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Abstract. Multiple (more than 2) model synchronization is ubiquitous
and important for model driven engineering, but its theoretical under-
pinning gained much less attention than the binary case. Specifically, the
latter was extensively studied by the bx community in the framework of
algebraic models for update propagation called lenses. Now we make a
step to restore the balance and propose a notion of multiary delta lens.
Besides multiarity, our lenses feature reflective updates, when consis-
tency restoration requires some amendment of the update that violated
consistency. We emphasize the importance of various ways of lens com-
position for practical applications of the framework, and prove several
composition results.

1 Introduction

Modelling normally results in a set of inter-related models presenting different
views of a single system at different stages of development. The former dif-
ferentiation is usually referred to as “horizontal” (different views on the same
abstraction level) and the latter as “vertical” (different abstraction levels be-
ginning from the most general requirements down to design and further on to
implementation). A typical modelling environment in a complex project is thus
a collection of models (we will call them local) inter-related and inter-dependant
along and across the horizontal and the vertical dimensions of the network. We
will call the entire collection a multimodel, and refer to its component as to local
models.
The system integrating local models can exist either materially (e.g., with UML
modelling, a single UML model whose views are specified by UML diagrams, is
physically stored by the UML tool) or virtually (e.g., several databases integrated
into a federal database), or in a mixed way (e.g., in a complex modelling environ-
ment encompassing several UML models). Irrespective of the type of integration
(material, virtual, mixed), the most fundamental property of a multimodel is its
global, or joint, consistency: if local models do not contradict each other in their
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viewing of the system, then at least one system satisfying all local models exists;
otherwise, we say local models are (globally) inconsistent.

If one of the local models changes and their joint consistency is violated, the
related models should also be changed to restore consistency. This task of model
synchronization is obviously of paramount importance for MDE, but its theoret-
ical underpinning is inherently difficult and reliable automatic synchronization
solutions are rare in practice. Much theoretical work partially supported by im-
plementation has been done for the binary case (synchronizing two models) by
the bidirectional transformation community (bx), specifically, by its TGG sub-
community, see, e.g., [16]), and the delta lens sub-community on a more abstract
level (delta lenses [11] can be seen as an abstract algebraic interface to TGG
based synchronization [17]). However, disappointedly for practical applications,
the case of multiary synchronization (the number of models to be synchronized
is n > 2) gained much less attention—cf. the energetic call to the community in
a recent Stevens’ paper [32].

The context underlying bx is model transformation, in which one model in
the pair is considered as a transform of the other even though updates are prop-
agated in both directions (so called round-tripping). Once we go beyond n = 2,
we switch to a more general context of inter-model relations beyond model-
to-model transformations. Such situations have been studied in the context of
multiview system consistency, see surveys [2,25], but rarely in the context of an
accurate formal basis for update propagation. A notable exception is work by
Trollmann and Albayrak [33,34,35]. In the first of these papers, they specify a
grammar-based engine for generating consistent multimodels of arbitrary arity
n ≥ 2, with the case n = 2 being managed by TGG and truly multiary cases
n ≥ 3 are uniformly managed by what they call Graph-Diagram Grammars,
GDG. In paper [34] they use GDG for building a multiary change propagation
framework, which is close in its spirit to our framework developed in the paper
but is much more concrete — we will provide a detailed comparison in the Re-
lated work section. Roughly, our framework of multiary delta lenses developed in
the paper is to GDG-based update propagation as binary symmetric delta lenses
are to TGG-based update propagation, mxLens/GDG ≈ bxLens/TGG, where we
refer to multiary update propagation as mx (contrasting it to binary bx). The
latter relationship is described in [17]: binary delta lenses appear as an abstract
algebraic interface to TGG-based change propagation; at some stage, we want
to achieve similar results for mx-lenses and GDG (but not in this paper).

Our contributions to mx are as follows. We show with a simple example
(Sect. 3) an important special feature of multiview modelling: consistency restora-
tion may require not only update propagation to other models but the very
update created inconsistency should itself be amended; thus, update propaga-
tion should, in general, be reflective (even for the case of a two-view system).
Motivated by the example, in Sect. 4 we formally define the notion of a multi-
model, and then in Sect. 5, give a formal definition of a multiary (symmetric)
lens with amendment and state the basic algebraic laws such lenses must satisfy.
Importantly, we have a special KPutput law that requires compatibility of update
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propagation with update composition for a restricted class KII of composable
update pairs.

Our major results are about lens composition. In Sect. 6, we define several
operations over lenses, which produce complex lenses from simple ones: we first
consider two forms of parallel composition in Sect. 6.1, and then two forms
of sequential composition in Sections 6.2 and 6.4. Specifically, the construct
of composing an n-tuple of asymmetric binary lenses sharing the same source
into a symmetric n-ary lens gives a solution to the problem of building mx
synchronization via bx discussed by Stevens in [32].

We consider lens composition results crucially important for practical appli-
cation of the framework. If a tool builder has implemented a library of elemen-
tary synchronization modules based on lenses and, hence, ensuring basic laws for
change propagation, then a complex module assembled from elementary lenses
will automatically be a lens and thus also enjoys the basic laws. This allows the
developer to avoid additional integration testing, which can essentially reduce
the cost of synchronization software.

The paper is an essential extension of our FASE’18 paper [7]. The main addi-
tions are i) a new section motivating our design choices, ii) a constrained Putput
law (KPutput) and its thorough discussion, including a corresponding extension
of the running example, iii) a counterexample showing that invertibility is not
preserved by star composition, iv) two types of parallel composition of multi-
ary lenses, v) Related Work and Future Work sections are essentially extended,
particularly, an important subsection about multimodel updates including cor-
respondence updates (categorification) is added.

2 Background: Design choices for the paper

In this section, we discuss our design choices for the paper: why we need multi-
arity, amendments, K-Putput, and why, although we recognize limitations of a
framework only dealing with non-concurrent update scenarios, we still develop
their accurate algebraic model in the paper.

2.1 Why multiary lenses. Consider, for simplicity, three models, A1, A2,
and A3, working together (i.e., being models of the same integral system) and
being in sync at some moment. Then one of the models, say, A1, is updated
to state A′1, and consistency is violated. To restore consistency, the two other
models are to be changed accordingly and we say that the update of model A1 is
propagated to A2 and A3. Thus, consistency restoration amounts to having three
pairs of propagation operations, (ppgij , ppgji), with operation ppgij propagating
updates of model Ai to model Aj , i 6= j, i, j = 1, 2, 3. It may seem that the
synchronization problem can be managed by building three binary lenses `ij –
one lens per a pair of models.

However, when three models work together, their consistency is a ternary
relation often irreducible to binary consistency relations. Figure 1 presents a
simple example: three class diagrams shown in the figure are pairwise consistent
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while the whole triple is obviously inconsistent, i.e., violates a class diagram
metamodel constraint (which prohibits composition cycles).

A

B

B C

A C

Fig. 1: Three jointly incon-
sistent class diagrams

A binary lens can be seen as a couple of Mealy
machines (we write A1 � A2) sharing a state space
(say, R12). A ternary lens synchronizing a triple of
models can also be seen as a triple of couples of
Mealy machines (A1 � A2, A1 � A3, A2 � A3),
but they share the same space R123 and hence mu-
tually dependant on each other (they would be in-
dependent if each couple Ai � Ajwould have its
own space Rij). Thus, multiple model synchroniza-
tion is, in general, irreducible to chains of binary lenses and needs a new notion
of a multiary lens.

2.2 Why amendments. Getting back to the example, suppose that the up-
dated state A′1 goes beyond the projection of all jointly consistent states to the
space A1, and hence consistency cannot be restored with the first model being
in state A′1. When we work with two models, such cases could be a priori pro-
hibited by modifying the corresponding metamodelM1 defining the model space
so that state A′1 would violate M1. When the number of models to sync grows,
it seems more convenient and realistic to keep M1 more flexible and admitting
A′1 but, instead, when the synchronizer is restoring consistency of all models, an
amendment of state A′1 to a state A′′1 is also allowed. Thus, update propagation
works reflectively so that not only other models are changed but the initiating
update from A1 to A′1 is itself amended and model A′1 is changed to A′′1 . More-
over, in Sect. 3.3 we will consider examples of situations when if even state A′1
can be synchronized, a slight amendment still appears to be a better synchro-
nization policy. For example, if consistency restoration with A′1 kept unchanged
requires deletions in other models, while amending A′1 to A′′1 allows to restore
consistency by using additions only, then the update policy with amendments
may be preferable – as a rule, additions are preferable to deletions.

Of course, allowing for amendments may open the Pandora box of pathologi-
cal synchronization scenarios, e.g., we can restore consistency by rolling back the
original update and setting A′′1 = A1. We would like to exclude such solutions
and bound amendments to work like completions of the updates rather than cor-
rections and thus disallow any sort of “undoing”. To achieve this, we introduce a
binary relation KII of update compatibility: if an update u: A1 → A′1 is followed
by update v: A′1 → A′′1 and uKII v, then v does not undo anything done by u.
Then we require that the original update and its amendment be KII-related.
(Relation KII and its formal properties are discussed in Sect. 4.2.)

2.3 Why K-Putput. An important and desired property of update propaga-
tion is its compatibility with update composition. If u and v are sequentially
composable updates, and put is an update propagation operation, then its com-
positionality means put(u; v) = put(u); put(v)3 —hence, the name Putput for
3 to make this formula precise, some indexes are needed, but we have omitted them
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the law. There are other equational laws imposed on propagation operations in
the lens framework to guarantee desired synchronization properties and exclude
unwanted scenarios. Amongst them, Putput is the most controversial: Putput
without restrictions does not hold while finding an appropriate guarding con-
dition – not too narrow to be practically usable and not too wide to ensure
compositionality – has been elusive (cf. [15,18,10,20,6,5]). The practical impor-
tance of Putput follows from the possibilities of optimizing update propagation
it opens: if Putput holds, instead of executing two propagations, the engine can
executes just one. Moreover, before execution, the engine can optimize the pro-
cedure by preprocessing the composed update u; v and, if possible, converting it
into an equivalent but easier manageable form (something like query optimiza-
tion performed by database engines).

A preliminary idea of a constrained Putput is discussed in [20] under the
name of a monotonic Putput: compositionality is only required for two consec-
utive deletions or two consecutive insertions (hence the term monotonic), which
is obviously a too strong filter for typical practical applications. The idea of con-
straining Putput based on a compatibility relations over consecutive updates,
e.g., relation KII above, is much more flexible, and gives the name K-Putput
for the law. It was proposed by Orejas et al in [29] for the binary case with-
out amendment and intermodel correspondences (more accurately, with trivial
correspondences being just pairs of models), and we adapt it for the case of
full-fledge lenses with general correspondences and amendments. We consider
our integration of KII-constrained Putput and amendments to be an important
step towards making the lens formalism more usable and adaptable for practical
tasks.

2.4 Why non-concurrent synchronization. In the paper, we will consider
consistency violation caused by a change of only one model, and thus consistency
is restored by propagating only one update, while in practice we often deal with
several models changing concurrently. If these updates are independent, the case
can be covered with one-update propagation framework using interleaving, but
if concurrent updates are in conflict, consistency restoration needs a conflict res-
olution operation (based on some policy) and goes beyond the framework we
will develop in the paper. One reason for this is technical difficulties of building
lenses with concurrency – we need to specify reasonable equational laws regu-
lating conflict resolution and its interaction with update composition. It would
be a new stage in the development of the lens algebra.

Another reason is that the case of one-update propagation is still practi-
cally interesting and covers a broad class of scenarios – consider a UML model
developed by a software engineer. Indeed, different UML diagrams are just differ-
ent views of a single UML model maintained by the tool, and when the engineer
changes one of the diagrams, the change is propagated to the model and then the
changed model is projected to other diagrams. Our construct of star-composition
of lenses (see Sect. 6.2 and Fig. 10) models exactly this scenario. Also, if a UML
model is being developed by different teams concurrently, team members often
agree about an interleaving discipline of making possibly conflicting changes,
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and the one-update framework is again useful. Finally, if concurrent changes
are a priori known to be independent, this is well modelled by our construct of
parallel composition of one-update propagating lenses (see Sect. 6.1).

2.5 Lens terminology. The domain of change propagation is inherently com-
plicated and difficult to model formally. The lens framework that approaches
the task is still under development and even the basic concepts are not entirely
settled and co-exist in several versions (e.g., there are strong and weak invert-
ibility, several versions of Putput, and different names for the same property of
propagating idle updates to idle updates). This results in a diverse collection of
different types of lenses, each of which has a subtype of so called well-behaved
(wb) lenses (actually, several such as the notion of being wb varies), which are
further branched into different notions of very wb lenses depending on the Put-
put version accepted. The diversity of lens types and their properties, on the one
hand, and our goal to provide accurate formal statements, on the other hand,
would lead to overly wordy formulations. To make them more compact, we use
two bracket conventions.

Square brackets. If we say A wb lens is called [weakly] invertible, when..., we
mean that using adjective weakly is optional for this paper as the only type of
invertibility we consider is the weak invertibility. However, we need to mention it
because the binary lens notion that we generalize in our multiary lens notion, is
the weak invertibility to be distinguished from the strong one. Thus, we mention
‘weakly’ in square brackets for the first time and then say just ‘invertible’ (except
in a summarizing result like a theorem, in which we again mention [weakly]).

Round brackets. If a theorem reads A span of (very) wb asymmetric lenses
... gives rise to a (very) wb symmetric lens ... it mean that actually we have two
versions of the theorem: one is for wb lenses, and the other is for very wb lenses.

3 Example

We will consider a simple example motivating our framework. The formal con-
structs constituting the multiary delta lesn framework will be illustrated with
the example (or its fragments) and referred to as Running example. Although the
lens framework is formal, the running example instantiating it, will be presented
semi-formally: we will try to be precise enough, but an accurate formalization
would require the machinery of graphs with diagram predicates and partial graph
morphisms as described in our paper [26], and we do not want to overload this
paper with formalities even more.

3.1 A Multimodel to Play With

Suppose two data sources, whose schemas (we say metamodels) are shown in
Fig. 2 as class diagrams M1 and M2 that record employment. The first source
is interested in employment of people living in downtown, the second one is fo-
cused on software companies and their recently graduated employees. In general,
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employerPerson
name: Str
livesAt: Addr

M1

Company

name: Str

employeePerson

name: Str

Company

name: Str
locAt: Addr

M2

Route
RID: Str
from: Addr
to: Addr

M3

v

1

e2r  
Employment

MRRoute
1
*

Company1*2

1
Person1*2

* *

Fig. 2: Multi-Metamodel in UML

population of classes Person and Company in the two sources can be different –
they can even be disjoint, but if a recently graduated downtowner works for a
software company, her appearance in both databases is very likely.

Now suppose there is an agency investigating traffic problems, which main-
tains its own data on commuting routes between addresses as shown by schema
M3. These data should be synchronized with commuting data provided by the
first two sources and computable by an obvious relational join over M1 and M2:
roughly, the agency keeps traceability between the set of employment records
and the corresponding commuting routes and requires their from and to at-
tributes to be synchronized — below we will specify this condition in detail and
explain the forth metamodel MR (see specification (R123) on the next page). In
addition, the agency supervises consistency of the two sources and requires that
if they both know a person p and a company c, then they must agree on the
employment record (p, c): it is either stored by both or by neither of the sources.
For this synchronization, it is assumed that persons and companies are globally
identified by their names. Thus, a triple of data sets (we will say models) A1,
A2, A3, instantiating the respective metamodels, can be either consistent (if the
constraints described above are satisfied) or inconsistent (if they aren’t). In the
latter case, we normally want to change some or all models to restore consistency.
We will call a collection of models to be kept in sync a multimodel.

To specify constraints for multimodels in an accurate way, we need an accu-
rate notation. If A is a model instantiating metamodelM and X is a class inM,
we write XA for the set of objects instantiating X in A. Similarly, if r : X1 ↔ X2

is an association in M, we write rA for the corresponding binary relation over
XA

1 ×X
A
2 .4 For example, Fig. 3 presents a simple model A1 instantiatingM1 with

PersonA1 = {p1, p′1}, CompanyA1 = {c1}, employerA1 = {(p1, c1)}, and similarly
for attributes, e.g.,

livesAtA1 = {(p1, a1), (p′1, a1)} ⊂ PersonA1×Addr

(livesAtA1 and also nameA1 are assumed to be functions and Addr is the (model-
independent) set of all possible addresses). Two other boxes present models A2

and A3 instantiating metamodelsM2 andM3 resp.; we will discuss the rightmost
box R later. The triple (A1, A2, A3) is a (state of the) multimodel over the
4 In general, an association r is interpreted as a multirelation rA, but if the constraint
[unique] is declared in the metamodel, then rA must be a relation. We assume all
associations in our metamodels are declared to be [unique] by default.
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multimetamodel (M1,M2,M3), and we say it is consistent if the constraints
specified below are satisfied.

Constraint (C1) specifies mutual consistency of models A1 and A2 in the
sense described above:

(C1) if p ∈ PersonA1 ∩ PersonA2 and c ∈ CompanyA1 ∩ CompanyA2

then (p, c) ∈ employerA1 iff (c, p) ∈ employeeA2

Our other constraints specify consistency between the agency’s data on com-
muting routes and the two data sources. We first assume a new piece of data that
relates models: a relation (e2r)R whose domain is the integral set of employment
records EmploymentA1∗A2 as specified below in (R123):

(R123)
(e2r)R ⊂ EmploymentA1∗A2 × RouteA3

where EmploymentA1∗A2 def
= employerA1 ∪ (employeeA2)

−1

This relation is described in the metamodel MR in Fig. 2, where blue boxes
denote (derived) classes whose instantiation is to be automatically computed
(as specified above) rather than is given by the user.

To simplify presentation, we assume that all employees commute rather than
work from home, which means that relation (e2r)R is left-total. Another simplify-
ing assumption is that each employment record maps to exactly one commuting
route, hence, relation (e2r)R is a single-valued mapping. Finally, several people
living at the same address may work for the same company, which leads to dif-
ferent employment records mapped to the same route and thus injectivity is not
required. Hence, we have the following intermodel constraint:
(C2) relation (e2r)R is a total function EmploymentA1∗A2 −→ RouteA3

which is specified in the metamodel MR in Fig. 2 by the corresponding multi-
plicities. However, the metamodel MR as shown in Fig. 2, is still an incomplete
specification of correspondences between models.

For each employment record e ∈ EmploymentA1∗A2 , there are defined the
corresponding person

p = e.employeeA1∗A2 ∈ PersonA1∗A2 def
= PersonA1 ∪ PersonA2

with attribute

p.livesAtA1∗A2 =

{
p.livesAtA1 if p ∈ PersonA1 ,

⊥ otherwise.

We thus assume that the domain Addr is extended with a bottom value/null ⊥.
Similarly, we define set CompanyA1∗A2 with attribute locAtA1∗A2 and the corre-
sponding “end” e.employerA1∗A2 ∈ CompanyA1∗A2 for any employment record e.
The latter is of special interest for the agency if both addresses,

e.employeeA1∗A2 .livesAtA1∗A2 and e.employerA1∗A2 .locAtA1∗A2 ,

are defined and thus define a certain commuting route to be consistent with its
image e.(e2r)R in RouteA3 .
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:e2r :e2r

v

e2:employee

e’2:employee

e1:employerp1: Person
name = John
livesAt = a5

c1: Company

name = IBM

A1

p1’: Person
name = Mary
livesAt = a5 A3

r1: Route
RID = #1
from = a5
to = a15

p2: Person

name = Ann

c2: Company
name = Google
locAt = a10

p2’:Person
name= Mary

c2’:Company
name = IBM
locAt = a15A2 R

(p2, c2): Empl

r1: Route

(p1,c1): Empl

(p2’,c2’): Empl

Fig. 3: Multimodel A† = (A1, A2, A3, R) with (p2p)R = {(p′1, p′2)}, (c2c)R =

{(c1, c′2)}, and (e2r)R = {(e1, r1), (e′2
−1
, r1)}

More generally, the consistency of the two sets of commuting routes: that one
derived from A1 and A2, and that one stored in A3, can be specified as follows:

(C3) e.employeeA1∗A2 .livesAtA1∗A2 ≤ e.(e2r)R.fromA3

e.employerA1∗A2 .locAtA1∗A2 ≤ e.(e2r)R.toA3

where inequality a1 ≤ a2 holds iff both values are certain and a1 = a2, or both
values are nulls, or a1 is a null while a2 is certain.

Now it is easy to see that multimodel (A1, A2, A3, R) in Fig. 3 is “two-times”
inconsistent: (C1) is violated as both A1 and A2 know Mary and IBM, and
(IBM,Mary)∈ employeeA2 but (Mary, IBM)/∈ employerA1 , and (C2) is violated as
A2 and R show an employment record e2 not mapped to a route in RouteA3 . Note
also that if we map this record to the route #1 to fix (C2), then constraint (C3)
will be violated. We will discuss consistency restoration in the next subsection,
but first we need to finish our discussion of intermodel correspondences.

Note that correspondences between models have more data than specified in
(R123). Indeed, classes PersonA1 and PersonA2 are interrelated by a correspon-
dence linking persons with the same name, and similarly for Company so that
we have two partial injections:
(R12) (p2p)R ⊂ PersonA1×PersonA2 , (c2c)R ⊂ CompanyA1×CompanyA2 ,
which are not shown in metamodel MR (by purely technical reasons of keeping
the figure compact and fitting in the page width). These correspondence links (we
will write corr-links) may be implicit as they can always be restored using names
as keys. In contrast, relation (e2r) is not determined by the component model
states A1, A2, A3 and is an independent piece of data. Importantly, for given
models A1,2,3, there may be several different correspondence mappings (e2r)R

satisfying the constraints. For example, if there are several people living at the
same address and working for the same company, all employment record can be
mapped to the same route or to several different routes depending on how much
carpooling is used. In fact, multiplicity of possible corr-specifications is a general
story; it can happen for relations (p2p) and (c2c) as well if person and company
names are not entirely reliable keys. Then we need a separate procedure of model
matching or alignment that has to establish, e.g., whether objects p′1 ∈ PersonA1

and p′2 ∈ PersonA2 both named Mary represent the same real world object.
Constraints we declared above implicitly involve corr-links, e.g., formula for (C1)
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is a syntactic sugar for the following formal statement: if (p1, p2) ∈ (p2p)R and
(c1, c2) ∈ (c2c)R with pi∈PersonAi , ci∈CompanyAi (i = 1, 2), then the following
holds: (p1, c1) ∈ employerA1 iff (c2, p2) ∈ employeeA2 . A precise formal account
of this discussion can be found in [26].

Thus, a multimodel is actually a tupleA = (A1, A2, A3, R) where R is a corre-
spondence specification (which, in our example, is a collection of correspondence
relations (R123), (R12) over sets involved). Consistency of a multimodel is a
property of the entire 4-tuple A rather than its 3-tuple carrier (A1, A2, A3).

3.2 Synchronization via Update Propagation

There are several ways to restore consistency of the multimodel in Fig. 3 w.r.t.
constraint (C1). We may delete Mary from A1, or delete her employment with
IBM from A2, or even delete IBM from A2. We can also change Mary’s employ-
ment from IBM to Google, which will restore (C1) as A1 does not know Google.
Similarly, we can delete John’s record from A1 and then Mary’s employment
with IBM in A2 would not violate (C1). As the number of constraints and the
elements they involve increase, the number of consistency restoration variants
grows fast.

The range of possibilities can be essentially decreased if we take into ac-
count the history of creating inconsistency and consider not only an inconsistent
state A† but update u: A → A† that created it (assuming that A is consis-
tent). For example, suppose that initially model A1 contained record (Mary,
IBM) (and A3 contained (a1, a15)-commute), and the inconsistency appears af-
ter Mary’s employment with IBM was deleted in A1. Then it’s reasonable to
restore consistency by deleting this employment record in A2 too; we say that
deletion was propagated from A1 to A2. If the inconsistency appears after adding
(IBM, Mary)-employment to A2, then it’s reasonable to restore consistency by
adding such a record to A1. Although propagating deletions/additions to dele-
tions/additions is typical, there are non-monotonic cases too. Let us assume that
Mary and John are spouses and live at the same address, and that IBM follows
an exotic policy prohibiting spouses to work together. Then we can interpret ad-
dition of (IBM, Mary)-record to A2 as swapping of the family member working
for IBM, and then (John, IBM) is to be deleted from A1.

Now let’s consider how updates to and from model A3 may be propagated.
As mentioned above, traceability/correspondence links play a crucial role here.
If additions to A1 or A2 create a new commute, the latter has to be added to
A3 (together with its corr-links) due to constraints (C2) and (C3). In contrast,
if a new route is added to A3, we may change nothing in A1,2 as (C2) does not
require surjectivity of (e2r) (but further in the paper we will consider a more
intricate policy). If a route is deleted from A3, and it is traced via (e2r)R to one
or several corresponding employments in EmploymentA1∗A2 , then they are either
deleted too, or perhaps remapped to other routes with the same from-topair of
attributes if such exist. Similarly, deletions in EmploymentA1∗A2 may (but not
necessarily) lead to the corresponding deletions in RouteA3 depending on the
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mapping (e2r)R. Finally, updating addresses in A1 or A2 is propagated to the
corresponding updates of from and to attributes in A3 to satisfy constraint (C3);
similarly for attribute updates in A3.

Clearly, many of the propagation policies above although formally correct,
may contradict the real world changes and hence should be corrected, but this
is a common problem of a majority of automatic synchronization approaches,
which have to make guesses in order to resolve non-determinism inherent in
consistency restoration.

3.3 Reflective Update Propagation

An important feature of update propagation scenarios above is that consistency
could be restored without changing the model whose update caused inconsis-
tency. However, this is not always desirable. Suppose again that violation of
constraint (C1) in multimodel in Fig. 3 was caused by adding a new person
Mary to A1, e.g., as a result of Mary’s moving to downtown. Now both models
know both Mary and IBM, and thus either employment record (Mary, IBM) is to
be added to A1, or record (IBM, Mary) is to be removed from A2. Either of the
variants is possible, but in our context, adding (Mary, IBM) to A1 seems more
likely and less specific than deletion (IBM, Mary) from A2. Indeed, if Mary has
just moved to downtown, the data source A1 simply may not have completed
her record yet. Deletion (IBM, Mary) from A2 seems to be a different event
unless there are strong causal dependencies between moving to downtown and
working for IBM. Thus, an update policy that would keep A2 unchanged but
amend addition of Mary to A1 with further automatic adding her employment
for IBM (as per model A2) seems reasonable. This means that updates can be
reflectively propagated (we also say self-propagated).

Of course, self-propagation does not necessarily mean non-propagation to
other directions. Consider the following case: model A1 initially only contains
(John, IBM) record and is consistent withA2 shown in Fig. 3. Then record (Mary,
Google) was added to A1, which thus became inconsistent with A2. To restore
consistency, (Mary, Google) is to be added to A2 (the update is propagated from
A1 to A2) and (Mary, IBM) to be added to A1 as discussed above (i.e., addition
of (Mary, Google) is both amended and propagated). Note, however, that in
contrast to the previous case, now deletion of the record (IBM, Mary) from A2

looks like an equally reasonable scenario of Mary changing her employer. Thus,
even for the simple case above, and the more complex cases of model interaction,
the choice of the update policy (only amend, only propagate, or both) depends
on the context, heuristics, and tuning the policy to practice.

A typical situation that needs an amendment facility is when the changes
in interacting models have different granularity. With our simple running exam-
ple, we can illustrate the point in the following (rather artificial) way. Suppose,
again, that the record of Mary working for Google, and her address unknown
(i.e., Mary.livesAt = ⊥) is added to model A1, and propagated to A2 as discussed
above. Suppose that Google has a strict policy of only hiring those recent grad-
uates who live on Bloor Street in Toronto downtown. Then in Mary’s address
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record, all fields could (and should!) be made certain besides the street num-
ber. Hence, adding Mary’s employment to model A1 should be amended with
extending her address with data imposed by model A2. For a more realistic
example, consider model A2 specifying a complex engineering project P in the
process of elaboration, while model A1 gives its very abstract view – the budget
B of the project. If the budget changes from B to B′, the project should also be
changed, but it is very likely that the budget of the changed project P ′ would
be B′′ rather than exactly B′. A more general and formal description of this
synchronization schema can be found in [5].

3.4 General schema

�� ��An

�� ��Ai

R�� ��A1

..j
6= i
..

...�� ��A′i

ui
?

A′′n

u′n

?

A′′i

u@i

?
R
′′

A′′1

u′1

?
..j
6= i
..

Fig. 4: Update propagation pattern (To dis-
tinguish given data from those produced by
the operation, the former are shown with
framed nodes and solid lines, while the latter
are non-framed and dashed.)

A general schema of update
propagation including reflection
is shown in Fig. 4. We be-
gin with a consistent multimodel
(A1...An, R)

5 one of which mem-
bers is updated ui: Ai → A′i. The
propagation operation, based on a
priori defined propagation policies
as sketched above, produces:
a) updates on all other models
u′j : Aj → A′′j , 1 ≤ j 6= i ≤ n;
b) an amendment u@i : A′i → A′′i
to the original update;
c) a new correspondence specifi-
cation R′′ such that the updated
multimodel

(A′′1 ...A
′′
n, R

′′)
is consistent.

Below we introduce an alge-
braic model encompassing several
operations and algebraic laws for-
mally modelling situations con-
sidered so far.

4 Multimodel spaces

In this section we begin to build a formal framework for delta lenses: model
spaces are described as categories whose objects are models and arrows are up-
dates, which carry several additional relations and operations. We also abstractly

5 Here we first abbreviate (A1, . . . , An) by (A1...An), and then write (A1...An, R) for
((A1...An), R). We will apply this style in other similar cases, and write, e.g., i = 1...n
for i ∈ {1, ..., n}.
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define correspondences between models and our central notion of a (consistent)
multimodel. We will follow an established terminological tradition (in the lens
community) to give, first, a name to an algebra without any equational require-
ment, and then call an algebra satisfying certain equations well-behaved.

4.1 Background: Graphs, (co)Spans, and Categories

We reproduce well-known definitions to fix our notation. A (directed multi-)graph
G consists of a set Ob(G) of nodes and a set Ar(G) of arrows equipped with two
functions s, t: Ar(G) → Ob(G) that give arrow a its source s(a) and target t(a)
nodes. We write a: N → N ′ if s(a) = N and t(a) = N ′, and a: N → _ or
a: _→ N ′ if only one of these conditions is given.

Expressions G(N,N ′), G(N,_), G(_, N ′) denote sets of, resp., all arrows
from N to N ′, all arrows from N , and all arrows into N ′.

A pair of arrows ai: N → N ′i , i = 1, 2, with a common source is called a
[binary] span with node N its head or apex, nodes N ′i feet, and arrows ai legs.
Dually, a pair of arrows ai : N ← N ′i , i = 1, 2, with a common target is called a
(binary) cospan with apex, feet, and legs, defined similarly.

A [small] category is a graph, whose nodes are called objects, arrows are
associatively composable, and every object has a special identity loop, which
is the unit of the composition. In more detail, given two consecutive arrows
a1: _ → N and a2: N → _, we denote the composed arrow by a1; a2. The
identity loop of node N is denoted by idN , and equations a1; idN = a1 and
idN ; a2 = a2 are to hold. We will denote categories by bold letters, say, A, and
often write A ∈ A rather than A ∈ Ob(A) for its objects.

A functor is a mapping of nodes and arrows from one category to another,
which respects sources and targets as well as identities and composition. Having
a tuple/family of categories A = (A1...An), their product is a category

∏
A =

A1×...×An whose objects are tuples A = (A1...An) ∈ Ob(A1)×...×Ob(An),
and arrows from (A1...An) to (A′1...A

′
n) are tuples of arrows u = (u1...un) with

ui: Ai → A′i for all i = 1...n.

4.2 Model Spaces and updates

Basically, a model space is a category, whose nodes are called model states or just
models, and arrows are (directed) deltas or updates. For an arrow u: A → A′,
we treat A as the state of the model before update u, A′ as the state after the
update, and u as an update specification. Structurally, it is a specification of
correspondences between A and A′. Operationally, it is an edit sequence (edit
log) that changed A to A′. The formalism does not prescribe what updates are,
but assumes that they form a category, i.e., there may be different updates from
state A to state A′; updates are composable; and idle updates idA: A→ A (doing
nothing) are the units of the composition. A prominent example of model spaces
is the category of graphs where updates are encoded as (certain equivalence
classes of) binary spans between them. They are heavily used in the theory of
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Graph Transformations [13]. In this way an update u : A→ A′ can be a deletion
or an addition or a combination of both.

We require every model space A to be endowed with two additional con-
structs of update compatibility.

Sequential compatibility of updates We assume a family (KII
A )A∈Ob(A) of

binary relations KII
A ⊂ A(_, A)×A(A,_) indexed by objects of A, and spec-

ifying non-conflicting or compatible consecutive updates. Intuitively, an update
u into A is compatible with update u′ from A, if u′ does not revert/undo any-
thing done by u, e.g., it does not delete/create objects created/deleted by u, or
re-modify attributes modified by u. For example, one could add Mary’s employ-
ment at IBM (u: A1 → A′1) and subsequently add Ann (u′: A′1 → A′′1) to A′1
yielding a pair (u, u′) ∈ KII

A′
1
(see [29] for a detailed discussion). Later we will

specify several formal requirements to the compatibility (see Def. 2 below).

(1)

�� ��A

−−KN−−�� ��A′1
�

u1

[merge]
�� ��A′2

� u2

u1+u2

?

A′′

ũ
2

-ũ1 -

Fig. 5: Update merging

Concurrent compatibility of updates and their merging Intuitively, a
pair of updates u = (u1, u2) from a common source A (i.e., a span) as shown
in Fig. 5 diagram (1) is called concurrently compatible, if it can be performed in
either order leading to the same result – an update u1 + u2: A → A′′. For-
mally, in the case of concurrent compatibility of u1 and u2, we require the
existence of update u1 + u2: A → A′′ and updates ũi: A′i → A′′ such that
u1; ũ1 = u2; ũ2 = u1+u2. Then we call updates ui mergeable, update u1+u2 their
merge, and updates ũ1, ũ2 complements, and write (ũ1, ũ2) = mergeA(u1, u2) or
else ũi = mergeA,i(u1, u2). We will also denote the model A′′ by A′1 +A A′2.
For example, for model A1 in Fig.3, we can concurrently delete John’s and add
Mary’s employments with IBM, or concurrently add two Mary’s employments,
say, with IBM and Google. But deleting Mary from the model and adding her
employment with IBM are not concurrently compatible. Similarly, in A3, updat-
ing addresses of different routes, or updating the from and to attributes of the
same route are concurrently compatible, but deleting a route and changing its
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attributes are incompatible (we will also say, in conflict). We denote the set of
all mergeable spans with apex A by KN

A.
The definition of concurrent compatibility is a generalization of the notion of

parallel independence of graph transformation rules [12]. Below we will elaborate
further on the interplay of sequentially and concurrently compatible pairs.

Now we can define model spaces.

Definition 1 (Model Spaces). A model space is a tuple

A = (|A|,KII,KN,merge)

of the following four components. The first one is a category |A| (the carrier)
of models and updates. We adopt a notational convention to omit the bars |
and denote a space and its carrier category by the same symbol A. The second
component is a family

KII =
(
KII
A ⊂ A(_, A)×A(A,_) | A∈Ob(A)

)
of sequential compatibility relations for sequential update pairs as described
above. The third and forth component are tightly coupled:

KN =
(
KN
A ⊂ A(A,_)×A(A,_) | A∈Ob(A)

)
is a family of concurrently compatible or mergeable spans of updates, and

merge = (mergeA | A∈Ob(A))

is a family of merge operations as shown in (1). The domain of operation mergeA
is exactly the set KN

A. We will denote the components of merge by mergeA,i with
i = 1, 2 and omit index A if they are clear from the context or not important.
Writing mergeA(u1, u2) implicitly assumes (u1, u2) ∈ KN

A. ut

Definition 2 (Well-behaved Model Spaces).

(KII and Id) For all u∈A(_, A), u′∈A(A,_): (u, idA), (idA, u
′)∈KII

A ,

For any three consecutive updates u, v, w, we require:
(KIIKII)1 (uKII vw ∧ vKIIw) imply (uKIIv ∧ uvKIIw),
(KIIKII)2 (uvKIIw ∧ uKIIv) imply (vKIIw ∧ uKII vw),

where composition is denoted by concatenation (uv for u; v etc).

(KN and KII) For all (u1, u2) ∈ KN
A: (ui, ũi) ∈ KII

A′
i
, i = 1, 2, where ũi = mergeA,i(u1, u2)

(MergeSym)
For all u1: A→ A′1, u2: A→ A′2, if (ũ1, ũ2) = mergeA(u1, u2),
then (ũ2, ũ1) = mergeA(u2, u1)

(MergeId) For all u: A→ A′: mergeA(u, idA) = (idA′ , u)
ut
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The first condition is the already discussed natural property for sequential com-
patibility. The pair of conditions below it requires complementing updates not to
revert anything done by the other update. The last three conditions are obvious
requirements to the operation merge.

We assume all our model spaces to be wb and, as a rule, will omit explicit
mentioning. Each of the metamodels M1..M3 in the running example gives rise
to a (wb) model space of its instances as discussed above.

4.3 Correspondences and Multimodels

We will work with families of model spaces indexed by a finite set I, whose
elements can be seen as space names. To simplify notation, we will assume that
I = {1, . . . , n} although ordering will not play any role in our framework. Given
a tuple of model spaces A1, . . . ,An, we will refer to objects and arrows of the
product category

∏
A = A1× · · ·×An as tuple models and tuple updates, and

denote them by letters without indexes, e.g., u: A→ A′ is a family ui: Ai → A′i,
i = 1..n. We will call components of tuple models and updates their feet. We
also call elements of a particular space Ai foot models and foot updates.

Definition 3 (Multispaces, Alignment, Consistency). Let n ≥ 2 be a nat-
ural number. An n-ary multi-space is a tripleA = (A,Corr, ∂) with the following
components. The first one is a tuple of (wb) model spaces A = (A1, . . . ,An)
called the boundary of A. The other two components is a class Corr of elements
called (consistent) correspondences or corrs, and a family of boundary mappings
∂ = (∂i: Corr→ Ob(Ai) | i = 1..n).

A corr R ∈ Corr is understood as a correspondence specification interrelating
models Ai = ∂iR; the latter are also called R’s feet, and we say that models Ai

are aligned via R. We write ∂R for the tuple (∂1R...∂nR). When we consider
several multispaces and need an explicit reference, we will write ∂A for the
boundary A of the entire multispace, and Corr(A) for its class of corrs.

Given a model tuple A = (A1...An) ∈ Ob((
∏

A)), we write Corr(A) for the
set {R ∈ Corr| ∂R = A}, and Corr(Ai) for the class {R ∈ Corr| ∂iR = Ai}; thus,
Corr(A) =

⋂
i=1..n Corr(Ai). 6

Although in this paper all corrs are considered consistent by default, we
will often mention their consistency explicitly to recall the context and to ease
comparison with similar but a bit more general frameworks, in which inconsistent
corrs are also considered [11,6]. ut

Definition 4 (Multimodels). A (consistent) multimodel over a multispace
A is a couple A = (A,R) of a model tuple A = (A1..An) with a (consis-
tent) corr R ∈ Corr(A) relating the component models. A multimodel update
u: A → A′ is a pair (u, (R,R′)), whose first component is a tuple update
u = (ui: ∂iR→ ∂iR

′ | i = 1..n), and the second component is a pair of the old
and the new corrs. Identity updates are pairs (id, (R,R)), whose tuple compo-
nent consists of identities id∂iR, i = 1..n, only. It is easy to check that so defined
multimodels and their updates determine a category that we denote by R. ut
6 With this line of notation, the entire class Corr(A) could be denoted by Corr(A).
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Remark 1. The notions of a corr and a multimodel are actually synonyms: any
corr R is simultaneously a multimodel (∂R,R), and any multimodel (A,R) is
basically just a corr R as the feet part of the notion is uniquely restored by setting
A = ∂R, thus, Corr ∼= Ob(R). We can extend the equivalence to arrows too by
defining corr updates exactly as we defined multimodel updates. This would
make class Corr into a category Corr isomorphic to R. Using two symbols and
two names for basically the same notion is, perhaps, confusing but we decided
to keep them to keep track of the historical use of the terminology. The choice of
the word depends on the context: if we focus on the R component of pair (A,R),
we say “corr”, if we focus on the A component, we say “multimodel”.

Thus, for this paper, multimodel updates are basically tuple updates u while
their corr-component (R,R′) is trivial (co-discrete in the categorical jargon)
and so we actually will not need the category Corr (or R) explicitly declared.
However, the notion will be useful when we will discuss categorification of the
framework in Future Work Sect. 7.1, and in Related Work Sect. 8.

Example 1. The Running example of Sect.3 gives rise to a 3-ary multimodel
space. For i = 1..3, space Ai consists of all models instantiating metamodel Mi

in Fig.2 and their updates. Given a model tuple A = (A1, A2, A3), a consistent
corr R ∈ Corr(A) is given by a triple of relations (p2p)R, (c2c)R, and (e2r)R (the
first is specified by formula (R123) on p. 8 and the other two by (R12) on p. 9)
such that the intermodel constraints (C1-3) are satisfied. If we rely on person
and company names as keys, then relations (p2p)R, (c2c)R are derived from foot
models A1 and A2, but if these keys are not reliable, then the two relations
are independent components of the multimodel. Relation (e2r)R is always an
independent component.

5 Update Propagation and Multiary (Delta) Lenses

Update policies described in Sect. 3 can be extended to cover propagation of all
updates ui, i ∈ 1...3 according to the pattern in Fig. 4. This is a non-trivial task,
but after it is accomplished, we obtain a synchronization framework, which we
algebraically model as an algebraic structure called a (very) well-behaved lens.
In this term, lens refers to a collection of diagram operations defined over a
multispace of models, each of which takes a configuration of models, corrs and
updates, and returns another configuration of models, corrs and updates — then
we say that the operation propagates updates. A lens is called well-behaved, if
its propagation operations satisfy a set of algebraic laws specified by equations.
This terminological discipline goes back to the first papers, in which lenses were
introduced [14]. We define and discuss well-behaved lenses in the next Sect. 5.1.
Additionally, in Sect. 5.2, we discuss yet another important requirement to a
reasonable synchronization framework: compatibility of update propagation with
update composition, which is specified by the most controversial amongst the
lens laws – the (in) famous Putput. We define a suitably constrained version of
the law and call it Kputput, and call a well-behaved lens satisfying the KPutput
law very well-behaved (again following the terminological tradition of [14]).
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5.1 Well-behaved lenses

Definition 5 (Symmetric lenses). An n-ary symmetric lens is a pair ` =
(A, ppg) withA an n-ary multimodel called the carrier of `, and ppg = (ppgi | i = 1..n)
a family of operations of the following arities. Operation ppgi takes a consistent
corr R with boundary ∂R = (A1...An), and a foot update ui: Ai → A′i as its
input, and returns three data items (a,b,c) specified below.

(a) an (n− 1)-tuple of updates u′j : Aj → A′′j with 1 ≤ j 6= i ≤ n;
(b) an amendment u@i : A′i → A′′i to the original update so that we have a

new reflective update u′i = ui;u
@
i : Ai → A′′i

These data define a tuple update u′: A→ A′′ = (A′′1 , .., A
′′
i , .., A

′′
n).

(c) a new corr R′ ∈ Corr(A′′).
In fact, operation ppgi completes a (local) foot update ui to a (global) update
of the entire multimodel u: A → A′, whose components are (u′j)j 6=i, u′i = ui;u

@
i ,

and the pair (R,R′) (see also Fig. 4). ut

Note that all ppg operations are only defined for consistent corrs and return
consistent corrs. The latter requirement is often formulated as a special lens law
(often called Correctness) but in our framework, it is embedded in the arity of
propagation operations.

Notation. If the first argument R of operation ppgi is fixed, the correspond-
ing family of unary operations (whose only argument is ui) will be denoted by
ppgR

i . By taking the jth component of the multi-element result, we obtain single-
valued unary operations ppgR

ij producing, resp. updates u′j = ppgR
ij(ui): Aj → A′′j

for all j 6= i (see clause (a) of the definition) while ppgR
ii returns the amendment

u@i . We also have operation ppgR
i? returning a new consistent corr R′′ = ppgR

i?(ui)
according to (c).

Definition 6 (Closed updates). Given a lens ` = (A, ppg) and a corr R ∈
Corr(A1...An), we call an update ui: Ai → A′i R-closed, if ppgR

ii(ui) = ui (i.e.,
u@i = idA′

i
). An update ui is closed if it is R-closed for all R ∈ Corr(Ai). Lens `

is called closed at foot Ai, if all updates in Ai are `-closed. ut

Definition 7 (Well-behaved lenses). A lens ` = (A, ppg) is called well-
behaved (wb) if the following laws hold for all i = 1..n, Ai ∈ Ob(Ai), R ∈ Corr(Ai)
and ui: Ai → A′i, cf. Fig. 4
(Stability)i ppgR

ij(idAi) = idAj for all j = 1...n, and ppgR
i?(idAi) = R

(Reflect1)i (ui, u
@
i ) ∈ KII

A′
i

(Reflect2)ij ppgR
ij(ui;u

@
i ) = ppgR

ij(ui) for all j 6= i

(Reflect3)i ppgR
ii(ui;u

@
i ) = idA′′

i
where A′′i is the target model of u@i ,

where in laws (Reflect1−3), u@i stands for ppgR
ii(ui)

Stability says that lenses do nothing voluntarily. Reflect1 says that amendment
works towards “completion” rather than “undoing”, and Reflect2-3 are idempo-
tency conditions to ensure the completion indeed done.
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Definition 8 (Invertibility). A wb lens is called [weakly] invertible, if it satisfies
the following law for any i, update ui: Ai → A′i and R ∈ corrAi:
(Invert)i for all j 6= i: ppgR

ij(ppgR
ji(ppgR

ij(ui))) = ppgR
ij(ui) ut

This law deals with “round-tripping”: operation ppgR
ji applied to update uj =

ppgR
ij(ui) results in update ûi equivalent to ui in the sense that ppgR

ij(ûi) =

ppgR
ij(ui) (see [11] for a motivating discussion).

Example 2 (Trivial lenses tn(A)). A category consisting of one object and one
(necessary identity) arrow is called terminal. All terminal categories are isomor-
phic; we fix one, whose object is denoted by 1 while the category is denoted by
1 (bold 1). The terminal category 1 gives rise to a unique terminal space with
KII
1 = {(id1, id1)}, KN

1 = {id1, id1} and merge(id1, id1) = id1.
Any model space A gives rise to the following trivial n-ary lens tn(A). The

first foot space A1 = A while for all j = 2..n, Aj = 1. Tuple models are uniquely
determined by their first foot, and given such a model (A, 1...1), the set of corrs is
the singleton {A} with ∂1A = A and ∂2..nA = 1, and this only corr is considered
consistent. Hence, all mutlimodels are consistent and update propagation is not
actually needed. For any A, lens tn(A) is a wb, invertible lens closed at all its
feet in a trivial way. ut

The next example is more interesting.

Example 3 (Identity Lenses idn(A)). Let A be an arbitrary model space. It
generates an n-ary lens idn(A) as follows. The carrier A has n identical feet
spaces: ∂iA = A for all i = 1..n. The corr set CorrA for a tuple model A =
(A1..An) is the singleton {A} with ∂iA = Ai; this corr is consistent iff A1 =
A2 = ... = An. All updates are propagated to themselves (hence the name
identity lens). Obviously, idn(A) is a wb, invertible lens closed at all its feet. ut

5.2 Very well-behaved lenses

We consider an important property of update propagation—its compatibility
with update composition. A simple compositionality law would require that the
composition ui; vi of two consecutive foot updates ui: Ai → A′i, vi: A′i → Bi, is
propagated into the composition of propagations:

ppgR
ij(ui; vi) = ppgR

ij(ui); ppgR′′

ij (vi)

with R′′ being the corr provided by the first propagation, R′′ = ppgR
i?(ui). It is

however well known that such a simple law (called PutPut) often does not hold.
Figure 6 presents a simple example (we use a more compact notation, in

which values of the attribute name are used as OIDs – the primary key attribute
idea). At the initial moment, the binary multimodel (A1, A2) with the (implicit)
corr given by name matching is consistent: the only intermodel constraint (C1)
is satisfied. Update u1 adds a new employment record to model A1, constraint
(C1) is violated, and to restore consistency, a new employment is added to A2
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A1
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locAt = a10

A2
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Ann
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Google
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Google

A1“

Ann Google
locAt = a10

Mary IBM
locAt = a15

Fig. 6: Unconstrained Putput is violated - Example 1

by update u2 = ppgR
12(u1) (the new propagated model and update are shown

with blue lines and blank). Then update v1 deletes the record added by u1, but
as the resulting multimodel (A′′1 , A′2) remains consistent, nothing should be done
(if we follow the Hippocraticness principle in bx introduced by Stevens [31]) and
thus v1 is propagated to identity, v2 = ppgR′′

12 (v1) = idA′
2
. Now we notice that

the composition (u1; v1) is identity, and hence is to be propagated to identity,
i.e., ppgR

12(u1; v1) = idA2
, while ppgR

12(u1); ppgR′′

12 (v1) = u2; v2 = u2 6= idA2
, and

A′′1 6= A′′2 .7

Obviously, the violation story will still hold if models A1 and A2 are much
bigger and updates u1 and v1 are parts of bigger updates (but Mary should not
appear in A1).

Figure 7 presents a more interesting ternary example. Multi-model A is con-
sistent, but update u3 deletes route #1 and violates constraint (C2). In this case,
the most direct propagation policy would delete all employment records related
to #1 but, to keep changes minimal, would keep people in A1 and companies
in A2 as specified by model A′ in the figure. Then a new route is inserted by

7 In more detail, equality of models A1 and A′′1 is a bit more complicated than shown in
the figure. Objects Ann in A1 and Ann in A′′i will actually have different OIDs, but as
OIDs are normally invisible, we consider models up to their isomorphism w.r.t. OID
permutations that keep attribute values unchanged. Hence, models A1 and A′′i are
isomorphic and become equal after we factorize models by the equivalence described
above.
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Fig. 7: Unconstrained Putput is violated–Example 2

update v3 (note the new OID), which has the same from and to attributes as
route #1. There are multiple ways to propagate such an insertion. The simplest
one is to do nothing as the multimodel (A′1, A′2, A′′3 , R′ = ∅) is consistent (recall
that mapping (e2r) is not necessarily surjective). However, we can assume a more
intelligent (non-Hippocratic) policy that looks for people with address a1 in the
first database (and finds John and Mary), then checks somehow (e.g., by other
attributes in the database schema M1 which we did not show) if some of them
are recent graduates in IT (and, for example, finds that Mary is such) and thus
could work for a company at the address a10 (Google). Then such a policy would
propagate update v3 to v1 and v2 as shown in the figure. Now we notice that
the composition of updates u3 and v3 is an identity8, and thus u3; v3 would be
propagated to the identity on the multimodel A. However, A′′ 6= A and Putput
fails. (Note that it would also fail if we used a simpler policy of propagating
update v3 to identity updates on A′1 and A′2.)

A common feature of the two examples is that the second update v fully
reverts the effect of the first one, u, while their propagations do not fully enjoy
such a property due to some “side effects”. In fact, Putput is violated if update v
would just partially revert update u. Several other examples and a more general
discussion of this phenomenon that forces Putput to fail can be found in [5].
However, it makes sense to require compositional update propagation for two
sequentially compatible updates in the sense of Def. 1; we call the respective
version of the law KPutput law with ’K’ recalling the sequential compatibility

8 see the previous footnote 7
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relation KII. To manage update amendments, we will also need to use update
merging operator merge as shown in Fig. 8

Definition 9 (Very well-behaved lenses). A wb lens is called very well
behaved (vwb), if it satisfies the following KPutput law for any i, corr R ∈ corrAi,
and updates ui: Ai → A′i, vi: A′i → Bi (see Fig. 8).

Let u@i = ppgR
ii(ui). Suppose that (ui, vi) ∈ KII

A′
i
and (vi, u

@
i ) ∈ KN

A′
i
, then the

merge (ṽi, ũ@i ) = merge(vi, u
@
i ) is defined (see Fig. 8) and the following equalities

are required to hold:

(KPutput)j 6=i
ppgR

ij(ui; vi) = ppgR
ij(ui); ppgR′′

ij (ṽi),
and (ppgR

ij(ui), ppgR′′

ij (ṽi)) ∈ KII
A′′

j
,

(KPutput)ii (ui; vi)
@ = ũ@i ; (ṽi)

@

see the dashed arrows in Fig. 8, which depict the propagation of the composed
updates. ut

Ai Aj

Ai

ui

��

R
Aj

ppgRij(ui)

��
ppgRij(ui;vi)

��

A′i

vi

zz

u@
i

$$
[merge]Bi

ũ@
i :=merge1(vi,u

@
i )

##

(ui;vi)
@

,,

A′′i

ṽi:=merge2(vi,u
@
i )

{{

R′′
A′′j

ppgR
′′

ij (ṽi)

��

=

Bi +A′
i
A′′i=

ṽi
@

��
A′′′i

R′′′
A′′′j

∈KII

∈KN ∈KII
A′′

j

Fig. 8: (KPutput)-Law (for update x, expression x@ stands for the amendment
ppg

R(x)
ii (x) with R(x) being the corr at the source of x – it labels the correspond-

ing horizontal dotted line)
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Corollary 1 (Closed vwb lenses). For a vwb lens as defined above, if update
ui is R-closed (i.e., u@i = idA′), then the following equations hold:

(KPutput)closedj 6=i

ppgR
ij(ui; vi) = ppgR

ij(ui); ppgR′′

ij (vi),
and (ppgR

ij(ui), ppgR′′

ij (vi)) ∈ KII
A′′

j
,

(KPutput)closedii (ui; vi)
@ = v@i

6 Compositionality of Model Synchronization: Playing
Lego with Lenses

We study how lenses can be composed. Assembling well-behaved and well-tested
small components into a bigger one is a cornerstone of software engineering.
If a mathematical theorem guarantees that desired properties carry over from
the components to the composition, additional integration tests for checking
these properties are no longer necessary. This makes lens composition results
practically important.

In Sect. 6.1, we consider parallel composition of lenses, which is easily man-
ageable. Sequential composition, in which different lenses share some of their
feet, and updates propagated by one lens are taken and propagated further by
one or several other lenses, is much more challenging and considered in the other
two subsections. In Sect. 6.2, we consider ”star-composition”, cf. Fig. 10 and show
that under certain additional assumptions (very) well-behavedness carries over
from the components to the composition. However, invertibility does not carry
over to the composition – we shows this with a counterexample in Sect. 6.3.
In Sect. 6.4, we study how (symmetric) lenses can be assembled from asym-
metric ones and prove two easy theorems on the property preservation for such
composition.

Since we now work with several lenses, we need a notation for lens’ com-
ponents. Given a lens ` = (A, ppg), we write A`,A(`) or ∂` for ∂A, Corr` or
Corr(`) for Corr(A), and ∂`i (R) for the i-th boundary of corr R. Propagation
operations of the lens ` are denoted by `.ppgR

ij , `.ppgR
i?. We will often identify

an aligned multimodel (A,R) and its corr R as they are mutually derivable (see
Remark 1 on p.17).

We will also need the notion of lens isomorphism.

Definition 10 (Isomorphic lenses). Two n-ary lenses ` and `′ are isomor-
phic, ` ∼= `′, if
(a) their feet are isomorphic via a family of isomorphism functors fi: A`

i → A`′

i ;
(b) their classes of corrs are isomorphic via bijection fCorr: Corr` → Corr`

′
com-

muting with boundaries: ∂`
′

i (fCorr(R)) = fi(∂
`
i (R)) for all i;

(c) their propagation operations are compatible with isomorphisms above: for
any foot update ui: A`

i → B`
i and corr R ∈ Corr`(Ai) for lens `, we have

fj(`.ppgR
ij(ui)) = `′.ppg

fCorr(R)
ij (fi(ui)).
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That is, two composed mappings, one propagates ui with lens ` then maps the
result to `′-space, and the other maps ui to `′-space and then propagates it with
lens `′, produce the same result.

6.1 Parallel Lego: Lenses working in parallel

We will consider two types of parallel composition. The first is chaotic (co-
discrete in the categorical parlance). Suppose we have several clusters of syn-
chronized models, i.e., models within the same cluster are synchronized but
models in different clusters are independent. We can model such situations by
considering several lenses `1, ..., `k, each one working over its own multimodel
space Ai. Although mutually independent w.r.t data, clusters are time-related
and it makes sense to talk about multimodels At

1, ...,At
k coexisting at some time

moment t: such a tuple of multimodels can be seen as the state of the multi-
multimodel A1× . . .×Ak at moment t. As model clusters are data-independent,
we can propagate tuples of updates (u1, . . . , uk) — one update per cluster, to
other such tuples. For example, if we have a ternary lens k with feet Ai, i = 1..3,
and a binary lens ` with feet Bj , j = 1, 2, any pair of updates (ui, vj) ∈ Ai×Bj

can be propagated to pairs (ui′ , vj′) ∈ Ai′×Bj′ with i′ = 1..3 and j′ = 1, 2 by
the two lenses working in parallel: lens k propagates ui and ` propagates vj .
The resulting synchronization can be seen as a six-ary lens with feet Ai×Bj . A
general construction that composes lenses `1, . . . , `k of arities n1, . . . , nk resp.,
into a product lens `1×. . .×`k of arity n1×n2×...×nk is described in Sect. 6.1.1

Our second construct of parallel composition is for lenses of the same ar-
ity working in a strongly coordinated way. Suppose that our traffic agency has
several branches in different cities, all structured in a similar way, i.e., over meta-
modelsMi, i = 1, 2, 3 in Fig. 2. However, now we have families of models Ax

i with
x ranging over cities. Suppose also a strong discipline of coordinated updates, in
which all models of the same type, i.e., with a fixed metamodel index i but dif-
ferent city index x, are updated simultaneously. Then global updates are tuples
like (ux1 : A

x
1 → A′x1 | x ∈ Cities) or (ux2 : A

x
2 → A′x2 | x ∈ Cities). Such tuples can

be propagated componentwise, i.e., city-wise, so that we have a global ternary
lens, whose each foot is indexed by cities. Thus, in contrast to the chaotic par-
allel composition, the arity of the coordinated composed lens equals to the arity
of components. We will formally define the construct in Sect. 6.1.2.

6.1.1. Chaotic Parallel Composition.

Definition 11. Let k and ` be two lenses of arities m and n. We first choose
the following two-dimensional enumeration of their product mn: any number
1 ≤ i ≤ mn is assigned with two natural numbers as specified below:

(2) i 7→ (ik , i`) =


(1, i) if 1 ≤ i ≤ n,
(2, i) if n < i ≤ 2n,

. . .

(m, i) if (m−1)n < i ≤ mn,
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Of course, we could choose another such enumeration but its only effect is rein-
dexing/renaming the feet while synchronization as such is not affected. Now we
define the chaotic parallel composition of k and ` as the m×n-ary lens k×` with
Boundary spaces: ∂k×`

i = (∂k
ik
,∂`

i`
)

Corrs: Corr(k×`) = Corr(k )× Corr(`) with boundaries
∂
(k×`)
i (Q,R) = (∂k

ik
(Q), ∂`i`(R)) for all i

Operations: Given an update ui at foot i of lens k×`, i.e., a pair of updates
(uik , vi`) with uik : Aik → A′ik

, vi` : Bi` → B′i` ,
and corrs Q ∈ Corrk (Aik ), R ∈ Corr`(Bi`), we define
(k×`).ppg

(Q,R)
ij (ui)

def
= (k .ppgQ

ik jk
(uik ), `.ppgR

i`j`
(vi`))

(k×`).ppg
(Q,R)
i? (ui)

def
= (k .ppgQ

ik ?
(uik ), `.ppgQ

i`?
(vi`)).

Furthermore, for any models A ∈ Ob(A) and B ∈ Ob(B), relations KII
A×B and

KN
A×B are the obvious rearrangement of elements of KII

A ×KII
B and KN

A×KN
B . ut

Lemma 1. If k and ` are (very) wb (and invertible), then k×` is (very) wb
(and invertible).

Proof. All verifications can be carried out componentwise. ut

Lemma 2. Chaotic parallel composition is associative up to isomorphism: (k ×
`)× `′ ∼= k × (`× `′)

Proof. Straightforward based on associativity of the Cartesian product. ut
The two lemmas imply

Theorem 1 (Chaotic Parallel Composition). Let `1, ..., `k be a tuple of
lenses of arities ni, i = 1..k. Then n1×...×nk-ary lens `1×...×`k is defined [up
to isomorphism], and it is (very) wb (and invertible) as soon as all lenses `i are
such. ut

6.1.2. Coordinated Parallel Composition.

Definition 12. Let k and ` be two lenses of the same arity n. Their coordinated
parallel composition is the n-ary lens k ||` with

– Boundary spaces: ∂k ||`
i = (∂k

i ,∂
`
i) for all 1 ≤ i ≤ n,

– Corrs: Corr(k ||`) = Corr(k ) × Corr(`) with boundaries ∂(k ||`)
i = (∂k

i , ∂
`
i ) for

all i
– Operations: If ui = (ui: Ai → A′i, vi: Bi → B′i) is an update at the i-th foot

(Ai, Bi) of lens k ||`, and Q ∈ Corrk (Ai), R ∈ Corr`(Bi) are corrs, then

(k ||`).ppg
(Q,R)
ij (ui)

def
= (k .ppgQ

ij(ui), `.ppgR
ij(vi))

and
(k ||`).ppg

(Q,R)
i? (ui)

def
= (k .ppgQ

i?(ui), `.ppgR
i?(vi)).
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Furthermore, for any models A ∈ Ob(A) and B ∈ Ob(B), relations KII
A×B and

KN
A×B are the obvious rearrangement of elements of KII

A ×KII
B and KN

A×KN
B . ut

Lemma 3. If k and ` are (very) wb (and invertible), then k ||` is (very) wb (and
invertible).

Proof. All verifications can be carried out componentwise. ut

Lemma 4. Coordinated parallel composition is associative up to isomorphism:
(k ||`)||`′ ∼= k ||(`||`′)

Proof. Straightforward based on associativity of the Cartesian product. ut
The two lemmas imply

Theorem 2 (Coordinated Parallel Composition). Let `1, ..., `k be a tuple
of lenses of the same arity n. Then n-ary lens `1||...||`k is defined [up to isomor-
phism], and it is (very) wb (and invertible) as soon as all lenses `i are such. ut

6.2 Sequential Lego 1: Star Composition

�� ��B1
�R1-

�� ��A1
R �� ��A2

�R2-
�� ��B2

1:b1⇒�� ��B′1

u1

?
�R′1 - A′1

v′1

?
2:k⇒ 3:b2⇒

4:b1⇐

B′′′1

u′′′1

?
�R′′′1 - A′′1

v′′1

?
R′′

A′′2

v′′2

?
� R′′′2 - B′′′2

u′′′2

?

Fig. 9: Running example via lenses

Running Example Continued. Diagram in Fig. 9 presents a refinement of
our example, which explicitly includes relational storage models B1,2 for the two
data sources. We assume that object models A1,2 are simple projective views of
databases B1,2: data in Ai are copied from Bi without any transformation, while
additional tables and attributes that Bi-data may have are excluded from the
view Ai. Synchronisation of bases Bi and their views Ai can be realized by simple
constant-complement lenses bi, i = 1, 2 (see, e.g., [24]), such that consistent corrs
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Ri ∈ Corr(bi)(Bi, Ai) (in fact traceability mappings) are exactly those for which
the projection of Bi yields Ai.

Finally, let k be a lens synchronizing models A1, A2, A3 as described in
Sect. 3, and R ∈ Corr(k )(A1, A2, A3) be a corr for some A3 not shown in the
figure.

Consider the following update propagation scenario. Suppose that at some
moment we have consistency (R1, R,R2) of all five models, models A1,2,3 are as
shown in Fig. 3 except that model A1 (and the base B1) do not have any data
about Mary. Then model B1 is updated with u1: B1 → B′1 that, say, adds to B1

a record of Mary working for Google. Consistency is restored with a four-step
propagation procedure shown by double-arrows labeled by x:y with x the step
number and y the lens doing the propagation.

Step 1: lens b1 propagates update u1 to v′1 that adds (Mary, Google) to view
A1 with no amendment to u1 as v′1 is just a projection of u1, thus, B′1 = B′′1 .
Note also the updated traceability mapping R′1 ∈ Corr(b1)(B′1, A

′
1)

Step 2: lens k propagates v′1 to v′′2 that adds (Google, Mary) to A2, and
amends v′1 with v′′1 that adds (Mary, IBM) to A′1 to satisfy constraint (C1); a
new consistent corr R′′ is also computed.

Step 3: lens b2 propagates v′′2 to u′′′2 that adds Mary’s employment by Google
to B2 with, perhaps, some other specific relational storage changes not visible
in A2. We assume no amendment to v′′2 as otherwise access to relational storage
would amend application data. Thus we have a consistent corr R′′′2 as shown.

Step 4: lens b1 maps update v′′1 (see above in Step 2) backward to u′′′1 that
adds (Mary, IBM) to B′1 so that B′′′1 includes both (Mary, Google) and (Mary,
IBM) and a respective consistent corr R′′′1 is provided. There is no amendment
for v′′1 by the same reason as in Step 3.

Thus, all five models in the bottom line of Fig. 9 (A′′3 is not shown) are
mutually consistent and all show that Mary is employed by IBM and Google.
Synchronization is restored, and we can consider the entire scenario as propaga-
tion of u1 to u′′′2 and its amendment with u′′′1 so that finally we have a consis-
tent corr (R′′′1 , R′′, R′′′2 ) interrelating B′′′1 , A′′3 , B′′′2 . Amendment u′′′1 is compatible
with u1 as nothing is undone and condition (u1, u

′′′
1 ) ∈ KII

B′
1
holds; the other two

equations required by Reflect2-3 for the pair (u1, u
′′′
1 ) also hold. For our simple

projection views, these conditions will hold for other updates too, and we have
a well-behaved propagation from B1 to B2 (and trivially to A3). Similarly, we
have a wb propagation from B2 to B1 and A3. Propagation from A3 to B1,2 is
non-reflective and done in two steps: first lens k works, then lenses bi work as
described above (and updates produced by k are bi-closed). Thus, we have built
a wb ternary lens synchronizing spaces B1,B2 and A3 by joining lenses b1 and
b2 to the central lens k .

Discussion. Reflection is a crucial aspect of lens composition. The diagram
below describes the scenario above as a transition system and shows that Steps
3 and 4 can be performed in either order.
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• ==
1
⇒ • ==

2
⇒ •

3 ⇒ •

4⇒

• 3
⇒4 ⇒

It is the non-trivial amendment created in Step 2 that causes the necessity
of Step 4, otherwise Step 3 would finish consistency restoration (with Step 4
being an idle transition ). On the other hand, if update v′′2 in Fig. 9 would not
be closed for lens b2, we would have yet another concurrent step complicating
the scenario. Fortunately for our example with simple projective views, Step 4 is
simple and provides a non-conflicting amendment, but the case of more complex
views beyond the constant-complement class needs care and investigation. Below
we specify a simple situation of lens composition with reflection a priori excluded,
and leave more complex cases for future work.

A1

A3

A2
An
. ..

B1 B2

B3Bn

k

b1 b 2

b n
b
3

Fig. 10: Star Composition

Formal Definition of Star Composition Suppose we have an n-ary lens
k = (A, k .ppg) with A based on the model space tuple A = (A1 . . .An), and
for every i ≤ n a binary lens bi = (Bi,Ai, bi.ppg), with the second model space
Ai being the ith model space of k (see Fig.10, where k is depicted in the center
and bi are shown as ellipses adjoint to k ’s feet). We also assume that the following
Junction Conditions holds for all i ≤ n:

(Junction)i
All updates propagated to Ai by lens bi are k -closed,
and all updates propagated to Ai by lens k are bi-closed.

Below we will write the sixtuple of operations bi.ppgRi as the family(
bi.ppgRi

xy | x ∈ {A,B}, y ∈ {A,B, ?}
)
.

Likewise we write ∂bi
x with x ∈ {A,B} for the boundary functions of lenses bi.

The above configuration gives rise to the following n-ary lens `. The carrier
is the tuple of model spaces B1...Bn together with their already contained com-
patible consecutive updates and mergeable updates, resp. Let B = (B1 . . . Bn)
be a model tuple in the carrier, then we define

Corr(`)(B) = {(R,R1...Rn) | ∃A = (A1 . . . An)∈
∏

Ob(A) : R ∈ Corr(k )(A), Ri ∈ Corr(bi)(Bi, Ai)}
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[Consistent] corrs are exactly the tuples (R,R1...Rn), in which R and all Ri

are [consistent] corrs in their respective multispaces. This yields ∂`i (R,R1...Rn) =
∂bi
BRi (see Fig.10). Propagation operations are defined as compositions of con-

secutive lens’ executions as described below (we will use the dot notation for
operation application and write x.op for op(x), where x is an argument).

Given a model tuple (B1...Bn) ∈ B1×...×Bn, a corr (R,R1...Rn), and update
vi: Bi → B′i in Ar(Bi), we define, first for j 6= i,

vi. `.ppg
(R,R1...Rn)
ij

def
= vi.(bi.ppgRi

BA).(k .ppgR
ij).(bj .ppg

Rj

AB),

and then vi. `.ppg
(R,R1...Rn)
ii

def
= vi. bi.ppgRi

BB. Note that all internal amendments
to ui = vi.(bi.ppgRi

BA) produced by k , and to u′j = ui.(k .ppgR
ij) produced by bj ,

are identities due to the Junction conditions. This allows us to set corrs prop-
erly and finish propagation with the three steps above: vi. `.ppg

(R,R1...Rn)
i?

def
=

(R′, R′1...R
′
n) where R′ = ui. k .ppgR

i?, R′j = u′j . bj .ppg
Rj

A? for j 6= i, and R′i =

vi. bi.ppgRi

B?. We thus have a lens ` denoted by k ?(b1, . . . , bn). ut

Theorem 3 (Star Composition). Given a star configuration of lenses as
above. Let all underlying model spaces be well-behaved, cf. Def. 2, and the Junc-
tion conditions hold. Then the following holds: If lens k and all lenses bi are
(very) wb, then k ?(b1, . . . , bn) is also (very) wb.

Proof. Fulfilment of Stabiliy is obvious. Reflect1-3 follow immediately from the
definition of `.ppgii above, since the first step of the above propagation procedure
already enjoy sequential compatibility and idempotency by Reflect1-3 for bi. This
proves the wb part of the theorem.

Now we prove that the composed lens is very wb if the components are such.
If all model spaces are well-behaved, then operation merge preserves identities, cf.
Def. 2. Then KPutPut for any lens k reduces to the simplified form ppgR

ij(ui; vi) =
ppgij(ui); ppgij(vi), if ui and vi are k -closed. The Junction condition and the fact
that operation ppg preserves the KII-property, guarantee that propagation of
composed updates from Ai to Aj and further to Bj is not disturbed by reflective
updates. Hence, KPutPut carries over from bi to k ?(b1, . . . , bn). ut

6.3 Lens composition and Invertibility

Unfortunately, even if all component lenses are invertible, the composed star-
lens is not necessarily such as we will show in the next subsection. In subsection
6.3.2, we discuss a seemingly counter-example to this negative result and show
that the state-based setting for update propagation can be confusing.

6.3.1 Counter-example. Consider a class of simple model spaces, whose ob-
jects (called models) are natural numbers plus some fixed symbol ⊥ denot-
ing an undefined number. Thus, for a space A from this class, we assume
Ob(A) = {⊥} ∪ A! with A! = {A1, A2, ...} being a set of natural numbers:
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Ai = {i}. Models form the set A! are called certain while models ⊥ are uncer-
tain. Updates are all possible pairs of models: Ar(A) = Ob(A)×Ob(A) (such
categories are often called co-discrete or chaotic), that is,

Ar(A) = {(⊥,⊥)} ∪ {⊥}×A! ∪ A!×{⊥} ∪ A!×A!

Now consider three model spaces of the type specified above: space B1 with
certain models B1 = {0, 2, 6}, space A with certain models A = {2, 5, 6} and
space B2 with B2 = {4, 7}. For all these spaces, mergeable pairs are only those
with at least one identitity and the same necessarily holds for KII, hence all
spaces are well-behaved (cf. Def. 2).

Suppose we have a lens b1 over spaces B1 and A (see Fig. 11). The set of
corrs for a pair (b, a) ∈ Ob(B1)×Ob(A) is the singleton set {(b, a)}. A corr is
consistent, if and only if b, a are both certain or both uncertain, i.e., consis-
tency amounts to equal certainty. Then to restore consistency, updates of type
B1×{⊥} are to be mapped to similar updates of type A×{⊥}, and updates of
type B1×B1 can be mapped to the corresponding identity updates on the A×A
as they do not destroy consistency. The propagation operation from A to B1 of
the types above are defined similarly.

B1

ppgBA

((
b1 A

ppgAB

66

ppgAA

��

ppgAB

hh b2 B2

ppgBA

vv

(⊥, 0) // (⊥, 2)

vv

// (⊥, 4)

vv
(⊥, 2)

66

(⊥, 5)

66

vv
(⊥, 6) // (⊥, 6)oo // (⊥, 7)oo

Fig. 11: Schematic description of the counterexample

Now we need to define how to propagate updates of the type {⊥}×B1 over
the corr {(⊥,⊥)}.

This is specified in Fig. 11 by arrows going from the left-most column of
updates to the middle column. The idea is to find in A the nearest model so
that updating ⊥ to 0 or 2 in B1 goes to updating ⊥ to 2 in A, while updating
⊥ to 6 goes to updating ⊥ to 6. In the similar way, propagation of updates
from {⊥}×A to {⊥}×B1 is defined as shown by arrows from the middle to the
left column. This defines lens b1, and it is easy to see it is well-behaved and,
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moreover, invertible. The latter is established by the direct examination of all
possible ppg-compositions, e.g.,

(0,⊥).ppg
(0,2)
BA .ppg

(0,2)
AB = (0,⊥) (even strong invertibility holds)

(0, 2).ppg
(0,2)
BA .ppg

(0,2)
AB = (0, 0) 6= (0, 2) but (0, 2).ppg

(0,2)
BA = (0, 0).ppg

(0,2)
BA

(⊥, 0).ppg
(⊥,⊥)
BA .ppg

(⊥,⊥)
AB = (⊥, 2) 6= (⊥, 0) but (⊥, 0).ppg

(⊥,⊥)
BA = (⊥, 2).ppg

(⊥,⊥)
BA

(the last example is specific for the lens b1 specified in Fig. 11). Similarly, we
define a wb lens b2 as shown in Fig. 11 and check it is also invertible.

Space A in the middle can be extended to a trivially wb and invertible
identity lens k = idn(A) with n = 2 (cf. Example 3).

Now, as the Junction condition trivially holds for the triple (b1, k , b2), we
obtain a star lens ` := k ?(b1, b2) composed from wb invertible lenses. However,
this lens is not invertible as the following computation shows:

(⊥, 0).(`.ppg12).(`.ppg21).(`.ppg12) = (⊥, 7) 6= (⊥, 4) = (⊥, 0).(`.ppg12)

where we omitted the upper scripts (⊥,⊥) near ppg-symbols (recall that `.ppg12

is defined as the sequential composition (b1.ppgBA).(k .ppgAA).(b2.ppgAB) and
similarly for `.ppg12).

Theorem 4. Star-composition does not preserve invertibility

6.3.2 Invertibility and (binary) state-based symmetric lenses with
complement (ssc-lenses): a long standing confusion. The example above
may seem to be contradicting to paper [18], where symmetric lenses are studied
in the state-based setting as ssc-lenses. In that paper, an invertibility law called
round-tripping is required for any ssc-lens, and it is proved that sequential com-
position of such lenses is again an ssc-lens and hence enjoys round-tripping. In
paper [11], we show that an ssc-lens is nothing but a symmetric delta lens over
co-discrete model spaces (see also [21]), i.e., exactly a lens of the type we have
considered in the counter-example above. Moreover, in the star-composition in-
stance we have considered, lens k = id2(A) plays a dummy role and, in fact, we
have dealt with sequential composition of two ssc-lenses b1; b2 as defined in [18].
Then, how could it happen that our composed lens does not satisfy (even weak)
invertibility, while the corresponding result in [18] asserts that the composed
lens must satisfy the seemingly stronger roundtripping law?

The source of confusion is the state-based setting for update propagation, in
which a law that looks like demanding strong invertibility is actually a simple
Stability law demanding identity preservation. Indeed, in [18, Def.2.1 on p.2],
they define a binary symmetric lens over state spaces X and Y with propagation
operations

(3) ppgXY : X × Corr→ Y × Corr and ppgY X : X × Corr← Y × Corr

(they call elements of set Corr complements rather than corrs, but as it is shown
in [11,21], the two notions are equivalent). The law (PutRL) called round-tripping
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is defined thusly: for any states x and y (in our notation, A′1 and A′2) and com-
plements c, c′ (i.e., our corrs, R,R′), the following condition holds ([18, Def.2.1
on p.2]):

(4) ppgXY (x, c) = (y, c′) implies ppgY X(y, c′) = (x, c′)

Figure 12 specifies the story described by the two equations
in (4) diagrammatically: the upper square specifies data of the
left equation, and the lower square specifies the right equation.
Now it is seen that the right equation specifies the Stability
law of delta lenses, while the left equation is used to ensure
that states x and y are related by complement/corr c′. The left
equation is needed as the state-based lens framework does not
have primitives to say that states (x, y) are consistent via corr
c′ (which is done in delta lenses by boundary functions ∂i), and
thus they encode this fact equationally, which together with
the right equation creates a false impression of a round-tripping
law. Indeed, equations (4) have nothing to do with roundtrip-
ping: to describe the latter, we should specify how the result
of ppgY X(y, c) is related to x rather than how ppgY X(y, c′) is
related to x.

• .....c ..... •

x ....c′ ..... y

x

‖
‖
‖
....c′ ..... y

‖
‖
‖

Fig. 12: “Round-
tripping” story

The main problem is not in that Stability is called Round-tripping, the prob-
lem is that the issue of an actual round-tripping law and its preservation under
lens composition is not stated in the state-based lens framework because it is
(fallaciously) considered solved! The counter-example presented above makes
the problem even more challenging as even weak round-tripping is not preserved
under lens composition.

6.4 Sequential Lego 2: Assembling n-ary Lenses from Binary Lenses

This section shows how to assemble n-ary (symmetric) lenses from binary asym-
metric lenses modelling view computation [10]. As the latter is a typical bx,
the well-behavedness of asymmetric lenses has important distinctions from well-
behavedness of general (symmetric mx-tailored) lenses.

Definition 13 (Asymmetric Lens, cf. [10]). An asymmetric lens (a-lens)
is a tuple b4 = (A,B, get, put) with A a model space called the (abstract) view,
B a model space called the base, get : A ← B a functor (read “get the view”),
and put a family of operations

(
putB | B ∈ Ob(B)

)
(read “put the view update

back”) of the following arity. Provided with a view update v: get(B) → A′ at
the input, operation putB outputs a base update putBb (v) = u′: B → B′′ and an
amendment to the view update, putBb (v) or v

@: A′ → A′′.
A view update v: get(B) → A′ is called closed if v@ = idA′ , and an a-lens is

closed if all its view updates are closed. ut

The following is a specialization of Def. 7, in which consistency between a base
B and a view A is understood as equality get(B) = A.
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Definition 14 (Well-behavedness). An a-lens is well-behaved (wb) if it sat-
isfies the following laws for all B ∈ Ob(B) and v: get(B)→ A′

(Stability) if v = idget(B), then putBb (v) = idB and v@ = idget(B)

(Reflect0) if v = get(u) for some u: B → B′, then v@ = idA′

(Reflect1) (v, v@) ∈ KII
A′

(Reflect2) putBb (v; v
@) = putBb (v)

(PutGet) v.putBb .get = v; v@ (the dot notation is used to highlight the name of the law).
ut

In contrast to the general lens case, a wb a-lens features Reflect0 — a sort
of a self-Hippocratic law regulating the necessity of amendments: the latter is
not allowed as soon as consistency can be restored without amendment. An-
other distinction is inclusion of an invertibility law PutGet into the definition
of well-behavedness: PutGet together with Reflect2 provide (weak) invertibility:
putBb (get(putBb (v))) = putBb (v). Reflect3 is omitted as it is implied by Reflect0
and PutGet.

Any a-lens b4 = (A,B, get, put) gives rise to a binary symmetric lens b. Its
carrier consists of model spaces A and B, for which we assume KII and KN to
be defined such that the spaces are well-behaved, cf. Def. 2. The set of corrs of
a pair (A,B) ∈ Ob(A) × Ob(B) is the singleton {(A,B)} with ∂A(A,B) = A
and ∂B(A,B) = B, and consistent corrs are exactly those (A,B), for which
A = get(B).

For a consistent corr B̂ = (get(B), B), we need to define six operations
b.ppgB̂

__. Below we will write the upper index as B rather than B̂ to ease the
notation. For a view update v: A→ A′ and the corr B̂, we define

ppgB
AB(v) = putBb (v):B → B′′, ppgB

AA(v) = putBv (v):A
′ → A′′, ppgB

A?(v) = B̂′′

The condition A′′ = get(B′′) for b4 means that B̂′′ is again a consistent corr
with the desired boundaries. For a base update u: B → B′ and the corr B̂, we
define

ppgB
BA(u) = get(u), ppgB

BB(u) = idB′ , ppgB
B?(u) = B̂′

Functoriality of get yields consistency of B̂′.

Definition 15 (Very well-behaved a-lenses). A wb a-lens is called very
well behaved (very wb), if the corresponding binary symmetric lens is such. cf.
Def. 9. Of course, this definition restricts the behaviour only for the put-part
of the a-lens (hence the name of the law), since functor get is compositional
anyway. ut

Lemma 5. Let b4 be a (very) wb a-lens and b the corresponding symmetric
lens. Then all base updates of b are closed, and b is (very) wb and invertible.

Proof. Base updates are closed by the definition of ppgBB. Well-behavedness
follows from wb-ness of b4. Invertibility has to be proved in two directions:
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ppgBA; ppgAB; ppgBA = ppgBA follows from (PutGet) and (Reflect0), the other
direction follows from (PutGet) and (Reflect2), see the remark after Def.14. The
”vwb”-implication follows directly from Def.15. ut

Remark 2 (A-lenses as view transformation engines). In terms of Varró et al
[28], a wb a-lens can be seen as an abstract algebraic model of a bidirectional
view transformation engine. This engine is assumed to be a) consistent: it is
a basic lens law that propagation must always produce a consistent corr, b)
incremental, as lenses propagate changes rather than create the target models
from scratch, c) validating, as the result of propagation is always assumed to
satisfy the target metamodel constraints (either by considering the entire model
space to be only populated by valid models, or by introducing a subclass of
valid models and require the result of the propagation to get into that subclass).
Reactiveness, i.e., whether the engine executes on-demand or in response to
changes, is beyond the lens framework. To address this and similar concerns, we
need a richer framework of lenses augmented with an organizational structure
introduced in [6] (see also [8] for a concise presentation).

Theorem 5 (Lenses from Spans). An n-ary span of (very) wb asymmetric
lenses b4i = (Ai,B, geti, puti), i = 1..n with a common base B of all b4i gives
rise to a (very) wb symmetric lens denoted by ΣB

i=1..nb4i .

Proof. An n-ary span of a-lenses b4i (all of them interpreted as symmetric
lenses bi as explained above) is a construct equivalent to the star-composition of
Def. 6.2.3, in which lens k = idn(B) (cf. Ex. 3) and peripheral lenses are lenses
bi. The junction condition is satisfied as all base updates are bi-closed for all i
by Lemma 5, and also trivially closed for any identity lens. The theorem thus
follows from Theorem 3. The “very wb”-part follows directly from Def. 15. Note
that a corr in Corr(ΣB

i=1..nb4i ) is nothing but a single model B ∈ Ob(B) with
boundaries being the respective geti-images. ut

The theorem shows that combining a-lenses in this way yields an n-ary symmetric
lens, whose properties can automatically be inferred from the binary a-lenses.

Person
name:Str
livesAt: Addr
space: Int

Company
name:Str
locAt: Addr
space: Int

M+

employer

employee

Route
routeID: Str
from: Addr
to: Addr

Fig. 13: Merged Metamodel

Running example. Figure 13 shows a metamodel M+ obtained by merging the
three metamodelsM1,2,3 from Fig. 2 without loss and duplication of information.
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In addition, for persons and companies, the identifiers of their original model
spaces can be traced back via attribute ”space” (Route-objects are known to
appear in space A3 and hence do not need such an attribute). As shown in [26],
any consistent multimodel (A1...An, R) can be merged into a comprehensive
model A+ instantiating M+. Let B be the space of such together with their
comprehensive updates u+: A+ → A′+.

For a given i ≤ 3, we can define the following a-lens b4i = (Ai,B, geti, puti):
geti takes update u+ as above and outputs its restriction to the model containing
only objects recorded in space Ai. Operation puti takes an update vi: Ai → A′i
and first propagates it to all directions as discussed in Sect. 3, then merges these
propagated local updates into a comprehensiveB-update between comprehensive
models. This yields a span of a-lenses that implements the same synchronization
behaviour as the symmetric lens discussed in Sect. 3.
From (symmetric) lenses to spans of a-lenses. There is also a backward
transformation of (symmetric) lenses to spans of a-lenses. Let ` = (A, ppg)
be a (very) wb lens. It gives rise to the following span of (very) wb a-lenses
`4i = (∂i(A),B, geti, puti) where space B has objects (A1 . . . An, R) with R ∈
Corr(A1...An) a consistent corr, and arrows are the update tuples of A. Functors
geti : B→ Ai are projection functors. Given B = (A1...An, R) and local update
ui: Ai → A′i, let

putBib(ui)
def
= (u′1, .., u

′
i−1, (ui;u

′
i), u

′
i+1, .., u

′
n): (A1...An, R)→ (A′′1 ...A

′′
n, R

′′)

where u′j
def
= ppgR

ij(ui) (all j) and R′′ = ppgR
i?(ui). Finally, putBiv(vi)

def
= ppgR

ii(vi),
i.e., v@B

i = v@R
i . Validity of Stability, Reflect0-2, PutGet and KPutput law directly

follows from the above definitions. This yields
Theorem 6. Let ` = (A, ppg) be a (very) wb symmetric lens. Then the multi-
span

(`4i = (∂i(A),B, geti, puti) | i = 1..n)

of (very) wb a-lenses (where B is defined as specified above) has the same syn-
chronisation behaviour w.r.t. model spaces (∂i(A) | i = 1..n). ut

An open question is whether the span-to-lens transformation in Thm.5 and
the lens-to-span transformation of Thm. 6 are mutually inverse. It is easy to see
that the chain

(5) symmetric lens → wide span → symmetric lens

results in a lens isomorphic to the initial one, but the chain

(6) wide span → symmetric lens → wide span

ends with a different span as the first transformation above loses information
about updates in the head of the span. As shown by Johnson and Rosebrugh in
[22] for the binary case, the two spans can only be equivalent modulo certain
equivalence relation, and an equivalence relation between lenses is also needed
to align all constructs together. These equivalences may be different for our mul-
tiary lenses with amendments, and we leave this important question for future
research.
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7 Future work

We list and briefly comment on several important tasks for the multiary lens
framework.

7.1 Categorification of corrs

A distinctive feature of the framework developed in the paper is the triviality
of the corr updates — they are just pairs (R,R′) of the old and the new corr
(see Remark 1 on p.17). However, in practice, new corrs would be computed
incrementally with deltas rather than afresh. To make the framework closer to
practice, we need to change the notion of a multimodel update u: A → A′
and consider it to be a pair u = (u, r) with u = (u1..un) a feet update and
r: R → R′ a corr update rather than just a pair of states (R,R′). Then we
would obtain a setting based on a category R of multimodels (that includes
both local updates and corr updates) together with boundary projection functors
∂i: R → Ai, i = 1..n, which take a multimodel update u = (u1...un, r) and
select its corresponding component, ∂i(u) = ui.9

For multiary update propagation, we require each projection ∂i to be the get-
part of an asymmetric lens (with amendment) that for a given multimodel state
R, puts any foot update ui: Ai → A′i, Ai = ∂i(R) back to a multimodel update
u = putRi (ui): A → A′. Note that as u includes all feet updates, operation putRi
actually provides all local propagation operations ppgij we considered in the
paper: ppgR

ij(ui) = ∂j(put
R
i (ui)). The Putget law is the equality ∂i(u) = ui;u

@
i .

In this way, a multiary symmetric lens is—by definition—a multiary span of
asymmetric lenses (∂i,puti): R→ Ai, i = 1...n.

Besides being better aligned with practice, the setting above would simplify
notation and probably some technicalities, but its advantages were recognized
when the paper was already written and submitted for reviewing. With a great
regret, an accurate theory of the categorified version of multiary lenses is thus
left for future work.

7.2 Instantiation of the framework. Although we presented several simple
examples of multiary wb lenses, having practically interesting examples, or even
better, a pattern for generating practically interesting examples, is an extremely
important task. We think that the GDG framework for synchronization [33] is
a promising foundation for such work, and it has actually already began in [34]
(see the next section for more detailed comments).
9 Given some construct X depending on set S, the passage to a setting in which S
is a non-trivial category is often called categorification of X, hence, the title of the
subsection. The quality of being a non-trivial category is essential. A set S can be
seen as a category S in two ways: discrete, when the only S arrows are identities,
and co-discrete or chaotic, in which for any pair of S’s elements s, s′, there is one
and only one arrow (s, s′): s→ s′. If s′ = s, this arrow is the identity of s. We refer
to both such categories S as trivial.



37

7.3 Concurrent updates. As discussed in section Sect. 2.4, extending the lens
formalism to accommodate concurrent updates is both useful and challenging.
One of the main problems to solve is how to reconcile non-determinism inherent
in conflict resolution strategies and serialization of update propagation with the
deterministic nature of the lens framework.

7.4 Richer compositional framework. There are several open issues here
even for the non-concurrent case (not to mention its future concurrent general-
ization). First, our pool of lens composition constructs is far incomplete: we need
to enrich it, at least, with (i) sequential composition of a-lenses with amendment
so that a category of a-lenses could be built, and (ii) a relational composition
of symmetric lenses sharing several of their feet (similar to relational join). It is
also important to investigate composition with weaker junction conditions than
that we considered.

7.5 Invertibility. Invertibility nicely fits in some but not all of our results. It is
a sign that we do not well understand the nature of invertibility. Perhaps, while
invertibility is essential for bx, its role for mx may be less important.

7.6 Hippocraticness. A very natural Hippocraticness requirement (introduced
by Stevens for bx in [31]) may have less weight in the mx world. Indeed, the
examples we considered in the paper show that non-Hippocratic consistency
restoration may be practically reasonable and useful. A further research in this
direction is needed.

8 Related Work

Compositionality as a fundamental principle for building synchronization tools
was proposed by Pierce and his coauthors in [15,1] for the state-based asym-
metric case, and further developed for the binary symmetric case by Hofmann
et al: in [18], for the state-based setting, and in [19], for a specific delta-based
setting (where deltas are understood operationally as edits). The deficiencies
of the state-based framework are discussed in detail in [10,11] (see also our
Sect. 6.3.2), where the notion of asymmetric and symmetric binary delta lenses
were proposed, but lens composition was not specially considered (except easy
sequential composition of a-lenses in [10]). In section 6.1 of [4], several results
for delta lens composition are considered, including a special case of the star
composition, when two asymmetric lenses form a cospan, but the consistency
relation at the apex of this cospan is not assumed to be an equality and, hence,
to be maintained by a general binary symmetric lens. A fundamental theory
of composing (and decomposing) binary symmetric lenses from (into) spans or
cospans of asymmetric ones was developed by Johnson and Rosebrugh [22,23];
the theory is based on equivalences of lenses w.r.t. their behaviour. In all these
works, neither amendments nor intelligent (and hence constrained) versions of
Putput are considered (and only binary lenses are taken into consideration).



38

In the turn from the binary to the multiary update propagation, the work
by Trollmann and Albayrak [33,34,35] is the closest to ours conceptually and in
part technically. We made several brief remarks in the introduction, and now
can provide more details. Trollmann and Albayrak begin with defining a class
S of diagram shapes (they say, bases), and a multimodel is a graph diagram of
a certain shape S ∈ S in a adhesive category G intended to model attributed
typed graphs and their morphisms, i.e., a multimodel is a functor M : S → G
with S ∈ S. A multimodel update m: M → M ′ is a span of natural trans-
formations, md : M ← m̂, ma: m̂ → M ′, whose head m̂ is a diagram of the
same shape, and injective transformations md and ma specify, resp., deletions
and additions provided by update m. For a fixed S, this gives us a non-trivial
category of multimodels M(S) to be compared with the categorified version of
our framework based on category Corr with arrows as described in Sect. 7.1.
A major distinction between the two is that Corr is a general model space
category without any further restrictions, everything needed is provided by a
family of boundary functors ∂i: Corr → Ai. In contrast, although the class of
categories {M(S)| S ∈ S} is broad enough to be practically interesting, it does
not include some corr structures appearing in applications, e.g., such as in our
Running example, or in paper [9] focused on UML modelling, or in our paper
[26], in which a very general pattern for corrs is described as a partial span of
graph morphisms, or, finally, in general rule-based synchronization engines as
described in [3]. An advantage of the abstract lens framework is that all these
constructs are uniformly modelled as category Corr.
Further distinctions appear when we consider how update propagation opera-
tions are defined. Trollmann and Albayrak consider the concurrent case (a truly
impressive achievement), which we did not approach yet. However, they con-
sider only two basic laws (Stability and Correctness) borrowed from the binary
case, while our repertoire of laws is richer. They also have a sort of amendment
operation implemented by Consistency Creating Rules, but it is a purely local
operation independent on any other model in the multimodel. In contrast, our
amendments are tightly related to other models and in this sense are (self) prop-
agation operations. Finally, a major distinction is that in their setting, consis-
tency restoration is non-deterministic while our lenses are deterministic. Overall,
lenses appear as an abstract algebraic interface to update propagation that can
be implemented by different ways, e.g., with GDG or by repair rules as in [3,30].

For the state-based lens setting, the work closest in spirit to the turn from
binary to multiary lenses, is Stevens’ paper [32]. Her and our goals are similar,
but the technical realizations are different even besides the state- vs. delta-
based opposition. Stevens works with restorers, which take a multimodel (in
the state-based setting, just a tuple of models) presumably inconsistent, and
restores consistency by changing some models in the tuple while keeping other
models (from the authority set) unchanged. In contrast, lenses take a consistent
multimodel and updates, and return a consistent multimodel and updates. As
we argued in Sect. 3, including updates into the input data of the restoration
operation allows better “tuning” update propagation policies as the inherited
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uncertainty of consistency restoration is reduced. Another important difference
is update amendments, which are not considered in [32] – models in the authority
set are intact. Yet another distinction is how the multiary vs. binary issue is
treated. Stevens provides several results for decomposing an n-ary relation R ∈
Corr(A) into binary relations Rij ⊆ Ob(Ai)×Ob(Aj) between the components.
For us, a relation is inherently n-ary, i.e., a set R of n-ary links endowed with
an n-tuple of projections ∂i: R → Ai uniquely identifying links’ boundaries.
Thus, while Stevens considers “binarization” of a relation R by a chain of binary
relations over the “perimeter” A1...An, we binarize it via the corresponding span
of (binary) mappings (∂1, ..., ∂n) (UML could call this process reification). Our
(de)composition results demonstrate advantages of the span view.

Discussion of several other works in the state-based world, notably by Macedo
et al [27] can be found in [32]. Several remarks about the related work on the
Putput law have already been made in Sect. 2.3

9 Conclusion

Multimodel synchronization is an important practical problem, which cannot
be fully automated but even partial automation would be beneficial. A major
problem in building an automatic support is uncertainty inherent to consistency
restoration. In this regard, restoration via update propagation rather than im-
mediate repairing of an inconsistent state of the multimodel has an essential
advantage: having the update causing inconsistency as an input for the restora-
tion operation can guide the propagation policy and essentially reduce the un-
certainty. We thus come to the scenario of multiple model synchronization via
multi-directional update propagation. We have also argued that reflective propa-
gation to the model whose change originated inconsistency is a reasonable feature
of the scenario.

We presented a mathematical framework for synchronization scenarios as
above based on a multiary generalization of binary symmetric delta lenses in-
troduced earlier, and enriched it with reflective propagation and KPutput law
ensuring compatibility of update propagation with update composition in a prac-
tically reasonable way (in contrast to the strong but unrealistic Putput). We
have also defined several operations of composing multiary lenses in parallel and
sequentially. Our lens composition results make the framework interesting for
practical applications: if a tool builder has implemented a library of elementary
synchronization modules based on lenses and, hence, ensuring basic laws for
change propagation, then a complex module assembled from elementary lenses
will automatically be a lens and thus also enjoys the basic laws. This allows one
to avoid additional integration testing, which can essentially reduce the cost of
synchronization software.

Acknowledgement. We are really grateful to anonymous reviewers for careful
reading of the manuscript and detailed, pointed, and stimulating reviews, which
essentially improved the presentation and discussion of the framework.
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