

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (postprint):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-707928

Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, Christel Baier

ProFeat: feature-oriented engineering for family-based probabilistic
model checking

Erstveröffentlichung in / First published in:

Formal Aspects of Computing. 2018, 30(1), S. 45–75. ISSN 1433-299X.

DOI: https://doi.org/10.1007/s00165-017-0432-4

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-707928
https://doi.org/10.1007/s00165-017-0432-4

ProFeat: Feature-oriented Engineering
for Family-based Probabilistic Model
Checking
Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier
Faculty of Computer Science, Technische Universität Dresden, Germany

Abstract. The concept of features provides an elegant way to specify families of systems. Given a base
system, features encapsulate additional functionalities that can be activated or deactivated to enhance or
restrict the base system’s behaviors. Features can also facilitate the analysis of families of systems by ex-
ploiting commonalities of the family members and performing an all-in-one analysis, where all systems of
the family are analyzed at once on a single family model instead of one-by-one. Most prominent, the concept
of features has been successfully applied to describe and analyze (software) product lines.

We present the tool ProFeat that supports the feature-oriented engineering process for stochastic sys-
tems by probabilistic model checking. To describe families of stochastic systems, ProFeat extends models
for the prominent probabilistic model checker Prism by feature-oriented concepts, including support for
probabilistic product lines with dynamic feature switches, multi-features and feature attributes. ProFeat
provides a compact symbolic representation of the analysis results for each family member obtained by
Prism to support, e.g., model repair or refinement during feature-oriented development.

By means of several case studies we show how ProFeat eases family-based quantitative analysis and
compare one-by-one and all-in-one analysis approaches.

Keywords: Feature-oriented Systems; Probabilistic Model Checking; Software Product Line Analysis

This is a post-peer-review, pre-copyedit version of an article published in Formal Aspects of Computing. The
final authenticated version is available online at: https://doi.org/10.1007/s00165-017-0432-4.

1. Introduction

Feature orientation is a popular paradigm for the development of customizable software systems (see,
e.g., [KCH+90, AK09, BSRC10]). In general, features can be understood as functionalities changing the
behaviors of a core software system and thus provide an elegant way to specify families of systems: every
member of the family comprises the core system and a combination of features. The concept of features is

Correspondence and offprint requests to: Philipp Chrszon, Technische Universität Dresden, Fakultät Informatik, Institut für
Theoretische Informatik, 01062 Dresden, Germany. e-mail: Philipp.Chrszon@tu-dresden.de

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1007/s00165-017-0432-4

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

widely used, e.g., for optimizing software depending on the platform the software is rolled out for evaluated
during compile time depending on the system the software is compiled for. Another example for a feature-
oriented system is the support of component-based software development, where parts of the developed
software are encapsulated into easily replaceable components, e.g., components with similar functionalities
but different characteristics concerning performance or energy consumption. The most prominent applica-
tion of feature-oriented formalisms are software product lines [CN01]. A software product line is a family of
software systems, where each member is a variant of the software developed to satisfy the needs of different
customers, e.g., by providing a free but ad-financed version or a professional version of the software including
functionalities for enterprises. Usually, software product lines are developed using the following approach:
First, the application domain is analyzed by identifying and isolating features those combinations yield a
software variant. The so-called valid feature combinations are then modeled, e.g., through feature diagrams
[KCH+90], which are tree-like structures. The number of valid feature combinations might be exponential
in the number of features and thus, feature interactions are difficult to predict by the developers. Hence,
prototype implementations or abstract versions of features should be subject of formal analysis to avoid
costly redesign steps. This second step of the development process checks whether basic requirements on
the software products are met and if not, triggers adaptations to the feature model. When all requirements
analyzed are satisfied by each of the valid feature combinations, the actual feature-aware implementation of
the software takes place, and software variants are released by selecting a particular combination. Clearly, al-
though first and foremost applied in software product line engineering, this development process is applicable
to any feature-oriented design of systems.

This paper considers the formal-analysis aspect of the described engineering process with non-functional
requirements, i.e., requirements that involve quantitative properties such as energy consumption, mone-
tary costs or the probability of failures. In the area of software-product-line verification, mainly functional
requirements have been examined so far, i.e., requirements not involving quantitative aspects (see, e.g.,
[CHS+10, TAK+14]). The literature focused on establishing algorithms that enable all-in-one analysis ap-
proaches as they usually outperform the naive one-by-one analysis approach. Within one-by-one approach,
each member of the family described by some valid feature combination is analyzed separately. Differently,
an all-in-one approach analyzes a single model for the whole family from which the results for each fam-
ily member is extracted from. All-in-one approaches are usually superior to the one-by-one approach when
family members share lots of behaviors and a symbolic representation of the family model is chosen.

In [DBK15], a theoretical framework for the quantitative analysis of families specified with feature-
oriented concepts using probabilistic model checking (see, e.g., [BK08]) has been provided. To exemplify an
application of the framework, [DBK15] considered also a handcrafted model of an energy-aware server product
line specified in the input language of the prominent symbolic probabilistic model checker Prism [KNP11]. An
analysis was then performed using a symbolic model-checking engine of Prism that is based on multi-terminal
binary decision diagrams (MTBDD) [CFM+93] for the symbolic system representation. It is well-known that
the size of an MTBDD represented model is sensitive to the order of variables in the model description.
Recently, automated variable reordering techniques to optimize the memory consumption and speedup the
analysis time when performing probabilistic model checking has been included into Prism [KBC+16].

Contribution. Based on the formal framework by [DBK15], we introduce the tool ProFeat, which gives
tool support for the analysis of families of stochastic systems using probabilistic-model-checking techniques.
In particular, the contribution of ProFeat is

(1) extending Prism’s input language by feature-oriented concepts to describe families of stochastic systems
(2) providing an automated translation of such families to standard Prism input language
(3) returning a compact symbolic feature-oriented representation of Prism’s analysis results

We illustrate the benefits of using ProFeat in several case studies, where we provide

(4) a comparison between all-in-one and one-by-one approaches
(5) the impact of symbolic MTBDD-based analysis including reordering techniques
(6) the advantages of using ProFeat not only for analyzing families of stochastic systems but also for the

analysis of single systems with mode switches modeled through dynamic feature switches

Let us describe the ProFeat contributions in more detail. (1) Operational behaviors of system fami-
lies are described with a feature-aware extension of the input language of the probabilistic model checker

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

Prismtranslation
post-

processing

ProFeat

family of
stochastic systems

quantitative
requirements

explicit

symbolic

result
table

MTBDD

propositional
formula

ProFeat model

ProFeat spec.

all-in-one

one-by-one

results

Fig. 1. Workflow overview

Prism [KNP11], implementing the formal framework of [DBK15]. To specify valid feature combinations and
to describe the structure of the family of systems, we rely on a feature-model formalism similar to the Textual
Variability Language (TVL) [CBH11]. ProFeat also allows for (numerical) feature attributes and multi-
features [CHE05, CBH11, CSHL13], i.e., features that can appear more than once in a feature combination.
Following [DBK15], the behaviors of each feature are specified in feature modules described by discrete- or
continuous-time Markov chains or Markov decision processes. The support for dynamic feature switches dur-
ing runtime is maintained by a module called feature controller, which synchronizes with the feature modules
when activating and deactivating features. The dynamics of the feature controller and its interactions with
the feature modules are crucial to model dynamic product lines [GH03, DMFM10, DS11, CCH+13a].

(2) ProFeat follows a translational approach towards a quantitative analysis of system families, il-
lustrated in Figure 1. In a preprocessing step, ProFeat family models and quantitative requirements are
translated into the pure input language of Prism. Then, the actual analysis is performed by invoking Prism
on the translated models and requirements, returning results through Prism logs. The returned logs are
post-processed and ProFeat represents the results for each family member in the feature-aware context.
Note that using this approach, ProFeat can benefit from the power of the state-of-the-art probabilistic
model checker Prism and its (possibly future) extensions. (3) Since the number of family members can be
exponential in the number of features, just providing enumerated results for each member can be cumber-
some in the feature-aware engineering process. Thus, ProFeat provides compact symbolic representations
of the results using MTBDDs or propositional formulas over features.

We evaluate the approach of using ProFeat in a feature-oriented engineering process by several case
studies. (4) ProFeat seamlessly integrates both one-by-one and all-in-one analysis without requiring adap-
tions to the family model and specification (see (1)). This is obtained through different translation and
post-processing mechanisms and fits into the feature-oriented analysis approach: When there are many com-
monalities within family members, a symbolic model-checking engine might be chosen in Prism to exploit the
commonalities within an all-in-one approach and speed up the analysis. (5) Since the symbolic MTBDD rep-
resentation of the family is sensitive to the chosen variable order, we investigate the application of automated
reordering techniques recently introduced in Prism [KBC+16]. ProFeat fully supports the maintenance of
the variable reordering, such that no adaptions to the family model is required to enable or disable reordering
techniques.

(6) Besides useful for the quantitative analysis of families of stochastic systems, ProFeat can also be
used to describe single dynamic stochastic systems where features model operational modes of the system.
Feature switches then model the dynamic mode switches during runtime of the system. To underpin this
statement, we carry out a case study issuing the feature-oriented engineering process of an energy-aware
adaptive network system.

The source code of ProFeat can be obtained at https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/
ProFeat. This paper is an extension of the conference version [CDKB16], where ProFeat has been presented
first. There, the symbolic representation of analysis results was not included in ProFeat yet. Furthermore,
the seamless integration of automated variable reordering techniques for symbolic analysis engines [KBC+16]
has been newly integrated. Additional case studies and more detail on the feature-oriented engineering ap-
proach with ProFeat is provided. In contrast to our previous work [DBK15], where we introduced the

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

formal framework ProFeat is relying on, the ProFeat approach provides an elegant way to specify feature
modules and the feature controller and to automatically generate corresponding Prism code, rather than
requiring a handcrafted translation from formal descriptions of Markov decision processes to Prism as done
in [DBK15].

Related work. Several techniques for the analysis of (non-probabilistic) feature-oriented models and soft-
ware product lines using testing, type checking, static analysis, theorem proving or model checking have been
already proposed and implemented in tools (see, e.g., [TAK+14] for an overview). Commonly, feature-aware
analysis techniques try to avoid the combinatorial blowup in the number of features arising when analyzing
all members of a feature-oriented system family separately. Symbolic representations of the family and ap-
propriate algorithms to reason about the whole family at once turned out to be very successful. ProFeat
complements most of the existing approaches by not tailoring feature-aware analysis algorithms but fully
relying on standard model-checking tools and exploiting their symbolic representations of the systems. Here,
we briefly summarize tool support for the analysis of feature-oriented systems using model checking. An
overview about theoretical considerations towards these tools and prototype implementations in the litera-
ture can be found in [DBK15], where the formal framework ProFeat is based on has been developed. For the
automatic detection of feature interactions, Plath and Ryan [PR01] introduced a feature-oriented extension
of the input language of the model checker SMV and Apel et al. [ASW+11] presented the tool SPLVerifier.
FeatureIDE [TKB+14] is a tool set supporting all phases of the software-product-line development with
connections to the theorem prover KeY and the model checker JPF-BDD. Lauenroth et al. [LPT09] deal
with family models based on I/O automata with may (“variable”) and must (“common”) transitions and a
model checker for a CTL-like temporal logic that has been adapted for reasoning about the variability of
product lines. Featured transition systems (FTS) are labeled transition systems with annotations for the
feature combinations of static product lines [CCS+13] or a variant of dynamic product lines [CCH+13a].
The SNIP tool [CCH+12, CCS+13, CSHL13] relies on FTS specified using a feature-based extension of
the modeling language Promela and allows for checking FTS against LTL properties one-by-one or using a
symbolic all-in-one verification algorithm. Its re-engineered version ProVeLines [CCH+13b] provides several
extensions, including verification techniques for reachability properties with real-time constraints. Similar to
the approach by [DKB14] for probabilistic product lines, [DABW15] considers (non-probabilistic) product-
line verification of linear-time requirements and presents an approach that avoids specialized feature-aware
model-checking algorithms. For branching-time temporal-logic specifications, [CCH+13a, CCH+14] proposed
a symbolic model-checking approach for (adaptive) FTS. We are not aware of an implementation of the ap-
proach of [CCH+13a]. Relying on the formal framework of [AtBGF11, tBFGM16], where product line families
are modeled through modal transition systems, the tool Vmc has been presented in [tBMS12] that allows
for the verification of branching-time requirements.

In [CCH+14], an all-in-one analysis based on the feature-oriented extension of the SMV input language
by [PR01] has been proposed, which allows verifying static product lines using the (non-probabilistic) sym-
bolic model checker NuSMV. This extension of SMV follows the compositional feature-oriented software
design paradigm (as we do) but puts the emphasis on superimposition [Kat93, AJTK09, AH10], rather than
parallel composition of feature behaviors [DBK15].

None of the approaches mentioned above deals with probabilistic behaviors. To the best of our knowl-
edge, there is no other tool that provides family-based probabilistic model checking for families using a
compositional framework based on Markov decision processes. An overview about quantitative analysis for
probabilistic product lines can be found in [LP17]. The benefits of probabilistic model checking for the
analysis of adaptive software has been also drawn by Filieri et al. [FGT12], where adaptive Markov chains
models were investigated within a continuous verification approach. There, the focus was not on a family-
based analysis but on a holistic approach towards supporting required adaptations to environmental changes.
The work on model-checking algorithms for parametric Markov chains [Daw04, HHZ11] and tool support
in the model checkers Param [HHWZ10] (which has been reimplemented and integrated in Prism) and
PROPhESY [DJJ+15] is orthogonal. By computing rational functions for the probabilities of reachability
conditions or expected accumulated costs, these techniques can be seen as an all-in-one analysis of fam-
ilies of probabilistic systems with the same state space, but different transition probabilities. Ghezzi and
Sharifloo [GS13] and the recent work by Rodrigues et al. [RAN+15] illustrate the potential of parametric
probabilistic model-checking techniques for the analysis of product lines. ProFeat can handle probability
parameters as well and translate them to Prism code, such that models used in [GS13, RAN+15] can also
be subject to a family-based analysis using ProFeat. However, the analysis approach with ProFeat is

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

different in the sense that the probability parameters are encoded as model variables, using the standard
engines of Prism rather than its parametric one. An approach towards a family-based performance analysis
of dynamic probabilistic product lines modeled by a variant of UML activity diagrams has been presented
by [KST14]. Dynamic changes on the performance-annotated activity diagrams (PAADs) are expressed us-
ing the delta-modeling approach [Sch10], which complements the compositional approach by [DBK15]. Our
approach covers the class of models considered, as the semantics of PAADs is given as a very restricted
class of CTMCs. Thus, ProFeat could also be applied to analyze PAADs. However, since [KST14] uses
specialized algorithms to avoid explicit encodings into the state space that ProFeat does not provide, only
small instances are feasible to analyze with ProFeat. The recent work by Beek et al. [tBLLV15] presents a
framework for the analysis of software product lines using statistical model checking. They focus on Markov
chain models rather than Markov decision processes and present a process-algebraic characterization of
feature-oriented concepts.

Outline. Section 2 presents the main principles of the ProFeat language to describe families of stochastic
systems. The standard feature-oriented engineering process with ProFeat is described in Section 3. Details
on the implementation of ProFeat will be given in Section 4. Section 5 reports on experimental studies
within ProFeat. A brief conclusion is provided in Section 6.

2. Describing Families of Stochastic Systems: The ProFeat Language

The ProFeat language can be seen as an extension of the input language of the probabilistic model checker
Prism [KNP11] that is used for modeling and analysis of parallel probabilistic systems. Prism and hence
ProFeat supports various types of finite system models such as discrete- or continuous-time Markov chains
(DTMCs, or CTMCs, respectively) and Markov decision processes (MDPs).

In this section, we present the additional language concepts introduced for the analysis of families of
stochastic systems. In Section 2.1 we will first give a brief summary of the core Prism language. Section 2.2
introduces the meta-programming language constructs as a first class of extensions provided by ProFeat.
These meta-programming constructs, such as parameters, arrays, and loops facilitate the feature-based mod-
eling of families of stochastic systems, but are useful in general as well. The main language concepts for the
compositional description of system families (cf. [DBK15], Section 4) are introduced in Section 2.3.

In what follows, we describe the ProFeat language using a simple producer-consumer example. The
system consists of a single producer that enqueues jobs with probabilistic workload sizes into a FIFO buffer
handed to one or more workers. The workers can only process one package at a time each. The time it takes
for a worker to process a work package is determined by the package size and the processing speed of the
individual worker. Varying the buffer size, the number of workers, the processing speed of individual workers
or the load caused by the producer yields different variants, i.e., families of systems.

2.1. The Prism Language

A model in the input language of Prism [KNP11] consists of one or more reactive modules [AH99] that can
interact with each other. A set of variables defines the local state space of a module and the local variables of
all modules constitute the global state space of the model. Prism supports two types of variables: bounded
integers and Boolean variables. The behavior of a module, i.e., the possible transitions between its states, is
given by a set of guarded commands [Dij75]. A command has the form:

[action-name] guard → p1: update1 + p2: update2 + . . . + pn: updaten

The guard is an expression over the variables of the model (including local variables of other modules). If
the guard evaluates to true, the module can transition into a successor state by updating its local variables.
One of the updates is chosen according to the probability distribution given by expressions p1, p2, . . . , pn.
In every state (fulfilling the guard) the evaluations of these expressions must sum up to 1. A command can
be labeled with an action name. They stand for actions used for synchronization between modules. If two
or more modules share an action, they are forced to take the labeled transitions simultaneously. However, if
any of those modules cannot take the transition (because its guard is not fulfilled), then the action is blocked,
so that none of the modules can take the transition. Listing 2 shows an example of a simple producer that

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

module Producer
work_size : [1..2];

[enqueue] !buffer_full -> 0.7: (work_size’ = 1) + 0.3: (work_size’ = 2);
endmodule

Lst. 2. A module for a simple producer in the Prism language

enqueues a work package into the buffer whenever the enqueue action is not blocked and the buffer is not
full. The work package size is determined probabilistically, where a bigger work package is produced with a
probability of 0.3.

Constants can be defined using the const keyword. A constant definition has the form const type = ex-
pression. Here, the type is either bool, int or double. Additionally, the formula keyword can be used to
introduce a shorthand name for an expression to reduce code duplication. In contrast to constants, a formula
may be defined in terms of model variables.

A model can be annotated with costs and rewards1 using reward structures in order to reason about
quantitative properties, such as energy consumption, throughput and performance. Costs and rewards are
real values attached to certain states or transitions of the model. A state reward definition has the form
guard : reward, indicating that every state fulfilling the guard has the specified reward associated with
it. Similarly, the definition of a transition reward is of the form [action-name] guard : reward. Here, all
transitions originating from a state fulfilling the guard and labeled with the given action have the specified
reward attached to it.

2.2. Metaprogramming Language Extensions

ProFeat provides several extensions to the Prism language that allow the user to parametrize parts of the
system. This is especially important for modeling system families. Besides Boolean and integer variables,
ProFeat supports (one dimensional) arrays. Additionally, the ProFeat language offers metaprogramming
constructs commonly found in template languages. ProFeat allows the parametrization of Prism’s formula
definitions to define function-like macros. Furthermore, ProFeat supports for loops. Loops can be used
to generate sequences of commands, probability distributions, variable updates and expressions. This is
especially useful for the definition of system families where the instances differ in their structure, e.g., buffer
sizes or the number of multi-feature instances. In the following example, a parametrized formula that stands
for the expression summing up the first n elements of an array is defined:

formula sum(arr, n) = for i in [0..n-1] { arr[i] + ... };

If a for loop is used in an expression (as is the case in the example above), the body of the loop must
contain the placeholder ... exactly once. Intuitively, in iteration step i this placeholder is replaced with the
resulting expression of the iteration step i + 1.

Prior to the translation of a ProFeat model into a Prism model, macros defined via the formula
keyword are expanded at all call sites. Similarly, for loops are expanded generating ProFeat code. For
example, the call sum(buffer, 4) of the macro defined above is expanded to:

buffer[0] + buffer[1] + buffer[2] + buffer[3]

In ProFeat, actions can be used and indexed like arrays. The size of an action array does not need to
be declared. Arrays of actions are useful in conjunction with for loops, for example:

for w in [0..2]
[dequeue[w]] cell != -1 -> (cell’ = -1);

endfor

1 In the following, we use the notions of costs and rewards synonymously. Conceptually they are the same, it is only the
interpretation that differs (costs are regarded as negative, while rewards represent “something good”).

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

System

Fast Producer Workers Buffer

Worker0

speed:[1..5]

Worker1

speed:[1..5]

Worker2

speed:[1..5]

Fig. 3. Feature diagram of the producer-consumer product line

Here, three distinct actions are generated: dequeue[0], dequeue[1] and dequeue[2].

2.3. Feature-oriented Language Extensions

A ProFeat model usually comprises two distinct parts: the declaration of a family parameters and/or
feature combinations, and a modular (feature-oriented) representation of the operational behavior for all
building blocks of the family model. For the definition of the operational behaviors, we adopt the guarded-
command input language of Prism and extend it with the feature-specific concepts as presented in [DBK15].
First, the guards used in transition definitions within a Prism module can now contain constraints on the
activity of the declared features. Second, to specify dynamic product lines in which features can be activated
and deactivated “at runtime”, an additional Prism module called feature controller can be added that is
responsible for performing the feature switches. The syntax for specifying the feature controller is the same
as for other Prism modules, but allows for feature activation and deactivation in the update part of transition
definitions. Additional action names that can be used for synchronization with other modules are inserted
automatically when a feature controller is specified.
Feature Models in ProFeat. ProFeat provides additional support to describe families of systems that
correspond to (software) product lines. Within product lines, the standard formalism to define feature models
in the software-engineering domain is provided by feature diagrams [KCH+90]. Figure 3 depicts the feature
diagram for the producer-consumer example. Nodes in the diagram denote features and the root node stands
for the so-called root feature. Arcs connect an inner node with its children, namely the sub-features of the
respective feature. They can be of different type imposing certain constraints on the the set of valid feature
combinations. In the example, the root feature System has four sub-features. Three of them are mandatory
in valid feature combinations, only the Fast feature is optional (indicated by the circle on the corresponding
arc). The Workers feature has three sub-features for the workers. The arcs imply that at least one of the
workers must be active in all valid feature combinations. Moreover, there can be arrows indicating additional
dependencies possibly across the entire diagram. For instance, the arcs between Fast and Worker0/Worker1
stand for the constraint that fast systems need to have at least two active workers. There are many other
possible annotations to feature diagrams, e.g., feature attributes (as the speed in Figure 3) and cardinalities
indicating the minimum or maximum number of instances of the same feature that could be activated, etc.

Feature diagrams are usually conveniently described using the Textual Variability Language (TVL) [CBH11]
and we adapt the concepts of TVL for describing feature models also in ProFeat. To provide an example,
Listing 4 is an excerpt of the producer-consumer feature model. Features are declared within feature blocks
indicated by the keywords feature and endfeature. The root feature is a designated feature that rep-
resents the base functionality on which the product line is built. In the given example the root feature is
the System feature, which is decomposed into the four sub-features. An all of decomposition indicates that
all sub-features are required in every feature combination whenever their parent feature is active. As used
by the Workers feature, the some of operator implies that at least one of the sub-features has to be active
whenever the parent is active. In addition to the one of operator (which requires exactly one sub-feature),
the decomposition can also be given by a cardinality. Optional features are preceded by the optional key-

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

1 root feature
2 all of Producer, Buffer, Workers, optional Fast;
3 constraint active(Fast) => active(Worker[0]) & active(Worker[1]);
4 constraint Worker[0].speed + Worker[1].speed < 7;
5 endfeature
6

7 feature Workers
8 some of Worker[3];
9 endfeature

10

11 feature Worker
12 speed : [1..5];
13 endfeature

Lst. 4. Excerpt of the feature model for the producer-consumer product line

word, indicating that the feature may or may not be part of a valid feature combination, regardless of the
decomposition operator. ProFeat also provides support for multi-features [CSHL13], i.e., features that can
appear more than once in feature combinations. The number of instances is given in brackets behind the fea-
ture name. In the producer-consumer example, the Workers feature is decomposed into three distinct copies
of the Worker feature. It is important to note that the decomposition operator ranges over the feature in-
stances. Thus, the some operator could be replaced by cardinality [1..3] in the above listing. Multi-features
can be marked optional as well. Then, each individual copy of the multi-feature is an optional feature.
Besides multi-features, the ProFeat language supports feature attributes [CBH11]. In the example shown
above, the Worker features carry the attribute speed which can take any integer value from 1 to 5. Access
to feature attributes, e.g., in guards of transition definitions within other features, is possible regardless of
whether the corresponding feature is active or not. Multi-features and feature attributes in combination as
supported by ProFeat allow for compact textual descriptions of large and rather complex product lines.
The support for multi-features requires the distinction between features and feature instances. In ProFeat,
each feature instance has to be uniquely identified by a fully qualified name. Sub-feature instances as well
as feature attributes are accessible using the familiar dot-notation. Instances of multi-features are referred
to by an array-like syntax. For example, the fully qualified name of the second worker’s speed attribute is
root.Workers.Worker[1].speed. As long as the qualified name is unambiguous, the prefix can be omitted.
For instance, the name Worker[1].speed is valid as well. Within the local scope of a feature one can refer
to its attributes without a qualifier. For example, within the feature module of Worker (Listing 5, line 9),
speed refers to the local attribute of the feature.

As seen already in the feature diagram, features may also contain cross-tree constraints and dependencies
on feature instances and values of feature attributes. In our example, the first constraint (line 3) given in
the root feature expresses that the first two Worker instances must be active whenever the Fast feature is
active. The second constraint limits the accumulated speed of the first two workers. A constraint can be
preceded by the initial keyword, which only affects the initial set of valid feature combinations. Obviously,
this distinction is only relevant for dynamic product lines.
Operational Behavior of Features. In a ProFeat model, the declarative feature model is strictly sep-
arated from the operational behavior of features. A feature can be “implemented” by one or more feature
modules, which are listed after the modules keyword inside the feature block. In the producer-consumer
example, the Worker feature is implemented by the Worker_impl module. Listing 5 shows the feature module
and the extended feature declaration of the Worker feature.

For the definition of feature modules, we use an extension of Prism’s modules (as described in Section 2.1).
Local variables of other features can be accessed using the dot-notation as described above. Access to local
variables of feature modules is possible regardless of whether the corresponding feature is part of the current
feature combination or not. If a feature is deactivated, its state (i.e., the local variables) remains unchanged
and can still be read. To the standard language constructs already present in Prism, ProFeat adds the
predicate active that can be used in any expression including guards, evaluating to true if the corresponding

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

1 feature Worker
2 speed : [1..5];
3 block dequeue[id];
4 modules Worker_impl;
5 endfeature
6

7 module Worker_impl
8 t : [0..max_work_size] init 0;
9 [working[id]] t > 0 -> (t’ = max(0, t - speed));

10 [dequeue[id]] t = 0 -> (t’ = Buffer.cell[0]);
11 endmodule

Lst. 5. Declaration and implementation of the Worker feature

1 controller
2 [] buffer_full & !active(Worker[2]) -> activate(Worker[2]);
3 [] buffer_low & active(Worker[2]) -> deactivate(Worker[2]);
4 endcontroller

Lst. 6. The feature controller of the producer-consumer model

feature is active in the current system state. Furthermore, actions can either be declared as blocking or
non-blocking. By default, feature modules of inactive features do not block on synchronous actions. Thus,
with regard to synchronization, deactivating a feature has the same effect as removing it entirely from the
model. This is useful if the model is fully synchronous, i.e., if there is a global action that synchronizes
over all transitions. However, in some cases it is crucial that an inactive feature hinders active features to
synchronize with its actions. In the producer-consumer example, an inactive worker should not take a work
package out of the queue (line 10 in Listing 5). Therefore, its dequeue action is modeled as blocking using
the block keyword inside the feature module (line 3). For the dequeue action, we use an indexed action
label with the id as index. In case of multi-features, the implicit id parameter evaluates to the index of the
feature instance.
Feature Controller. In a ProFeat model, the feature combination is not necessarily static, but may also
change over time. The feature controller is a special module that defines the rules for the dynamic activation
and deactivation of features. In Listing 6, one can see an example of a feature controller suited for the
producer-consumer model.

Essentially, a controller is a module (possibly with its own internal memory), which can modify feature
combinations using the activate and deactivate updates. In the controller shown above, the third worker
is activated to speed up processing whenever the buffer is full. Once the buffer is nearly empty, the worker
is deactivated. The definition of a feature controller is optional. If no controller is given, the defined product
line is assumed to be static. Feature modules can synchronize with the controller over the activate and
deactivate actions, which enables them to react or even block the activation or deactivation of their
corresponding feature. For instance, by adding the following line to the Worker_implmodule, the deactivation
of the worker is blocked as long as it is still processing a work package:

[deactivate] t = 0 -> true;

Feature Templates and Module Templates. Both feature blocks as well as feature modules can be
instantiated multiple times. Every time a feature is referenced in a decomposition, a new instance of that
feature is created. Additionally, all of its associated feature modules are instantiated as well. Thus, both
feature blocks and feature modules can be regarded as reusable templates. Furthermore, ProFeat allows
the parametrization of these templates, which in turn enables parametrization of guards, probabilities and
costs.

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

1 feature Buffer
2 modules fifo(buffer_size);
3 endfeature
4

5 module fifo(capacity)
6 cell : array [0..capacity - 1] of [-1..max_work_size] init -1;
7 for w in [0..2]
8 [dequeue[w]] cell[0] != -1 ->
9 (cell[capacity-1]’=-1) &

10 for i in [0..capacity-2] (cell[i]’ = cell[i+1]) endfor;
11 endfor
12 . . .
13 endmodule

Lst. 7. A FIFO buffer implementation parameterized over the capacity

1 const double dist = binom(0.3, max_work_size-1);
2

3 module Producer_impl
4 work_size : [1..max_work_size] init 1;
5 [enqueue] true ->
6 for i in [1..max_work_size]
7 dist[i-1]: (work_size’=i)
8 endfor;
9 endmodule

Lst. 8. A producer implementation with parameterized probability distribution over the work package size

Consider the Buffer feature and its accompanying feature module shown in Listing 7. The module
is parameterized over the capacity of the buffer (line 5). The actual buffer size will be determined on
instantiation. In the given example, the buffer size will even be declared as system parameter ranging over a
finite set of possible values. The for loop stretching from line 7 to 11 generates a dequeue labeled command
for each worker. The inner loop (line 10) shifts the buffer entries to remove the first element from the buffer.

The feature module of the Producer feature (Listing 8) is parameterized over the maximal size of a work
package. Because of that, the support of the probability distribution over the size of the next work package
is not fixed (lines 5–7). For cases like that, ProFeat can generate probability distributions of a given size.
In the example, the work package size is binomially distributed (line 1 and line 7). Currently, ProFeat only
supports binomial distributions, however, other discrete distributions may be added in the future.

2.4. Parametrization

Families can also be formed by ranging over system parameters. In our running example, such a parameter
might be the FIFO buffer size. System parameters are declared in a family block, as shown below. Similar
to feature attributes, system parameters can be constrained as well.

Furthermore, a family declaration can be combined with a feature model, resulting in a family that is
both defined by system parameters and all valid initial feature combinations. This is of particular importance
for dynamic product lines where there is an initial feature combination that can evolve over time. To declare
subsets of valid feature combinations as initial ones, ProFeat provides the initial constraint keyword
(see line 3 of Listing 9). Valid feature combinations not fulfilling the listed constraints are still possible during
runtime by dynamic feature switches.

System parameters can be used anywhere in the model description, including guards, probabilities and

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

1 family
2 buffer_size : [1..8];
3 initial constraint buffer_size != 5;
4 endfamily

Lst. 9. Parametrization of a model using the family block

1 feature Worker
2 rewards "energy"
3 active(this) & t > 0 : 1;
4 [activate] true : 5;
5 endrewards
6 endfeature

Lst. 10. Specification of the energy consumption of a Worker

costs/rewards. In contrast to feature attributes, system parameters are constant for each instance of a family.
By an instance of a family we mean a particular system or product in the product line. This has an important
consequence: parameters can, e.g., be used to specify the range of variables, the size of arrays, the range of
for loops and even the number of multi-feature instances. Thus, system parameters can directly influence
the state space of the system.

2.5. Property Specification in ProFeat

ProFeat uses an extension of Prism’s property specification language, which is based on the probabilistic
computation tree logic (PCTL) [BdA95, BK98]. Reasoning about probabilities in an MDP requires the
selection of an initial state and resolution of the non-deterministic choices between actions. The latter is
formalized by a scheduler. In the following, we write Prmin(ϕ) for the minimal probability of that ϕ is
fulfilled, ranging over all schedulers. For the specification of path properties, we use the usual temporal
operators G (globally) and F (finally). We consider two example properties of the producer-consumer model.
The following property states that the filling level of the buffer is almost surely below 75%, even in the worst
case:

Prmin
(
G (level < 0.75)

)
= 1

One can also ask for computing, e.g., the minimal probability that at some point Worker2 is active, which
could be expressed by

Prmin
(
F (“Worker3 is active”)

)
As in the Prism language, a ProFeat model can be annotated with costs and rewards. However, reward
structures are not global, instead they are defined within feature declarations. This modularizes the speci-
fication of rewards and furthermore enables the parametrization of rewards inside of parametrized feature
declarations. ProFeat extends the reward construct of Prism by allowing the use of the active function
to specify rewards in terms of the current feature combination. Additionally, rewards can be attached to
feature switches by using the predefined activate and deactivate actions. This enables quantitative rea-
soning about dynamic software product lines. Listing 10 shows again the declaration of the Worker feature
and its reward structure. In line 3, energy costs of 1 are specified for all states where the Worker is active
and not idle. The activation of the feature (line 4) has a cost of 5.

The second property specifies that even in the worst case, the maximal expected energy consumption
of the producer-consumer system does not exceed a given threshold. Here, goal denotes the state where all

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

1 formula level = (for i in [0..buffer_size-1]
2 (cell[i] > 0 ? 1 : 0) + ...
3 endfor) / buffer_size;
4 Pmin>=1 [G (level < 0.75)];
5 Pmin=? [F (active(Worker[2]))];
6

7 const threshold = 20;
8 label "goal" = (counter = 0) &
9 for w in [0..2]

10 (active(Worker[w])) => Worker[w].t = 0 & ...
11 endfor;
12

13 R{"energy"}max<=threshold [F "goal"];

Lst. 11. Property specifications using the language extensions of ProFeat

work packages have been processed and each active Worker is idle.

Exmax(“accumulated energy until reaching goal”) ≤ threshold

Listing 11 shows the properties in the specification language of ProFeat. In the definition of the atomic
proposition goal (lines 8–11) we use a for loop to iterate over all Worker instances. The active function can
be used in the same way as in a ProFeat model as well as the access of qualified variables (such as the t
variable of a Worker in line 10).

2.6. Semantics of ProFeat Models

As in the Prism input language, every model in ProFeat has to begin with identifying the kind of model
specified, i.e., either a discrete Markov chain (DTMC, keyword dtmc), continuous-time Markov chain (CTMC,
keyword ctmc), or Markov decision process (MDP, keyword mdp). The semantics of the ProFeat model
then is then a family of formal models of DTMCs, CTMCs or MDPs, respectively. We depart from explicitly
providing a formal semantics for ProFeat models since it can be obtained in a straight-forward way by
the following three ingredients: First, ProFeat fully relies on the framework of [DBK15], where a formal
semantics for feature modules and feature controllers has been provided. Second, the semantics of ProFeat’s
feature modeling formalism is given by the semantics of TVL [CBH11] extended with multi-features as
described in [CSHL13]. Third and last, ProFeat uses a translational approach towards Prism models, which
have a formally defined semantics [KNP11]. We refer to Section 4, where the details on the implementation
of how ProFeat models are translated to pure Prism models are provided.

3. Family-based Analysis with ProFeat

In this section, we describe the general workflow for analyzing families of systems specified in the ProFeat
language using our implementation2. As depicted in Figure 1, the ProFeat approach comprises a prepro-
cessing, analysis, and post-processing step for the analysis of families of stochastic systems. The standard
of the ProFeat approach is that all three steps are executed in a row. However, the designer can also
decide to perform these steps separately, which is useful, e.g., when the translated model(s) should further
be processed, be simulated within the Prism simulator for debugging, or analyzed using some alternative
tool or different analysis engine.

Let us now consider the standard case where the family-based analysis using ProFeat is performed in one
run. First, the designer decides which analysis engine provided by Prism will be used for the analysis. This

2 For the Haskell source code of the tool, we refer to https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

decision mainly depends on how the members of the family of stochastic systems share common behaviors.
In case there are lots of commonalities, e.g., when the main functionalities are encapsulated into one feature
module included in all family members, a symbolic engine is usually the best choice. Also if the model of
each family member is as huge that it would possibly not fit into the memory, an analysis still might be
successful when using a symbolic engine. In this spirit, also the decision whether an all-in-one or one-by-one
analysis is used by ProFeat is made: when a symbolic engine is chosen, commonalities in the members
of the described family can be further exploited by choosing an all-in-one analysis approach. Within an
all-in-one analysis, ProFeat generates a single Prism model of the whole family which could be compactly
represented within a symbolic representation of the family model. As the symbolic engine of Prism relies
on multi-terminal binary decision diagrams (MTBDDs), the performance and memory consumption of the
analysis crucially depends on the variable order inside the MTBDD. The designer has the choice of using
automated reordering techniques [KBC+16], which could provide a further speed up of the analysis. On
the other hand, when an explicit analysis engine is chosen, one-by-one approaches are usually favorable. In
this case, ProFeat generates one Prism model for each family member, not exploiting commonalities but
enabling the parallelization of the analysis, e.g., using multiple cores or distributed computation.

After the decisions about the analysis methods are made, the designer chooses how the analysis results
should be represented. ProFeat supports both, explicit and symbolic representations of the analysis results
for each family member. For families described by only a few features, an explicit representation of the
results in terms of a table is usually sufficient. However, when the family described involves many features,
the number of family members and thus the number of analysis results can be exponential in the number
of features. This makes an explicit representation of the results difficult to interpret by the designer during
the feature-oriented engineering process. To avoid the combinatorial blowup in the result representation,
ProFeat provides symbolic representation of the results. The designer can choose between propositional
formulas or representations based on binary decision diagrams (BDDs) for describing the solution space.

In the following, we provide details on the ProFeat approach by first describing the concept of symbolic
representations using BDDs. Then, we illustrate the pre- and post-processing steps using the simple ProFeat
model provided in Listing 12 as an example. The model comprises the declaration of the feature model (lines
1-8) and the implementation of the base feature and the two feature modules x and y (line 10-23). In this
example, no feature controller is provided, i.e., the resulting family is assumed to be static. Each feature
module implementation has a local state state. Access to the local state of a feature module implementation
is performed by qualifying the scope of the state variable, e.g., x.state to refer to the local of the feature x.

3.1. Symbolic Representation by Binary Decision Diagrams

Binary decision diagrams (BDDs) have first been introduced by Lee [Lee59] and Akers [Ake78] as universal
data structure for Boolean functions. In the context of model checking, BDDs are, e.g., used to represent
the characteristic function of the transition relation for state-based models.

A BDD induces a rooted, directed, and acyclic graph comprising terminal nodes (representing the constant
functions zero and one) and decision nodes. Each decision node is labeled by a Boolean variable and has
exactly two successor nodes, where for the 0-successor node, the respective Boolean variable is assigned to
false and the for the 1-successor node to true. Figure 18a shows a simple example of a BDD graph structure,
where the 0-successors are indicated by a dashes lines and the 1-successor by solid lines. Ordered BDDs
[Bry86] rely on a fixed variable ordering that it used consistently along all paths from the root to a sink. The
graph structure of an ordered BDD for a Boolean function f arises from a binary decision tree for f using
the given variable ordering by merging isomorphic subgraphs and eliminating terminal nodes with the same
value and any node whose two children are isomorphic. This yields a reduced ordered BDDs (briefly called
BDD from now on), where every two BDD nodes represent different functions. Removing redundancies from
the decision tree and hence the sharing of structure in BDDs yields the potential of compactly representing
Boolean functions. When using BDDs to represent family models, this means that ideally behavior that is
common amongst all family members as, e.g., a base feature included in every family member, has to be
represented only once.

In general, the size of an BDD, namely the overall number of BDD nodes, crucially depends on the given
variable ordering. There are Boolean functions that have a very compact BDD-representation independent
from the chosen order. For instance, for the n-bit parity function the number of nodes is linear in n. For
some Boolean functions, however, the size of the BDD varies from linear to exponential depending on the

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

1 root feature
2 all of optional x, optional y;
3 constraint active(x) => active(y);
4 modules base_impl;
5 endfeature
6

7 feature x modules x_impl; endfeature
8 feature y modules y_impl; endfeature
9

10 module base_impl
11 state : [0..1] init 0;
12 [tick] !(x.state = 1) & !(y.state = 1) -> 1/3:(state’=0) + 2/3:(state’=1);
13 endmodule
14

15 module x_impl
16 state : [0..1] init 0;
17 [] state = 0 -> 1/2:(state’=0) + 1/2:(state’=1);
18 endmodule
19

20 module y_impl
21 state : [0..1] init 0;
22 [tick] !(x.state = 1) -> 1/4:(state’=0) + 3/4:(state’=1);
23 endmodule

Lst. 12. Simple product line example in ProFeat

given variable ordering. An example is the Boolean function for the most significant bit of the addition.
Finally, there are Boolean functions for which no compact BDD-representation exists, e.g., the n−1-st bit
of the multiplication function. See, e.g, [Weg00] for further details on BDDs. Reordering algorithms such as
sifting [Rud93, PS95], can be applied to dynamically improve the size BDD for a given Boolean function.

Multi-terminal binary decision diagrams [CFM+93] (MTBDDs), also known as algebraic decision dia-
grams (ADDs) [BFG+97], are a variant of BDDs that support terminal nodes with real values rather than
only 0 and 1. MTBDDs are, e.g., used as data structure for representing and analyzing probabilistic systems.
The symbolic engine of Prism for instance, relies on MTBDDs for representing the transition probability
matrix of the stochastic models. In ProFeat we use MTBDDs also to encode the computed results for all
family members symbolically. Here, the decision nodes correspond to feature activation or deactivation and
the terminals represent the model checking results such as probabilities and expectations.

3.2. All-in-one vs. One-by-one

In the example in Listing 12, the feature model describes a family comprising three feature combinations: the
base feature alone, with the y feature activated in addition to the base feature and all features activated. The
combination that x is solely activated besides the base feature is excluded through the constraint provided
in line 3. When a one-by-one approach is chosen, ProFeat generates three different models, one for each
feature combination and invokes Prism three times (once for each generated model). Within the all-in-one
approach, ProFeat generates one single model with three initial states.

Note that when the automated variable reordering techniques are used, each verification run may yield
a different variable order. Thus, whereas in the all-in-one approach the family is represented by an MTBDD
only with respect to one particular variable order, the variable orders between the models for a one-by-one
analysis may differ.

Conceptually, it is possible to combine the all-in-one approach and the one-by-one approach. First, the
set of instances of the system family is partitioned. Then, each element of the partition can be regarded as
a sub-family, which is analyzed using the all-in-one approach. The partition can be determined by the user

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

14

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

Final result: [0.0,0.9876543209876543]
Results for initial configurations:

(x, y)=0.0
(y)=0.73
()=0.99

Lst. 13. Output of analyzing the simple product line with ProFeat

and allows a trade-off between analysis time, memory usage, and the ability to parallelize the analysis. Von
Rhein [vR16] reported that indeed the combined approach uses less memory than the all-in-one approach and
less time than the one-by-one approach for selected (non-probabilistic) models. ProFeat provides limited
support for the combined approach. Within the family block, a set of feature instances can be selected.
Features selected in the family block then only vary between the sub-families, while the other features vary
within each sub-family. For an example, we consider again the producer-consumer model.

family
features Fast, Worker[2];

endfamily

If we add the family block given above, we get a partition consisting of 4 elements because two features are
selected using the features keyword.

3.3. Post-processing: Output of the Analysis Results

ProFeat generates an output of the results similar to Prism, but for readability’s sake, listing only the
valid feature combinations. If the analysis is carried out using the one-by-one approach where Prism is
invoked for each instance of the family, ProFeat automatically collects the results. In case automatic
variable reordering [KBC+16] was used during the analysis, ProFeat also converts the variable ordering
of the results to a common ordering. Thus, the representation of the final results is independent of the
chosen analysis approach. An example result generated by ProFeat for the example in Listing 12 is given
in Listing 13. Here, we asked for the minimal probability such that state=1 is reached in the base feature
(formally, asking for Prmin(F (state = 1))). ProFeat supports rounding of the results up to a given precision
and we chose a precision of two digits in our example. Rounding is very handy, e.g., if the results are close
together and one likes to investigate the features with the most impact on the result. Currently, ProFeat
supports post-processing of analysis results only if the results were produced by Prism.

The representation shown in Listing 13 lists the results for each initial configuration separately. This is
acceptable if just a small number of configurations is of interest. However, since the number of initial feature
combinations is usually exponential in the number of features, it is difficult to draw general conclusions about
the whole family of systems from this explicit representation of results. In order to give the user a better
understanding of the analysis results, ProFeat can additionally provide a symbolic result representations.
Similarly to the analysis, where the symbolic representation of the model is often more compact than the
explicit representation, a symbolic representation of the results is often smaller than the list of feature
combinations. ProFeat can compute two different symbolic representations. First, ProFeat can generate a
propositional formula over features representing the feature combinations satisfying some qualitative property
(similar to [CHS+10, CCH+13b]). This also includes quantitative properties where a certain threshold must
be reached. For example, asking for the feature combinations where (in the worst case) state=1 is reached
with a probability of at least 0.99 (formally Prmin(F (state = 1)) ≥ 0.99), yields the result ¬x ∧ ¬y. Second,
ProFeat can produce a BDD, where each inner node stands for the decision whether the corresponding
feature is included or not, and the terminal nodes indicate whether the property is satisfied or not. However,
in case of a quantitative analysis, the result for a given feature combination is not just true or false, but
can be any rational number. Therefore, ProFeat additionally supports the symbolic representation of the
results as an MTBDD. Here, each terminal node represents a distinct numerical analysis result. The rounding
of the results can reduce the number of distinct results and, in turn, the number of terminal nodes as well
as the overall size of the MTBDD. The BDD or MTBDD graph can be exported into the DOT-language

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

15

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

(that can then be rendered into graphs using Graphviz3). Details on how MTBDDs are used for yielding a
user-friendly view on the results are presented in the next section. Examples of different outputs possible
within ProFeat for the analysis of the simple product line of Listing 12 are provided in Figure 18.

4. Implementation Details

In this section, we provide further details on our implementation of ProFeat. Feature model declarations
follow the semantics of TVL [CBH11]. Based on the feature model, the translation of a set of feature
modules under a feature controller into a Prism model is based on the compositional modeling framework
for probabilistic feature-oriented systems presented in [DBK15], which naturally maps feature composition
to the parallel composition of Prism. The translation of ProFeat specifications into Prism specifications is
purely syntactical replacing ProFeat language identifiers by their translated correspondents in the generated
Prism code.

In the following, we highlight the implementation of notable steps in the translation of ProFeat models
into Prism models, underpinned by examples from our running example of Section 2, the producer-consumer
product line example. Furthermore, we describe different analysis methodologies supported by ProFeat and
give an overview on ProFeat’s result post-processing mechanisms. As illustrated in Figure 1, ProFeat
takes a ProFeat model, a ProFeat formula specification, and the choice of an analysis method (all-in-
one or one-by-one) as input. The pre-processor translates the given model into a single Prism model or a
collection of Prism models respectively. Additionally, the formulas given in the ProFeat specification file
are translated into a standard Prism properties file. This purely syntactical translation is necessary because
the formulas of the ProFeat specification may contain language constructs not understood by Prism. These
include, for example, qualified names for local variables and the built-in active function, which is used to
refer to the current feature combination. After the translation step, ProFeat can automatically invoke
Prism and the results are being post-processed and presented such that they are readable in the feature
context.

4.1. Translation of Feature-specific Constructs

In a ProFeat model, read and write accesses to the feature combination are only possible by the use of the
active function and the activate/ deactivate updates, respectively. The basic idea is to add one Boolean
variable per feature to the Prism model, indicating whether some feature is part of the feature combination.
However, because features can be mandatory (must always be included in a feature combination) or can
depend on each other, it is sufficient to generate one variable per non-mandatory atomic set. An atomic set is
a set of features that can be treated as a unit as they always appear together in a feature combination [Seg08].
For example, in case of the producer-consumer system family (Figure 3), the tool generates a feature variable
for the Fast feature and one variable for each Worker. Instead of Boolean feature variables, ProFeat generates
integer variables with a range of [0..1], which simplifies the handling of cardinality constraints. Given this
representation, the translation of the active function is simple. If the atomic set of the feature is mandatory,
the call is replaced by true. Otherwise, it is replaced by a check of the feature variable. Analogously, the
activate and deactivate updates assign 0 or 1 to the corresponding variable, respectively.

Feature modules are translated to standard Prism modules. In case of a feature module that implements
a multi-feature, one module per feature instance is generated (with the id parameter set accordingly).
Listing 14 shows the feature module of the Worker feature and its translation. Note that only the module
corresponding to the first Worker feature is shown, as the other instances are nearly identical. In the translated
module, all local variables are qualified with their corresponding feature name as the Prism language does
not support local scopes. Additionally, the guard of each command is extended by the Worker_0_active
predicate, such that the module has no behavior if the feature is inactive. However, it must be ensured
that feature modules of inactive features do not block actions, i.e., deactivating a feature should have the
same effect as removing the corresponding feature modules from the model. This is achieved by adding an
unconditional transition for each non-blocking action. Such a transition can only be taken if the feature is

3 http://www.graphviz.org

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

16

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://www.graphviz.org

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

1 module Worker_impl
2 t : [0..max_work_size] init 0;
3

4 [] t > 0 ->
5 (t’ = max(0, t - speed));
6 [dequeue[id]] t = 0 ->
7 (t’ = Buffer.cell[0]);
8 [cancel] true -> (t’ = 0);
9

10 endmodule
(a) Worker in ProFeat model

module Worker_0_worker_impl
Worker_0_t : [0..max_work_size];

[] Worker_0_active & Worker_0_t > 0 ->
(Worker_0_t’ = max(0,Worker_0_t - speed));

[dequeue_0] Worker_0_active & Worker_0_t = 0 ->
(Worker_0_t’ = Buffer_cell_0);

[cancel] Worker_0_active -> (Worker_0_t’ = 0);
[cancel] !Worker_0_active -> true;

endmodule
(b) Worker 0 in Prism model

Lst. 14. Feature module of a worker and its translation

1 controller
2 [] buffer_full & !active(Worker[1]) -> activate(Worker[1]);
3 [] buffer_full & !active(Worker[2]) -> activate(Worker[2]);
4 [] buffer_low -> deactivate(Worker[2]);
5 [] buffer_empty -> deactivate(Worker[1]) & deactivate(Worker[2]);
6 endcontroller

Lst. 15. Feature controller for the producer-consumer model

inactive (see line 9 in Listing 14b). This command is not generated if the user explicitly requests the blocking
of an action by using the block keyword in the feature declaration.

The feature controller is translated into a Prism module as well. Updates of the feature combination
must not to lead to an invalid feature combination. Consider the update at line 4 of the feature controller in
Listing 15. According to the feature model, at least one of the Workers must be active at all times. Thus, the
update is only allowed if there is at least one other active Worker. If not, this command should block. The
described semantics is achieved by extending the guard in the translated module, as shown in Listing 16 (line
2). This guard is synthesized as follows. First, all constraints regarding the features to update (only Worker 2
in this example) are collected from the feature model. Then, all feature variables that would be changed by
the update are substituted with their updated value. Here, the variable Worker_2 is replaced by 0, because
the update would deactivate this feature. The resulting expression only evaluates to true if the updated
feature combination is valid. Thus, an update command cannot lead to an invalid feature combination.

Another aspect of the translation concerns the synchronization between the feature controller and the
feature modules in case of feature activation and deactivation. Consider again the feature controller shown
in Listing 15. The command in line 4 implicitly synchronizes with the feature module in Listing 17a. To
implement this synchronization, ProFeat generates action labels for feature activation and deactivation,
as shown in line 1 of Listing 16. The command in line 5 of Listing 15 deactivates two Worker instances at
once, thus it also has to synchronize with both corresponding feature modules. However, in the Prism input
language each command can only be labeled with at most one action label. To circumvent this restriction, the
set of action labels is merged into a single action label. This solution requires special care in the translation
of the feature modules. First, we collect the action labels of all feature-controller commands that deacti-
vate Worker 2 (lines 4 and 5). Then, we create a copy of the feature-module command for each collected

1 [Worker_2_deactivate] buffer_low &
2 (1 <= Worker_0 + Worker_1 + 0) & (Worker_0 + Worker_1 + 0 <= 3) ->
3 (Worker_2’ = 0);

Lst. 16. Translated feature controller command

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

17

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

1 module Worker_impl
2 t : [0..max_work_size] init 0;
3

4 [deactivate] t = 0 -> true;
5

6

7

8 endmodule
(a) Worker in ProFeat model

module Worker_2_Worker_impl
Worker_2_t : [0..2];

[Worker_1_deactivate_Worker_2_deactivate]
Worker_2_active & Worker_2_t = 0 -> true;

[Worker_2_deactivate]
Worker_2_active & Worker_2_t = 0 -> true;

endmodule
(b) Worker 2 in Prism model

Lst. 17. Translation of synchronization with the feature controller

action label, as shown in Listing 17b. This translation realizes the intended synchronization between the
feature controller and the feature modules, even in the case of multiple simultaneous feature activations and
deactivations.

4.2. All-in-One and One-by-One Translation

In case of a one-by-one translation, a model for each initial valuation of the system parameters and for
each initial feature combination is created. The system parameters are constant for each instance and can
therefore be replaced by constants in the translated models. However, the feature variables are not replaced
by constants, as the feature combination may be changed by the feature controller.

For the all-in-one translation, ProFeat generates a single Prism model with multiple initial states,
one for each instance of the family. However, there is a technical difficulty in the translation into an all-in-
one model: Array sizes, numbers of multi-features and variable bounds can be defined in terms of system
parameters. Hence, these system parameters depend on the initial state and thus are not known at translation
time. In the producer-consumer model for example, both the buffer size as well as the number of workers
may be defined in terms of system parameters. Since all family instances must be contained in the all-in-one
model, ProFeat instantiates arrays with their maximal possible size, generates the maximal number of
multi-feature instances and creates variables with the greatest possible bounds. These upper bounds can be
computed from the range of the system parameters, which is known at translation time. In the example,
the buffer_size system parameter may range from 1 to 5. Then, ProFeat instantiates the fifo module
(Listing 7) with size 5 in the all-in-one model. The need for instantiating all structures with their maximal
size is the main reason that the all-in-one model is often substantially larger than (most of) the models
generated by a one-by-one translation.

4.3. Post-processing of Analysis Results

As a consequence of the translational approach of ProFeat, the results of a quantitative analysis are
ultimately produced by the used analysis tool. In the default case, this tool is Prism, which is the only
analysis tool currently supported for the post-processing step by ProFeat. Therefore, the analysis results
actually refer to the translated Prism model rather than the ProFeat model. This means that variable
names will not appear as written in the ProFeat model. Furthermore, Prism has no concept of features,
thus feature variables are not easily distinguishable from other variables. However, the main issue is that the
results as produced by Prism are hard to read, which makes their interpretation challenging.

As a first step, ProFeat rewrites variable names and feature names such that they appear as in the
original ProFeat model and rounds the results up to a given precision. If the model investigated does
not contain a feature model, i.e., the family described arises from parametrization only, ProFeat returns
the resulting list of results. We already presented an example output in Listing 13. Within each line the
active features are now indicated with their names as provided in the ProFeat model which increases the
readability of the results.
Symbolic Representation of Feature-oriented Analysis Results. ProFeat relies on standard model
checking tools for the analysis. Therefore, the symbolic representations of the results are not directly provided

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

18

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

x

y

0.00.73 0.99

(a) without feature model, rounded up
to 2 decimals

x

0.0 1.0

(b) without feature model,
rounded to integers

x

y y

0.73 0.99 0.0

(c) including feature model, rounded up to 2 dec-
imals (empty box represents invalid feature com-
binations)

Fig. 18. Example MTBDD result representations within ProFeat

by the model checking algorithm. Thus, the propositional formula or the binary decision diagram representing
the satisfying feature combinations must be computed from the list of results provided by Prism.

To generate a propositional formula representing the feature combinations satisfying some property, Pro-
Feat proceeds as follows. The set of satisfying feature combinations directly corresponds to a formula in
canonical disjunctive normal form, where the literals are features. Of course, this CDNF is as big as the
explicit representation. In order to minimize this formula, ProFeat applies the Quine-McCluskey algo-
rithm [McC56]4. As a consequence of this approach, the computed formula also encodes the feature model,
or at least a part thereof. Since the feature model is already known before the analysis, one is usually more
interested in the constraints that must hold in addition to the feature model, such that the given property
is satisfied. Formally, given a propositional formula Φ encoding the feature model, we want to compute an
additional constraint Ψ, such that all feature combinations of the (more restrictive) feature model Φ′ = Φ∧Ψ
satisfy the given property. To compute the constraint Ψ, we apply the Quine-McCluskey algorithm to the
set of satisfying feature combinations as described above, but also consider all invalid feature combinations
as “don’t care” terms, which gives the algorithm more opportunities for minimization.

The BDD or MTBDD representation of the results is built by successively considering the result for each
feature combination and adding the corresponding path to the MTBDD. ProFeat supports two different
modes to represent the MTBDD: including the feature model and not including the feature model. Because
including the feature model often leads to a substantially larger and more cluttered MTBDD, the latter
mode is the default. This representation can then be considered in addition to the feature model to guide
the feature selection.

The MTBDDs in Figure 18a+b show the default representation without the feature model. The variables
in the MTBDD correspond to the feature variables, evaluating to true if the respective feature is activated
and to false otherwise. Solid lines indicate that the respective feature is active, whereas dashed lines indicate
that the feature is deactivated. The sink nodes of the MTBDD carry all the possible values w.r.t. the
considered analysis query. A path from the unique root node of the MTBDD to a sink node stands for the
set of valid feature combinations that share a common result. Whereas in Figure 18a, the results are rounded
to a precision of two digits, Figure 18b shows the same result rounded to integers, i.e., rounding probabilities
to either 0 or 1. For the representation including the feature model, a sink inv is included in the MTBDD
to which all paths of invalid feature combinations lead to. Figure 18c shows the MTBDD representation
output including the feature model, where the empty sink corresponds to inv. This MTBDD degenerates
into a binary tree, as all feature combinations have different values and there is exactly one invalid feature
combination (in which only feature x is active).

4 The time complexity of this algorithm is exponential. Since the algorithm solves an NP-hard problem, no algorithm of
polynomial complexity can be expected. The families of systems suitable for quantitative analysis using model checking usually
have a comparably small number of features. Thus, we have not encountered a model where the runtime of the Quine-McCluskey
algorithm was the limiting factor.

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

19

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

As the graphs provided can still be very large, ProFeat provides a further reduction mechanism by
applying the sifting algorithm [Rud93] for MTBDDs. The algorithm reorders feature variables to find better
orderings that allow for more compact graph structures. This typically yields an order where the feature
variables with the greatest impact on the result are considered first. Hence, one can easily extract the
“importance” of individual features w.r.t. the considered query. We will provide an example how the size of
the graph can be significantly reduced by reordering in the next section (see Figure 23). In general, the height
of the MTBDD scales linearly with the number of features. However, the number of MTBDD nodes largely
depends on the structure of the analysis results and the variable ordering found by the sifting algorithm.

5. Experimental Studies

To illustrate the benefits of the ProFeat approach of analyzing families of stochastic systems, we carried
out the following case studies:

A Producer-Consumer Example to provide a comparison between all-in-one, one-by-one sequentially,
and one-by-one parallel analysis approaches.

Product-Line Case Studies to show the additional support of ProFeat for describing and analyzing
probabilistic product lines. In particular, we investigate the body-sensor-net product line of [RAN+15]
and a probabilistic variant of the elevator product line [PR01].

Benchmark Suite Examples which illustrate how ProFeat can be used to analyze families arising from
standard Prism models by parameterizing model constants, e.g., the number of actors, queue size, etc.

A Feature-oriented Network System Model to show that ProFeat is also beneficial for analyzing
single systems where the concept of features is used to describe dynamics in operational modes.

For our experiments we used a Linux machine with two 8-core Intel Xeon E5-2680 CPUs running at 2.7 GHz
and equipped with 384 GBytes of RAM, hyper-threading enabled. When considering the one-by-one parallel
approach, we restricted ourselves to an execution of 32 analyses in parallel.

5.1. The Producer-Consumer Example

In the base model of the producer-consumer example, as considered already in previous sections, the controller
can activate or deactivate workers in the workers pool, increase or decrease the size of the buffer, and increase
or decrease the processing speed of individual workers. For realizing fairness among regular actions and
controller actions, we introduced an additional progress module. When considering expected costs, the goal
will be to finish a certain number of jobs. For this we enriched the model with a counter. In this section, we
consider three variants of the base model and corresponding analysis queries:

Best Buffer. A static feature-oriented system which parametrizes over the buffer size. Here, we ask for the
buffer size for which minimal expected storage costs arise until a certain number of jobs are processed.

Best Worker. This family parametrizes over all possible combinations of workers. Within this family model,
we ask for the combination of workers where the minimal expected energy is required to finish a given
number of jobs.

Distributions. Here, we consider different workload distributions as parameter space of the model. The
goal is to compute the distribution where the expected energy required to finish a certain number of jobs
is minimal.

Figure 19a shows the number of MTBDD nodes for representing the three model variants depending on the
family parameter. Within all variants, the number of nodes in the all-in-one model is significantly smaller
that the sum of the MTBDD nodes for the separate models, indicating shared behaviors between the family
members. We evaluated the quantitative queries stated above using both, the Mtbdd and the Sparse
engine of Prism. In general, the Sparse engine turned out to perform slightly better than the Mtbdd
engine, especially within expectation queries. The results are illustrated in Figure 19b–d.

In some cases, where the number of instances is exponential in the family parameter (cf. Figure 19c –
Best Worker), the all-in-one analysis approach outperforms the one-by-one approach and can even keep up
with the parallel computation. In other cases (cf. Figure 19b – Best Buffer), the all-in-one approach was only

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

20

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

2 4 6 8 10 12 14 16

103

104

105

106

family parameter

nu
m

be
r

of
no

de
s

(a) MTBDD nodes

best buffer all

best buffer 1by1

best worker all

best worker 1by1

distributions all

distributions 1by1

6 8 10 12 14 16

100

101

102

103

buffer size

ti
m
e
(s
)

(b) best buffer

Mtbdd all
Mtbdd 1by1
Mtbdd par
Sparse all

Sparse 1by1
Sparse par

102 103
10−1

100

101

102

103

number of workers

ti
m

e
(s

)

(c) best worker

Mtbdd all
Mtbdd 1by1
Mtbdd par
Sparse all

Sparse 1by1
Sparse par

2 4 6 8 10 12 14 16

100

101

102

number of workload distributions

ti
m

e
(s

)
(d) distributions

Mtbdd all
Mtbdd 1by1
Mtbdd par
Sparse all

Sparse 1by1
Sparse par

Fig. 19. Number of MTBDD nodes for the producer-consumer models (a), Analysis times of the variants
best buffer (b), best worker (c) and distributions (d). Number of MTBDD nodes and analysis times are
accumulated over all instances for the one-by-one approach. In (b), (c) and (d) the x-axis shows the number
of family instances.

superior up to a system size of 14. For the third model variant (cf. Figure 19d – Distributions), the all-in-one
and one-by-one approaches asymptotically displayed similar performance. Overall, there is a no clear trend
on which approach is favorable, the one-by-one or the all-in-one analysis.

5.2. Product-Line Case Studies

The development of ProFeat has been first and foremost motivated by several studies from the domain of
feature-oriented systems such as product lines, where all-in-one analysis approaches turned out to outper-
form the traditional one-by-one analysis approach (see, e.g., [CHS+10, TAK+14, DBK15]). In this section,
we demonstrate how (probabilistic) versions of classical product lines can be modeled and analyzed with
ProFeat.

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

21

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

Root

Monitoring Storage

SensorInformation Sensor

Oxy Temp PlsRt Pos Fall ACC EKG TEMP SPO2

SQLite Memory

PlsRt ⇒ SPO2 ∨ EKG

Fig. 20. A feature diagram corresponding to the BSN feature model

5.2.1. Body Sensor Network Product Line

A Body Sensor Network (BSN) system is a network of connected sensors sending measurements to a central
entity that evaluates the data and identifies health critical situations. In [RAN+15], a (static) BSN product
line with features for several sensors has been introduced, whose feature model is depicted in Figure 20.

The approach presented in [RAN+15] follows the ideas by [GS13] towards parameterized DTMC models:
For each feature, a Boolean parameter f is 1 if the feature is active and 0 otherwise. A factor p is multiplied
to the probability of every transition, where p=f in case the feature enables the transition and p = 1−f
otherwise. Parametric model checkers are then used to compute a single formula which for each feature
combination evaluates to the probability of reaching a successful configuration, i.e., the reliability of the
BSN. The authors of [RAN+15] report that the parametric approach using Param can be seven times
faster, a novel symbolic bounded-search approach can be eleven times faster, and a handcrafted (model
dependent) compositional parametric approach can even be 100 times faster than a Prism-based one-by-one
analysis. For obtaining the results, three different model-checking tools have been used. Furthermore, special
tailored scripts were required to perform the one-by-one analysis and to evaluate the formulas returned by
the parametric model checkers. With ProFeat the feature model of the BSN product line can be directly
incorporated into the parametric model specified by [RAN+15], as ProFeat’s representation of features as
Boolean parameters is compatible with the approach by [GS13]. Thus, ProFeat allows for an all-in-one
approach on the same model as of [RAN+15] and simplifies the comparison to one-by-one analysis also
concerning different model-checking engines such as the explicit or symbolic engines of Prism.

In the first line of Table 1, we show the results of our experiments for computing the same reliability
probability as in [RAN+15]. The all-in-one approach turns out to be ≈100 times faster than the one-by-one
approach, independent of the chosen engine. Hence, ProFeat directly enables a speed up of the analysis
time in the same magnitude as handcrafted decomposition optimizations by [RAN+15].

For this case study, we highlight the capabilities of post-processing in ProFeat, which provides output
in the context of the feature model and thus eases the interpretation of the results. Note that a feature-aware
output in the case studies by [RAN+15] was not possible within their approaches. Listing 21 shows an excerpt
of the results provided by an all-in-one analysis with Prism, not using the post-processing step provided by
ProFeat. Using the post-processing of ProFeat, these results are interpreted by replacing feature variables
by its feature names, which yields a more readable list of results as illustrated in Listing 22. Notably, the
latter results are identical also when a one-by-one analysis method would have been chosen 5 (which would,
without the post-processing, have lead to 298 complete output logs by Prism). Using result grouping by
rounding with a precision of two decimals and the MTBDD-representation capabilities of ProFeat, the
results of the analysis of the BSN case study yields the MTBDDs shown in Figure 23. Especially the MTBDD
representation not including the feature model impressively shows how clearly representable the results for

5 Even though the results obtained with the all-in-one approach might potentially differ from those obtained by the one-by-one
approach (caused by the approximative analysis methods used in Prism), we never encountered this case in any of our case
studies.

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

22

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

Results (non-zero only) for filter "init":
2924:(0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,1,1,1)=0.9704387384917665
2977:(0,1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,1,1,1)=0.9617396442452253
4041:(0,1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,1,1,1)=0.953118529409139
4191:(0,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,1)=0.9792165174854354
5163:(0,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,1,1,1)=0.9617396442452253

... 293 lines omitted ...

Range of values over initial states: [0.9445746949695318,0.9792165174854354]

Lst. 21. Excerpt of analysis results provided by Prism for the BSN product-line model

Final result: [0.9445746949695318,0.9792165174854354]
Results for initial configurations:
(Mem, Fall, Oxy, PlsRt, Pos, Temp, SACC, SSPO2, STemp)=0.9445746949695318
(Mem, Oxy, PlsRt, Pos, Temp, SACC, SSPO2, STemp)=0.953118529409139
(Mem, PlsRt, Pos, Temp, SACC, SSPO2, STemp)=0.9617396442452253
(Mem, Pos, Temp, SACC, STemp)=0.9704387384917665
(Mem, PlsRt, SECG, STemp)=0.9792165174854354

... 293 lines omitted ...

Lst. 22. Excerpt of analysis results after post-processing by ProFeat

each of the 298 valid feature combinations are within ProFeat. Figure 23a shows the MTBDD generated
for the BSN product-line analysis if the feature model is included. Omitting the constraints imposed by the
feature model and applying the reductions described in Section 4.3 yields the MTBDD as shown in Figure 23b.
This allows the user to gain insights on the influence of certain features on the final result. For example,
the user has to decide on the inclusion or exclusion of only 5 features (the BSN product line comprises 16
features, of which 11 are not mandatory). The selection of all other features either does not influence the
result (as is the case for the SQLite and Memory features), or the inclusion/exclusion is dictated by the feature
model. Consider, for example, following the path ¬Fall,¬Oxy,¬PlsRt,¬Pos to the result 0.98. The feature
model states that at least one of the features below the SensorInformation feature must be selected. Thus,
when following the described path in the diagram, it is clear that the Temp feature must be selected and, in
turn, also the TEMP sensor feature. Therefore, the nodes for Temp and TEMP are not present on this path
of the diagram. Furthermore, the diagram clearly shows that the overall system reliability decreases with
each additionally selected SensorInformation child feature. It is very hard to draw conclusions like this from
a list of results as shown in Listing 22. Thus, the transformation into an MTBDD that succinctly represents
the analysis results is a very useful tool to derive products with the desired properties and behavior.

5.2.2. Elevator Product Line

A classical (non-probabilistic) product line comprises an elevator system, introduced by [PR01]. This product
line has been then considered in several case studies issuing family-based verification (see, e.g., [ARW+13,
CSHL13]). The elevator system is modeled by a cabin which can transport persons to floors of a building.
Persons first have to push a button at the floor and then in the cabin for calling the elevator and defining
a direction where to ride, respectively. In its basic version [PR01], the product line comprises 32 products
built by five features, not changeable after deployment. We extend this product line in various aspects. First,
we resolve some non-deterministic choices by probabilities when appropriate, e.g., modeling the request
rate of a person and introducing a probability of failure. Second, we add a service feature, which enables
to call technical staff repairing the elevator or change feature combinations. As a consequence, our elevator
system is a dynamic product line where features can be changed during runtime. Third, we modeled dynamic
feature changes as non-deterministic choices in the feature controller. This yields an MDP model for which a

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

23

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

���

������������

����

��� ���

���

����� �����

���

����� �����

���

����� �����

����������

����

����

�����

����

����

�����

����

����

���� ����

�����

����

����

�����

����

����

�����

����

�����

����

�����

����

(a) including feature model, precision: 2 digits

����

��� ���

���������� �����

��� ��� ������

������������

����

����

������������ ����

(b) without feature model, reordered, precision: 2 digits

Fig. 23. MTBDD representations for the analysis results of a Body Sensor Network product line with rounding
precision 2. Outgoing solid edges denote that the feature is included, dashed edges denote that it is excluded.
The empty terminal node in (a) indicates an invalid feature combination.

Table 1. Analysis times (in seconds) of feature and benchmark suite models (each row represents one query,
analysis time for one-by-one is sum over all instances)
Model inst. MTBDD nodes Mtbdd Hybrid Sparse

family separate all 1by1 par all 1by1 par all 1by1 par

BSN 298 5651 111507 1 129 25 1 128 25 1 128 25

Elevator (2 floors) 64 42254 1329204 1 65 7 2 49 7 1 45 7
Elevator (3 floors) 64 151274 4924349 4 223 11 98 2531 96 7 286 18
Elevator (4 floors) 64 420448 13519274 15 910 32 2601 54262 1952 56 2008 83

Elevator (2-4 floors) 192 779569 19772827 29 1199 49 5089 56843 2052 74 2339 106

CSMA 4 633997 634076 timeout not supported 1236 1251 1220
(2–4 processes) “ “ timeout 3660 3577 3384 1078 1013 954

Self-stabilization 19 4340 10662 2036 1643 932 251 37 22 129 33 20
(3–21 processes) “ “ � 1 1 2 not supported 122 24 15

“ “ timeout not supported 2629 476 269
“ “ 13 10 7 12 10 6 12 10 7
“ “ 13 10 7 13 10 7 13 10 6

Philosophers (3–12) 10 82995 82689 9056 6212 3945 9722 5949 4009 out of memory

PWCS (3 replicas, 9 134236 134190 49 26 15 232 165 130 314 271 220
1–9 writers) “ “ 6564 2247 960 not supported 5473 1544 1230

PWCS (3 writers, 7 955505 958033 752 2279 1628 968 348 306 738 2209 1265
1–7 replicas) “ “ timeout not supported 1221 3857 2735

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

24

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

strategy-synthesis problem can be considered: Compute best- and worst-case strategies on how to activate or
deactivate features to reach certain goals [DBK15]. We deal with a simple instance of the elevator which can
transport one person and where at most two persons act in the system. Our product lines have 64 feature
combinations each, parametrized over the number of floors (2-4) in the building. We finally consider the
family of the three product lines, containing 192 single instances of the elevator system. We asked for the
minimal probability that if the cabin is at the ground floor and the top floor is requested, the probability
to serve the top floor within the next three steps is greater than 0.99. Our analysis results are depicted in
Table 1, where especially for larger instances the Mtbdd all-in-one analysis outperforms other approaches
and engines.

5.3. Benchmark Suite Examples

We used ProFeat also to model and analyze some examples taken from the Prism benchmark suite [KNP12]
and the probabilistic locking protocol PWCS [BEK+13] to investigate whether also standard parametrized
models can profit from an all-in-one analysis. In the PWCS model, we consider two family parameters: The
number of writers that intend to access a shared object (1) and the number of replicas for a given object (2).
When providing ProFeat code for the examples based on the existing models, the scripting and param-
eterization of ProFeat yield a more compact model representation and required only mild modifications.
Each row in the lower part of Table 1 stands for the evaluation of a query, which cover minimal and maximal
expected values as well as probabilities for bounded and unbounded reachability. The Hybrid engine of
Prism does not yet support the computation of expectations. A reduction of the MTBDD size was only
achieved for the self-stabilization protocol. In all other cases, the size of the family model was in the order
of the sum of the separate models. This is mainly caused by the fact that there is almost no sharing of
behaviors between the family instances. Consequently, the one-by-one approach outperforms the all-in-one
approach in almost all cases, even for the self-stabilization protocol.

5.4. Feature-oriented Network System Model

ProFeat is not only beneficial for specifying families of systems as illustrated in the above case studies,
but also simplifies modeling systems with dynamic feature-oriented runtime characteristics. We consider a
system which consists of several processing elements (PEs) interconnected by a communication network. The
network is heterogeneous, i.e., it comprises network links with different characteristics. Figure 24 shows a
system with both wired and (point-to-point) optical links. While the wired links are static, the optical links
may be dynamically turned on and off. Furthermore, the links differ in their speed and energy consumption.
We assume that activation of optical links costs energy as well as keeping them activated, even in case they
are unused. In our model, the system processes concurrent tasks that are distributed among the PEs and
communicate over the available network links. We focus on the network links and keep the PEs abstract.
Thus, the state of the system is entirely determined by the load on the network links.

The model cycles through four phases. First, the number of PEs for an incoming task is determined.
This number is binomially distributed to allow changing the externally imposed load on the system by a
single parameter. In the second phase, the task is mapped onto the PEs, which increases the load on the
network links between the selected PEs. Also, the mapping may cause the activation of optical links. In case
no mapping is possible or no mapping is found, the task is dropped (raising a “fail” event). In the third
phase, optical links can be activated or deactivated, the latter however only if they have no load. The fourth
phase represents the processing of tasks. Since the model focuses on the communication structure and its
characteristics, we kept the PEs abstract and modeled processing of tasks by probabilistically decreasing the
load on the network links.

We created three variants of the model that differ in the way the task mapping phase is implemented.
The first two models are non-deterministic and are capable for a best- and worst-case analysis, whereas the
latter one illustrates a randomized strategy for a possible implementation.

Non-deterministic. For a task that requires a number n of network links, this model non-deterministically
selects one of all possible spanning trees of size n over the network topology.

Non-deterministic with hopping. This is a variation of the non-deterministic model, that may create

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

25

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

PE PE

PE PE

PE PE

PE PE

Fig. 24. A network system model with cube topology. The blue lines indicate wired connections, while the
dashed red lines denote directed optical connections.

controller
...
for i in [0..NUM_OPTIONAL_LINKS-1]
[] active(Link[i]) & load[i] = 0 & phase = RECONF & link = i -> deactivate(Link[i]);
[] phase = PHASE_RECONF & link = i -> true;

endfor
endcontroller

Lst. 25. Excerpt of the feature controller of the network system model. Unused links are deactivated nonde-
terministically.

mappings with additional hops, i.e., PEs that do not contribute to the processing of a task, but rather
act as a communication relay between other PEs.

Heuristic. A simple heuristic for mapping tasks to PEs follows the “greedy” principle. In the first step,
the first PE with the most remaining capacity among its adjacent links is selected. In the second step,
the task is randomly distributed among the PEs adjacent to the selected PE. The probability that an
adjacent link is selected is indirectly proportional to its current load.

In the following, we illustrate notable modeling details. For the activation and deactivation of links, we
utilize the feature-oriented modeling approach of ProFeat. For each optical link i, the model contains a
corresponding optional feature Link[i], i.e., the set of optical links is compactly represented by a single
multi-feature. This simplifies the definition of costs, since they only have to be defined once in the feature
model and then are automatically applied to all optical links. Turning links on and off is handled by the
feature controller. An excerpt of the controller of the non-deterministic variant is shown in Listing 25. Here, a
for loop is used to generate a deactivation command for each optical link. The load array stores the current
load of each network link. The excerpt in Listing 26 shows a part of the mapping implementation, where one
of all possible spanning trees of size task_size is selected. An element i of the selected array is true if
the PE with index i is a node in the spanning tree. The formulas from(k) and to(k) return the endpoints
of a link with index k. The spanning tree is built up incrementally. In each step, another link, which must
be connected to at least one other chosen link selected beforehand, is selected nondeterministically. The load
on the selected link is then incremented and the task_size decremented. This process is repeated until the
remaining task_size needing to be distributed among the network reaches zero. The meta-programming
facilities of ProFeat allowed us to define the model’s behavior completely independent from the network
topology. Instead of being hard-coded into the model, the topology is described by an array of constants
that specifies the set of network links (accessed using the from and to formulas described above).

We analyzed an instance of the network system model, where we allowed for tasks of size at most 2. The

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

26

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

for i in [0..NUM_LINKS-1]
[] phase = MAP & task_size > 0 & load[i] < link_capacity(i) &

selected[from(i)] & !selected[to(i)] ->
(selected[to(i)]’ = true) & (load[i]’ = load[i] + 1) & (task_size’ = task_size - 1);

// same command again, but with "to" and "from" switched
endfor

Lst. 26. Excerpt of the nondeterministic variant of the network system model showing how a spanning tree
is built during the mapping phase

probability that at the beginning of a round a task of size 1 is scheduled is given by a parameter t1, i.e., the
probability t2 that a task of size 2 is scheduled is t2 = 1− t1. First, we investigated the (minimal) probability
that a mapping fails within 9 rounds and plotted the results depending on t1 in Figure 27a. Clearly, the
resulting probability for the non-deterministic variant serves as theoretical optimum, i.e., is smaller than
the probabilities for the hopping and heuristic variant. As expected, the probability of a mapping failure
decreases when t1 increases, as then it is more likely to have tasks of size 1. Tasks of size 1 can easily be
mapped when there is at least one communication link without a task assigned, which does not depend on
previous choices of mappings. However, mapping tasks of size 2 is more likely to fail, as two links without a
task assigned have to be chosen that additionally have to be connected through processing elements. Thus,
whether a mapping of a task of size 2 is successful also depends on previous mapping choices. The second
property we investigated considers the trade-off between successful mappings and the energy required to
guarantee them within a certain probability, which is formalized as an energy-utility quantile [BDD+14].
Here, we assumed that activating optical links consume 2 units of energy, while keeping them active requires
1 unit of energy. Wired links do not consume any energy. Figure 27b shows the quantile value as the minimal
energy required depending on the probability within which at most one failed mapping has to be guaranteed.
The higher p, the more likely it is to also use optical links for avoiding mapping failures, hence using more
energy and thus, increasing the quantile value. The plot shows results for t1 = 0.5, i.e., the probability
distribution over the task sizes is uniform. Due to the combinatorial blowup from the number of possible
mappings, the model suffers from the state-space-explosion problem, peaking at around 120 million states.
We hence had to carry out all computations using the Mtbdd-engine of Prism, also profiting from automatic
variable reordering mechanisms introduced in [KBC+16], which reduced the Mtbdd-representation of the
models by around 40%.

6. Conclusions and Future Work

We presented the tool ProFeat, which eases the verification of quantitative requirements on families of prob-
abilistic systems that either follow the feature-oriented compositional framework of [DBK15] and/or system
families induced by varying parameters. For this, ProFeat extends the input language of the prominent
probabilistic model checker Prism [KNP11] with feature-oriented concepts, templates and parametrization
as well as scripting constructs for meta-programming to describe families of probabilistic systems. Choosing
a translational approach, ProFeat operates in three phases: first, a ProFeat family is translated into
standard Prism models. Then, the actual verification is performed by Prism on the translated models. At
the end, ProFeat extracts the analysis results returned by Prism and represents them in the feature-aware
context. This approach has several advantages: no specialized feature-aware model-checking algorithm is re-
quired as standard Prism is used. Furthermore, all advantages of Prism take over to the quantitative analysis
of families of systems described by ProFeat, including possible future advances in Prism development.

As the size of the described family usually grows exponentially in the number of features, both, the
analysis itself and the results of the analysis can benefit from symbolic representations. On the analysis
side, ProFeat supports either an all-in-one or one-by-one analysis, i.e., checking the whole family on one
single model or each family member separately. The all-in-one approach exploits commonalities of the family
members through symbolic representations, whereas the one-by-one approach may profit from parallelization.
ProFeat provides only basic support for partitioning the family model into sub-families to be analyzed
separately. However, extending this support to combine the benefits of both approaches is left for future

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

27

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

probability of a task with size 1

pr
ob

ab
ili

ty
of

fa
ilu

re

hopping
heuristic

non-deterministic

(a) Minimal probability of having a mapping failure within
9 rounds, depending on the arrival probability of a task
with size 1 in each round

0 0.2 0.4 0.6 0.8 1
0

10

20

30

probability of guaranteeing at most one failure

qu
an

ti
le

va
lu

es
(m

in
im

al
en

er
gy

re
qu

ir
ed

)

hopping
heuristic

non-deterministic

(b) Minimal energy required such that there is a mapping
strategy which guarantees with probability p at most one
mapping failure within 9 rounds

Fig. 27. Results for analyzing the net case study

work. In the present version of ProFeat, a seamlessly integration of the automated variable-reordering
mechanisms recently presented in [KBC+16] can be also be exploited to speed up and reduce memory
consumption when using symbolic analysis engines.

To conveniently represent the analysis results symbolically, ProFeat either uses propositional formulas or
binary decision diagrams on the features of the family model. Currently, only static feature-oriented models,
i.e., where the feature combination does not change during run time, have special support to represent the
analysis results. We plan to integrate meaningful explanations of the results for dynamic feature-oriented
systems in the future.

The practicality of the ProFeat tool has been illustrated by a couple of case studies addressing differ-
ent types of system families. These models have been used for comparing the all-in-one analysis approach
with the one-by-one approach in the probabilistic setting. Whereas for experiments on product-line-inspired
case studies an all-in-one approach turns out to be usually faster than a one-by-one approach (see, e.g.,
[TAK+14]), this cannot be generalized to arbitrary families, e.g., when only a few common behaviors exist
within the family members. Moreover, we illustrated that the feature-based modeling approach is also useful
for modeling single systems, i.e., where ProFeat is not used to describe a family of systems but the dynam-
ics of a single system running in several operational modes. Our experimental results indicate that there is
no clear superiority of the all-in-one analysis approach, no matter which of the three Prism engines is used.
However, for well-known product-line models, where the base functionality contains most of the behaviors
and features have comparably less behaviors, all-in-one approaches are feasible (especially within symbolic
analysis engines).

Besides the future prospects drawn above, we plan to integrate other model-checking tools that support
Prism’s input language (such as Storm [DJKV16], MRMC [KZH+11]) into ProFeat. Adaptions are first
and foremost required for the feature-aware symbolic representations of the analysis results, as ProFeat
currently is capable of interpreting Prism result logs.

Acknowledgements

The authors are supported by the DFG through the collaborative research centre HAEC (SFB 912), the
Excellence Initiative by the German Federal and State Governments (cluster of excellence cfAED), the
Research Training Group RoSI (GRK 1907), and Deutsche Telekom Stiftung.

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

28

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

References

[AH99] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design, 15(1):7–48, 1999.
[AH10] S. Apel and D. Hutchins. A calculus for uniform feature composition. ACM Transactions on Programming

Languages and Systems, 32(5), 2010.
[AJTK09] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model superimposition in software product lines. In ICMT’09,

volume 5563 of LNCS, pages 4–19. Springer, 2009.
[AK09] S. Apel and C. Kästner. An overview of feature-oriented software development. Journal of Object Technology,

8(5):49–84, 2009.
[Ake78] Sheldon B. Akers. Binary decision diagrams. IEEE Transactions Computers, 27(6):509–516, June 1978.
[ARW+13] S. Apel, A. von Rhein, P. Wendler, A. Groesslinger, and D. Beyer. Strategies for product-line verification: Case

studies and experiments. In Proc. of the 2013 Int. Conference on Software Engineering, ICSE ’13, pages 482–491.
IEEE, 2013.

[ASW+11] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection of feature interactions using feature-aware
verification. In Int. Conference on Automated Software Engineering (ASE), pages 372–375. IEEE, 2011.

[AtBGF11] Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi, and Alessandro Fantechi. Formal description of variability
in product families. In Proceedings of the 2011 15th International Software Product Line Conference, SPLC ’11,
pages 130–139, Washington, DC, USA, 2011. IEEE Computer Society.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and non-deterministic systems. In FSTTCS’95, volume
1026 of LNCS, pages 499–513, 1995.

[BDD+14] C. Baier, M. Daum, C. Dubslaff, J. Klein, and S. Klüppelholz. Energy-Utility Quantiles, pages 285–299. Springer
International Publishing, 2014.

[BEK+13] C. Baier, B. Engel, S. Klüppelholz, S. Märcker, H. Tews, and M. Völp. A probabilistic quantitative analysis
of probabilistic-write/copy-select. In Proc. of the 5th NASA Formal Methods Symposium (NFM), LNCS, pages
307–321. Springer, 2013.

[BFG+97] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and Fabio
Somenzi. Algebraic decision diagrams and their applications. Formal Methods in System Design, 10(2/3):171–206,
1997.

[BK98] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with fairness. Distributed
Computing, 11(3):125–155, 1998.

[BK08] C. Baier and J.-P. Katoen. Principles of model checking. The MIT Press, 2008.
[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Comput-

ers, 35:677–691, 1986.
[BSRC10] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20 years later: A literature

review. Information Systems, 35(6):615–636, 2010.
[CBH11] A. Classen, Q. Boucher, and P. Heymans. A text-based approach to feature modelling: Syntax and semantics of

TVL. Science of Computer Programming, 76(12):1130–1143, 2011.
[CCH+12] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Model checking software product lines with

SNIP. STTT, 14(5):589–612, 2012.
[CCH+13a] M. Cordy, A. Classen, P. Heymans, A. Legay, and P.-Y. Schobbens. Model Checking Adaptive Software with

Featured Transition Systems, pages 1–29. LNCS. Springer, 2013.
[CCH+13b] M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. ProVeLines: a product line of verifiers for

software product lines. In 17th Int. Software Product Line Conference (SPLC), pages 141–146. ACM, 2013.
[CCH+14] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y. Schobbens. Formal semantics, modular specification, and

symbolic verification of product-line behaviour. Science of Computer Programming, 80:416–439, 2014.
[CCS+13] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin. Featured transition systems:

Foundations for verifying variability-intensive systems and their application to LTL model checking. IEEE Trans-
actions on Software Engineering, 39(8):1069–1089, 2013.

[CDKB16] P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier. Family-Based Modeling and Analysis for Probabilistic
Systems – Featuring ProFeat, pages 287–304. Springer Berlin Heidelberg, 2016.

[CFM+93] E. M. Clarke, M. Fujita, P. C. McGeers, K. L. McMillan, J. C.-Y. Yang, and X.-J. Zhao. Multi-terminal binary
decision diagrams: An efficient data structure for matrix representation. In Proc. International Workshop on Logic
& Synthesis, 1993.

[CHE05] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7–29, 2005.

[CHS+10] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model checking lots of systems: efficient
verification of temporal properties in software product lines. In 32nd Int. Conference on Software Engineering
(ICSE), pages 335–344. ACM, 2010.

[CN01] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley Professional, 2001.
[CSHL13] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. Beyond boolean product-line model checking: Dealing

with feature attributes and multi-features. In Proc. of the 2013 Int. Conference on Software Engineering, ICSE
’13, pages 472–481. IEEE Press, 2013.

[DABW15] Aleksandar S. Dimovski, Ahmad Salim Al-Sibahi, Claus Brabrand, and Andrzej Wasowski. Family-based model
checking without a family-based model checker. In Model Checking Software - 22nd International Symposium,
SPIN 2015, Stellenbosch, South Africa, August 24-26, 2015, Proceedings, pages 282–299, 2015.

[Daw04] C. Daws. Symbolic and parametric model checking of discrete-time Markov chains. In Theoretical Aspects of
Computing - ICTAC 2004, volume 3407 of LNCS, pages 280–294, 2004.

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

29

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P. Chrszon, C. Dubslaff, S. Klüppelholz, C. Baier

[DBK15] C. Dubslaff, C. Baier, and S. Klüppelholz. Probabilistic model checking for feature-oriented systems. Transactions
on Aspect-Oriented Software Development XII, 8989:180–220, 2015.

[Dij75] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM,
18(8):453–457, 1975.

[DJJ+15] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, and E. Abraham. PROPhESY:
a probabilistic parameter synthesis tool. In 27th Int. Conference on Computer Aided Verification (CAV), volume
9206 of LNCS, pages 214–231, 2015.

[DJKV16] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. The probabilistic model checker Storm (extended abstract).
arXiv:1610.08713, 2016.

[DKB14] C. Dubslaff, S. Klüppelholz, and C. Baier. Probabilistic model checking for energy analysis in software product
lines. In 13th International Conference on Modularity, MODULARITY ’14, Lugano, Switzerland, April 22-26,
2014, pages 169–180, 2014.

[DMFM10] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini. A dynamic software product line approach using aspect
models at runtime. In Proc. of the 1st Workshop on Composition and Variability, 2010.

[DS11] F. Damiani and I. Schaefer. Dynamic delta-oriented programming. In Proc. of the 15th Int. Software Product Line
Conference, SPLC ’11. ACM, 2011.

[FGT12] A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal approach to adaptive software: continuous assurance of non-
functional requirements. Formal Aspects of Computing, 24(2):163–186, 2012.

[GH03] H. Gomaa and M. Hussein. Dynamic software reconfiguration in software product families. In PFE, pages 435–444,
2003.

[GS13] C. Ghezzi and A. M. Sharifloo. Model-based verification of quantitative non-functional properties for software
product lines. Information & Software Technology, 55(3):508–524, 2013.

[HHWZ10] E. M. Hahn, H. H., B. Wachter, and L. Zhang. PARAM: A model checker for parametric Markov models. In 22nd
Int. Conference on Computer Aided Verification (CAV), volume 6174 of LNCS, pages 660–664, 2010.

[HHZ11] E. M. Hahn, H. Hermanns, and L. Zhang. Probabilistic reachability for parametric Markov models. Software Tools
and Technology Transfer, 13(1):3–19, 2011.

[Kat93] S. Katz. A superimposition control construct for distributed systems. ACM Trans. Program. Lang. Syst., 15(2):337–
356, 1993.

[KBC+16] J. Klein, C. Baier, P. Chrszon, M. Daum, C. Dubslaff, S. Klüppelholz, S. Märcker, and D. Müller. Advances in
symbolic probabilistic model checking with PRISM. In Tools and Algorithms for the Construction and Analysis
of Systems - 22nd International Conference, TACAS 2016, Proceedings, pages 349–366, 2016.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-21, Carnegie-Mellon University, 1990.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. In
G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[KNP12] M. Z. Kwiatkowska, G. Norman, and D. Parker. The PRISM benchmark suite. In Proc. Quantitative Evaluation of
Systems (QEST’12), pages 203–204. IEEE, 2012. https://github.com/prismmodelchecker/prism-benchmarks/.

[KST14] M. Kowal, I. Schaefer, and M. Tribastone. Family-based performance analysis of variant-rich software systems. In
Fundamental Approaches to Software Engineering, volume 8411 of LNCS, pages 94–108, 2014.

[KZH+11] J.-P. Katoen, I.S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins and outs of the probabilistic
model checker MRMC. Performance Evaluation, 68(2):90–104, 2011.

[Lee59] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell System Technical Journal,
38(4):985–999, 1959.

[LP17] A. Legay and G. Perrouin. On quantitative requirements for product lines. In Proceedings of the Eleventh Interna-
tional Workshop on Variability Modelling of Software-intensive Systems, VAMOS ’17, pages 2–4, New York, NY,
USA, 2017. ACM.

[LPT09] K. Lauenroth, K. Pohl, and S. Toehning. Model checking of domain artifacts in product line engineering. In 24th
IEEE/ACM Int. Conference on Automated Software Engineering (ASE), pages 269–280. IEEE, 2009.

[McC56] E. J. McCluskey. Minimization of boolean functions*. Bell System Technical Journal, 35(6), 1956.
[PR01] M. Plath and M. Ryan. Feature integration using a feature construct. Science of Computer Programming, 41(1):53–

84, 2001.
[PS95] S. Panda and F. Somenzi. Who are the variables in your neighborhood. In Proc. Computer-Aided Design (IC-

CAD’95), pages 74–77. IEEE, 1995.
[RAN+15] G. N. Rodrigues, V. Alves, V. Nunes, A. Lanna, M. Cordy, P.-Y. Schobbens, A. M. Sharifloo, and A. Legay. Modeling

and verification for probabilistic properties in software product lines. In High Assurance Systems Engineering
(HASE), pages 173–180. IEEE, 2015.

[Rud93] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD-93)., pages 42–47, 1993.

[Sch10] I. Schaefer. Variability modelling for model-driven development of software product lines. In VaMoS, 2010.
[Seg08] S. Segura. Automated analysis of feature models using atomic sets. In SPLC (2), pages 201–207, 2008.
[TAK+14] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification and survey of analysis strategies for

software product lines. ACM Comput. Surv., 47(1):6:1–6:45, June 2014.
[tBFGM16] M. H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. Modelling and analysing variability in product families:

Model checking of modal transition systems with variability constraints. Journal of Logical and Algebraic Methods
in Programming, 85(2):287 – 315, 2016.

[tBLLV15] M. H. ter Beek, A. Legay, A. Lluch-Lafuente, and A. Vandin. Statistical analysis of probabilistic models of software

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

30

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://github.com/prismmodelchecker/prism-benchmarks/

ProFeat: Feature-oriented Engineering for Family-based Probabilistic Model Checking

product lines with quantitative constraints. In 19th Int. Conference on Software Product Line (SPLC), pages 11–
15. ACM, 2015.

[tBMS12] M. H. ter Beek, F. Mazzanti, and A. Sulova. VMC: A Tool for Product Variability Analysis, pages 450–454.
Springer Berlin Heidelberg, 2012.

[TKB+14] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. FeatureIDE: An extensible framework for
feature-oriented software development. Science of Computer Programming, 79:70–85, 2014.

[vR16] Alexander von Rhein. Analysis Strategies for Configurable Systems. PhD thesis, University of Passau, 2016.
[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. Monographs on

Discrete Mathematics and Applications. SIAM, 2000.

Final edited form was published in "Formal Aspects of Computing" 30 (1), S. 45-75. ISSN: 1433-299X
https://doi.org/10.1007/s00165-017-0432-4

31

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (postprint):
	Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, Christel Baier
	ProFeat: feature-oriented engineering for family-based probabilistic model checking
	Chrszon_ProFeat_Feature-oriented Engineering.pdf
	Introduction
	Describing Families of Stochastic Systems: The ProFeat Language
	The Prism Language
	Metaprogramming Language Extensions
	Feature-oriented Language Extensions
	Parametrization
	Property Specification in ProFeat
	Semantics of ProFeat Models

	Family-based Analysis with ProFeat
	Symbolic Representation by Binary Decision Diagrams
	All-in-one vs. One-by-one
	Post-processing: Output of the Analysis Results

	Implementation Details
	Translation of Feature-specific Constructs
	All-in-One and One-by-One Translation
	Post-processing of Analysis Results

	Experimental Studies
	The Producer-Consumer Example
	Product-Line Case Studies
	Benchmark Suite Examples
	Feature-oriented Network System Model

	Conclusions and Future Work
	References

