removal of T-transitions and topology information from the global states preserves properties
of the original model modulo branching bisimulation, such as ACTL-X [DV90]. In fact, by exploiting a
result from [DV90] about the correspondence between the equivalence induced by ACTL-X and branching
bisimulation, the ACTL-X fragments of CACTL [GAFM13]|, introduced to specify MANET properties, and
u-calculus are also preserved. We show in Section [T.3] that important properties of MANET protocols can
be still verified over reduced state spaces.

Theorem 5.2 (Soundness of 7-Transition Elimination). For the given LTS T = (SxT', —, L, (S0,70)),
assume that (s,7) = (t,7) = (y = ¥)V (e = 7As = t), and Vy,y € T : (s,7) = (s,79). If
T, = (S,—', L, so), where =»'= {(s,a,t) | ((s,7), e, (t,7)) €=}, then (s0,70) ~r So-

Proof. Construct R = {((s,7),8)|s € S,v € I'} as shown in Figure @l We show that R is a branching
bisimulation. To this aim, we show that it satisfies the transfer conditions of Definition For an arbitrary
relation (s,7) R s, assume (s,7) — (¢,7'). If & = 7, then two cases can be distinguished: (1) either v # +/,
and hence by definition of Ty, s = ¢ holds which concludes (¢,7') R s, (2) or v =~ and by definition of 77,

s —='t,and (t,7') R t. If a # 7, then by definition of Ty, v = 4/ and hence by definition of Ty, s =’ ¢, and

Modeling and Efficient Verification of Wireless Ad hoc Networks 17

Fig. 9. Relation R matches states (s,~) of Tp to s of T7.

{{}} (3}, (msg)) ({0he ({0 (msg)) ({00 ({0} (msg))
[h] (a) Topology 1 (b) Topology 72 () Topology 73

Fig. 10. All possible topologies considered during state-space generation of Fig. [Tl

(o7
(t,7') R t. Whenever s —' ¢, then by definition of T} there exists 7/ such that (s,7") = (¢,7) and hence,
(t,7") R t. Consequently R is a branching bisimulation relation. [

We remark that the labeled transitions Ty and T} in the Theorem [5.2 specify the state space of wRebeca
models before and after elimination of 7-transitions, respectively. As an example, consider a network which
consists of three nodes, which are the instances of a reactive class with no state variable and only one message,
msg. The message server msg has only one statement to broadcast the message msg to its neighbors. We
assume that the set of all possible topologies is restricted by a network constraint to the three topologies
depicted in Fig. Consider the global state in which only N3 has one msg in its queue.

The state space of the above imaginary model before reduction is presented in Fig. [[Tal where transi-
tions take place by processing messages or changing the topology. Fig. illustrates the state space after
eliminating 7-transitions and topology information. Connectivity information is removed from the global
states, as in each state its transitions are derived for all possible topologies. In this approach, transition
labels are paired with the topology to denote the topology-dependent behavior of transitions. The two tran-
sitions labeled with 2 and ~3 can be merged by characterizing the links that make communication from
N3 to N7 and Ns; i.e., from the sender to the receivers. Such links can be characterized by the network
constraints depicted in Fig. [Id In this model, a state is representative of all possible topologies. The re-
sulting semantic model, called Constrained Labeled Transition System (CLTS), was introduced in [GFM11]
as the semantic model to compactly model MANET protocols. Another advantage of a CLTS is its model
checker to verify topology-dependant behavior of MANETSs [GAFM13|. The properties in wireless networks
are usually pre-conditioned to existence of a path between two nodes. This model checker takes benefit of
network constraints over transitions and assures a property holds if the required paths hold (inferred from
the traversed network constraints).

18 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

) {0 msa).
// ’ >T ~

o T L [e O 0. 1 10

((hhe (1 1 >>—>< e (o | 1)) (e, (1 i o>>

W msan. \1 1 1) [(W sy, \1 11 o, \o o 1
msg msg

{0 (msg)). /1 11 (T (meg)), /1 0 1

((0 (msg)), (1 1 1)) ((01 (msg)), (o 1 1>>

o\ e, o\

(a) State space before reduction

({39, {39,
(e) (e)
({3}, (msg)) ({3}, (msg))
& 2
%msg uzd} and(con(Nith‘)%/ Nd(!con(]\f;;,]\l).
oy e con(N3, Ny)) : ms lcon(N3, N2)) : msg
({3} (msg)), ({3} (msg)), ({{}} €) ({1, (msg)), {39,
C {h <7W/ 1| C U (msg)),)| |({{}}767 (({1 (msg)),) ({Be,)
{9 {}.9 {9 {09 {19
(b) Reduced State space after eliminating 7-transitions and (c¢) Reduced state space with labels characterized by network
topology information constraints

Fig. 11. State space before and after applying reduction

6. Modeling the AODVv2 Protocol

To illustrate the applicability of the proposed modeling language, the AODVv2 (i.e., version 11) protocol is
modeled. The AODV is a popular routing protocol for wireless ad hoc networks, first introduced in [PB99],
and later revised several times.

In this algorithm, routes are constructed dynamically whenever requested. Every node has its own routing
table to maintain information about the routes of the received packets. When a node receives a packet
(whether it is a route discovery or data packet), it updates its own routing table to keep the shortest and
freshest path to the source or destination of the received packet. Three different tables are used to store
information about the neighbors, routes and received messages:

e neighbor table: keeps the adjacency states of the node’s neighbors. The neighbor state can be one of the
following values:

— Confirmed: indicates that a bidirectional link to that neighbor exists. This state is achieved either
through receiving a rrep message in response to a previously sent rreq message, or a RREP_Ack
message as a response to a previously sent rrep message (requested an RREP_Ack) to that neighbor.

— Unknown: indicates that the link to that neighbor is currently unknown. Initially, the states of the
links to the neighbors are unknown.

— Blacklisted: indicates that the link to that neighbor is unidirectional. When a node has failed to receive
the RREP_Ack message in response to its rreq message to that neighbour, the neighbor state is changed
to blacklisted. Hence, it stops forwarding any message to it for an amount of time, ResetTime. After
reaching the ResetTime, the neighbor’s state will be set to unknown.

e route table: contains information about discovered routes and their status: The following information is
maintained for each route:

— SeqNum: destination sequence number
— route_state: the state of the route to the destination which can have one of the following values:

3 lhttps://tools.ietf.org/html/draft-ietf-manet-aodvv2-11

https://tools.ietf.org/html/draft-ietf-manet-aodvv2-11

Modeling and Efficient Verification of Wireless Ad hoc Networks 19

- unconfirmed: when the neighbor state of the next hop is unknown;
- active: when the link to the next hop has been confirmed, and the route is currently used;

- idle: when the link to the next hop has been confirmed, but it has not been used in the last AC-
TIVE_INTERVAL;

- invalid: when the link to the next hop is broken, i.e., the neighbor state of the next hop is blacklisted.

— Metric: indicates the cost or quality of the route, e.g., hop count, the number of hops to the destination
— NextHop: IP address of the next hop to the destination

— Precursors (optional feature): the list of the nodes interested in the route to the destination, i.e.,
upstream neighbors.

e route message table, also known as RteMsg Table: contains information about previously received route
messages such as rreq and rrep, so that we can determine whether the new received message is worth
processing or redundant. Each entry of this table contains the following information:

— MessageType: which can be either rreq or rrep

— OrigAdd: IP address of the originator

— TargAdd: IP address of the destination

— OrigSeqNum: sequence number of the originator
— TargSeqNum: sequence number of the destination
— Metric

When one node, i.e., source, intends to send a package to another, i.e., destination, it looks up its routing
table for a valid route to that destination, i.e., a route of which the route state is not invalid. If there is
no such a route, it initiates a route discovery procedure by broadcasting a rreq message. The freshness of
the requested route is indicated through the sequence number of the destination that the source is aware of.
Whenever a node initiates a route discovery, it increases its own sequence number, with the aim to define
the freshness of its route request. Every node upon receiving this message checks its routing table for finding
a route to the requested destination. If there is such a path or the receiver is in fact the destination, it
informs the sender through unicasting a rrep message. However, an acknowledgment is requested whenever
the neighbor state of the next hop is unconfirmed. Otherwise, it re-broadcasts the rreq message to examine
if any of its neighbors has a valid path. Meanwhile, a reverse forwarding path is constructed to the source
over which rrep messages are going to be communicated later. In case a node receives a rrep message, if it
is not the source, it forwards the rrep after updating its routing table with the received route information.
Whenever a node fails to receive a requested RREP_Ack, it uses a rerr message to inform all its neighbors
intended to use the broken link to forward their packets.

In our model, each node is represented through a rebec (actor), identified by an IP address, with a
routing table and a sequence number (sn). In addition, every node keeps track of the adjacency status to its
neighbors by means of a neighbor table, through the neigh_state array, where neigh_state[i] = true indicates
that it is adjacent to the node with the IP address ¢, while false indicates that its adjacency status is either
unknown or blacklisted (since timing issues are not taken into account, these two statuses are considered the
same). As the destinations of any two arbitrary rows of a routing table are always different, the routing table
has at most n rows, where n is the number of nodes in the model. Therefore, the routing table is modeled
by a set of arrays, namely, dsn, route_state, hops, nhops, and pres, to represent the SeqNum, route_state,
Metric, NextHop, and Precursors columns of the routing table, respectively. The arrays dsn and route_state
are of size n, while the arrays hops, nhops, and pers are of size n x n. For instance, dsn[i], keeps the sequence
number of the destination with IP address ¢, while nhops[i][j] contains the next hop of the j-th route to the
destination with the IP address .

e dsn: destination sequence number
e route_state: an integer that refers to the state of the route to the destination and can have one of the
following values:

— route_state[i] = 0: the route is unconfirmed, there may be more than one route to the destination i
with different next hops and hop counts;

20 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

— route_state[i] = 1: the route is valid, the link to the next hop has been confirmed, the route state in
the protocol is either active or idle; since we abstract from the timing issues, these two states are
depicted as one;

— route_state[i] = 2: the route is invalid, the link to the next hop is broken;

hops: the number of hops to the destination for different routes

nhop: IP address of the next hop to the destination for different routes

e pres: an array that indicates which of the nodes are interested in the routes to the destination, for example
pres[i][j] = true indicates that the node with the IP address j is interested in the routes to the node with
the IP address .

Since we have considered a row for each destination in our routing table, to indicate whether the node has
any route to each destination until now, we initially set dsn[i] to —1 which implies that the node has never
known any route to the node with the IP address i. We refer to the all above mentioned arrays as routing
arrays. Initially all integer cells of arrays are set to —1 and all boolean cells are set to false. To model
expunging a route, its corresponding next hop and hop count entries in the arrays nhops and hops are set to
—1. Since we have only considered one node as the destination and one node as the source, the information
in rreq and rrep messages has no conflict and consequently the route message table can be abstracted away.
In other words, the routing table information can be used to identify whether the new received message has
been seen before or not, as the stored routes towards the source represent information about rregs and the
routes towards the destination represent rreps.

Note that rreq and rrep, i.e., all route messages, carry route information to their source and destination,
respectively. Therefore, a bidirectional path is constructed while these messages travel through the network.
Whenever a node receives a route message, it processes incoming information to determine whether it offers
any improvement to its known existing routes. Then, it updates its routing table accordingly in case of an
improvement. The processes of evaluating and updating the routing table are explained in the following
subsections.

6.1. Evaluating Route Messages

Every received route message contains a route and consequently is evaluated to check for any improvement.
Note that a rreq message contains a route to its source while a rrep message contains a route to its des-
tination. Therefore, as the routes are identified by their destinations (denoted by des), in the former case,
the destination of the route is the originator of the message (i.e., des = oip_), and in the latter, it is the
destination of the message (i.e., des = dip_). The routing table must be evaluated if one of the following
conditions is realized:

1. no route to the destination has existed, i.e., dsn[des] = —1

2. there are some routes to the destination, but all their route states are unconfirmed

3. there is a valid or invalid route to the destination in the routing table and one of following conditions
holds:

e the sequence number of the incoming route is greater than the existing one

e the sequence number of the incoming route is equal to the existing one, however the hop count of the
incoming route is less than the existing one (the new route offers a shorter path and also is loop free)

6.2. Updating the Routing Table

The routing table is updated as follows:
e if no route to the destination has existed, i.e., dsn[des] = — 1, the incoming route is added to the routing
table.

e if the route states of existing routes to the destination are unconfirmed, the new route is added to the
routing table.

Modeling and Efficient Verification of Wireless Ad hoc Networks 21

e the incoming route has a different next hop from the existing one in the routing table, while the next
hop’s neighbor state of the incoming route is unknown and the route state of the existing route is valid.
The new route should be added to the routing table since it may offer an improvement in the future and
turn into confirmed.

e if the existing route state is inwvalid and the neighbor state of the next hop of the incoming route is
unknown, the existing route should be updated with information of the received one.

e if the next hop’s neighbor state of the incoming route is confirmed, the existing route is updated with
new information and all other routes with the route state unconfirmed are expunged from the routing
table.

As described earlier, there are three types of route discovery packets: rreq, rrep and rerr. There is a
message server for handling each of these packet types:

e rec_rreq is responsible for processing a route discovery request message;
e rec_rrep handles a reply request message;

e rec_rerr updates the routing table in case an error occurs over a path and informs the interested nodes
about the broken link.

There are also two message servers for receiving and sending a data packet. All these message servers
will be discussed thoroughly in the following subsections.

6.3. rreq Message Server

This message server processes a received route discovery request and reacts based on its routing table,
shown in Fig. [4l The rreq message has the following parameters: hops_ and maxHop as the number of
hops and the maximum number of hops, dsn_ as the destination sequence number, and oip-, osn_, dip,
and sip_ respectively refer to the IP address and sequence number of the originator, and the IP address
of the destination, and the IP address of the sender. Whenever a node receives a route request, i.e.,
rec_rreq(hops_, dip_, dsn_, oip_, osn_, sip_,maxHop) message, it checks incoming information with the aim
to improve the existing route or introduce a new route to the destination, and then updates its routing table
accordingly (see also Sections and [6:2). During processing an rreq message, a backward route, from the
destination to the originator is built by manipulating the routing arrays with the index oip_. Similarly, while
processing an rrep message, it constructs a forwarded route to the destination by addressing the routing
arrays with the index dip_. Therefore, the procedure of evaluating the new route and updating the routing
table is the same for both rreq and rrep messages, except for different indices oip_ and dip_, respectively.

Updating the routing table: Fig. [12] depicts this procedure which includes both evaluating the incoming
route and updating the routing table (the code is the body of if-part in the line 7 of Fig. [[4)). If no route
exists to the destination, the received information is used to update the routing table and generate discovery
packets, lines (1-10). The route state is set based on the neighbor status of the sender: if its neighbor status
is confirmed, the route state is set to wvalid, otherwise to unconfirmed. The next hop is set to the sender of
the message, i.e., nhop[oip_][0] = sip_. If a route exists to the destination (i.e., oip_), one of the following
conditions happens:

e the route state is unconfirmed, lines (11-36): it either updates the routing table if there is a route with
a next hop equal to the sender, or adds the incoming route to the first empty cells of nhop and hops
arrays. If the neighbor status of the sender is confirmed, then all other routes with the same destination
are expunged while the route state is set to walid, lines (21-30).

e the route state is invalid or it is valid, but the neighbor status of the sender is confirmed, lines (38-48):
if the incoming message contains a greater sequence number, or an equal sequence number with a lower
hop count, then it updates the current route while a new discovery message is generated.

e the route state is walid and the neighbor status of the sender is unknown, lines (50-66): the incoming
route is added to the routing table and a new discovery message is generated if it provides a fresher or
shorter path.

In these cases, if a new discovery message should be generated (when the node has no route as fresh
as the route request), the auxiliary boolean variable gen_msg is set to true. In Fig. [[4] after updating the

22

© 00O Uk WN -

Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

if (dsn[oip_]==-1) {
dsn[oip_]=osn_;
if (neigh_state [sip_]==true)
{ route_state [oip_]=1; }
else
{ route_state [oip-]=0; }
hops[oip-][0]=hops._;
nhoploip_][0]=sip-;
gen_msg = true;
} else {
if (route_state [oip_]==0) {
dsn[oip_]=osn._;
route_num = 0;
for (int 1=0;i<4;i4++)

if (nhop[oip-][i]J==—1 || nhop[oip][i]==sip-) {
route_num = i;
break;

}

if (neigh_state [sip-]==true) {
route_state [oip_]=1;
for (int i=0;i<4;i++)

hops[oip-][i]=-1;
nhoploip-][i]=-1;

hops[oip-][0]=hops._;
nhoploip_][0]=sip-;

else {
route_state [oip_]=0;
hops[oip-][route_-num]=hops._;
nhop|oip-][route_num|=sip_;

else {
if (route_state [oip_]==2 || neigh_state [sip_]==true) {

/* update the existing route */

if ((dsn[oip_]==o0sn_ && hops|oip_|[0]>hops_) || dsn[oip_]<osn_) {
dsn[oip-]=osn_;
if (neigh_state [sip_]==true) route_state [oip_]=1;

else route_state [oip-]=0;

hops|oip-][0]=hops._;
nhop|oip_][0]=sip-;
gen_msg = true;

}

else {
route_num = 0;
for (int 1=0;i<4;i4++)

if (nhop[oip_][i]==—1 || nhop[oip_|[i]==sip.)

route_num = i;
break;

if ((dsn[oip_]==osn. && hops[oip_][0]>hops_) || dsnfoip_|<osn_)

dsn[oip-]=osn_;

hops|oip-][route_num|=hops._;
nhop|oip-][route_num]=sip_;
gen_msg = true;

e

Fig. 12. Updating the routing table

Modeling and Efficient Verification of Wireless Ad hoc Networks 23

1 | route_state [oip-]=2;
2 | dip_sqn[oip-]=dsn[oip-];
3 | for (int k=0;k<4;k++)
4
5 if (pre[oip-][k]==true)
6 { affected_neighbours [k]=true; }
7
8 | for (int j=0;j<4;j++)
91
10 for (int r=0;r<4;r++)
11 {
12 if (nhop[oip_][r]!=—1 && nhoplj][0]==nhop|oip.][r])
13 {
14 route_state [j]= 2;
15 dip_sqn[j]=dsnl[j];
16 for (int k=0;k<4;k++)
17 {
18 if (pre[j][k|==true)
19 { affected_neighbours [k|=true; }
20 }
21 break;
22 }
23 }
24

25 | multicast (affected_neighbours, rec_rerr (dip-,ip,dip_sqn));

Fig. 13. The error recovery procedure

routing table, if a new message should be generated, indicated by if (gen_-msg = true), it rebroadcasts the
rreq message with the increased hop count if the node is not the destination, lines (51-54). Otherwise, it
increases its sequence number and replies to the next hop(s) toward the originator of the route request, oip_,
based on its routing table. Before unicasting rrep messages, next hops toward the destination, dip_, and the
sender are set as interested nodes to the route toward the originator, oip_, lines (17-22). It unicasts each rrep
message to its next hops one by one until it gets an ack from one, lines (23-43); ack reception is modeled
implicitly through successful delivery of unicast, i.e., the succ part. If it receives an ack, it updates the route
state to valid and the neighbor status of the next hop to confirmed and stops unicasting rrep messages. If it
doesn’t receive an RREP_Ack message from the next hop when the route state is valid, it initiates the error
recovery procedure.

Error Recovery Procedure: The code for this procedure is illustrated in Fig. (its code is the body of
if-part in line 46 of Fig. [[4]). As explained earlier, this procedure is initiated when a node doesn’t receive an
RREP_Ack message from the next hop of the route with state valid. Then, it updates its route state to invalid
and adds the sequence number of the originator to the array of invalidated sequence numbers, denoted by
dip_sqn. Furthermore, it adds all the interested nodes in the current route to the list of affected neighbors,
denoted by affected_neighbours, lines (3-7). It invalidates other valid routes that use the same broken next
hop as their next hops, adds their sequence numbers to the invalidated array and sets the nodes interested
in those routes as affected neighbors, lines (8-24). Finally, it multicasts an rerr message which contains the
destination IP address, the node IP address, and the invalidated sequence numbers to the affected neighbors,
line 25.

6.4. rrep Message Server

This message server, shown in Fig. [[5] processes the received reply messages and also constructs the route
forward to the destination. At first, it updates the routing table and decides whether the message is worth
processing, as previously mentioned for rreq messages, and constructs the route, but this time to the destina-
tion (its code is similar to the one in Fig. [[2 except that dip_ is used instead of oip_, and is place at line 6 of
Fig.[IH). This message is sent backwards till it reaches the source through the reversed path constructed while
broadcasting the rreq messages. When it reaches the source, it can start forwarding data to the destination.

24

© 00O Uk WN -

{

int [| dip_sqn=new int[4];

int route_num;

boolean|] affected_neighbours=new boolean[4];
boolean gen_msg = false;

if (ip!=oip.)

//evaluate and update the routing table
if (gen_msg==true)
if (ip==dip.)
boolean su = false;
pre[dip-][sip-]=true;
for (int i=0;i<4;i++)
{
int nh = nhop[dip][i];
if (nh!=-1)
{ pre[oip-|[nh]=true; }
for (int i=0;i<4;i++)
if (nhoploip_][i]!=—1)

int n-hop = nhoploip.][i];
sn = sn+1;

Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

msgsrv rec_rreq(int hops_,int dip- ,int dsn. ,int oip_ ,int osn_ ,int sip_,int maxHop)

/% unicast a RREP towards oip of the RREQ %/
unicast (n-hop,rec_rrep(0 , dip- , sn , oip_ , self))

succ:

{

route_state [oip-]=1;
neigh_state [n_hop|=true;

su = true;
break;
}
unsucc:
neigh_state [n_hop|=false;
}
if (su==false && route_state[oip_|==1)

/* error recovery procedure */

else {
hops. = hops_+1;
if (hops_<maxHop)

{ rec_rreq (hops_,dip-,dsn_,oip_,osn_, self ,maxHop); }

Fig. 14. The rreq message server

Modeling and Efficient Verification of Wireless Ad hoc Networks 25

1 | msgsrv rec_rrep(int hops_ ,int dip- ,int dsn_ ,int oip_ ,int sip_) {
2 int [] dip_sqn=new int[4];
3 boolean|] affected_neighbours=new boolean[4];
4 boolean gen_msg = false;
5 int n_hop,route_num,;
6 /* evaluate and update the routing table x/
7 if (gen_msg==true)
8
9 if (ip==oip-)
10
11 /* this node is the originator of the corresponding RREQ */
12 /% a data packet may now be sent x/
13
14 else {
15 hops. = hops_+1;
16 boolean su = false;
17 pre[oip-|[sip_|=true;
18 for (int i=0;i<4;i++)
19 {
20 n_hop = nhoploip_|[i];
21 if (n_hop!=-1)
22 { pre[oip-|[n_hop]=true; }
23 }
24 for (int i=0;i<4;i++)
25
26 if (nhop[oip_][i]!=—1)
27 {
28 n_hop = nhoploip_|[i];
29 unicast (n-hop,rec_rrep (hops_,dip_,dsn_,oip_, self))
30 succ:
31 {
32 route_state [oip_]=1;
33 neigh_state [n_hop|=true;
34 su = true;
35 break;
36 }
37 unsucc:
38
39 neigh_state [n_hop|=false;
40
41 }
42
43 if (su==false && route_state[oip_|==1)
44
45 /* error recovery procedure %/
46
47 }
48 }
49 | }

Fig. 15. The rrep message server

In case the node is not the originator of the route discovery message, it updates the array of interested nodes,
lines (17-23). Then, it unicasts the message to the next hop(s), on the reverse path to the originator, lines
(24-42). Based on the AODVv2 protocol, if connectivity to the next hop on the route to the originator is
not confirmed yet, the node must request a Route Reply Acknowledgment (RREP_Ack) from the intended
next hop router. If a RREP_Ack is received, then the neighbor status of the next hop and route state must
be updated to confirmed and wvalid, respectively, lines (30-36), otherwise the neighbor status of the next hop
remains unknown, lines (37-40). This procedure is modeled through conditional unicast which enables the
model to react based on the delivery status of the unicast message so that succ models the part where the
RREP_ACK is received while unsucc models the part where it fails to receive an acknowledgment from the
next hop. In case the unicast is unsuccessful and the route state is valid, the error recovery procedure will
be followed, lines (43-46).

26 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

1 | msgsrv rec_rerr(int source_, int sip_ ,int[] ripursn) {
2 int [] dip_sqn=new int[4];
3 boolean|] affected_neighbours=new boolean[4];
4 if (ip!=source_)
5
6 //regenerate rrer for invalidated routes
7 for (int 1=0;i<4;i++)
8 {
9 int rsn=rip_rsn[i |;
10 if (route_state [i]==1 && nhopl[i][0]==sip- && dsn[i]<rsn && rsn!=0)
11
12 route_state [i]= 2;
13 dip_sqn[i]=dsnl[i];
14 for (int j=0;j<4;j++)
15
16 if (pre[i][j]==true)
17 { affected_neighbours [j]=true; }
18 }
19 }
20
21 multicast (affected_neighbours, rec_rerr (source_, self ,dip_sqn));
22 }
23 |1

Fig. 16. The rerr message server

6.5. rerr Message Server

This message server, shown in Fig. [[6 processes the received error messages and informs those nodes that
depend on the broken link. When a node receives an rerr message, it must invalidate those routes using the
broken link as their next hops and sends the rerr message to those nodes interested in the invalidated routes.
This message has only two parameters: sip_ which indicates the IP address of the sender, and rip_rsn, which
contains the sequence number of those destinations which have become unaccessible from the sip_.

For all the wvalid routes to the different destinations, it examines whether the next hop of the route to
the destination is equal to sip_ and the sequence number of the route is smaller then the received sequence
number, line 10. In case the above conditions are satisfied, the route is invalidated, lines (11-19), and an
rerr message is sent to the affected nodes, line 21.

6.6. newpkt Message Server

Whenever a node intends to send a data packet, it creates a rec_newpkt which has only two parameters,
data and dip_. The code for this message server is shown in Fig. [[7 If it is the destination of the message,
it delivers the message to itself, lines (4-7). Otherwise, if it has a valid route to the destination, it sends
data using that route, lines (11-15). If it has no valid route, it increases its own sequence number and
broadcasts a route request message, lines (16-25). In addition, if a route to the destination is not found
within RREQ_WAIT_TIME, the node retries to send a new rreq message after increasing its own sequence
number. Since we abstracted away from time, we model this procedure through the resend_rreq message
server which attempts to resend an rreq message while the node sequence number is smaller than 3 (to make
the state space finite).

7. Evaluation

In this section, we will review the results obtained from efficiently constructing the state spaces for the two
introduced wRebeca models, the flooding and AODV protocol. Also, we briefly introduce our tool and its
capabilities. Then, the loop freedom invariant is defined and one possible loop scenario is demonstrated.
Finally, two properties that must hold for the AODV protocol are expressed that can be checked with regard
to the AODV model.

Modeling and Efficient Verification of Wireless Ad hoc Networks 27

1 | msgsrv rec_newpkt(int data ,int dip-) {
2 int [] dip_sqn=new int[4];
3 boolean|] affected_neighbours=new boolean[4];
4 if (ip==dip-)
5
6 /* the DATA packet is intended for this node %/
7
8 else{
9 /% the DATA packet is not intended for this node x/
10 store [dip-_]=data;
11 if (route_state [dip_]==1)
12 {
13 /x walid route to dipx/
14 /* forward packet */
15
16 else{
17 /% no valid route to dipx/
18 /% send a new rout discovery requestx/
19 if (sn<3)
20
21 sn++;
22 unicast (self ,resend_rreq(dip-));
23 rec_rreq (0,dip-,dsn[dip_], self ,sn, self ,4);
24
25 }
26 }
27 | }
28 | msgsrv resend_rreq(int dip-)
29 | {
30 if (sn<3)
31
32 sn++;
33 unicast (self ,resend_rreq(dip-));
34 rec_rreq (0,dip-,dsn[dip_], self ,sn, self ,4);
35
36 |}

Fig. 17. The rec_newpkt message server

7.1. State-Space Generation

Static Network . Consider a network with a static topology, in other words the network constraint is
defined so that it leads to only one valid topology. We illustrate the applicability of our counting abstraction
technique on the flooding routing protocol. In contrast to the intermediate nodes on a path (the ones except
the source and destination), the two source and destination nodes cannot be aggregated (due to their local
states). However, in the case of the AODV protocol, no two nodes can be counted together due to the unique
variables of IP and routing table of each node. As the number of intermediate nodes with the same neighbors
increases, the more reduction takes place. We have precisely chosen four fully connected network topologies
to show the power of our reduction technique when the intermediate nodes increase from one to four.

Table [2] illustrates the number of states when running the flooding protocol on different networks with
different topologies before and after applying counter abstraction reduction. In the first, second, third, and
fourth topology, there are three nodes with one intermediate, four nodes with two, five nodes with three,
and six with four intermediates, respectively. By applying counter abstraction reduction, the intermediate
nodes are collapsed together as they have the same role in the protocol. However, the effectiveness of this
technique depends on the network topology and the modeled protocol.

Dynamic network. At these networks, topology is constantly changing, in other words there are more than
one possible topology. The resulting state spaces after and before eliminating 7-transitions are compared for
the two case studies while the topology is constantly changing for a networks of 4 and 5 nodes, as shown
in Table Bl Table [] depicts the constraints used to generate the state spaces and the number of topologies
that each constraint results in. Constraints are chosen randomly here, just to show the effectiveness of our

28 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

Table 2. Comparing the size of state spaces with/without applying counter abstraction reduction

No. of No. of states No. of states No. of transitions No. of transitions
intermidate nodes before reduction after reduction before reduction after reduction
1 24 24 36 36

2 226 133 574 276

3 3,689 912 13,197 2,441

4 71,263 6,649 321,419 21,466

Table 3. Comparing the size of state spaces with/without applying 7-transition elimination reduction

No. of No. of valid No. of states No. of transitions No. of states No. of transitions

nodes topologies before reduction before reduction after reduction after reduction

flooding 4 4 2,119 11,724 541 1,652
protocol 4 8 4,431 42,224 567 1,744
4 16 10,255 179,936 655 2,192

4 32 22,255 747,200 710 2,765

4 64 44,495 2,917,728 710 3,145

AODV 4 4 3,007 16,380 763 1,969
protocol 4 8 12,327 113,480 1,554 3,804
4 16 35,695 610,816 2,245 5,549

4 32 93,679 3,097,792 2,942 7,596

4 64 258,447 16,797,536 4,053 10,629

5 16 >655,441 >11,276,879 165,959 598,342

reduction technique. To this aim, we have randomly removed a (fixed) link from the network constraints.
Nevertheless, constraints can be chosen wisely to limit the network topologies to those which are prone to
lead to an erroneous situation, i.e., violation of a correctness property like loop freedom. However, it is also
possible to check the model against all possible topologies by not defining any constraint. In other words,
a modeler at first can focus on some suspicious network topologies and after resolving the raised issues it
check the model for all possible topologies. There are also some networks which have certain constraints
about how the topology can change, e.g., node 1 can never get into the communication range of node 2.
These restrictions on topology changes can be reflected through constraints too. The sizes of state spaces are
compared under different network constraints resulting in different number of valid topologies. Eliminating
T-transitions and topology information manifestly reduces the number of states and transitions even when
all possible topologies are not restricted. Therefore, it makes MANET protocol verification possible in an
efficient manner. Note that in case the size of the network was increased from four to five, we couldn’t
generate its state space without applying reduction due to the memory limitation on a computer with 8GB
RAM.

7.2. Tool Support

The presented modeling language is supported by a tool (available at [Beh|), providing a number of options
to generate the state space. A screen-shot of this tool is given in Fig.[I8 This tool supports both bRebeca and
wRebeca models characterized by different file types. After opening a model, the tool extracts the information
of the reactive classes, such as the state variables and message servers, and also the main part including the
rebec declarations and the network constraint. Then it generates several classes in the Java language based

Table 4. Applied network constraints

No. of No. of valid constraint
nodes topologies

4 4 and(and(con(node0, nodel), con(node0, node3)),

and(con(node2, node3), con(nodel, node3)))
4 8 and(and(con(node0, nodel),
con(node0, node3)), con(node2, node3))

4 16 and(con(node0, nodel), con(node2, node3d))

4 32 con(node0, nodel)

5 16 and(and(con(node0, nodel), and(con(node0, node3), con(noded, nodel))),

and(con(node2, node3), and(con(nodel, node3), con(node2, node4))))

Modeling and Efficient Verification of Wireless Ad hoc Networks 29

(&) = =
File Run Help

1 1 ~
e ¥
s

S

/7 update rregs by odding (oip , rregid) */
received_source_address_broadcast_id[oip][pointer]=rreqid_;

state variables
initial
rec_newpkt

poil b 2
recrreq £/ Compile Configuration = =
rec_rrep 1 i
rec_rerr F ; -
rec_pkt : L1
rec_deliver (®) Queus [(it=
main o s

Ok Cancel

int n_hop=nhop|oip_|;
/* unicast a RREP towards olp of the RREQ */
unicast(n_hop,rec_rrep(@ , dip_ , =n , oip_, ip))
succ:

A
{ W

Output | Errors

CurrentDirectory: F:\Project\Java\wRebeca\Sanple code
SelectedFile: F:\Project\Java'wRebeca\Sample code\hodv.wrebeca
configure compiling options

Compiling the file: F:\Project\Java'\wRebeca'Sample code\Aodv.wrebeca Storage type: %
Translation is successfully done
configure compiling options

Fig. 18. A screen-shot of the wRebca tool with the compilation info window to configure the state-space
generator

on the obtained information and compiles them together with some abstract and base classes (common in
all models), for example global state and topology, to build an engine that constructs the model state space
upon its execution. Before compiling, a user can decide about rebecs message processing method, in a FIFO
manner (queue) or in an arbitrary way (bag), and if the reduction should be applied. To take advantage
of all hardware capabilities, we have implemented our state-space generation algorithm in a multi-threaded
way to leverage the power of multi-core CPUs.

During state-space generation, information about the state variables and transitions are stored as an LTS
in the Aldebaran formaty. This LTS can be evaluated by tools such as the mCRL2 toolset [afra]. For example,
one can express desired properties in u-calculus [MS03] and verify them. Also, as explained in Section [B]
labels are extended with network constraints as defined in [GFMTI] so that the reduced LTS can be model
checked with respect to underlying topology [GAFMI13].

7.3. Model Checking of the AODV Protocol Properties

There are different ways to check a given property on a wRebeca model. Invariant properties can be eval-
uated while generating the state space by checking each reached global state against defined invariants.
Furthermore, the resulting state space can be model checked by tools supporting Aldebaran format such as
mCRL2 and CLTS model checker.

4 lhttp://cadp.inria.fr/man/aldebaran.html

http://cadp.inria.fr/man/aldebaran.html

30 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

1 | bool loop_freedom(des:int, cur:int, visited :Set<int>){

2 for (int 1=0; i<n; i++)

3 if ((state.node(cur).nhops[des][i]!l=—1) && (!visited.contains(state .node(cur).nhops[des][i]))
4 && loop_freedom(des,i,visited.add(i)))

5 return true;

6 else

7 return false ;

8}

Fig. 19. Checking loop freedom property on a global state: we have used a dot notation to access the array
nhops of the rebec with the identifier 4, i.e., state.node(i), where state is the newly generated global state

7.8.1. Checking the Loop Freedom Invariant

Loop freedom is one of the well-known property which must hold for all routing protocols such as the AODV
protocol. For example, consider the routes to a destination = in the routing tables of all nodes, where nodeg
has a route to x with the next hop nodej, node; has a route to x with the next hop nodes, and nodes has a
route to with the next hop nodeg. The given example constructs a loop which consists of the three nodes,
nodegy, nodey, and nodes. A state is considered loop free if the collective routing table entries of all nodes
for each pair of a source and destination do not form a loop. As it was mentioned earlier in AODV-v2-11,
each route may have more than one next hop when the adjacency states of the next hops are unconfirmed.
Therefore, while the loop freedom of a state is checked, one must take into account all next hops stored for
each route. Then, for each next hop check whether it leads to a loop or not. A routing protocol deployed on a
network is called loop free if all of its reachable states are loop free. In other words, loop freedom property of
a protocol is an invariant (which can be easily specified by the ACTL-X fragment of p-calculus, and hence,
is preserved by the reduced semantic model). However, We have extended our state-space generator engine
to check invariants (specified by functions) over each newly generated global state on the fly by calling the
functions provided by a user, i.e., the invariants. To this aim, we have specified the loop freedom invariant by
a recursive function, to inspect for a given global state whether the next hops in the routing table entries of
nodes collectively lead to a loop-formation scenario, as shown in Fig. Therefore, whenever the state-space
generator reaches to a new state, before proceeding any further, it checks whether any loop is formed on the
forward /backward routes between the source and destination, by calling loop_freedom(4,1,new Set(int)(1))
and loop_freedom (1,4, new Set(int)(4)), as nodey and node; are the destination and source respectively. If
the loop freedom condition is violated, the loop_freedom function returns false, and the state generator engine
stops while it returns the path which has led to the global state under consideration as a counter example.
The function loop_freedom has three parameters: des refers to the destination of the route, cur refers to the
IP address of the current node which is going to be processed and wisited is the list of IP addresses of those
nodes which have been processed.

Although keeping more than one next hop for each route may increase the route availability, it compro-
mises its validity by violating the loop freedom invariant in a network of at least four nodes with a dynamic
topology. Consider the network topology shown in Fig. 2al The following scenario explains steps that lead
to the invariant violation.

1. nodes initiates a route discovery procedure for destination nodes by broadcasting a rreq message.

2. node; and nodey upon receiving the rreq message, add a route to their routing tables towards nodes and
store nodes as their next hop. Since it is the first time that these nodes have received a message from
nodes, the neighbor state of nodes is set to unconfirmed. Therefore, the route state is unconfirmed.

3. As node; and node, are not the intended destination of the route request, they rebroadcast the rreq
message.

4. node; receives the rreq message sent by nodes and since the route to nodes is unconfirmed it adds nodey
as a new next hop to nodes.

5. nodey also adds node; as the new next hop towards nodes after processing the rreq sent by node;. At
this point a loop is formed between node; and node,.

6. nodes receives the rreq message sent by node; and since it is the destination, it sends a rrep message
towards node; .

Modeling and Efficient Verification of Wireless Ad hoc Networks 31

Ve,y :N((z > 0Nz <4Ay>0Ay <z)= [src_sn(z).true*.src_sn(y)]false)

Ve, ymn: Nz >0Az <4Ay>0Ay <4A
m>0Am<4An>0An<4AN
(m <z Vn<y)) = [true*.info_i_dsn(z,y).true*.info_i_dsn(m, n)|false)

Fig. 20. p-calculus properties verified by mCRL2

7. nodes moves out of the communication ranges of node; and node,.

8. mode; receives the rrep message sent by nodes and as the route state towards nodes is unconfirmed it
unicasts the rrep message one by one to the existing next hops, nodes and nodey, till it gets an ack. Since
nodes has moved out of the communication ranges of node;, no ack is received from node, and nodes
gets removed from the routing table as the next hop to nodes. Then, another rrep is sent to nodey. Since
nodey is adjacent to nodeq, it receives the message and then sends an ack to node;. Therefore, node; sets
the neighbor state of nodes to confirmed and subsequently the route state towards nodes to valid.

9. nodey by receiving the rrep message from node; unicasts it to its next hops node; and nodes similar
to node;. Since it fails to receive an ack from nodes and receives one from node;, it updates its routing
table by validating node; as its next hop to nodes.

We have found the scenario in the wRebeca model with the network constraint resulting four topologies
as indicated in Table @l However, this scenario was also found for all the network constraints described in
the table. Furthermore, we can generalize the scenario to all networks with the same connectivity when the
communications occur, and the same mobility scenario.

7.8.2. Checking the Properties by mCRL2

Sequence numbers are used frequently by the AODV protocol to evaluate the freshness of routes. Therefore, it
is important that each node’s sequence number increases monotonically. To this end, we manually configured
the state generator to add two self-loops to each state with the label src_sn(2) to monitor the sequence number
of the source node, where z is sn of the source node, and the label info_i_dsn(y, z) to trace the destination
sequence number of routes to the source and destination for each node i (i.e., the backward and forward
routes to the destination of our model), where y and z are dsn[src| and dsn[dst] of node i, respectively. These
properties are expressed through the ACTL-X fragment of u-calculus as shown in Fig. The first formula
asserts a monotonic increase of the source sequence number. The second formula assures the destination
sequence numbers stored in the routing table of node; are increased monotonically, and must hold for the
nodes in the model.

7.8.8. Checking Packet Delivery Property by the CLTS Model Checker

The CLTS model checker can be used to express and verify interesting properties of MANET protocols
dependent to the underlying topology specified in Constrained Action Computation Tree Logic (CACTL)
[GAFM13], an extension of Action CTL [DV90Q]. The path quantifier All in CACTL is parametrized by a
multi-hop constrain over the topology, which specifies the pre-condition required for paths of a state to be
inspected. Therefore, a state satisfies A*¢ if its paths over which the multi-hop constraint p holds, also
satisfy . It also contains the two temporal operators until and weak until to specify the path formulae
?+ Uy ¢ and ¢, W, ¢’ to denote a path over which states satisfying ¢ are met by actions of x until a state
satisfying ¢’ is met by actions of x’ (in case of weak until, the state satisfying ¢’ can never be met).

The important property of packet delivery in routing or information dissemination protocols in the
context of MANETS becomes: if there exists an end-to-end route (multi-hop communication path) between
two nodes A and C for a sufficiently long period of time, then packets sent by A will eventually be received
by C |[FVGHT™13]. To specify such the property, inspired from |[FVGHT13] we revised our specification to
include data packet handling (to forward the packet to its next hop towards the destination) in addition to
the route discovery packets and their corresponding handlers. Therefore, whenever a node, source, discovers
a route to an intended destination, it starts forwarding its data packet through the next hop specified in its
routing table. The data packet is forwarded by intermediate nodes to their next hops. When the data packet
reaches the intended destination, it delivers the data to itself by unicasting the deliver message to itself. In

32 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

case an intermediate node fails to forward the message, the error recovery procedure is followed as explained
in Section [l Consequently, using the following formula, we can verify packet delivery property:

true N1-=2NgA\Ng--+n
A (true ﬁrec_newpkt(OA)Wrec_newp/ct(OA) A™ an ! (true TUdeliver() true))

It expresses that as long as there is a stable multi-hop path from n; to n4 and vice versa (specified by
ny --+ ng A ng --» nq), any rec_newpkt(0,4) message is proceeded by a delivery() message after passing
T-transitions which abstract away from other message communications. By model checking the resulting
CLTS of the AODVv2 model, we found a scenario in which the property does not hold. We explain this
scenario in a network of three nodes N1, N2 and N3, where node N3 is always connected to the nodes Ny and
N5, while the connection between the nodes N; and Ny is transient. Therefore, the mobility of nodes leads
to the topologies shown in Fig. [[0B and Fig. [0d Assume the topology is initially as the one in Fig. [[0bt

e Node N; unicasts a rec_newpkt(data, N3) to itself, indicating that it wants to send data to node Nj.

e Node N initiates a route discovery procedure by broadcasting an rreqy, , message to its neighbors, i.e.,
nodes N3 and Na. Note that rreq, ; refers to an rreq message received from node a with the hop count
of i. Each rreq message has more parameters but here only these two parameters are of interest and
the other parameters are assumed to be equal for all the rreq messages, i.e., the destination and source
sequence numbers, and the source and destination IP addresses.

e Node N3 processes the rreqy, o and since it is not the destination and has no route to N in its routing
table, rebroadcasts the rreqy, ; message to its neighbors, nodes N; and N, after increasing the hop
count. At this point, node N2 has two messages in its queue, rreqy, o and rreqy, ;.

e Node N; moves out of the communication range of node Na, resulting the network topology shown in
Fig. I0d

e Node N takes rreqy, o from the head of its queue and updates its routing table by setting N; as the next
hop in the route towards N7. As node N3 is the intended destination for the route discovery message, it
unicasts an rrep message towards the originator, /N1, indicating that the route has been built and it can
start forwarding the data. Therefore, node N3 attempts to unicast an rrep message to node Ny, i.e., its
next hop towards the originator.

e Since the connection between the nodes N7 and N, is broken, it fails to receive an ack from N; and
marks the route as invalid.

e Node N takes rreqy, ; from its queue and since the route state towards Ny is invalid, it evaluates the
received route to determine whether it is loop free. Updating the routing table with the received route
is said to be “loop free”, if the received message cost, e.g., the hop count is less than or equal to the
existing route cost. Since the hop count of the received message is greater than the existing one, it does
not update the existing route and the message is discarded.

Although the route through node N3 to node N; seems to be valid, the protocol refuses to employ it to
prevent possible loop formation in the future.

8. Related Work

A large number of studies has been conducted for modeling and verification of MANET protocols using
different approaches to tackle its specific challenges. These challenges, as discussed in Section 3l are modeling
the underlying topology, mobility and local broadcast.

Some works model and analyze the correctness of MANET protocols using existing formal frameworks
such as SPIN [DRA04, WPP04] and UPPAAL [EvGH™12, [MF06, WPP05]. In a SPIN model, node con-
nectivity is modeled with the help of PROMELA channels, one for each node. Also, mobility is modeled
by case selection instruction provided by PROMELA, for modeling nondeterminism. In the initialization
section, possible links to other neighbors are defined as different cases that all will be checked for a model.
Since it does not provide a specific technique to reduce the state space, its state space grows very fast and it
is only feasible to check small topologies. Therefore, models would be limited to fewer nodes. In UPPAAL,
connectivity is modeled through a set of arrays of booleans, while changing topology is modeled by a sep-
arate automaton which manipulates the arrays. In [WPP04], a case study was carried out to evaluate two
model checkers, SPIN and UPPAAL. Due to state-space explosion, the analysis was limited to some special

Modeling and Efficient Verification of Wireless Ad hoc Networks 33

mobility scenarios (as a part of the specification). However, our reduction technique makes it possible to
verify a MANET for all possible topology changes to find an error.

As explained in [EM99], from a theoretical point view, compositionality is not preserved if broadcast
is encoded based on point-to-point communications. Lack of support for compositional modeling and ar-
bitrary topology changes has motivated new approaches with a primitive for local broadcast and support
of arbitrary mobility in an algebraic way. These approaches include CBS# [NHO06], CWS [MS06], CMN
[MerQ9], the w-calculus [SRS10], bA7 [God10], CMAN [God07) [God09], RBPT [GEMO§| and the bpsi-
calculi [BHJ™15, [PBPR13]. Each of these proposed frameworks overcome the modeling difficulties such as
local broadcast and its message delivery guarantee property and mobility in different ways. All these ap-
proaches, except CBS#, CWS, AWN and bpsi-calculi, suffer from lack of message delivery guarantee that
makes them inappropriate for analyzing properties such as packet delivery [FVGHT13]. They model broad-
cast through either an enforced synchronized or lossy communication. When communications are lossy, a
node may not receive a message although it is in the transmission range of the sender. CBS# and CWS
use enforced synchronization for broadcast to make sure that all ready nodes within the transmission range
of a sender will receive the message. Although they guarantee message delivery to the ready receivers, it is
not possible to define meaningful nodes (which can successfully receive messages while they are processing
another message) in their syntax which are always ready (i.e, input-enabled) [FVGHT13|. The process alge-
bra AWN is proposed particularly for modeling wireless mesh network (WMN) routing protocols which uses
local broadcast with message delivery guarantee. It defines its own data structures to model routing tables
and other necessary data types to model the AODV protocol. In addition, conditional unicast is introduced
for modeling the procedure to act based on the message delivery acknowledgment. In all these approaches,
while a node is busy processing a message, it fails to receive messages from other nodes. Therefore, either
nodes are defined to be input-enabled at the semantics as in CBS# and CWS or a process with a queue that
concurrently stores new messages should be specified at the syntax as in AWN and bpsi-calculus. Almost
all these languages model mobility of nodes in their semantics through arbitrary changes of the topology
with the exception that it is modeled through different generations of assertions on connectivity information
in [BHJT15]. In wRebeca, communications are asynchronous and received messages are stored in queues
implicitly at the semantic level (without the need to make nodes explicitly input-enabled). Furthermore,
the atomic execution of message handlers, which avoids unnecessary interleaving of the node behaviors, to-
gether with topology abstraction through 7-elimination technique, where the topology changes are a source
of state-space explosion in the process calculi approaches, make our framework applicable to the verification
of real-world yet complex protocols such as AODV. We remark that unnecessary interleaving of behaviors
can be handled in bpsi-calculus by means of priorities.

There are different approaches [DSTZT2] [DSZ11l IADR™ 11| with the aim to analyze networks with an
infinite number of nodes, where nodes execute an instance of a network process. A network configuration
is represented as a graph in which each individual node represents a state of the process. The behavior
of a process is modeled by an automaton. The network configuration transforms due to either the process
evolution at a network node or the topology reconfiguration. Verification of safety properties, reaching to an
undesirable configuration starting from an initial configuration, is parameterized due to any possible number
of nodes and connectivity among them. It is proved that the problem of parameterized safety properties, the
so-called control states reachability problem, is undecidable. However, that problem turns out to be decidable
for the class of bounded path graphs [DSZ11], [DSTZ12]. Decidability of the problem was also considered
when configurations evolve due to discrete/continuous clocks at processes [ADRT11]. Furthermore, an in-
ductive approach based on reduction to prove compositional invariants for the dynamic process networks
was presented in [NTT5al. This approach reduces the calculation of a compositional invariant to a smallest
representative network through setting up a collection of local symmetry relations between nodes, specifi-
cally defined for each problem. The computed non-dynamic compositional invariant on the representative
network is generalized for the entire dynamic network family when the non-dynamic invariant is preserved
by any reaction to a dynamic change in the network. Then, they proved loop freedom of AODVv2-04 for an
arbitrary number of nodes in [NT15b] through an inductive and compositional proof: It provides an inductive
invariant and proves that it is held initially and also preserved by every action, either a protocol action or
a change in the network, similar to the approach of [yGHPTI6|]. They have reported two loop-formation
scenarios due to inappropriate setting of timing constants and accepting any valid route when the current
route is broken without any further evaluation (to ensure loop formation). Another approach is based on
graph transformation systems, where network configurations are hypergraphs and transitions are specified
by graph rewriting rules, modeling the dynamic behavior of a protocol. Safety properties are symbolically

34 Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

specified by graph patterns, a generalized form of hypergraphs with negative conditions, through a symbolic
backward reachability analysis which is not guaranteed to terminate due to the undecidability of the problem
[SWJ08]. To this aim, an over-approximation of the set of configurations preceding a bad configuration are
computed by using a fixed point analysis, and then check that this set contains no initial configuration.
While these approaches are scalable to prove a property for MANET's with a potentially unbounded number
of nodes with an exhaustive effort, our approach is valuable to easily examine confirmation and diagnostics
of suspected errors in the early phase of protocol development for a limited number of nodes. In other words,
our efficient model checking tool can be used as an initial step before involving to generalize a property for
an arbitrary sized network.

9. Conclusion and Future Work

In this paper we extended the syntax and semantics of bRebeca, the actor-based modeling language for
broadcasting environment, to support wireless communication in a dynamic environment. We addressed the
key features of wireless ad hoc networks, namely reliable local broadcast, conditional unicast, and last but
not least mobility. The reliable asynchronous local broadcast/unicast communication, and implicit support
of message storages make our framework suitable to analyze MANETSs with respect to different mobility
scenarios. A modeler only focuses on how to decompose a protocol into a set of communicating actors to
cover functionalities of the protocol under investigation.

To overcome the state-space explosion, we leveraged the counter abstraction technique to analyze ad hoc
networks with static topologies. Our reduction technique performs well on protocols with no specific state
variable that distinguishes each rebec, and topologies with many topologically equivalent nodes. We demon-
strated the effectiveness of our approach on the flooding protocol in different network settings. However,
mobility ruins the soundness of our counting abstraction. To this end, we eliminated 7-transitions while
topology information was removed from the global states to considerably reduce the size of the state space.
We integrated the proposed reduction techniques into a tool customizable in verifying wRebeca models for
different message storage policies and the topology dynamism. Invariants can be checked during the state-
space generation while the resulting output can be fed into the existing model checking tools such as mCRL2
and CLTS model checker.

We presented a complete and accurate model of the core functionalities of a recent version of AODVv2
protocol (version 11). We abstracted optional features and timing aspects to make our model manageable.
We verified the loop freedom property in AODVv2-11 and found a scenario in which the property violated.
The scenario was confirmed by the AODV group. Loop freedom has already been proved on various versions
of AODV: AODVv1-02 [BOG02], AODV-rfc3561 [FVGH™ 13, vGHPTT6], and AODVv2-04 [NTT5bD, [SWI0S],
respectively. Among these only [NT15b] considers the timed behavior of the AODV. The new version differs in
the following aspects which distinguish our attempt: in this version multiple next hops are maintained for each
destination and consequently the process to update the routing table is completely different; Different statuses
are considered for a route in the table of a node regarding the neighbor status of its next hop; Sequence
numbers for invalid destinations in intermediate nodes are not increased anymore (like [NT15bl [SWJ0S],
in contrast to others). Although, these approaches focus on providing a general proof for the property, our
model checking-based approach detects the error and the scenario that leads to it. Our approach, can be
adopted to resolve conceptual/design errors in an iterative way in the early phase of protocol development.
The positive result of verifications constitutes a predicate about the protocol for a limited number of nodes.
The combination of model checking and theorem proving techniques allows to prove a predicate about a
MANET protocol for any number of nodes.

We plan to integrate our state-space generator tool into the verification environment [afrb] to take
advantage of its model checker. Furthermore, we aim to run more cast studies to extend application of our
framework. To analyze real-time and probabilistic behaviors of wireless network protocols, wRebeca can be
extended in the same way of [KSS™15, [VKT2]. To this aim, there is a need to examine the soundness of our
reduction techniques when probability and time are introduced.

Modeling and Efficient Verification of Wireless Ad hoc Networks 35

Acknowledgements

We would like to thank the anonymous reviewers for their constructive comments on the earlier version of
the paper, the AODV group for their supports, Mohammad Reza Mousavi for his discussion on the paper,
Wan Fokkink and Bas Luttik for their helpful comments on the paper.

References

[ADRT11] P. Aziz Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and R. Traverso. On the verification of timed ad hoc
networks. In 9th International Conference on Formal Modeling and Analysis of Timed Systems, volume 6919 of
LNCS, pages 256—270. Springer, 2011.

[afra) mCRL2: analysing system behaviors. http://www.mcrl2.org/.

[afrb] Rebeca formal modeling language. http://www.rebeca-lang.org/wiki/pmwiki.php/Tools/Afra.

[Agh90] Gul A. Agha. ACTORS - a model of concurrent computation in distributed systems. MIT Press series in artificial
intelligence. MIT Press, 1990.

[Beh] wRebeca, Efficient Modeling of Mobile Ad hoc Networks. https://github.com/b-yousefi/wRebecal

[BG92] D. P. Bertsekas and R.t G. Gallager. Data Networks. Prentice Hall, 1992.

[BHJ*15] Johannes Borgstrom, Shuqgin Huang, Magnus Johansson, Palle Raabjerg, Bjérn Victor, Johannes Aman Pohjola,
and Joachim Parrow. Broadcast psi-calculi with an application to wireless protocols. Software and System Modeling,
14(1):201-216, 2015.

[BMWKO09] Gérard Basler, Michele Mazzucchi, Thomas Wahl, and Daniel Kroening. Symbolic counter abstraction for concur-
rent software. In Computer Aided Verification, pages 64—78. Springer, 2009.

[BOGO02] K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of standards for distance vector routing
protocols. J. ACM, 49(4):538-576, 2002.

[CCHO7] Tao Cui, Lijun Chen, and Tracey Ho. Distributed optimization in wireless networks using broadcast advantage.
In Decision and Control, pages 5839-5844. IEEE, 2007.

[CEJS98] Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad Sistla. Symmetry reductions in model checking.
In Computer Aided Verification, pages 147—158. Springer, 1998.

[DK86] R. Dechter and L. Kleinrock. Broadcast communications and distributed algorithms. IEEE Trans. Computers,
35(3):210-219, 1986.

[DRAO4] R De Renesse and AH Aghvami. Formal verification of ad-hoc routing protocols using spin model checker. In 12th
IEEE Mediterranean, Electrotechnical Conference, volume 3, pages 1177-1182. IEEE, 2004.

[DSTZ12] G. Delzanno, A. Sangnier, R. Traverso, and G. Zavattaro. On the complexity of parameterized reachability in
reconfigurable broadcast networks. In Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, volume 18 of LIPIcs, pages 289-300. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[DSZ11] G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of safety properties in ad hoc network
protocols. In First International Workshop on Process Algebra and Coordination, volume 60 of EPTCS, pages
56-65, 2011.

[DVI0] R. De Nicola and F.W. Vaandrager. Action versus state based logics for transition systems. In Semantics of
Systems of Concurrent Processes, volume 469 of Lecture Notes in Computer Science, pages 407-419. Springer,
1990.

[EM99] C. Ene and T. Muntean. Expressiveness of point-to-point versus broadcast communications. In Fundamentals of
Computation Theory, pages 258—-268, 1999.

[ET99] E. Allen Emerson and Richard J. Trefler. From asymmetry to full symmetry: New techniques for symmetry
reduction in model checking. In Correct Hardware Design and Verification Methods, pages 142-156. Springer,
1999.

[FvGH112] Ansgar Fehnker, Rob van Glabbeek, Peter Hofner, Annabelle Mclver, Marius Portmann, and WeeLum Tan. Au-
tomated analysis of AODV using Uppaal. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 7214 of LNCS, pages 173—187. Springer Berlin Heidelberg, 2012.

[FVGH113] Ansgar Fehnker, Rob Van Glabbeek, Peter Hofner, Annabelle Mclver, Marius Portmann, and Wee Lum Tan. A
process algebra for wireless mesh networks used for modelling, verifying and analysing AODV. arXiv preprint
arXiw:1312.7645, 2013.

[GAFM13] Fatemeh Ghassemi, Saeide Ahmadi, Wan Fokkink, and Ali Movaghar. Model checking MANETSs with arbitrary
mobility. In Fundamentals of Software Engineering, pages 217-232. Springer, 2013.

[GFMO08§] F. Ghassemi, W. Fokkink, and A. Movaghar. Restricted broadcast process theory. In Sizth IEEE International
Conference on Software Engineering and Formal Methods (SEFM), pages 345-354. IEEE Computer Society, 2008.

[GFM11] F. Ghassemi, W. Fokkink, and A. Movaghar. Verification of mobile ad hoc networks: An algebraic approach.
Theoretical Computer Science, 412(28):3262-3282, 2011.

[God07] JensChr. Godskesen. A calculus for mobile ad hoc networks. In AmyL. Murphy and Jan Vitek, editors, Coordination
Models and Languages, volume 4467 of LNCS, pages 132—150. Springer Berlin Heidelberg, 2007.

[God09] J. Chr. Godskesen. A calculus for mobile ad-hoc networks with static location binding. FElectr. Notes Theor.
Comput. Sci., 242(1):161-183, 2009.
[God10] JensChr. Godskesen. Observables for mobile and wireless broadcasting systems. In Coordination Models and

Languages, volume 6116 of LNCS, pages 1-15. Springer Berlin Heidelberg, 2010.
[HewT77] Carl Hewitt. Viewing control structures as patterns of passing messages. Artif. Intell., 8(3):323-364, 1977.

http://www.mcrl2.org/
http://www.rebeca-lang.org/wiki/pmwiki.php/Tools/Afra
https://github.com/b-yousefi/wRebeca

36

[ISM+10]
[Kat11]
[KLN11]

[KSS+15]

[Mer09]

[MF06]

Behnaz Yousefi, Fatemeh Ghassemi, Ramtin Khosravi

Mohammad Mahdi Jaghoori, Marjan Sirjani, Mohammad Reza Mousavi, Ehsan Khamespanah, and Ali Movaghar.
Symmetry and partial order reduction techniques in model checking Rebeca. Acta Informatica, 47(1):33-66, 2010.
Joost-Pieter Katoen. Model checking: One can do much more than you think! In Fundamentals of Software
Engineering, pages 1-14. Springer, 2011.

F. Kuhn, N. A. Lynch, and C. C. Newport. The abstract MAC layer. Distributed Computing, 24(3-4):187-206,
2011.

E. Khamespanah, M. Sirjani, Z. Sabahi-Kaviani, R. Khosravi, and M. Izadi. Timed rebeca schedulability and
deadlock freedom analysis using bounded floating time transition system. Science of Computer Programming,
98:184-204, 2015.

Massimo Merro. An observational theory for mobile ad hoc networks (full version). Information and Computation,
207(2):194 — 208, 2009. Special issue on Structural Operational Semantics (SOS).

AK Mclver and Ansgar Fehnker. Formal techniques for the analysis of wireless networks. In Second International
Symposium on Leveraging Applications of Formal Methods, Verification and Validation, pages 263-270. IEEE,
2006.

[MKKARO06]S. Ali Mahmud, Shahbaz Khan, Shoaib Khan, and H. Al-Raweshidy. A comparison of manets and wmns: commercial

[MS03]
[MS06]
[NHO6]
[NT15a]
[NT15b]
[PBYY]
[PBPR13]
[Pen08]
[Plo81]
[PXZ02]

[RSA+14)

[SJ11]
[SK13]
[SLO4]
[SMSdBOA4]

[SRS10]

[SS10]

[SWJ08]

[VGHPT16]
[VGW96]
[VK12]
[WPP04]

[WPPO5]

feasibility of community wireless networks and manets. In 1st International Conference on Access Networks. ACM,
2006.

Radu Mateescu and Mihaela Sighireanu. Efficient on-the-fly model-checking for regular alternation-free mu-calculus.
Sci. Comput. Program., 46(3):255-281, 2003.

Nicola Mezzetti and Davide Sangiorgi. Towards a calculus for wireless systems. FElectronic Notes in Theoretical
Computer Science, 158(0):331 — 353, 2006.

Sebastian Nanz and Chris Hankin. A framework for security analysis of mobile wireless networks. Theor. Comput.
Sci., 367(1-2):203-227, 2006.

K. S. Namjoshi and R. J. Trefler. Analysis of dynamic process networks. In Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 9035 of LNCS, pages 164-178. Springer, 2015.

K. S. Namjoshi and R. J. Trefler. Loop freedom in aodvv2. In Formal Techniques for Distributed Objects,
Components, and Systems, volume 9039 of LNCS, pages 98-112, 2015.

Charles E. Perkins and Elizabeth M. Belding-Royer. Ad-hoc on-demand distance vector routing. In 2nd Workshop
on Mobile Computing Systems and Applications, pages 90-100. IEEE Computer Society, 1999.

J. Aman Pohjola, J. Borgstrom, J. Parrow, and P. Raabjerg. Negative premises in applied process calculi. Technical
report, Department of Information Technology, Uppsala University, 2013.

Jun Peng. A new arq scheme for reliable broadcasting in wireless lans. IEEE Communications Letters, 12(2):146—
148, 2008.

G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, University of
Aarhus, 1981.

Amir Pnueli, Jessie Xu, and Lenore D. Zuck. Liveness with (0, 1, infty)-Counter Abstraction. In 14th International
Conference on Computer Aided Verification, CAV ’02, pages 107—122. Springer-Verlag, 2002.

Arni Hermann Reynisson, Marjan Sirjani, Luca Aceto, Matteo Cimini, Ali Jafari, Anna Ingdlfsdéttir, and
Steinar Hugi Sigurdarson. Modelling and simulation of asynchronous real-time systems using Timed Rebeca.
Sci. Comput. Program., 89:41-68, 2014.

Marjan Sirjani and Mohammad Mahdi Jaghoori. Ten years of analyzing actors: Rebeca experience. In Formal
Modeling: Actors, Open Systems, Biological Systems, pages 20-56. Springer, 2011.

Hamideh Sabouri and Ramtin Khosravi. Delta modeling and model checking of product families. In Fundamentals
of Software Engineering, pages 51-65. Springer, 2013.

W. Si and C. Li. RMAC: A reliable multicast MAC protocol for wireless ad hoc networks. In 33rd International
Conference on Parallel Processing (ICPP 2004), pages 494-501. IEEE Computer Society, 2004.

Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. Modeling and verification of reactive systems
using Rebeca. Fundam. Inform., 63(4):385-410, 2004.

Anu Singh, C.R. Ramakrishnan, and Scott A. Smolka. A process calculus for mobile ad hoc networks. Science
of Computer Programming, 75(6):440 — 469, 2010. 10th International Conference on Coordination Models and
Languages COORDOS.

Hamideh Sabouri and Marjan Sirjani. Slicing-based reductions for rebeca. Electronic Notes in Theoretical Com-
puter Science, 260:209-224, 2010.

M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and verification of ad hoc routing protocols.
In 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, volume
4963 of LNCS, pages 18-32. Springer, 2008.

R. J. van Glabbeek, P. Hofner, M. Portmann, and W. Lum Tan. Modelling and verifying the AODV routing
protocol. To appear in Distributed Computing, 2016.

R. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation semantics. Journal of the
ACM, 43(3):555-600, 1996.

Mahsa Varshosaz and Ramtin Khosravi. Modeling and verification of probabilistic actor systems using pRebeca.
In Formal Methods and Software Engineering, pages 135—150. Springer, 2012.

Oskar Wibling, Joachim Parrow, and Arnold Pears. Automatized verification of ad hoc routing protocols. In
Formal Techniques for Networked and Distributed Systems, volume 3235 of LNCS, pages 343—-358. Springer, 2004.
Oskar Wibling, Joachim Parrow, and Arnold Pears. Ad hoc routing protocol verification through broadcast ab-
straction. In Formal Techniques for Networked and Distributed Systems-FORTE 2005, pages 128—142. Springer,
2005.

Modeling and Efficient Verification of Wireless Ad hoc Networks 37

[YGK15] B. Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi. Modeling and efficient verification of broadcasting actors. In
In pre-proceeding of 6th IPM International Conference on Fundamentals of Software Engineering, pages 114-128,
2015.

	1 Introduction
	2 Preliminaries
	2.1 bRebeca
	2.2 Counter Abstraction
	2.3 Semantic Equivalence

	3 Modeling Topology and Mobility
	3.1 Network Topology and Mobility
	3.2 Restricted Delivery Guarantee

	4 wRebeca: Syntax and Semantics
	4.1 Syntax
	4.2 Semantics

	5 State-Space Reduction
	5.1 Applying Counter Abstraction
	5.2 Eliminating -Transitions

	6 Modeling the AODVv2 Protocol
	6.1 Evaluating Route Messages
	6.2 Updating the Routing Table
	6.3 rreq Message Server
	6.4 rrep Message Server
	6.5 rerr Message Server
	6.6 newpkt Message Server

	7 Evaluation
	7.1 State-Space Generation
	7.2 Tool Support
	7.3 Model Checking of the AODV Protocol Properties
	7.3.1 Checking the Loop Freedom Invariant
	7.3.2 Checking the Properties by mCRL2
	7.3.3 Checking Packet Delivery Property by the CLTS Model Checker

	8 Related Work
	9 Conclusion and Future Work
	References

