
Formal Aspects of Computing

Using Formal Verification to Evaluate
the Execution Time of Spark
Applications
L. Baresi, M. M. Bersani, F. Marconi, G. Quattrocchi and M. Rossi
{luciano.baresi—marcellomaria.bersani—francesco.marconi—giovanni.quattrocchi—matteo.rossi}@polimi.it

Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano,

Via Golgi 42, 20133 Milano, Italy

Abstract. Apache Spark is probably the most widely adopted framework for developing big-data batch
applications and for executing them on a cluster of (virtual) machines. In general, the more resources (ma-
chines) one uses, the faster applications execute, but there is currently no adequate means to determine
the proper size of a Spark cluster given time constraints, or to foresee execution times given the number of
employed machines. One can only run these applications and use her/his experience to size the cluster and
predict expected execution times. Wrong estimation of execution times can lead to costly overruns and overly
long executions, thus calling for analytic sizing/prediction techniques that provide precise time guarantees.
This paper addresses this problem by proposing a solution based on model-checking. The approach exploits a
Directed Acyclic Graph (DAG) to abstract the structure of the execution flows of Spark programs, annotates
each node (Spark stage) with execution-related data, and formulates the identification of the global execu-
tion time as a reachability problem. To avoid the well-known state space explosion problem, the paper also
proposes a technique to reduce the size of generated abstract models. This results in a significant decrease
in used memory and/or verification time making our approach feasible for predicting the execution time of
Spark applications given the resources available. The benefits of the proposed reduction technique are eval-
uated by using both Timed Automata and Constraint LTL over clocks (CLTLoc) logic to formally encode
and analyze generated models. The approach is also successfully validated on some realistic case studies.
Since the optimization is not Spark-specific, we claim that it can be applied to a wide range of applications
whose underlying model can be abstracted as a DAG.

Keywords: Formal Verification; Big Data; Metric Temporal Logic; Timed Automata

Correspondence and offprint requests to: L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

2 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

1. Introduction

Big-data applications are becoming more widespread, and thus frameworks dedicated to the processing of
large datasets, like Hadoop1, Spark2, and Flink3, are becoming popular. These frameworks allow users to
process massive amounts of data over clusters of (virtual) servers: the business logic and input dataset are
partitioned on different servers to carry out the computation concurrently by applying the same operations
in parallel. While the different computation models are clear, the use of resources still needs attention. These
frameworks do not provide (sophisticated) self-adaptive capabilities to allow for the optimal use of resources:
they often adopt a greedy approach and tend to offer the best qualities of service (e.g., execution time)
given the resources at hand. To find a compromise between execution times and foreseen costs, there exists
solution that extends these systems with dynamic resource management capabilities [BQ18]. Nonetheless,
solutions that can help estimate qualities of service given the size of the cluster —or that can help size the
cluster given foreseen qualities of service— would be greatly appreciated. Some solutions already exist (e.g.,
[GRB+17, LHW+14]), but often the estimations are only based on experience and empirical assessments.

While the problem is general, this paper concentrates on Spark, probably the most widely used solution
for big-data batch applications, and proposes an analytical approach that is based on the use of model
checking as rigorous analytic method. Being batch applications, one can only consider their execution time
as quality of service, and thus address the interplay between used resources and execution speed (or degree
of parallelism). The actual size of supplied data and the number of machines used to run the applications
define the execution time required by the framework to provide the results. In this context, the maximum
allowed execution time is defined in terms of deadlines [KA10]. Since the actual execution times are only
known at the end of computations, the proper amounts of resources needed to fulfill deadlines are often
“guessed” using experience and domain knowledge.

The execution model of Spark applications is based on stages and tasks. A task is an atomic unit of
computation executed on a partition of the dataset by means of a single CPU core. A stage comprises
different tasks that work on diverse data chunks and produces a transformed dataset when all its tasks
complete their execution. Different stages can execute at the same time if they do not depend on each other,
and thus tasks that belong to different stages can be executed concurrently on different CPU cores. The
more resources (CPU cores) one allocates to an application, the higher its parallelism (and the execution
speed) can be.

The proposed modeling approach abstracts each specific execution of a Spark application as a direct
acyclic graph (DAG), where executed stages act as nodes, the arcs between them identify data dependencies,
meaning that the target stage uses what is produced by the source, and branches indicate the parallelism
among the different stages. Each node is annotated with its profiled/inferred execution time, the ratio
between the sizes of inputs and outputs and other execution-specific data. Obtained graphs are translated
into both Timed Automata (TA) [AD94] and the Constraint LTL over clocks (CLTLoc) logic [BRS16]. TA
are well-known in the area of formal verification and the analysis of their temporal properties is supported by
many consolidated tools, such as Uppaal [BDL+06]. CLTLoc is an extension of LTL whose atomic formulae
can be arithmetical constraints over clock variables. It is semantically equivalent to TA [BRS17], and it can
be efficiently solved by a bounded decision procedure based on SMT solvers [BRS16].

Some preliminary experimental results obtained through the presented approach are shown in [MQB+18],
where a limited number of realistic Spark applications are analyzed through the verification of their asso-
ciated CLTLoc models. This paper extends the initial results with: (a) the use of TA as additional formal
machinery, with the intent of developing a multi-formalism estimation toolkit for Spark executions; (b) an op-
timization technique to reduce the size of generated formal models, and thus extend the family of analyzable
applications; and (c) a more complete and thorough assessment of a wider set of Spark applications.

The multi-formalism estimation toolkit has been developed to address the main drawback observed
in [MQB+18], that is, the high computational cost in terms of execution time required by the verification
procedure. The proposed solution allows one to select either CLTLoc or TA given the chosen verification
approach. The implemented decision procedure for CLTLoc is based on the bounded satisfiability of formulae,
whereas the most common and standard tools for the analysis of TA implement verification algorithms that
are based on the exhaustive exploration of the state space of the system. Bounded satisfiability stems from the

1 hadoop.apache.org
2 spark.apache.org
3 flink.apache.org

http://hadoop.apache.org
http://spark.apache.org
http://flink.apache.org

Using Formal Verification to Evaluate the Execution Time of Spark Applications 3

well-known Bounded Model-Checking [BCC+03] (BMC) approach and requires that the model of interest
(e.g., the one that violates a given property) be of a limited size s to restrict the search to only those
models that are smaller than s. In many cases, BMC reduces the cost of the state space exploration, but
often the size of the candidate model (if it exists) is unlikely to be known in advance, before running the
verification. Sometimes, state space exploration is still too large to allow for the analysis of all candidate
models (completeness). The guarantee of completeness is instead inherent in algorithms that exhaustively
explore the state space of the system, such as the one implemented in Uppaal. On the other hand, such
algorithms tend to suffer from the state explosion that leads to memory saturation even for models of
relatively small size. For this reason, famous verification toolkits, such as NuSMV [CCG+02], often provide
users with several tools that implement different verification approaches.

The decision procedures for TA and CLTLoc have a PSPACE complexity and, even if they include
optimizations that speed up the resolution of the verification problem, analyzing relatively small models
might require hours. This evidence motivates the second novel contribution of this paper: a technique that
reduces the overall time and memory consumption of the verification procedure when ordered computations
are considered —such as, for instance, those realized by Spark applications. The technique works on the
DAGs that abstract Spark computations and not on the underlying decision procedures dedicated to solve
CLTLoc formulae or to verify TA. The optimization is not Spark-specific, and we claim that it can be
applied to a wide range of applications whose underlying model can be abstracted as a DAG. The technique
exploits a property of partially ordered sets (posets), proven in Dilworth’s partition theorem: a finite poset
can be partitioned into n independent posets (called chains), where n is the cardinality of the largest set of
incomparable elements. Intuitively, in the context of this work, n is the maximum number of stages that can
be active simultaneously. The following two facts motivate the adoption of the property in the verification
procedure. Firstly, all Spark stages behave in the same way: the tasks are executed in batches whose size
depends on the number of available CPU cores, until all tasks are processed. Hence, the computation of
every stage can be represented by means of the same model template, which is then instantiated properly
with different values for its parameters. Secondly, every chain of the DAG can be described by means of a
unique set of CLTLoc formulae (or a single TA) that describes all the stages in the chain, instead of many
similar copies of the same template, each one modeling a single stage.

Our experimental evidence is promising and demonstrates that obtained estimated durations are close
to the actual durations when applications are executed on real clusters. The new experiments, with respect
to those presented in [MQB+18], are based on well-known benchmark applications such as the machine
learning algorithm SVM [Bur98] and some benchmark applications from the TPC-H suite4. The experiments
also include an implementation of a community detection algorithm for large graphs called Louvain5. The
accuracy of our models leads to an error that is less than 11% with respect to the a-posteriori measured
execution time. We have also compared the optimized and non-optimized versions of the models and the
results show that the verification of the optimized models is up to 10 times faster than the verification of
the corresponding non-optimized ones. Used memory follows a similar pattern. Experimental results witness
that the precision of TA models and CLTLoc ones is the same.

The paper is organized as follows. Section 2 provides an overview of Apache Spark and recalls the
definition of CLTLoc and TA. Section 3 presents the way we abstract Spark computations determined and
shows CLTLoc and TA models. Section 4 outlines the theoretical foundations of Dilworth’s theorem and the
optimized models. Section 5 reports on the experimental activities carried out to determine the accuracy of
the models and to evaluate the impact of the optimization. Section 6 surveys related approaches, and Section
7 concludes the work.

2. Background

To make the paper self-contained, this section summarizes the key characteristics of Apache Spark, Con-
strained LTL over clocks (CLTLoc) and Timed Automata (TA).

4 http://www.tpc.org/tpch/
5 https://sourceforge.net/projects/louvain/

http://www.tpc.org/tpch/
https://sourceforge.net/projects/louvain/

4 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

spark.textFile(“path/to/file”)
.map(x => x.split(“:”))
.filter(x => x(2) != “false”)
.map(x => (x(0), x(1).toInt))
.reduceByKey(_ + _)
.collect()

(a) Code

textFile

map

filter

map

textFilereduceByKey

Stage 1textFile

Stage 0

map

(b) DAG

(c) Data transformed from strings, to arrays and finally to key-value
pairs.

Fig. 1. Example of Spark application.

2.1. Apache Spark

Spark is usually deployed on a cluster of servers and exploits a master/worker architecture. The master
schedules operations for execution in the cluster by assigning parts of the computation to each worker. The
main abstraction in Spark is the RDD (resilient distributed dataset), i.e., an immutable and fault-tolerant
collection of records. To foster parallel computations, RDDs are split into chunks, called partitions, and
stored in a distributed way. RDDs can be saved and processed in memory to improve performance through
reuse, making Spark particularly efficient for the execution of iterative algorithms (e.g., machine learning
and graph computations).

Spark uses DAGs to organize the operations that compose a Spark application/job6. Note that the
DAG generated by Spark is created incrementally at runtime and it is not the control flow graph of the
application. A node in a Spark DAG is called stage. A stage is an abstraction that represents a sequence
of operations that starts with at least one wide transformation, possibly followed by a finite sequence of
narrow transformations. A transformation is an operation that reads at least one RDD and produces an
output RDD. Narrow transformations (e.g., map, filter) fully exploit data locality and can be aggregated
together (chaining) if they occur in a sequence, as they only operate on the local partitions. Conversely,
the data required to compute wide transformations (e.g., sortByKey, reduceByKey) may reside in different,
distributed partitions. For this reason, wide transformations always generate data shuffling: the workers that
execute a wide transformation exchange some data partitions among them.

The DAG defines the precedence relation among the stages of an application: two stages are connected
if one uses the data produced by the other to progress. Therefore, a stage can only be executed if, and only
if, all of its predecessors are completed.

Once a stage is scheduled by the master, Spark defines the set of parallel tasks that need to be executed.
A task executes all the transformations that compose a stage over a single partition of the input RDD. The
operations that belong to a stage are executed by tasks that are executed on the worker machines. Therefore,
a task is an atomic unit of computation executed by a single core and it is scheduled only when a CPU core
of a worker becomes available (i.e., completes the execution of a previously scheduled task).

Finally, narrow and wide transformations are executed lazily. The actual distributed processing starts
when an action (e.g., take, collect) is executed. Actions are used for returning a result to the Spark program
that can be reused by other Spark computations.

6 A Spark application is composed of one or more jobs. Each job has its own DAG, and jobs are executed sequentially. In this
paper, without any loss of generality, we refer to the application DAG as the sequence of the DAGs of the jobs that constitute
the application.

Using Formal Verification to Evaluate the Execution Time of Spark Applications 5

textFile

Stage 0

reduceByKey

Stage 1

flatMap

reduceByKey

Stage 2

flatMap

aggregateByKey

Stage 3

aggregateByKey

cartesianmap

map

filter map

filter map

map

Fig. 2. A more complex application.

To exemplify the Spark processing model, Fig. 1a shows Scala code of an example Spark application
that performs a simple aggregation over a dataset read from a text file where each line contains a vowel, a
number, and a Boolean separated by colons. The program sums the numbers that correspond to the same
vowels and which are not false. To this end, it chains different operations whose effect is shown in Fig. 1c:
i) a map transforms each line into an array of strings by splitting it at each colon; ii) a filter discards the
unnecessary arrays (those labeled with false); iii) a second map converts the remaining arrays into key-value
pairs, each one composed of a vowel (the key) and a number (the value); iv) transformation reduceByKey is
used to sum the numbers that share the same key; finally, v) action collect returns the dataset. Figure 1c
shows how an example dataset is transformed at each step.

Figure 1b shows how the example program of Fig. 1a is executed by Spark. Each grey rectangle inside
a stage is an RDD that is produced by the associated operation; the arrows define the ordering relation
between the transformations in Stage 0 and Stage 1 and the precedence between the two stages: a sequential
DAG of two nodes. Due to the lazy evaluation of transformations, nothing happens until collect is executed.
At that moment, Spark creates the DAG of Fig. 1b. Since map and filter do not require data shuffling,
the first four operations are grouped in a single stage (Stage 0). Conversely, reduceByKey requires shuffling
because tuples with the same key are not guaranteed to be all in the same partition. For this reason, Stage 1
is created and depends on Stage 0. So, it can be scheduled only when Stage 0 has completed its execution.

Figure 2 shows a more complex Spark application composed of 4 stages. Stage 0 reads a dataset from
a text file and transforms it with two map operations. Stage 1 and Stage 2, which follow the execution of
Stage 0, can be executed in parallel (the actual scheduling depends on different factors such as data locality).
Finally, Stage 3 merges the two datasets produced by Stage 1 and Stage 2 using a cartesian product.

2.2. Constraint LTL over clocks

CLTLoc [BRS16] is an extension to LTL that allows clocks to occur in atomic formulae. Being based on
LTL, the semantics of the logic is defined in terms of ordered positions of time, which are given by the
elements of set N. CLTLoc clocks behave in the same manner as clocks of TA, hence their value is taken
from a dense domain (such as R). For instance, consider two clocks x1 and x2. A possible (portion of)
sequence of values for the clocks, assuming that both x1 and x2 start with an initial value 0, can be
{0, 0}, {0.7, 0.7}, {1.1, 0}, {0, 2.5}, All clocks progress with the same amount of (real) time between any
two consecutive positions unless they are reset, in which case their value is set to 0. Clocks can be compared
with constants in formulae of the form x ∼ c (where c is a natural number and ∼∈ {<,=}). Since the logic
does not have resets, clocks are “reset” when their value is 0—i.e., when x = 0 holds. Atomic formulae can
also predicate over arithmetical variables (counters) that have no semantic restrictions. Therefore, the value
of the counters in a given position is determined by the arithmetical formulae that hold at that time position
and there are no restrictions on their value nor on their behavior over time. The logic exploits a special
modality X (arithmetical next), introduced in [DD07], with the following meaning: if y is an arithmetical
variable, Xy is the value of y in the next position of time. By means of X, the increment of y by 1 is expressed
by the formula Xy = y + 1.

6 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

Let W be a set of arithmetical variables and Θ(W) the set of all the quantifier-free Presburger formulae
over terms α of the form y or Xy, where y is an element of W . For instance, the formula y1 +Xy2 = Xy3 +y4
is a formula in Θ(W), when W includes y1, y2, y3 and y4. Let AP be a set of atomic propositions, K be a
set of clock variables, CLTLoc formulae φ are defined as follows:

φ := p | x ∼ c | θ | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ

where p ∈ AP , x ∈ K, θ ∈ Θ(W), c ∈ N, ∼∈ {<,=}, and X, Y, U and S are the usual “next”, “previous”,
“until” and “since” operators of LTL. Operators F (“eventually”), G (“globally”), and P (“previously”) are
defined through the customary abbreviations: Fφ = >Uφ, Gφ = ¬F(¬φ), and Pφ = >Sφ.

An interpretation of a formula is a pair (π, σ) defined over the naturals, where π(i) ⊆ ℘(AP) (where ℘ is
the powerset operator), and σ(i, x), σ(i, y) are, respectively, the value of clock x and variable y at position
i. The semantics of the evolution of time adopted for CLTLoc is strict, namely the value of a clock must
strictly increase in two adjacent time positions, unless it is reset (i.e., for all i ∈ N, x ∈ K, it holds that
σ(i + 1, x) > σ(i, x), unless σ(i + 1, x) = 0 holds). To ensure that time strictly progresses at the same rate
for every clock, σ must satisfy the following condition: for every position i ∈ N, there exists a “time delay”
δi > 0 such that for every clock x ∈ K:

σ(i+ 1, x) =

{
σ(i, x) + δi progress

0 reset x

A clock assignment is such that
∑
i∈N δi = ∞, that is time is always progressing. The semantics of

CLTLoc is defined as for LTL, except for formulae x ∼ c and θ. Let AW be the ordered set of all terms α,
of the form y and Xy, with y ∈ W , and let n be its cardinality; for each αj ∈ AW , the depth |αj | is such
that |αj | = 0 if αj = y, and |αj | = 1 if αi = Xy, for some y ∈W . For every θ ∈ Θ(W), θ[k0, . . . , kn−1] is the
valuation of θ through the values k0, . . . , kn−1 ∈ Z, which is obtained by replacing each term αj occurring
in θ with value kj . Let t(αj) = y if αj is either y or Xy. Hence, for every i ≥ 0:

(π, σ), i |= x ∼ c iff σ(i, x) ∼ c
(π, σ), i |= θ iff θ[σ(i+ |α0|, t(α0)), . . . , σ(i+ |αn−1|, t(αn−1))]

For instance, let W be the set {y1, y2} and σ be such that σ(i, y1) = 0 holds for all i ≥ 0, and σ(0, y2) = 1,
σ(1, y2) = −1 also hold. Then, if θ = y1 > Xy2 and i = 0, it holds that θ[σ(i + 0, y1), σ(i + 1, y2)] = (0 >
−1) = true (indeed, 0 is the depth of y1, and 1 is the depth of Xy2), and y1 > Xy2 holds at position
0; similarly, if θ = y2 < Xy1 and i = 1, then θ[σ(i + 1, y1), σ(i + 0, y2)] = (−1 < 0) = true holds, and
y2 < Xy1 holds at position 1. Hence, (π, σ), 0 |= y1 > Xy2 and (π, σ), 1 |= y2 < Xy1 hold. If φ is a formula,
interpretation (π, σ) is a model for φ if (π, σ), 0 |= φ holds.

The satisfiability problem CLTLoc is decidable [BRS16] and can be computed through a Bounded Satis-
fiability Checking approach [BRS16, BPKR16]. In Sect. 3, we use CLTLoc with counters, hence embedding
CLTL [DD07], to define the model of Spark computation. We show that, since the value of arithmetical
variables is bounded by some value that depends on the problem instance, we can still use the approach
introduced in [BRS16, BPKR16].

2.3. Timed Automata

Timed Automata (TA) are a well-known formalism; for this reason, only the main definitions are recalled.

Let Γ(K) be the set of clock constraints defined as η
def
= x ∼ c | ¬η | η ∧ η, where ∼∈ {<,=}, x ∈ K and c

is a natural number; and let Γ(W) be the set of variable constraints ζ defined as ζ
def
= y ∼ d | y ∼ y′ | ¬ζ |

ζ ∧ ζ, where y and y′ are variables in W and d is an integer. Let assign(W) be the set of assignments of the
form y := exp, where y ∈W and exp is a Presburger formula over W and the integers (e.g., y1 + 3y2 − 1 is
a Presburger formula).

Given a set of atomic propositions AP , a timed automaton is a tuple 〈Q, q0, v0, I, L, T 〉, where: Q is a
finite set of locations, q0 ∈ Q is the initial location, v0 is a function that assigns an integer value to each
variable in W , I : Q → Γ(K) is an invariant assignment function, L : Q → ℘(AP) is the labeling function
and T ⊆ Q×Q× Γ(K)× Γ(W)× ℘(K)× ℘(assign(W)) is a finite set of transitions.

Using Formal Verification to Evaluate the Execution Time of Spark Applications 7

The standard semantics of a TA [AD94] is given in terms of configurations, i.e., pairs (q, v) defining
the current location of the automaton and the value of all clocks and variables, where q ∈ Q and v is a
function over K ∪ W that assigns every clock of K with a real value and every variable of W with an
integer. A configuration change from (q, v) to (q′, v′) can happen because either a transition in T is taken
or because time elapses. The adopted semantics is standard, and the formal definition is omitted. Let A
be a finite set of assignments in assign(W) and S be a set of clocks in K. Informally, a discrete transition
determined by the tuple (q, q′, η, ζ, A, S) can be fired when: (i) the clock and the variable values, defined
by the valuation v, satisfy η and ζ and v′ satisfies the invariant I(q′); (ii) v′(x) = 0 holds for all clocks in
S, and v′(x) = v(x) otherwise (time does not advance in a discrete transition); (iii) finally v′(y) = exp(v)
holds, for all the variables in y ∈ W , where y := exp is an assignment of A and exp(v) is the value of exp
obtained by replacing the occurrences of the variables in exp with the variable values defined by v. In the
case of time (elapsing) transitions, (q, v) and (q′, v′) are such that q = q′, all the variables y ∈W retain the
value, v′(x) = v(x) + δ, for all x ∈ K and for some δ ≥ 0. In addition, the invariant I(q) is satisfied by all
the assignments of the clocks from v to v′.

The model-checking of TA is a well-known problem in the area of formal verification and efficient decision
procedures are implemented in several tools, such as Uppaal [BDL+06], Kronos [BDM+98], RED [Wan04]
(many others can be found in [WDR13]). The widely adopted specification language is Computation Tree
Logic (CTL). The definition and the semantics of CTL and the timed version TCTL are standard and can be
found in [ACD93, Bou09] along with some decidability and complexity results on the model-checking problem
of TA. In this work, TCTL is used to express the time-bounded reachability of specific configurations of the
Spark computation, through the operator F<d. Given a TCTL formula φ, F<d(φ) means that φ holds in the
future within d time units from the current instant.

3. Modeling

The section outlines the abstract model of Spark computations (a preliminary version of the model was
introduced in [MQB+18]).

3.1. Problem statement

The model of Spark computations only refers to the temporal properties of applications and their functional
aspects are not considered. The model represents the temporal ordering and the temporal distance among
the events that occur in a computation. The relevant events are the beginning and the end of stages and of
batches of tasks that occur throughout the computation of DAGs. The temporal ordering among the events
is determined by the dependency relation of the DAG whereas the temporal distance between the beginning
and the end of a task is defined by the duration of the task on a single core.

3.1.1. Assumptions

The following assumptions are considered in the design of the abstract model.

• Each application is deployed on a homogeneous cluster of identical machines;

• The workload managed by the cluster that executes the application is not subject to oscillations that
might alter the execution of the running tasks (i.e., the performance of the cluster is stable and does not
vary over time);

• Network overhead is predictable;

• Applications are CPU-bounded;

• The input datasets provided to the application are homogeneous; (i.e., the so-called data skewness is
negligible).

The previous assumptions reflect realistic scenarios. Applications are often executed on clusters of identical
machines that comply with a specific Service Level Agreement (in terms of number of cores, characteristics
of the CPUs and total amount of available memory). Cluster providers allow users to purchase the required
computational power in advance of the actual application deployment and guarantee stable performance
throughout the execution of the application.

8 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

Private clusters, for instance, are a solution adopted in case of highly demanding applications when ad-hoc
techniques to manage variable network performance fail. In addition, a vast literature on network guarantees
is available, and several works in this area propose techniques that can be adopted by cloud providers to
achieve stable performance, i.e., a predictable overhead. For instance, Silo [JSBM15] is “a system that allows
datacenter operators to give tenants guaranteed bandwidth, delay and burst allowances for traffic between
their VMs”. Cloud providers, very often, allow customers to rent machines that are close to one another, in
so-called “availability zones”. Clusters that consist of a single availability zone provide stronger guarantees
on bandwidth performance and latency than those that are geographically scattered.

Morover, as stated by Ousterhout et al. [ORR+15], Spark applications are usually bound to CPU alloca-
tion, which becomes the main bottleneck. Indeed, they quantify that network optimization reduces execution
time by just 2%. Note that one of the main features and advantages of Spark is that it favors in-memory
processing, and users can even disable the use of disk.

The skewness of the dataset affects the performance of the application and, in particular, it influences
its duration. The more the dataset is skewed, the more the task duration oscillates around a mean value,
as tasks process data partitions that are very diverse. The presence of skew datasets actually indicates the
lack of implemented procedures limiting the skewness and poses a threat against efficiency. Best practices,
in fact, advise against processing skew datasets to prevent the performance degradation and an inefficient
use of the cluster. According to Ousterhout et al. [ORR+15], skewed data can make applications 20% slower.
However, there are approaches in literature that focus on techniques to automatically split data into a
more homogeneous data partitioning [YCH15], or on controlling applications affected by skewed data at
runtime [BQ18]. For these reasons, the skewness of the dataset can be considered to be negligible, as an
effective data processing is presupposed.

As a corollary, since the cluster is homogeneous, the network overhead is predictable and every Spark task
is executed on a single core, task duration is an abstraction of a complex execution, that includes not only
the time needed by the cluster to execute a task but also other phenomena, such as the network overhead
(i.e., shuffling read/write) and possible performance loss that are caused, for instance, by data skewness
when no optimization of input data can be performed.

In addition, cores in the system can be abstracted as part of a single machine, i.e., they are not distributed
across the machines of the cluster, while actual task durations capture the difference between local and
remote executions. The main difference between having many machines with a single core and having a
single machine with many cores is that, in the former case, data are transfered either in memory or using the
local network interface, whereas, in the latter, they require remote connections. Given the assumptions, these
predictable overheads can be considered as a fraction of the total duration of tasks. Therefore, modeling the
behavior of a single machine is not relevant and the tasks of a stage are executed in batches, whose size
depends only on the total number of cores available in the system.

3.1.2. DAG-based model and feasible executions

Let D be a DAG (S,E) where S is a finite set of N stages {S0, . . . , SN−1} and E is a set of edges, that
is, a subset of S × S that represents the precedence relation among the stages. For instance, (S1, S2) ∈ E
means that S2 subscribes to the output of S1—hence, S1 is a predecessor of S2. Let Ti be a finite set of tasks
associated with Si such that any pair of tasks (Ti, Ti′) are disjoint for any 0 ≤ i, i′ < N (with i 6= i′) and let
T̄ be the set

⋃
i Ti. Hereafter, consider variable i to be 0 ≤ i < N .

An execution η for D with tasks in T̄ is a finite sequence of H tuples e0, e1, . . . , eH−1 of the form
ej = (T j0 , . . . , T

j
N−1), called execution steps, for some H > 2. Hereafter, consider variable j to be 0 ≤ j < H.

T ji is a—possibly empty—subset of Ti, and it contains the active tasks of Si at step j when T ji is non-empty.

The active tasks in T ji are executed in parallel; so, every T ji is a batch of running tasks. Executions satisfy
the following constraints:

• For every stage Si, each task in Ti appears in the execution exactly once; also, if some task of Ti occurs
at step j, then all tasks associated with all stages Si′ preceding Si, with respect to E, occur before j;

• For each execution step ej there exists at least one set of active tasks.

For any stage Si in S, let τi be a strictly positive constant in R that defines the time needed to compute
a generic task of Ti (since all the tasks in Ti are homogeneous, their execution requires the same amount
of time). Let I and I ′ be two convex and bounded sets in R. I precedes I ′ when all the elements in I are

Using Formal Verification to Evaluate the Execution Time of Spark Applications 9

strictly smaller than all the elements in I ′. Given an execution η for D, define function active(t) specifying
the set of active tasks of T̄ at any time instant t, such that for every t ∈ R:

• If a batch T ji is active at t, i.e., T ji ∈ active(t), then there is an interval I of τi time units, including t,

where T ji is active and no task of T ji is active in any time instant t′ not belonging to I;

• Every batch T ji is eventually active, i.e., there exists a time instant t such that T ji ∈ active(t);

• If batch T ji occurs before batch T j
′

i in η (i.e., j < j′), then the interval of time where T ji is active precedes

the interval of time where T j
′

i is active.

Let p > 0 be the number of available CPU cores in the cluster. An execution η = e0, e1, . . . , eH−1 for
D is p-feasible if |active(t)| ≤ p, for all t ≥ 0, i.e., in every time instant t the number of active tasks does
not exceed the number of cores. The time span ts(η) of η is defined as the maximum time instant where at
least one task in active. The value ts(η) is always finite because all the tasks of all the stages are executed
by means of a finite number of execution steps and the durations of the tasks are finite.

3.1.3. Feasibility problem statement

Let D be a DAG (S,E) of N stages, let Ti, τi and p be defined as before and let d be a strictly positive
integer. A d-bounded solution (or, simply, solution) of the feasibility problem for D with tasks in T̄ is a
p-feasible execution η = e0, e1, . . . , eH−1 such that ts(η) < d. Let FD be the set of values {d : ∃η ts(η) < d}
of the feasible deadlines, i.e., the set of all the possible deadlines d such that there exists a feasible execution
whose duration is less than d. The minimum feasible deadline (mfd) is the minimum of FD .

3.2. CLTLoc model

This section presents the CLTLoc model that allows for the automated resolution of the previously described
deadline-feasibility problem.

To represent the set of possible executions defined by a DAG, the CLTLoc model makes use of finite
sets of atomic propositions, discrete counters and clocks. For instance, runTi is the atomic proposition
that represents that a batch of tasks of stage i is in execution, i being the index identifying the stage Si.
Propositions, counters and clocks are respectively used to:

(i) model the current status of the stages and their tasks (i. e., started, running or completed, as described
in Sect. 3.2.1);

(ii) keep track of the number of CPU cores that are either available, or are allocated to run the active tasks
(Sect. 3.2.3);

(iii) enforce temporal constraints on the different tasks (Sect. 3.2.4).

Corresponding to these aspects, three groups of formulae can be identified in the model, mainly associated
with the different kinds of variables. All the formulae described hereafter, except (7a)-(7c) in Sect. 3.2.5, are
implicitly universally quantified over time through the G temporal operator.

For the sake of readability, and when the context is clear, we abuse the notations i ∈ S and (j, i) ∈ E to
indicate a stage Si ∈ S and the pair (Sj , Si) ∈ E, respectively.

3.2.1. State formulae for the stages

A stage Si can be either running (i. e., the atomic proposition runSi holds) or idle (i. e., ¬runSi holds). A
stage becomes running—i.e., startSi holds—when there is at least one task that has started its execution
and none of the tasks in Ti has been executed so far. If no tasks were executed then the number of tasks
still to be processed, represented by discrete integer variable remTCi, is equal to the total number of tasks
that the stage has to execute (|Ti|). A stage terminates—i.e., endSi holds—when the last batch of tasks

10 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

¬runTi¬runTi

startTistartTi

runTirunTi

endTiendTi
processingTiprocessingTi

Fig. 3. Finite state machine representing the state evolution of a set of tasks.

terminates and there are no more tasks to be processed—i. e., when endTi holds and remTCi is equal to 0.
This property is modeled in Formula (1).

∧
i∈S

(
(startTi ∧ remTCi = |Ti| ⇐⇒ startSi)∧

(endTi ∧ remTCi = 0 ⇐⇒ endSi)

)
(1)

A stage is completed (i.e., completedSi holds) if it has already been terminated in the past (i.e., there
is a time position before the current one in which endSi held); it is enabled (i.e., enabledSi holds) when all
the predecessor stages Sj , such that (Sj , Si) belongs to E, have been completed.

∧
i∈S

 (completedSi ⇐⇒ P(endSi)) ∧
(enabledSi ⇐⇒

∧
j∈S, (j,i)∈E

completedSj)

 (2)

3.2.2. State formulae for tasks

The behaviour of each batch of tasks is summarized in Fig. 3. In order for the batch to start processing
(runTi becomes true), the stage must be enabled (i. e., enabledSi holds), and some conditions on the resources
(explained later) must hold. Every batch is processingTi in all time instants strictly included between the
beginning of the batch (in which startTi holds) and the end of the batch (in which endTi holds). Atom
processingTi is used here for illustrative purposes and it corresponds to the state where runTi∧¬startTi∧
¬endTi. This execution cycle can be repeated many times depending on the available resources and the
number of tasks to be executed. The CLTLoc formulae capturing the state machine of Fig. 3 are shown
below in Formula (3).

Formula (3a) specifies the necessary conditions that must be true when a batch of tasks starts. When
startTi holds then (i) the execution cannot be finished at the same time (i. e., ¬endTi must hold), (ii) in the
previous time position, the stage was enabled to run and (iii) a new batch cannot start (i. e., ¬startTi holds)
until the termination of the current one. Formula (3b) imposes that any execution of a batch of tasks is started
with startTi and ends with endTi, respectively; and that if a batch is running, then the corresponding stage
is running at the same time. Similarly to Formula (3a), Formula (3c) defines the necessary conditions so that
endTi holds. The termination of a batch of tasks imposes that ¬endTi holds since the time position where
the current batch was started. Notice that formula φRψ is the abbreviation of ¬(¬φU¬ψ). Intuitively, φRψ
holds when either ψ holds forever, or ψ holds until a time position where φ and ψ hold together. Moreover,
orig is the abbreviation of ¬Y(a ∨ ¬a), that is orig holds only at time position 0.

∧
i∈S

(startTi ⇒ runTi ∧ ¬endTi ∧YenabledSi ∧X(endTiR¬startTi)) ∧
(runTi ⇒ runSi ∧ (runTi S startTi) ∧ (runTi U endTi)) ∧
(endTi ⇒ runTi ∧Y¬endTi S (orig ∨ startTi))

 (3a)

(3b)

(3c)

Using Formal Verification to Evaluate the Execution Time of Spark Applications 11

3.2.3. Counter-related formulae

Counter variables are used to define the constraints on system resources and the evolution of the tasks that
are executed within a stage. For example, Formula (4) limits the number of cores that are allocated to
execute the active tasks. In particular, the sum of the number of available (avaCC) and allocated cores is

always equal to p, where runTCi is the cardinality of the set T ji for the current execution step j.∑
i∈S

(runTCi) + avaCC = p (4)

Formula(5) links startTi, runTi and endTi with the value of counters runTCi and remTCi. In particular,
Formula (5a) defines that a batch is running (i.e., runTi holds) whenever the value of runTCi, which counts
the active tasks, is strictly positive. Formula (5b) imposes that the number of the remaining tasks of a
stage decreases during its execution, i.e., the value of XremTCi (that is, the value of remTCi in the next time
position) is not greater than the value of remTCi in the current position. Formulae (5c) and (5d) constrain
the values of runTCi and remTCi to change only when a batch starts or terminates. Specifically, Formula (5c)
imposes that a variation of the value of runTCi between two adjacent positions is a sufficient condition to
make startTi or endTi true. Formula (5e) defines the relation between the variables remTCi and runTCi.
When a batch of tasks is ending, the number remTCi of remaining tasks (to be executed) in the batch is the
difference between the number of remaining tasks in the preceding time position (i. e., value YremTCi) and
the number runTCi of tasks running in the batch being completed.

∧
i∈S

(runTi ⇔ runTCi > 0) ∧
(remTCi ≥ XremTCi) ∧
((runTCi 6= XrunTCi)⇒ (XstartTi ∨ endTi)) ∧
((remTCi 6= XremTCi)⇒ XendTi) ∧
(endTi ⇒ (remTCi = YremTCi − runTCi))

(5a)

(5b)

(5c)

(5d)

(5e)

3.2.4. Constraints on clocks

The processing duration of the batches of tasks is constrained in Formula (6) by means of a clock variable
clkrunTi , that is defined for each stage Si. Specifically, clkrunTi measures the duration of the runTi phases,
for every possible batch of stage Si. Formula (6a) specifies first that clkrunTi is reset in the origin or every
time a new batch of tasks starts running for node Si. In addition, Formula (6b) limits the duration of the
execution of a batch of tasks by imposing that the termination of the batch occurs when the value of clock
clkrunTi is in the interval [τi − ε, τi + ε].

∧
i∈S

((clkrunTi = 0) ⇐⇒ (orig ∨ startTi)) runTi ⇒(

runTi ∧ ¬endTi)U((clkrunTi ≥ τi − ε) ∧ (clkrunTi ≤ τi + ε) ∧ endTi)
∧(remTCi = YremTCi − runTCi)

)

(6a)

(6b)

3.2.5. Initialization

The initial condition of any modeled Spark application obeys the following constraints (recall that the next
formulae are stated only for the first time position): (i) no tasks are running in the origin (Formula (7a));
(ii) for each node Si, the number of remaining tasks is |Ti|, which is the total number of tasks to be
processed by node i (Formula (7b)); (iii) the number of available cores avaCC is the total number of cores p
(Formula (7c)).

∧
i∈S

(
(¬runTi ∧ ¬runSi) ∧
(remTCi = |Ti|) ∧ (runTCi = 0)

)
(7a)

(7b)

12 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

(avaCC = p) (7c)

3.2.6. Problem reduction

Let totaltime be a clock variable that is only reset when the application starts (i.e., totaltime = 0 in
the origin), the reachability of the termination of all the stages earlier than the deadline d is reduced to the
satisfiability problem of the conjunction of all the previous CLTLoc formulae and the following one:

F

(∧
i∈S

(completedSi) ∧ totaltime < d

)

3.3. TA model

This section presents the new and alternative model of Spark computations built with TA and defines the
reduction of the p-feasibility problem to a model-checking one.

The TA-based model is introduced to show the generality of the optimization approach. Given a DAG,
one could decide to solve the corresponding p-feasibility problem using either the CLTLoc, or the TA-based
model. However, the two models are not meant to be equivalent from a formal language perspective (i.e.,
given the same DAG, the CLTLoc model and the TA-based one do not necessarily capture the exact same
sets of timed words). Indeed, they have been developed to leverage the specific features of each formalism for
the description of Spark computations, rather than to define a language-preserving translation of one model
into the other (and vice versa). The reason for this is twofold. On the one hand, a model produced through a
language-preserving translation (for example, from CLTLoc to TA) would not be optimized from the point
of view of its size, or the efficiency of the formal verification activity. On the other hand, our goal is to show
how the optimizations introduced in this paper follow from the features of the analyzed DAGs as captured
by Theorem 4.1, rather than from the specific features of the underlying formalism. For these reasons, and
from the fact that, at its core, each model is an abstraction of the actual system, there can sometimes be
a slight difference in the results (i.e., the minimum feasible deadline mfd obtained through the verification
activity) obtained with different modeling approaches, but such discrepancy is not significant.

In the TA-based model, every stage of a DAG is associated with a TA that describes the execution of
the stage over time, and which is an instance of the template shown in Fig. 4. Then, given a computation
represented through a DAG, the corresponding TA-based model is the so-called “network of TA” obtained
through the parallel composition of the TA capturing the various stages.

The rest of this section briefly describes the features of the TA of Fig. 4. The TA-based model uses
identifiers that were also introduced in the logical specification presented in Sect. 3 (e.g., completedS i).
However, the two models are independent and the same identifier in different models can capture different
elements (for example, completedSi in CLTLoc identifies a propositional letter, but completedS i in TA
corresponds to a Boolean variable); hence, we write the identifiers used in the TA-based model in italic.

The TA of Fig. 4 uses variables and clocks to capture various features of the stage. In particular, Boolean
variable completedS i is used to represent when stage i has completed the computation of all the tasks of
set Ti (it holds value true when all tasks have been processes, false otherwise); this allows us to capture
the precedence relation among stages encoded in the DAG. Variable avaCC , instead, whose domain is [0, p]
(where p is total number of cores in the cluster, see Sect. 3.1), keeps track of the number of cores that
are available during the computation. It is initially set to p, and changes whenever a core starts/completes
a computation. Finally, clock ci measures the duration of the computation of a single batch, and variable
ntasksi (whose domain is [0, |Ti|]) counts the total number of completed tasks along the computation.

Locations Init i and Idlei model, respectively, the initial state of stage i, when it is waiting for the
termination of all its predecessors, and the state in which stage i is waiting for some core to be available
to execute a batch of tasks. The automaton also includes p locations 1-task . . . p-task , where each location
j-task , with 1 ≤ j ≤ p, captures the fact that j tasks are being processed. A stage can start the computation
when all its predecessors have completed their tasks (function pre(i) indicates the set of predecessors of
stage i). The transition from Init i to Idlei is taken only when guard

∧
s∈pre(i)(completedS s) holds, which

corresponds to checking the termination of all predecessors of stage i, and thus captures the dependency
relation among stages; in addition, the transition sets the value of ntasks to 0.

Using Formal Verification to Evaluate the Execution Time of Spark Applications 13

Initi

Idlei

j-task
ci ≤ τi + ε · · ·· · ·1-task

ci ≤ τi + ε
p-task

ci ≤ τi + ε

∧
s∈pre(i)(completedSs),

ntasksi := 0
ntasksi = |Ti|,
completedSi := true

λ(j) γ(j)
λ(N)

γ(N)

λ(1)

γ(1)

Fig. 4. Timed automaton modeling the i-th stage.

The computation of a stage terminates when the total number of elaborated tasks is equal to |Ti|.
Therefore, the transition from Idlei to Init i modeling the termination of the stage is taken only when
condition ntasks = |Ti| holds. The effect of the transition is to set variable completedS i to true. When the
stage is idle, the processing of a new batch of j tasks can start when:

• there are enough available cores to elaborate the batch, i.e., when the number of available cores is greater
than or equal to j (this captures condition |active(t)| ≤ p of the problem statement); this is formalized
by constraint avaCC ≥ j;

• the number of tasks that still have to be completed is greater than or equal to j; this is captured by
condition ntasksi ≤ |Ti| − j.

Every time a batch is started, clock ci measuring the duration of the computation is reset and the number of
available cores is decremented by the size of the batch (this is captured by assignment avaCC := avaCC −j).
In Fig. 4, label λ(j), with 1 ≤ j ≤ p, stands for:

• the guard avaCC ≥ j ∧ ntasksi ≤ |Ti| − j;
• the clock reset ci := 0;

• the variable assignment avaCC := avaCC − j.
After τi time units the batch is completed, the stage becomes idle again, and the allocated cores are released.
This behavior is modeled through the transition from location j-task to Idlei , which is labeled with the
assignment avaCC := avaCC + j and a guard γ on ci capturing the duration of the stage. To make the
modeling of the task duration more adherent to the actual runtime behavior of Spark applications, the TA
model tolerates a small deviation—of ε time units, with ε a constant—from τi of the task duration. More
precisely, guard γ is defined as ci ≥ τi − ε, which expresses a lower bound on the task duration. In addition,
to guarantee that the batch is processed in a finite amount of time, every location j-task is labeled with
invariant ci ≤ τi + ε, which defines an upper bound on the task duration. Then, in Fig. 4, label γ(j), with
1 ≤ j ≤ p, indicates:

• the guard ci ≥ τi − ε;
• the assignment avaCC := avaCC + j.

3.3.1. Problem reduction

In the TA-based approach, the p-feasibility problem is reduced to the problem of checking that TCTL formula
(8) holds for the network of TA.

∃F<d
(∧
i∈S

completedS i

)
(8)

Indeed, Formula (8) holds if there exists an execution of the network of TA such that all stages are
eventually completed within d time units from the origin (i.e., from the start of the computation).

14 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

0

1 2

3 4

5

6 8

7

(a) A DAG.

0

1 2

3 4

5

6 8

7

(b) A labeled DAG.

Fig. 5. A DAG and a possible partitioning of its nodes into two chains shown in different colors.

4. Optimization

This section discusses the technique applied for reducing the overall time and memory consumption of the
verification procedure. The technique is based on a general result—Dilworth’s theorem—that holds for any
partially ordered set (poset), hence also applies to the DAGs describing the executions of Spark applications.
In fact, a DAG defines a partial order among the nodes: nodes that are linked with an edge are strictly
ordered, whereas nodes that are not related through the predecessor relation (i.e., parallel nodes) are not.
More precisely, this section presents the theoretical foundations required to state Dilworth’s theorem and
Dilworth’s partitioning algorithm. Sections 4.1 and 4.2 show the modifications to the CLTLoc model in
Sect. 3.2 and to the TA-based model in Sect. 3.2 taking advantage of the partitioning result.

The optimization exploits a specific property related to the width of posets, which is a general notion
that applies also to Spark DAGs. Formally, a finite poset is a (finite) set equipped with a binary relation
that is reflexive, antisymmetric and transitive. Two elements that are related through the relation are called
comparable, indicating that one precedes the other in the ordering. However, not every pair of elements of a
poset are required to be pairwise comparable; in such a case, two unrelated elements are called incomparable.
A poset can be visualized as a graph where edges connect comparable elements as, for instance, the one in
Fig. 5a (the edges deriving from the transitive closure of those depicted in the graph are omitted). Intuitively,
the width of a poset is the maximum number of mutually incomparable elements of the poset and corresponds
to the maximum number of possibly concurrent stages of a feasible execution obtained from a Spark DAG.

Definition 4.1. An antichain is a set of elements of a poset that are pairwise incomparable and the width
of a poset is the size of the largest antichain. A chain is a set of elements of a poset that are all pairwise
comparable.

In the case of Spark computations, a chain is a set of stages in a DAG that must be executed sequentially
because they are related to each other through the precedence relation. The chains of a poset can be
overlapping, but a poset can always be partitioned into disjoint chains. Dilworth’s theorem binds the width
of the poset and the number of its disjoint chains.

Theorem 4.1. [Dil50] Let P be a finite poset and k be such that every set of k+1 elements of P contains at
least a pair of comparable elements and there is at least one set of k elements of P that is an antichain. Then,
k is the minimum cardinality of the family of chains into which P can be partioned (Dilworth’s chains).

By Theorem 4.1, a poset having width k can be partitioned into k disjoint chains. Figure 5a shows a
DAG where arrows indicate the precedence relation between the nodes; then, Figure 5b shows a possible
partitioning of the DAG in Fig. 5a into two chains that are indicated with light gray and dark gray nodes.

Modeling the computation of the stages belonging to the same chain can be done efficiently, because at
most one stage per chain can be active at a time. All the nodes belonging to the same chain can be modeled
together as they are never executed concurrently. In fact, only the computation of the active stage has to be
represented, whereas the modeling of the inactive stages is straightforward as they are simply idle. Therefore,
this property can be used to reduce the state-space of the verification as stated below.

Optimization. Every chain in a DAG can be modeled with a unique modeling construct (e. g., a

Using Formal Verification to Evaluate the Execution Time of Spark Applications 15

set of CLTLoc formulae or a TA). Every construct is a modeling template that can be instantiated
with specific parameter values representing one chain. Various instances of the template, with different
parameter values, capture all the chains in the DAG.

The modeling templates are described in Sect. 4.1 and Sect. 4.2.
There are various algorithms to obtain a Dilworth partition of a poset. The one that has been used to

carry out the experiments7 in Sect. 5 is shown in the Appendix (Fig. 15). Given a poset of n elements, it
obtains in O(n3) the Dilworth partition (the set of chains with the smallest cardinality) and assigns a label
to each chain of the poset. The procedure, which uses Bogart-Magagnosc’s algorithm [IG04], starts with
the smallest partitioning strategy, that is the one containing a single node per chain. Then, the algorithm
iteratively tries to aggregate the partitions until no possible reduction can be made. When this happens, a
Dilworth partition is found. The algorithm uses a breadth-first search to find reducing sequences, that are
identified when a node a has an ancestor b that is the last element of a chain.

For instance, consider the DAG shown in Fig. 5a that represents the graph generated by Spark when it exe-
cutes application PageRank. The algorithm starts with the partition (or set of chains)
C = {{0}, {1}, {2}, {3}..., {8}} that is the one with the maximum cardinality where each single node is
a chain. Then, for each chain, the algorithm searches for a reducing sequence. In the example, at first, chain
{0} is considered, and no reduction is performed, since node 0 has no ancestor. Instead, chain {1} can be
aggregated into chain {0}, because node 0 is a predecessor of node 1, and node 0 is also the last element of a
chain. Therefore, after the first reduction, the resulting partition is C = {{0, 1}, {2}, {3}..., {8}}. Then, chain
{2} is not reduced with {0, 1} since its last element (node 1) is not a predecessor of node 2. On the other
hand, chain {3} is aggregated into chain {0, 1}, while chain {4} is reduced with chain {2} . Finally, chains
{5}, {6} and {7} are iteratively aggregated into chain {0, 1, 3}, while chain {8} is reduced with chain {2, 4},
since node 4 is an ancestor of node 8, and it is also the last element of a chain. Therefore, the outcome of the
algorithm is the partition C = {{0, 1, 3, 5, 6, 7}, {2, 4, 8}}, whose cardinality is 2. Fig. 5b shows the resulting
labeled DAG. The 9 nodes are annotated with 2 labels (represented by different colors), corresponding to
each set of C. The degree of parallelism of the DAG (i.e., its width or, equivalently, the size of the maximum
antichain) is also 2.

4.1. Optimized CLTLoc model

The optimized version of the CLTLoc model introduces a few—yet impactful in terms of model size—changes
with respect to the model depicted in Sect. 3.2. In this context, the size of a formula is determined by the
number of symbols (atoms, logical connectives and temporal modalities) in the formula. For instance, the size
of formula aU(b∧c) is 5 (brackets are not counted). When a formula is parametric, such as all those defining
our model, its size depends on the indexes occurring in it. For instance, the size of formula

∧
i∈S aiU(bi ∧ ci)

is 5n, where n = |S|, that is, it is linear in the size of set S. Once the DAG is labeled, most of the formulae
referring to the computation of each node (stage) in the DAG (e. g., clock formulae, state formulae for tasks)
capture the computation of each group of stages corresponding to a label. Likewise, atomic propositions
and counters that were specific to each stage’s batch of tasks (e. g., runTi, startTi, endTi, runTCi), are
now related to each label’s batch of tasks. For example, Formula (9) below corresponds to Formula (3)
after the application of labeling. One main difference between (3) and (9) lies in the fact that the former is
repeated for all the elements of the set of labels L, rather than for all the stages in S (indeed, the formula
corresponding to Formula (3c) is not shown here, because it is the same as the latter, except for the index

domain). Moreover, for this set of formulae and variables, the size is reduced by a factor of |S||L| .

∧
j∈L

(startTj ⇒ runTj ∧ ¬endTj ∧Y(¬runTj S (orig ∨ endTj)) ∧X(endTjR¬startTj)) ∧runTj ⇒

∨
i∈S: `(i)=j

(runSi) ∧ (runTj S startTj) ∧ (runTj U endTj)

(9a)

(9b)

7 The source code of the algorithm is available at [dag19].

16 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

Some additional constraints need to be specified in order to determine, for each label, which stage is currently
active. Let ` : S → L be the labeling function that associates each stage with a label according to the Dilworth
partitioning. Let `(i) be the label associated with the stage i; the stage-specific start and end conditions,
expressed in Formula (1), are enriched in the following way in Formula (10): since startTj and endTj might
now refer to many stages (all the stages i such that `(i) = j), an additional check on completedSi and
enabledSi is needed to disambiguate which stage is actually active. Analogously, Formula (3b) is enriched
in Formula (9b) by adding the constraint that, when runTi holds for a label i, runSj must hold for one of
the stages j such that `(j) = i. The definitions of completedSi and endSi presented in Formula (2) are kept
unchanged in the optimized model.

∧
i∈S

startSi ⇐⇒

(
runSi ∧ startT`(i) ∧ remTC`(i) = |Ti|
∧YenabledSi ∧ ¬completedSi

)
∧

endSi ⇐⇒
(

runSi ∧ endT`(i) ∧ remTC`(i) = 0
∧YenabledSi ∧ ¬YcompletedSi

)

(10a)

(10b)

Let startEnabledSi be the shorthand for enabledSi ∧¬YenabledSi. As shown in Formula (11), differently
from the original CLTLoc model, variable remTC`(i) is reset to |Ti| every time a stage Si corresponding to its
label becomes enabled (Formula (11a)) and it is decremented when the related batch of tasks terminates—i. e.,
endT`(i) holds, as in Formula (11c)—and has a monotonically decreasing trend only when Si is executing (i. e.,
runSi holds, as for Formula (11b)). Formulae (11) do not include the ones corresponding to Formulae (5a),
(5b), (5d) and (5e), as they differ only for the index, that now ranges over the set of labels.

∧
i∈S

((
startEnabledSi ⇒ XremTC`(i) = |Ti|

)
∧(

runSi ⇒ remTC`(i) ≤ YremTC`(i)
))

(11a)

(11b)

∧
j∈L

(
(remTCj 6= YremTCj ⇒ endTj ∨

∨
i∈S: `(i)=j

(YstartEnabledSi))∧
)

(11c)

Formula (6), Formula (7) and Formula (4) also need to be modified. More precisely, in Formula (6) clock
variables clkrunTi , counters runTCi, remTCi, and atomic propositions runTi, endTi now range over labels L,
rather than stages (for example, clkrunTi is replaced with clkrunT`(i) , and similarly for the other elements).

In addition, the antecedent of Formula (6b) is modified to explicitly include the condition that stage i is
executing (i.e., runSi holds). In Formula (7) and Formula (4), instead, the index must now simply range over
set L instead of S.

The next section examines how the optimization affects the complexity of the CLTLoc model.

4.1.1. Complexity analysis of CLTLoc models

The satisfiability of CLTLoc is in PSPACE [BRS16]. The complexity of the satisfiability problem depends
exponentially on the number of subformulae and on the number of clocks in the CLTLoc formula. Even if
both the CLTLoc models contain counters, their domain is finite and, hence, their formulae can be converted
into equivalent ones using a finite number of atomic propositions. The two parameters that affect the overall
complexity are the number of subformulae (added or removed because of the optimization) and the number
of clocks (the maximum constant remains the same).

Number of subformulae. Every group of formulae defining the models, i.e., formulae in Sect. 3.2.1 to 3.2.4,
undergoes a change in the optimized version; their size, however, only changes linearly in |S| or in the
difference |S| − |L|. For instance, the size of task formulae and of counter formulae, in Sect. 3.2.2 and 3.2.3
respectively, decreases linearly in |S| − |L| whereas the size of stage formulae increases by a linear term in
|S|.

Arithmetical operations on finite counters can be encoded linearly in the cardinality of the domain by
means of propositional formulae. The domain of the counters that are used in both models does not vary
(the number of tasks to be computed is fixed) whereas the number of counters changes; in the optimized

Using Formal Verification to Evaluate the Execution Time of Spark Applications 17

version the set of counters is smaller than the same set in the non-optimized version. In fact, only |L| pairs of
counters remTC and runTC are used in the optimized version whereas |S| pairs of counters remTC and runTC
are adopted in the non-optimized one (avaCC is used in both models).

Number k of clocks. The number of clocks adopted in the optimized model is smaller than that in the non-
optimized one. In particular, the number of clocks in the optimized model depends linearly on |L| instead of
|S|. Hence, the overall complexity of the p-feasibility problem encoded through a CLTLoc formula is reduced
by a term which exponentially depends on the value |S| − |L|.

4.2. Optimized TA model

The optimized version of the TA modeling the nodes is similar to the one presented in Sect. 3.3 and it is
shown in Fig. 6. The fundamental difference between the optimized version and the non-optimized one is
that, in the optimized version, one TA models the computation of all the nodes with the same label. For
instance, the graph in Fig. 5b shows a labeled DAG where dark gray and light gray stages define two disjoint
chains. Using the encoding of Sect. 3.3, every stage is modeled by a distinct TA (9 in total), whereas two
distinct TA are enough to represent the two chains with the optimized version.

Given a DAG, let L = {l0, . . . , lm−1} be the set of the m labels extracted with the algorithm presented
in Sect. 4 and let Sl be the set of the stages associated with label l. Similarly to the non-optimized model,
the computation of the DAG is represented through a network of TA. For every label l ∈ L, there is an
automaton Al which keeps track of the computation of all stages labeled with l. Every automaton Al has
two locations Init l and Idlel that have the same meaning as those in the automaton in Fig. 4. Since at most
one stage per label is active at a given time (the stages with the same label are executed sequentially), a
variable active stagel, whose value ranges from 0 to |Sl|, is introduced to indicate the active stage among
those modeled by Al (assuming that the nodes in Sl are numbered). The value of active stagel is set initially
to 0 and it is incremented every time the active stage has completed the computation of all of its associated
tasks (see the update on transition from Idlel to Initl). Moreover, active stagel = |Sl| holds when all the
stages labeled with l have been completed. Variable active stagel is part of the definition of the global state
of the network of TA, hence it can be read by all the automata modeling the DAG. Hereafter, variable
active stagel is used to easily refer to the stages in Sl. For instance, instead of saying that “if active stagel
is equal to i, then the duration of tasks of stage i is τi”, τactive stagel succinctly indicates the duration of the
tasks of the active stage.

In general, the stages labeled with the same label l behave differently at runtime, because their tasks
have different duration, or because they include different number of tasks and dependencies (determined
by the DAG). Hence, to properly represent the computation of every stage modeled by automaton Al, the
following information must be taken into account:

• the dependency relation between the stage active stagel and the other stages of the DAG,

• the duration of the tasks τactive stagel and

• the number of tasks in Tactive stagel .

This information is required to model the duration of the batches and to establish the beginning and
the termination of the computation of the active stage. While, in the non-optimized solution, they are hard-
coded in the automaton modeling a stage, automaton Al uses suitable guards and updates to correctly set
the values of τactive stagel and Tactive stagel according to the value of active stagel.

The condition on the transition between Init l and Idlel captures the dependency relation of the DAG.
This condition in Al is more complex than the corresponding one in the non-optimized version, as the set of
predecessors of the active stage modeled by Al now depends on active stagel. Given a stage s, let label(s)
be its associated label, and let #(s) be the index of s given by the enumeration of the element in the set
Slabel(s) containing s. The guard between Init l and Idlel is a conjunction of implications, one for every stage
in Sl, enforcing the predecessor relation (consequent) based on the value of active stagel (antecedent):∧

s∈Sl

(active stagel = #(s)⇒
∧

s′∈pre(s)

active stage label(s′) > #(s′)).

Every condition active stage label(s′) > #(s′) of the conjunction in the right-hand side guarantees that every

18 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

Initl

Idlel

(0, j)-task
cl ≤ τ0 + ε0

· · ·· · ·(0, 1)-task
cl ≤ τ0 + ε0

(0, p)-task
cl ≤ τ0 + ε0

...
...

...

(z, j)-task
cl ≤ τz + εz

· · ·· · ·(z, 1)-task
cl ≤ τz + εz

(z, p)-task
cl ≤ τz + εz

∧
s∈Sl

(
active stagel = #(s)⇒∧

s′∈pre(s) active stage label(s′) > #(s′)

)
,

ntasksl := 0

active stagel < |Sl| ∧ ntasksl = |Tactive stagel
|,

active stagel := active stagel + 1

λ(0, j) γ(0, j)

λ(0, p)

γ(0, p)

λ(0, 1)

γ(0, 1)

γ(z, j)λ(z, j)

λ(z, p)

γ(z, p)

λ(z, 1)

γ(z, 1)

Fig. 6. Timed automaton representing all the nodes labeled with the same label. Dashed lines indicate a set
of transitions: every transition is associated with a specific set Tactive stagel . Constant |Sl| − 1 is abbreviated
with symbol z in Roman.

stage s′—labeled with label(s′)—that is a predecessor of the active stage s has been completed. More precisely,
the condition requires that the value of the current active stage in the automaton Alabel(s′) is greater than
its index #(s′); hence, the computation of #(s′) is completed (recall that the stages in Sl are numbered and,
when a stage terminates, variable active stagel is incremented). For instance, assume that the stage with
label l and index 2 depends on the stage with label l′ and index 1 and the stage with label l′′ and index 3;
then, the corresponding implication (which is part of the—possibly more complex—conjunction defining the
guard between Init l and Idlel) is active stagel = 2⇒ active stagel′ > 1 ∧ active stagel′′ > 3.

To model different task durations, automaton Al uses copies of the locations j-task already used in the
non-optimized TA, indexed with the identifier of the stages in Sl labeled with l. For every stage in Sl,
one copy of every location (i, j)-task is defined to indicate that stage i is currently running a batch of j
tasks. Every location (i, j)-task has a specific invariant that depends on the value of i that is stored in
active stagel. In addition, every transition between Idlel and any location (i, j)-task has the same updates
as the corresponding one in the non-optimized automaton, but it differs from the latter because the guard
also includes a constraint over the index of the current active node. In particular, abbreviations λ and γ
now depend on both the active node i and the size j of the batch that is going to be executed. Label λ(i, j)
contains the guard active stagel = i∧avaCC ≥ j, and the assignments are avaCC := avaCC −j and cl := 0.
Similarly to the model of Sect. 3.3, lower and upper bounds to the duration of tasks of stage i are expressed
by considering a deviation of εi time units from the nominal one τi. Hence, to guarantee that the duration
of every batch of tasks is bounded, every location (i, j)-task is labeled with an invariant cl ≤ τi + εi. Label
γ(i, j) contains guard cl ≥ τi − εi and the assignment avaCC := avaCC + j.

4.2.1. Problem reduction

The reachability of the termination of all the stages earlier than the deadline d is encoded with the TCTL
Formula (12), that constraints the index of the variables active stagel to be equal to |Sl|: this is the case
when the stage in Sl numbered with |Sl| − 1 has completed the computation of all the tasks, and variable
active stagel has been incremented by the transition from Idlel to Init l.

∃F<d
(∧
l∈L

(active stagel = |Sl|
)
. (12)

The impact of the optimization in terms of model complexity is discussed in the next session.

Using Formal Verification to Evaluate the Execution Time of Spark Applications 19

4.2.2. Complexity analysis of TA models

The PSPACE-completeness of the model-checking problem of TA with respect to TCTL formulae is shown
in [ACD93], where the upper bound for the problem is determined by the size of the region automaton that
is constructed for the evaluation of the TCTL formula. The size of the region automaton is exponential in
the number of clocks and in the size of constants (assuming a binary encoding) occurring in the TA and in
the formula, while it is linear in the size of the TA (i.e., locations and edges) and in the number of TCTL
subformulae. The reachability problem defined through the formulae (8) and (12) is, however, only affected
by the number of locations in the TA modeling a p-feasibility problem, the greatest constant in the problem
and the number of clocks used by the TA. In fact, the size of the formulae (8) and (12) is constant, and the
number of edges of the whole automaton is always linear in n, where n is the size of the structure of every
TA modeling the stages (both in the non-optimized and optimized version) fixed a-priori. Hence, given a TA,
the number of vertices in the region automaton is O(n ·k! ·2k · (2cmax+2)k), that is n ·2O(k log(kcmax)), where
n is the number of locations in the TA, cmax is the greatest constant of the problem and k is the number
of clocks used by the TA. For this reason, to establish the complexity of the procedure, only parameters n
and k of the network of TA modeling a p-feasibility problem have to be estimated. Their value depends on
the size of the feasibility problem to be solved, which is a function of the size of the DAG (i.e., the number
of nodes |S|), the number of cores p and the deadline d. In the optimized version, the set L of labels defined
by the partitioning algorithm is also considered. The constant cmax is equal to the deadline d, which is the
greatest constant in the problem.

Number k of clocks. The value of k in the optimized solution is equal to the number |L| of labels produced
by the labeling algorithm, whereas it is determined by |S| in the non-optimized model. Therefore, the cost
that is introduced by the clocks is always smaller in the case of the optimized model and, in particular,
the overall complexity is reduced by a term which exponentially depends on the value |S| − |L|. Hence, the
magnitude of the reduction of k depends on the DAG and, in some cases, k turns out to be logarithmic in
the size |S| of the DAG in the optimized model, whereas it is linear in |S| in the non-optimized version.

Number n of locations. The number of locations of the automata in Fig. 6 and Fig. 4 depends on:

• the number of cores p considered in the p-feasibility problem,

• the maximum value of ntasks and completedS i in the model in Fig. 4, and

• the maximum value of ntasks, avaCC and active stagel in the model in Fig. 6.

The integer counters have finite domains which can be embedded in the control states of a TA without
counters which is equivalent to the original one with counters.

Variables active stagel are only used in the optimized version, and they are bounded by |S|; for every
label l ∈ L, a variable active stagel is introduced in the model. Conversely, the variables completedS s are
only used in the non-optimized version and they are Boolean; for every stage s ∈ S, a variable completedS s
is introduced in the model.

To determine the overall size of a network of TA, built based on the template of Fig. 4 in the case of the
non-optimized translation, and on the template of Fig. 6 in the optimized one, the size of a single automaton
is calculated first. In the analysis, variable avaCC is omitted because the variable is used in both models,
hence it affects their size in the same way.

Assume that ntasks is bounded by nMAX. The TA in Fig. 4 has size p · nMAX · 2|S|, where factor 2|S|

ensues from the use of variable completedS s in the TA, defined for every s ∈ S (every automaton can read
the variable associated with any s ∈ S). Every variable completedS s is global and it is not replicated in
every automaton with different values. Hence, representing |S| stages, each one with a distinct TA, requires
a network of size (p · nMAX)|S| · 2|S|.

Consider |Sl| stages with label l. Then, the TA in Fig. 6 has size (|Sl| · p · nMAX) · ∏|L|−1i=0 (|Si| + 1),
where the factor |Sl| is determined by the |Sl| copies of the locations (i, j)-tasks, for 0 ≤ j < |Sl|, and∏|L|−1
i=0 (|Si| + 1) is determined by the possible values of variable active stagel in the TA, for every l ∈ L

(every automaton can read all the variables active stagel, having at most |Sl| distinct values). The domain of
every active stagel contains at least 2 elements (when |Sl| = 1 then active stagel is binary). Similarly to the
previous case, every variable active stagel, for l ∈ L, is global, and it is not replicated in every automaton
with different values. Hence, representing |L| labels, each one with a distinct TA, requires a network of size

20 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

∏|L|−1
i=0 (|Si| · p · nMAX) ·∏|L|−1i=0 (|Si|+ 1) that is (p · nMAX)|L| · (∏|L|−1i=0 |Si|(|Si|+ 1)). If the labeling assigns

every stage of S with a label, then the previous formula reduces to the one obtained in the non-optimized
case.

The size of the optimized and of the non-optimized solutions are now compared to determine their
relation. Since it always holds that (p · nMAX)|L| < (p · nMAX)|S|, the following relation is investigated:

2|S| ∼
|L|−1∏
i=0

|Si|(|Si|+ 1) <

|L|−1∏
i=0

(|Si|+ 1)2. (13)

The right-hand side of (13) depends on the size Sl, for every label l ∈ L, which only depends on the DAG

and cannot be written in terms of S. For this reason,
∏|L|−1
i=0 (|Si|+1) is analyzed in the worst case to identify

the values for Si maximizing the product and such that
∑|L|−1
i=0 |Si| = |S|. If

∏|L|−1
i=0 (|Si|+ 1) is maximum,

then so is
∏|L|−1
i=0 (|Si| + 1)2. The method of Lagrange multipliers [Haz87] can be applied to identify the

maximum (or minimum) of a function that is subject to additional constraints. By applying the method to∏|L|−1
i=0 (|Si|+ 1) with constraint

∑|L|−1
l=0 |Si| = |S|, the maximum of the product is obtained when |Si| = |S|

|L|

for every 0 ≤ i < |L|. Let m be |S||L| ; relation (13) can be rewritten as 2|S| ∼ (m+ 1)2|L|, hence also as

2|S| ∼ 22
|S|
m log2(m+1), (14)

because it holds that (m + 1)2|L| = 22|L| log2(m+1) = 22
|S|
m log2(m+1). Since log2(m+1)

m is always lower than 1
2

for m > 6, it turns out that |S| > 2 |S|m log(m+ 1) holds for every |S| when m > 6. In such a case, i.e., every
label labels at least 6 stages, the number of locations in the non-optimized model is always greater than the
number of locations in the optimized one, for any S such that |S| > 6.

5. Evaluation

This section presents two sets of experiments carried out on real-world Spark applications to evaluate the
effectiveness of the approach. The first validation activity focuses on the evaluation of the accuracy of the
formal model in characterizing the feasibility of a deadline for a given Spark application. The second one
aims at assessing the practical impact of the optimizations presented in Sect. 4. A number of well-known
benchmark applications were selected to perform the analysis and evaluate the technique against realistic
use-cases: the simple SortByKey operation; the graph processing algorithm PageRank [BP98]; the clustering
procedure K-Means [Mac67], the machine learning algorithm SVM [Bur98], TPCH 22 , a benchmark query
from the TPC suite8, and Louvain, a community detection algorithm in large graphs9. Specifically, TPCH 22
is the 22nd query, called “Global Sales Opportunity Query”, of class H. Two versions of the query have been
considered in the experiments. They are called TPCH 22 6 and TPCH 22 7, where the numbers 6 and 7 are
parameter values that identify two distinct sets of input data that are filtered out by the query to obtain
the result. SortByKey , PageRank and K-Means were employed for both evaluation activities, while SVM ,
TPCH 22 and Louvain were used only in the second assessment.

Figure 7 shows the DAGs associated with every benchmark considered in the analysis. Colors highlight
the different labels that are assigned to the nodes by applying the algorithm described in Sect. 4 (whose
details are in Fig. 15 of the Appendix) with the intended meaning that nodes with the same color have the
same label, as they belong to the same partition.

All the Spark applications were executed on virtual machines purchased from Azure10, the cloud comput-
ing platform developed by Microsoft. The adopted virtual machines, called Standard D14 v2, are optimized
for memory usage, with a high memory-to-core ratio, and are equipped with 16 CPUs, 112GB of memory,

8 TPC is a non-profit corporation that produces benchmarks to measure performance of transaction processing and databases.
http://www.tpc.org/tpch/
9 https://sourceforge.net/projects/louvain/
10 https://azure.microsoft.com/

http://www.tpc.org/tpch/
https://sourceforge.net/projects/louvain/
https://azure.microsoft.com/

Using Formal Verification to Evaluate the Execution Time of Spark Applications 21

and 800GB of local SSD storage. Each machine ran Canonical Ubuntu Server 14.04.5-LTS, Oracle Java 8,
and Apache Spark 2.0.2.

5.1. Accuracy evaluation

The experiments were carried out considering applications SortByKey , PageRank , and K-Means, and by
applying the following methodology.

• Six different settings are chosen for every benchmark, in terms of the configuration of the underlying
cluster: two different numbers of available cores for each cluster node, and three different dimensions of
the input dataset split in a fixed number of partitions.

• For every setting, the benchmarks are executed three times on two different versions of the Spark frame-
work: sequential Spark and the regular version of Spark. In sequential Spark, the scheduler was modified
to always launch all the stages sequentially (i. e., no more than one stage can be simultaneously in ex-
ecution), and to have a clean isolation of the stages and tasks for a precise identification of the task
durations, without the noise introduced by the concurrent execution of multiple stages.

• The timing information for each task is collected by means of a profiling tool:11

– the average task durations obtained from executions with sequential Spark are used to automatically
generate instances of the formal model with such characteristics;

– the average execution times of all applications collected with Spark (from now on avg(texec)) are used
as reference to compare the results of the analysis carried out by means of the formal models.

• For every benchmark and for every setting, two formal models are built, one based on TA and the other
based on CLTLoc. A set of feasible deadlines FD (defined in Sect. 3.1.3) for each model is determined
by solving several p-feasibility problems, instantiated with various deadline values. The number of p-
feasibility problems is determined based on a heuristic explained later.

• For every benchmark and for every setting, the mfd (i.e., the minimum value in FD) is compared against
the corresponding average execution time avg(texec). The difference is used to evaluate the accuracy of
the model (expressed as percentage error err).

All the use cases were verified by means of two state-of-the-art tools: Zot [Pol18]—supporting the CLTLoc
model—and Uppaal [BDL+06]—supporting the TA model. Each tool was used in two different configura-
tions. Since Zot provides many plugins, each of them supporting a different encoding of the temporal logic
formulae, the two most relevant ones for the verification of CLTLoc formulae, ae2sbvzot [BPKR16] and
ae2zot [MAA+14], were adopted. Verification with Uppaal was carried out by considering two different
search order strategies: depth-first and breadth-first.

Since, in the neighborhood of mfd , the verification time can be extremely high and the memory demand
can exceed available RAM, running an extensive deadline feasibility analysis was not always possible. Pre-
liminary experimental results showed a significant difference between the verification times for feasible and
unfeasible deadlines in the neighborhood of mfd in almost all the cases, except for the Uppaal breadth-first
algorithm. In addition, both the verification time and memory usage grow significantly with the size of the
DAG with Uppaal, whereas a significant correlation between verification time and the deviation between
deadline and mfd is typical of Zot and Uppaal using a depth-first searching algorithm. For this reason, the
results of Table 1 and of Sect. 5.2 were collected by considering specific timeouts and memory upper bounds
that allowed us to conclude that certain deadlines were reasonably not feasible. For every benchmark and
setting, and for each verification tool, an approximation of mfd was calculated according to the following
heuristic approach. The search for the feasible deadlines proceeded iteratively by decreasing the deadline,
initially set to a trivial value (i.e., the time of the serial execution of the application), until an unfeasible
deadline is found or the timeout/memory bound is reached. The initial deadline is such that its value always
allows a feasible (trivial) execution to exist, and it is calculated as the sum of the duration of all the stages
of the benchmark that were observed in the execution performed by sequential Spark. The timeout and the
memory bound that are considered in a verification experiment (carried out with Zot or Uppaal) are based
on the times and used memory observed for the feasible deadlines previously obtained. For instance, consider

11 github.com/deib-polimi/xSpark-bench

https://github.com/deib-polimi/xSpark-bench

22 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

S0S1
S2

(a) SortByKey

S0

S1

S3
S6

S7

(b) PageRank

S0
<0

S17
<2

S9
<10>

(c) K-Means

(d) TPCH 22 6 (e) TPCH 22 7 (f) SVM

(g) Louvain

Fig. 7. Labeled DAGs of selected applications. Nodes of different colors belong to different partitions.

Using Formal Verification to Evaluate the Execution Time of Spark Applications 23

0 0.2 0.4 0.6 0.8 1

·105

0

50

100

150

200
mfdf

ve
ri

fi
ca

ti
o
n

ti
m

e
[s

]

uppaal-breadth-first

0 0.2 0.4 0.6 0.8 1

·105

0

2

4

6

8
·105

mfdf

zot-ae2zot

0 0.2 0.4 0.6 0.8 1

·105

0

200

400

mfdf

deadline[ms]

ve
ri

fi
ca

ti
on

ti
m

e
[s

]

uppaal-depth-first

0 0.2 0.4 0.6 0.8 1

·105

0

1

2

3

4

·105

mfdf

deadline[ms]

zot-ae2sbvzot

Fig. 8. Verification time statistics on SortByKey (22 cores, 100 tasks and 300M input records) with different
deadlines.

a feasible deadline d, verified by using memory m and time t. In such a case, the search continues, because d
is feasible, and the next deadline to be verified is set to 0.99 · d; the timeout is set to 20 · t, and the memory
bound is set to 50 ·m. In the other cases, i.e., when d is unfeasible or the timeout/memory bound are reached,
the search terminates. The increments in memory bound and timeout between two generic consecutive ex-
perimental verifications are based on empirical evidence: given two close feasible deadlines (i.e., within a
time difference of less than 1%), if the largest is successfully verified in a certain amount of time t, then the
shorter is generally verified within the newly computed bounds based on t. For this reason, a deadline is
reasonably considered to be not feasible if no result is returned by the tool within the timeout or without
exceeding the memory bound. The only exception is represented by the verification tasks performed using
ae2zot , whose execution time was, in some use-cases, extremely higher than the ones previously obtained for
greater deadlines. In this case, our policy would have led to excessively high timeouts (up to many days).
Since the feasibility of such deadlines was already assessed with ae2sbvzot in much lower time, for practical
reasons, the verification was stopped after several hours. For a given setting, the smallest feasible deadline
obtained by applying the heuristic is indicated with mfdf .

Figures 8 and 9 together illustrate the claim above and the identification of the mfd for SortByKey .

24 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

0 0.2 0.4 0.6 0.8 1

·105

0

500

1,000

1,500 mfdf

m
em

o
ry

co
n

su
m

p
ti

o
n

[M
B

]
uppaal-breadth-first

0 0.2 0.4 0.6 0.8 1

·105

0

500

1,000

1,500
mfdf

zot-ae2zot

0 0.2 0.4 0.6 0.8 1

·105

0

500

1,000

1,500 mfdf

deadline[ms]

m
em

or
y

co
n

su
m

p
ti

o
n

[M
B

]

uppaal-depth-first

0 0.2 0.4 0.6 0.8 1

·105

0

50

100

150 mfdf

deadline[ms]

zot-ae2sbvzot

Fig. 9. Memory consumption statistics of the verification tasks on the SortByKey use case (22 cores, 100
tasks and 300M input records) by providing different deadlines.

They show the time and memory consumption registered for verification tasks performed with the four tool
configurations on a single setting of SortByKey , the only one that allowed for comprehensive view of all
the experimental verifications with no timeouts or memory saturation—except for ae2zot , which reached
the timeout for a small number of deadlines. The horizontal axes represent the deadline values, while the
vertical axes display respectively the times (Fig. 8) and memory statistics (Fig. 9) of the verification tasks.
mfd is highlighted by a vertical black dashed line that separates the feasible deadlines (light gray lines
background pattern) from the unfeasible deadlines (light gray dotted background pattern). The mfdf is
84118 ms, therefore all the deadlines higher than that value are feasible. On the other hand, deadlines of
84117 and below were unfeasible. Since, for this setting, avg(texec) is 82133 ms, the percentage error err is
about 2.4%. This analysis highlighted a strong dependency of verification time and memory consumption
on the closeness of the analyzed deadline to the minimum feasible deadline for three tool configurations out
of four: the only exception is represented by Uppaal breadth-first, whose space exploration strategy led to
time and memory statistics more uniform across the different deadlines analyzed.

As reported in Fig. 8, in the case of Zot, the verification time is in the order of seconds for all deadlines
lower than 60000 ms (75000 ms for ae2sbvzot) and greater than or equal to 84118 ms (mfdf), whereas it

Using Formal Verification to Evaluate the Execution Time of Spark Applications 25

Table 1. Accuracy evaluation: experimental results.

app cores tasks recordsin avg(texec) mfdf err

SortByKey

12 100
260M 88386 91384 3.3%
280M 100769 98420 2%
300M 107054 105443 1.5%

22 100
260M 74919 72904 2.6%
280M 77884 78500 0.7%
300M 82133 84118 2.4%

PageRank

28 128
200M 60028 62500 4%
300M 87787 94000 7%
400M 116810 120000 2%

48 128
200M 48805 47000 3.6%
300M 66636 65100 2.3%
400M 88320 86000 2.6%

K-Means

24 18
80M 77651 69000 11.1%
120M 103492 100000 2.5%
160M 131600 126725 3.7%

32 24
80M 64565 58000 10.1%
120M 81299 80000 1.5%
160M 101483 100000 1.4%

grows exponentially for increasing deadline values between 60000 ms (75000 ms respectively) and 84117
ms. ae2sbvzot registered a peak of 100 hours for 84000 ms, while ae2zot reached the timeout of 200 hours
for the analyzed deadlines between 84000 ms and 84117 ms. The notable growth is therefore registered for
those deadlines that were unfeasible, but close to mfdf . Uppaal depth-first experiments showed a less steep
growth in verification time (from 70 to 400 seconds) for unfeasible deadlines, and a sharp drop when passing
to the smallest feasible deadlines. The growth in Uppaal breadth-first is more moderate, and there is little
difference between feasible and unfeasible deadlines.

Fig. 9 shows similar trends for memory consumption statistics. The main difference lies in the fact that
the memory usage of Uppaal is generally higher by an order of magnitude than that of Zot. As already
mentioned, memory usage represents the main obstacle to an exhaustive analysis with Uppaal to the same
extent as excessive verification time prevents Zot from practically performing verification on some unfeasible
deadlines. The trend depicted in Fig. 8 and 9 has been observed also for the other benchmark applications,
except for the presence of timeouts or memory saturation.

Table 1 shows the experimental findings of the validation activity for the three applications. Each row
represents a different application setting, characterized by a specific number of cores in the cluster, a number
of tasks (i. e., partitions) for each stage, and a dimension of the input dataset in terms of number of records
(recordsin). The measures of interests are the previously defined avg(texec), mfdf and the related percentage
error err . Results show that the adherence of the model to the actual execution times with Spark (i. e., of
mfdf to avg(texec)) is not particularly affected by the application and the configuration (i.e., number of cores
and tasks). The average err across all the configurations is 3.5%, the median is 2.7% and the maximum is
11.1%. The error is higher than 10% only in two configurations used for K-Means, while it is lower than
3.4% across all the six settings of SortByKey and it is at most 7% for all the PageRank settings.

The experimental evidence overall shows that verification time and memory consumption are mostly
affected by DAG size and number of cores, which directly impact the model size. On the other hand, the
input size recordsin does not influence the time and memory characteristic of the verification. For this reason,
in the experiments carried out on additional use cases, and discussed in Sect. 5.2, only one input size and
two different core configurations for each application were selected. In particular, the two settings considered
in the experiments on TPCH 22 both use 60 million input records, and 16 or 32 cores. SVM was analyzed
with 100 million input records, and 32 or 64 cores, and Louvain was analyzed with 16M input records, and
64 or 128 cores.

26 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

res. deviation speedup mem. saving speedup mem. saving speedup mem. saving speedup mem. saving
unsat -22% 1.43x 0% 1.47x 0% n. a. n. a. n. a. n. a.
unsat -11% 1.44x 0% 1.40x 0% n. a. n. a. n. a. n. a.
sat 0% 1.00x 25% 1.43x 0% 3.36x 48% 4.83x 52%
sat 6% 1.00x 24% 1.35x 0% 2.76x 46% 4.39x 53%
sat 11% 1.00x 24% 1.36x 0% 1.71x 43% 7.74x 61%
sat 17% 1.00x 24% 1.55x 0% 1.22x 42% 3.03x 50%
sat 22% 1.00x 24% 1.39x 0% 1.25x 42% 3.57x 51%

Uppaal DF Uppaal BF ae2sbvzot ae2zotTPCH_22_7

Fig. 10. Effects of optimization on the different tools for the TPCH 22 7 configuration with 32 cores and
60M input records.

5.2. Evaluation of the optimized models

The experiments discussed in this section aim at assessing the effects of the model optimization techniques
presented in Sect. 4. They employ some additional benchmark applications with respect to those used in
Sect. 5.1, such as SVM , TPCH, and Louvain. The verification tasks are performed on different settings, for
each benchmark, and use the two models (i. e., CLTLoc and TA) both in the optimized and in the non-
optimized version. Moreover, as for accuracy evaluation, two different plugins of Zot and two different search
orders for the state space exploration in Uppaal were used. For every verification experiment, the time and
memory consumption statistics12 are compared to estimate the benefits of the optimization.

Fig. 10 to 14 show, for the use cases PageRank , K-Means, SVM , TPCH 22 7, and Louvain, respectively,
a summary of the experiments carried out for a selected setting among those considered13, and highlight the
impact of the optimization in terms of both verification time and memory across the different configurations
of the verification tool. Each row in the tables shows the statistics regarding the verification of the feasibility
problem against a specific deadline. The column deviation indicates the percentage difference between the
deadline of the row and the mfdf for that specific case, and expresses how much the deadline is higher or
lower (negative percentage values) than the mfdf . The impact on verification time is expressed in terms
of speedup. The value is the ratio between the smallest and the biggest of the two verification times with
and without optimization, respectively. When the time needed to solve the optimized version is smaller,
then there is a speedup, that is highlighted in the figures with a bar from the center of the column to
the right. Conversely, when the time to solve the non-optimized version is smaller, there is a slowdown (or
negative speedup), represented in the figures with a negative sign and a bar from the center to the left of the
column. Analogously, the impact on memory is expressed in terms of memory saving—that is, the percentage
difference between the smallest and the biggest of the two memory consumption statistics with and without
optimization, respectively. Positive values represent the percentage of memory that can be saved by using
the optimization, while negative values express how much more memory (in percentage) is required by the
optimized version with respect to the non-optimized one.

Tables 2 and 3 provide a compact overview of the impact of the optimization strategy on the two tools
across the different benchmarks. Since various settings are considered, the cells of the tables show ranges that
indicate aggregated data obtained from all the settings considered in the tests. The wording “N× speedup
with x hours timeout” indicates that the experimental verification using the non-optimized version of the
model reached the timeout, the optimized model was solved N times faster than the non-optimized one, and
the speedup N is determined by considering the verification time of the non-optimized version to be equal
to the timeout.

ae2sbvzot shows significant benefits on memory consumption across all use cases, while in some (fewer)
cases—probably due to the heuristics used by the solver—the impact on the verification time is negative. The
best improvements (in terms of both memory and time) are registered with the largest DAGs we considered.
ae2zot is positively affected by the optimization for all use cases, and—as with ae2sbvzot—the benefits

12 All the verification experiments were conducted on machines running Ubuntu GNU/Linux 14.04, with 16 Intel Intel(R)
Xeon(R) CPU E5-2673 v3, 2.40GHz, and 112GB RAM; CLTLoc models were analyzed by means of Z3 SMT solver v.4.7.1 (64
bit), while the TA models were analyzed through UPPAAL 4.1.19 (64 bit).
13 The complete results can be found at https://github.com/deib-polimi/DAG-ver

https://github.com/deib-polimi/DAG-ver

Using Formal Verification to Evaluate the Execution Time of Spark Applications 27

res. deviation speedup mem. saving speedup mem. saving speedup mem. saving speedup mem. saving
sat 0% 1.00x 26% n. a. n. a. 33.88x 67% n. a. n. a.
sat 1% 1.00x 26% n. a. n. a. -1.83x 31% 1.12x n. a.
sat 3% 1.00x 26% n. a. n. a. 1.80x 44% 3.28x 52%
sat 5% 1.00x 27% n. a. n. a. 2.78x 51% 11.16x n. a.
sat 10% 1.00x 27% n. a. n. a. 2.70x 55% 2.57x 51%
sat 15% 1.00x 34% n. a. n. a. -3.05x 21% 7.21x 57%
sat 20% 1.00x 27% n. a. n. a. 2.42x 52% 10.31x 61%

Uppaal DF Uppaal BF ae2sbvzot ae2zotSVM

Fig. 11. Effects of optimization on the different tools for the SVM configuration with 64 cores and 160M
input records.

res. deviation speedup mem. saving speedup mem. saving speedup mem. saving speedup mem. saving
unsat -3% 2.35x 8% 1.68x 4% n.a. n.a. n.a. n.a.
unsat -2% 3.26x 10% 1.68x 5% n.a. n.a. n.a. n.a.
sat 0% 3.28x 26% 1.72x 4% -1.95x 56% n.a. n.a.
sat 2% 13.29x 49% 1.68x 4% 3.57x 60% 12.25x 77%
sat 3% 1.00x 29% 1.73x 4% 5.45x 61% 11.20x 75%
sat 11% 1.00x 29% 1.80x 4% 4.49x 60% 6.27x 68%
sat 19% 1.00x 28% 1.61x 4% 4.98x 60% 5.85x 64%

Uppaal DF Uppaal BF ae2sbvzot ae2zotPagerank

Fig. 12. Effects of optimization on the different tools for the PageRank configuration with 28 cores, 128 tasks
and 200M input records.

res. deviation speedup mem. saving speedup mem. saving speedup mem. saving speedup mem. saving
sat 0% 3321.92x 99% n. a. n. a. 1.28x 49% n.a. n.a.
sat 1% 3.70x 17% n. a. n. a. 4.08x 54% n.a. n.a.
sat 5% 1.00x 22% n. a. n. a. -1.18x 53% n.a. n.a.
sat 10% 1.00x 22% n. a. n. a. 3.09x 55% 1.82x n.a.
sat 15% 1.00x 22% n. a. n. a. 4.49x 58% 2.67x n.a.
sat 20% 1.00x 22% n. a. n. a. 2.08x 55% 2.57x 62%

ae2zotK-Means Uppaal DF Uppaal BF ae2sbvzot

Fig. 13. Effects of optimization on the different tools for the K-Means configuration with 24 cores, 18 tasks
and 160M input records.

res. deviation speedup mem. saving speedup mem. saving speedup mem. saving speedup mem. saving
sat 0% n. a. n. a. n. a. n. a. 1.16x 66% n. a. n. a.
sat 4% n. a. n. a. n. a. n. a. -3.13x 66% n. a. n. a.
sat 13% n. a. n. a. n. a. n. a. 7.87x 76% n. a. n. a.
sat 17% n. a. n. a. n. a. n. a. 36.34x 84% n. a. n. a.
sat 21% n. a. n. a. n. a. n. a. 7.67x 79% n. a. n. a.
sat 25% n. a. n. a. n. a. n. a. 3.57x 72% n. a. n. a.

Louvain Uppaal DF Uppaal BF ae2sbvzot ae2zot

Fig. 14. Effects of optimization on the different tools for Louvain with 128 cores, 160 tasks and 16M input
records.

28 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

Table 2. Overview of the impacts of optimization on the two Zot plugins across the different use cases.

use case ae2sbvzot ae2zot

speedup memory saving speedup memory saving

SortByKey

• 1.5×-2.6× speedup
far from mfd (12
cores)

• 1.1×-9× speedup (22
cores)

• 1.45×-8.9× slow-
down on deadlines
close to mfd (12
cores)

• 7%-25% (12 cores)

• 23%-34% (22 cores)

• 1.1×-7× speedup in
most of cases (37/50)

• 1.1×-3× slowdown
in remaining cases
(13/50)

• 20%-45%(12 cores)

• 8%-17% (22 cores)

• peak of 60% (unfeasi-
ble deadlines)

TPCH 22 6 • 1.5×-6.5× speedup • 33%-44%

• > 3× speedup

• > 2600× speedup
with 14 hours time-
out

• 40%-50%

TPCH 22 7
• > 1.2× speedup

• > 8000× speedup
with 8 hours timeout

• 32%-40% (16 cores)

• 43%-48% (32 cores)

• > 4.1× speedup

• > 780× speedup with
14 hours timeout

• 52%-68%

PageRank

• 1.1×-5.4× speedup
(18/30 cases)

• 1.2×-5.1× slowdown
(10/30)

• 11× and 29× slow-
down in two cases

• > 15%

• > 50% memory sav-
ing in most of cases
(20/25)

• > 4× speedup in
most of cases (18/27)

• peak of 55×
• 1.2×-2× slowdown in

few cases (3/27)

• > 39%

• > 60% memory sav-
ing in most of cases
(19/27)

• peak of 90%

SVM

• > 2× speedup in
most of cases (16/23)

• > 40× speedup with
12 hours timeout

• 1.8×-4× slowdown in
few cases (3/23)

• > 20%

• > 40% memory sav-
ing in most of cases
(14/18)

• 11% memory increase
in one case

• > 2× speedup

• > 3.5× speedup with
36 hours timeout

• 48%-53%

K-Means

• 1.1×-23× speedup in
most of cases (55/77)

• 1.6×-9× slowdown in
other cases (18/77)

• 40%-60%

• > 1.2× speedup

• > 2.5× speedup with
30 hours timeout

• 45%-69%

Louvain

• 4.6×-36× speedup in
most of cases (14/22)

• 3× slowdown in a
case (1/22)

• 66%-85%
• > 6× speedup with

60 hours timeout
• optimization avoids

memory saturation

increase together with the number of nodes in the DAG. Moreover, in many configurations, the optimization
makes the verification possible even with ae2zot (which is typically slower than ae2sbvzot in solving this
kind of problems) in a reasonable time, whereas the unoptimized version reached the timeout.

Given the extreme efficiency of Uppaal in completing the verification in trivial cases (feasible deadlines
far from mfd) when the depth-first search order is used, the speedup due to the optimization is negligible
in many cases; the benefits are more significant when the deadlines are feasible and close to mfd , or when
they are unfeasible. The impact in terms of memory saving is consistent across the different use cases. It is
lower in percentage than the one registered for Zot, but in absolute terms it allows for the saving of a greater
amount of memory, as Uppaal requires on average much more memory to perform the verification.

Due to its memory-demanding space exploration strategy, Uppaal breadth-first is not able to manage
DAGs with more than 10 nodes. For smaller DAGs, the effects of the optimization are generally limited in

Using Formal Verification to Evaluate the Execution Time of Spark Applications 29

Table 3. Overview of the impacts of optimization on the two selected Uppaal configurations across the
different use cases.

use case
Uppaal Depth-First Uppaal Breadth-First

speedup memory saving speedup memory saving

SortByKey

• 4×-15× speedup on
feasible deadlines
close to mfd

• 2× speedup on unfea-
sible deadlines

• Negligible impact for
feasible deadlines far
from mfd

• 40%-70% on feasi-
ble deadlines close to
mfd

• 5% on unfeasible
deadlines

• Negligible impact for
feasible deadlines far
from mfd

• 1.1× speedup • 2%-3%

TPCH 22 6

• 1.3× speedup on un-
feasible deadlines

• Negligible impact for
feasible deadlines

• 10%-20% on feasible
deadlines

• Negligible impact on
unfeasible deadlines

• 1.3× speedup
• Negligible impact on

memory

TPCH 22 7

• 1.3×-1.5× on unfea-
sible deadlines

• Negligible impact for
feasible deadlines

• 15%-25% on feasible
deadlines

• Negligible for unfea-
sible deadlines

• 1.43× • Negligible impact on
memory

PageRank
• 1.1×-7× speedup in

most of cases (24/36)

• 20%-50% on feasible
deadlines

• 5%-15% on unfeasi-
ble deadlines

• 1.7×-1.8× • 3%-8%

SVM
• Negligible impact on

time
• 20%-30% • Memory saturation • Memory saturation

K-Means

• Oscillating from
3000× speedup to
100× slowdown for
feasible deadlines
close to mfd

• Negligible for feasi-
ble deadlines far from
mfd

• 22%-25% on most of
cases (20/30)

• 99% saving and 70%
loss in a few outlier
cases (5/30)

• Memory saturation • Memory saturation

Louvain • Memory saturation • Memory saturation • Memory saturation • Memory saturation

terms of memory; they are more significant in terms of speedup, as the verification time in some cases is
almost halved (1.8× speedup).

Overall, the experimental results in Fig. 10 to 14 demonstrate that the use of Dilworth’s partitioning
applied to Spark DAGs is essential and makes the approach scalable, as it enables the analysis of Spark
applications with tens of nodes. The partitioning significantly reduces the size of the models, hence the
memory footprint required to solve the feasibility problem. This fact is evident from the reduction of memory
that can be observed in all the experiments and for all the verification approaches. In the case of ae2zot
and ae2sbvzot , the reduction ranges from 7% to 90% of the memory footprint observed when partitioning
is not applied, while in the case of Uppaal it ranges from 5% to 99%. A similar argument also holds for
the execution time, even if the trend is not always uniform across the experiments, and a slowdown can be
observed in some cases. However, this phenomenon is more often evidenced with ae2zot and ae2sbvzot than
with Uppaal, and it is likely dependent on the heuristics implemented in the underlying solvers that Zot
adopts to solve the CLTLoc formulae.

The number of cores used to execute the application in the target cluster is the second key parameter
that influences the complexity of the analysis. The evaluation of the execution time for all the benchmark
applications and for every configuration including 64 or 128 cores can always be done by using the logic-based
model. Conversely, the TA-based models (both versions) have shown a more marked tendency to depend on

30 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

the number of cores, whose growth can trigger state-space explosion even when considering an application
such as K-Means—which is not the biggest one in our benchmark—and a cluster with 64 cores.

Finally, we remark that the verification approach turned out to be accurate also in the analysis of Louvain,
whose DAG, which includes 32 nodes, is the biggest considered in this work. The application was profiled
with an input dataset that contains a randomly-generated graph of 16 millions vertexes, on two different
configurations: the first one including 80 tasks on 64 cores and the second one including 160 tasks on 128
cores. As expected, ae2sbvzot turned out to be the best solver. The collected feasible deadlines, which led
to an estimate of the mfd that differs from the exact one by less than 10% of the latter, were obtained with
execution times that are comparable with those already observed for the other applications. In particular,
the solving time needed to obtain an accuracy of 10% was approximately 2.3 hours, with 64 cores, and 24
hours, with 128 cores.

6. Related Work

This section describes a number of related works, and organize them into three distinct classes. Only few
works propose specific techniques for the analysis of Spark applications, and no alternative approaches, that
apply formal verification for the analysis of Spark applications, has been found in literature. Some works fall
into the area of Operations Research, as the feasibility problem, posited for Spark applications, shares some
similarities with the Job-shop scheduling problem. Finally, other works investigate optimization techniques
for improving the efficiency of known verification algorithms.

6.1. Scheduling problems

The analysis of temporal properties of scheduling algorithms and of distributed systems has been ad-
dressed with positive outcomes using Timed Automata (TA, [AD94]) and Hybrid Automata (HA, [Hen00]).
In [Cor96], TA are used for the analysis of the task scheduling of Ada programs in systems equipped with
one CPU that executes both the scheduler and the Ada code. Unlike in standard schedulability analysis
(e.g., [PGH98]), the use of TA—and, similarly, the use of CLTLoc in the present work—allows relevant
properties of real implementations (e.g., resource constraints) to be captured. Moreover it allows for relaxing
some restrictions on the software structure, that are needed for the analysis. A timed analysis for distributed
systems has been addressed in [BHK99] by means of HA. HA model the execution of concurrent tasks on the
available CPUs and the precedence relation among the tasks, which is specified by a graph of dependencies.
The tasks are indivisible units of work with a fixed duration, they have a scheduling priority and can be
preempted. [KWPH04] also uses TA to model distributed real-time applications. A distributed application
consists of several concurrent tasks, each running on a single processor and communicating with the others
via a network. TA are used to model the interaction among the tasks, the network (sender and receiver
components) and the arbiter of the communication channel. Both the schedulability of the tasks and the
application response-time are analyzed by using a state-of-the art model-checker for TA and for HA. Our
model considers DAGs of stages similar to the graph of dependencies in [BHK99]. However, whereas tasks
in [BHK99] and in [KWPH04] are atomic and are each executed on a single CPU, the execution of a Spark
stage can be spread over different CPUs, complicating the model.

Operations Research (OR) offers a wide range of techniques for scheduling and planning problems. TA
and their extensions are very effective tools to tackle non-standard problems that cannot be solved by
using standard OR techniques. [BLR05] presents Priced TA (PTA), which extend TA with costs and are
suitable for modeling scheduling problems with optimal goals. PTA allow for computing the minimum optimal
cost of reaching a target configuration. Three standard problems of OR are dealt with using PTA and the
experimental results, comparing the standard MILP-based approaches with the PTA algorithm, indicate that
PTA are competitive and, in some cases, faster. The Job-shop problem, that [BLR05] addresses by means
of PTA, and the extension with bounded delay uncertainty are addressed in [YAAM06] by using standard
TA. The experimental results again demonstrate that the TA-based procedures applied to the problem can
provide better outcomes, that is, more efficient schedules, than those produced with OR algorithms.

Using Formal Verification to Evaluate the Execution Time of Spark Applications 31

6.2. Simulation-based Approaches

In the domain of the analysis of Big Data frameworks, simulation, rather than formal verification is usually
the approach of choice. For example, [PBM+17] considers the problem of computing the response-time of a
Spark application through the simulation of a Stochastic Petri Net (SPN) model. The experimental results
demonstrate that the error affecting the simulation is low (less than 10%) when the simulated application
has a high number of tasks and cores (e.g., more than 12 cores and 200 tasks). For some configurations,
however, the error is bigger than 30%. In [BAB+17] an ad-hoc fast event driven simulator, called dagSIM,
has been used to simulate applications modeled as DAGs of nodes that represent the execution of batches
of tasks whose average duration is described by means of a stochastic distribution. DagSIM predicts the
application response time by means of a resolution procedure which is faster than the one based on SPN.
However, simulation-based approaches—unlike verification-based ones—cannot offer guarantees about the
feasibility of a desired deadline, and in particular they cannot be used to determine the unfeasbility of a
deadline.

6.3. Model Optimizations

One of the main issues for automated verification through model checking is the state space explosion
problem whereby the number of states of the model under analysis grows exponentially with respect to
the number of components of the modeled system, sometimes making the verification of moderately large
systems impractical.

Different strategies have been proposed to mitigate this problem. Two of the most relevant are symmetry
reduction methods and partial order reduction methods. Symmetry reduction [CESPS98] is based on the
observation that the state space underlying many systems contain sets of symmetrically equivalent states,
corresponding to sets of practically identical system components. The complexity of the model can be
dramatically reduced by replacing sets of equivalent states with a single representative from the equivalence
class. The analysis is then performed on the reduced state space. Symmetry reduction has been implemented
in many explicit state and symbolic state model checkers, and it has been applied to temporal logic [MDC06]
and probabilistic model checking [DMP09]. The two techniques are different from that presented in this
paper because they modify the way states are matched and stored during search, and so avoid constructing
a complete model. Dilworth’s partitioning theorem is applied to the model of Spark computations and
transforms a model into a smaller one.

Partial orders are fundamental in the area of formal verification. The theory of well-structured transition
systems [FS01] is based on the existence of a partial order of the system configurations that, under specific
conditions, allows for a finite representation of an infinite state space. This fact, combined with an order-
preserving transition relation, makes the definition of an algorithm solving the backward reachability problem
possible. Optimization techniques that take advantage of partitioning mechanisms have been widely studied
to decrease the number of representatives of system executions that satisfy a given property. Partial order
reduction [CGP99, God96] exploits the fact that, often, there are sets of transitions whose order of execution
does not affect the overall behavior of the system. Analogously to symmetry reduction, it only considers, in
every state, one representative transition for every class of system transitions that can be executed from the
state and that satisfy suitable properties. Partial order reduction has been implemented in state-of-the-art
tools, such as SPIN [Hol97], as it significantly reduces the cost of the state space exploration algorithms,
yielding therefore a potentially drastic reduction of the time and memory needed to carry out the verification.

The optimization presented in Sect. 4 also aims to reduce the state space to be analyzed, but it is
orthogonal to the aforementioned strategies, as it acts at a different level of abstraction. Symmetry reduction
and partial order reduction are general approaches that operate at the very low level of Kripke structures.
Ours is a domain-specific optimization for Spark computations, and it operates at the (higher) model level.
Domain-specific optimizations have been already adopted in the past to complement low-level optimization
techniques. For instance, [BGM11] successfully applied optimization of models to improve the performance
of the verification of distributed applications that implement a Publish/Subscribe communication paradigm.

32 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

7. Conclusions

This work shows that the estimation of the execution time of Spark applications can be done by using
automata-based and logical-based formalisms with high accuracy for which (the error is less than 11%).
In particular, the two adopted classes of models are TA and the formulae of CLTLoc, both capable of
expressing timing constraints through dense clocks. The execution time of an application is determined by
solving a limited number of the so-called p-feasibility problems on the DAG that describes the computation
of the application, given the number of available cores allocated to the application. Being an instance of
the p-feasibility problem reducible to the model-checking of a TA (reachability) or to the satisfiability of a
CLTLoc formula, the estimation of the execution time of an application can be obtained by using standard
tools that solve these problems on TA and CLTLoc. The proposed methodology has the following advantage.
The adopted formalisms are solved by means of procedures that implement different approaches: TA can
be solved by using standard algorithms that explore the state-space of the automata with an exhaustive
search and CLTLoc formulae can be solved by means of a test for bounded satisfiability using SMT-solvers.
While the former guarantees the completeness of the verification, but requires a large amount of memory,
the latter is unlikely to reach the completeness bound but always assures a limited usage of memory. Even if
the complexity of the problems to be solved to answer a p-feasibility problem is PSPACE, in some practical
cases, the time or the memory required to analyze realistic applications still turn out to be too high. For
this reason, this work also describes a technique that exploits a well-known result valid for partially ordered
sets, and so also for DAGs, that lowers the practical complexity of the analysis. Dilworth’s theorem states
that a finite poset can be partitioned into n independent posets, where n is the cardinality of the largest
set of incomparable elements. Dilworth’s partioning is applied to the DAG of the application and allows
for the construction of smaller models than the ones obtained without taking the partitioning into account.
The technique is general as it applies to the DAG of the applications, with no distinction between TA-based
models and CLTLoc-based models. The reduction of the size of the models turned out to be effective in all
the experiments based on realistic applications and led to a significant reduction of both the verification time
and memory usage. The investigation of the effects of the use of this technique in the verification of Spark
applications has been improved with respect to our preliminary work and enriched with new case studies
based on well-known applications.

Acknowledgments

This work has been partially supported by the DICE project (Horizon 2020 project no. 644869) and by the
GAUSS national research project (MIUR, PRIN 2015, Contract 2015KWREMX).

References

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information and Computation, 104(1):2
– 34, 1993.

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical computer science, 126(2):183–235, 1994.
[BAB+17] A. Brito, D. Ardagna, I. Blanquer, A. Evangelinou, E. Barbierato, M. Gribaudo, J. Almeida, Couto. A.P., and

T. Braga. D3.4 eubra-bigsea qos infrastructure services intermediate version. Technical report, EUBra-BIGSEA
Consortium , 2017.

[BCC+03] A. Biere, A. Cimatti, E.C. Clarke, O. Strichman, and Y. Zhu. Bounded model checking. Advances in Computers,
58:118–149, 2003.

[BDL+06] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi, and M. Hendriks. Uppaal 4.0. In
Proceedings of the 3rd International Conference on the Quantitative Evaluation of Systems, QEST ’06, pages
125–126, Washington, DC, USA, 2006. IEEE Computer Society.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-checking tool for real-
time systems. In Anders P. Ravn and Hans Rischel, editors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 298–302, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[BGM11] L. Baresi, C. Ghezzi, and L. Mottola. Loupe: Verifying publish-subscribe architectures with a magnifying lens.
IEEE Transactions on Software Engineering, 37(2):228–246, March 2011.

[BHK99] S. Bradley, W. Henderson, and D. Kendall. Using timed automata for response time analysis of distributed real-time
systems. In 24th IFAC/IFIP Workshop on Real-Time Programming, pages 143–148, 1999.

[BLR05] G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling using priced timed automata. SIGMETRICS
Perform. Eval. Rev., 32(4):34–40, March 2005.

Using Formal Verification to Evaluate the Execution Time of Spark Applications 33

[Bou09] P. Bouyer. Model-checking timed temporal logics. Electronic Notes in Theoretical Computer Science, 231:323 –
341, 2009. Proceedings of the 5th Workshop on Methods for Modalities (M4M5 2007).

[BP98] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Proc. of the Int. World-Wide
Web Conference (WWW), pages 107–117, 1998.

[BPKR16] L. Baresi, M. M. Pourhashem Kallehbasti, and M. Rossi. How Bit-vector Logic Can Help Improve the Verification
of LTL Specifications over Infinite Domains. In Proc. of the 31st Annual ACM Symposium on Applied Computing,
pages 1666–1673, 2016.

[BQ18] L. Baresi and G. Quattrocchi. Towards Vertically Scalable Spark Applications. In Euro-Par 2018: Parallel Pro-
cessing Workshops. Springer, 2018.

[BRS16] M. M Bersani, M Rossi, and P. San Pietro. A tool for deciding the satisfiability of continuous-time metric temporal
logic. Acta Informatica, 53(2):171–206, 2016.

[BRS17] M. M. Bersani, M. Rossi, and P. San Pietro. A logical characterization of timed regular languages. Theoretical
Computer Science, 658:46 – 59, 2017.

[Bur98] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 2(2):121–
167, 1998.

[CCG+02] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
Nusmv 2: An opensource tool for symbolic model checking. In Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, pages 359–364, 2002.

[CESPS98] E.C. Clarke, E. A. Emerson, Jha. S., and A. Prasad Sistla. Symmetry reductions in model checking. In A.J. Hu
and M.Y. Vardi, editors, Computer Aided Verification, 10th International Conference, CAV ’98, Vancouver, BC,
Canada, June 28 - July 2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer Science, pages 147–158.
Springer, 1998.

[CGP99] E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA, USA, 1999.
[Cor96] J. C. Corbett. Timing analysis of ada tasking programs. IEEE Transactions on Software Engineering, 22(7):461–

483, Jul 1996.
[dag19] DAG-ver Project repository. github.com/deib-polimi/DAG-ver, 2019.
[DD07] S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL. Information and Computation,

205(3):380–415, 2007.
[Dil50] R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1):161–166, 1950.
[DMP09] A. F. Donaldson, A. Miller, and D. Parker. Language-level symmetry reduction for probabilistic model checking.

In QEST 2009, Sixth International Conference on the Quantitative Evaluation of Systems, Budapest, Hungary,
13-16 September 2009, pages 289–298. IEEE Computer Society, 2009.

[FS01] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical Computer Science,
256(1):63 – 92, 2001.

[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Approach to the State-
Explosion Problem, volume 1032 of Lecture Notes in Computer Science. Springer, 1996.

[GRB+17] E. Gianniti, A.M. Rizzi, E. Barbierato, M. Gribaudo, and D. Ardagna. Fluid Petri Nets for the Performance
Evaluation of MapReduce and Spark Applications. SIGMETRICS Performance Evaluation Review, 44, 2017.

[Haz87] M. Hazewinkel. Encyclopaedia of Mathematics (1). Encyclopaedia of Mathematics: An Updated and Annotated
Translation of the Soviet ”Mathematical Encyclopaedia”. Springer, 1987.

[Hen00] T. A. Henzinger. The Theory of Hybrid Automata, pages 265–292. Springer Berlin Heidelberg, 2000.
[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23(5):279 –295, may 1997.
[IG04] S. Ikiz and V.K. Garg. Online algorithms for Dilworth’s chain partition. Parallel and Distributed Systems Labo-

ratory, Department of Electrical and Computer Engineering, University of Texas at Austin, Tech. Rep., 2004.
[JSBM15] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo: Predictable message latency in the cloud. In Proceedings of

the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM 2015, London, United
Kingdom, August 17-21, 2015, pages 435–448, 2015.

[KA10] K. Kc and K. Anyanwu. Scheduling Hadoop Jobs to Meet Deadlines. In Proc. of the IEEE 2nd International
Conference on Cloud Computing Technology and Science. IEEE, 2010.

[KWPH04] J. Krakora, L. Waszniowski, P. Pisa, and Z. Hanzalek. Timed automata approach to real time distributed system
verification. In Proc. of the IEEE Int. Work. on Factory Communication Systems, 2004, pages 407–410, Sept
2004.

[LHW+14] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and R. Pace. WOHA: Deadline-Aware Map-Reduce Workflow
Scheduling Framework over Hadoop Clusters. In Proc. of the IEEE 34th International Conference on Distributed
Computing Systems. IEEE, 2014.

[MAA+14] Bersani M.M., Frigeri A., Morzenti A., Pradella M., Rossi M., and San Pietro P. Constraint LTL satisfiability
checking without automata. J. Applied Logic, 12(4):522–557, 2014.

[Mac67] J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. Le Cam and
J. Neyman, editors, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297. University of California Press, 1967.

[MDC06] A. Miller, A. F. Donaldson, and M. Calder. Symmetry in temporal logic model checking. ACM Computing Survey,
38(3):8, 2006.

[MQB+18] F. Marconi, G. Quattrocchi, L. Baresi, M.M. Bersani, and M. Rossi. On the timed analysis of big-data applications.
In Dutle. A., C. A. Muñoz, and A. Narkawicz, editors, NASA Formal Methods - 10th International Symposium,
NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings, volume 10811 of Lecture Notes in Computer
Science, pages 315–332. Springer, 2018.

[ORR+15] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun. Making Sense of Performance in Data Ana-

https://github.com/deib-polimi/DAG-ver

34 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

lytics Frameworks. In Proc. of the 12th USENIX Conference on Networked Systems Design and Implementation.
USENIX, 2015.

[PBM+17] D. Perez, S. Bernardi, J. Merseguer, JoJ. Requeno, G. Casale, and L. Zhu. DICE simulation tools - Final version.
Deliverable, DICE Consortium, 2017.

[PGH98] J. C. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with static and dynamic offsets. In
Proc. of the IEEE Real-Time Sys. Symp., pages 26–37, Dec 1998.

[Pol18] Politecnico di Milano. The Zot Bounded Model/Satisfiability Checker. github.com/fm-polimi/zot, 2018.
[Wan04] F. Wang. Efficient verification of timed automata with bdd-like data structures. International Journal on Software

Tools for Technology Transfer, 6(1):77–97, Jul 2004.
[WDR13] M.T.B. Waez, J. Dingel, and K. Rudie. A survey of timed automata for the development of real-time systems.

Computer Science Review, 9:1 – 26, 2013.
[YAAM06] Y. Yasmina Abdeddäım, E. Asarin, and O. Maler. Scheduling with timed automata. Theor. Comput. Sci.,

354(2):272–300, 2006.
[YCH15] J. Yu, H. Chen, and F. Hu. SASM: Improving Spark Performance with Adaptive Skew Mitigation. In 2015 IEEE

International Conference on Progress in Informatics and Computing (PIC), Dec 2015.

http://github.com/fm-polimi/zot

Using Formal Verification to Evaluate the Execution Time of Spark Applications 35

A. Full CLTLoc model - referring to Sect. 3

A.1. Symbols description

A.1.1. Atomic Propositions

Node-specific Atomic Propositions

• runSi
• startSi
• endSi
• completedSi
• enabledSi
• startEnabledSi

Task-specific Atomic Propositions

• runTi
• startTi
• endTi

A.1.2. Global Atomic Propositions

• idleCores

A.1.3. Counters

• runTCi - (runningTakskCounter) Number of tasks currently running for node i

• remTCi - (remainingTasksCounter) Number of tasks that still have to be executed for node i

• avaCC - (availableCoresCounter) Number of cores currently available (global).

A.1.4. Constants

• |Ti| - Total number of tasks needed to complete stage i

• p - Total number of cores available in the cluster

36 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

A.2. Temporal logic model

A.2.1. Node formulae

The state evolution of each node is defined by the following constraints.

Normal Version∧
i∈S

(startTi ∧ remTCi = |Ti| ⇐⇒ startSi) (15)∧
i∈S

(endTi ∧ remTCi = 0 ⇐⇒ endSi) (16)∧
i∈S

(completedSi ⇐⇒ P (endSi)) (17)∧
i∈S

(enabledSi ⇐⇒
∧
j∈S:

Dep(i,j)

completedSj) (18)

Labeling Version

∧
i∈S

(
startSi ⇐⇒

(
runSi ∧ startT`(i) ∧ remTC`(i) = |Ti|
∧YenabledSi ∧ ¬completedSi

))
(19)

∧
i∈S

(
endSi ⇐⇒

(
runSi ∧ endT`(i) ∧ remTC`(i) = 0
∧YenabledSi ∧ ¬YcompletedSi

))
(20)∧

i∈S

(completedSi ⇐⇒ P (endSi)) (21)∧
i∈S

(enabledSi ⇐⇒
∧
j∈S:

Dep(i,j)

completedSj) (22)

∧
i∈S

(startEnabledSi ⇐⇒ enabledSi ∧ ¬YenabledSi) (23)∧
i∈S

(runSi ⇒ runSiSstartSi ∧ runSiUendSi) (24)

A.2.2. Tasks formulae

Let orig be a shorthand for ¬Y>. The formula is true only in the origin. The behaviour of each batch of
tasks is defined by the following formulae.

Normal Version∧
i∈S

(startTi ⇒ runTi ∧ ¬endTi ∧YenabledSi ∧ ¬runTi S (orig ∨ endTi) ∧XendTiR¬startTi) (25)∧
i∈S

(runTi ⇒ runSi ∧ (runTi S startTi) ∧ (runTi U endTi)) (26)∧
i∈S

(endTi ⇒ runTi ∧Y¬endTi S (orig ∨ startTi)) (27)

Using Formal Verification to Evaluate the Execution Time of Spark Applications 37

Labeling Version

∧
i∈L

(startTi ⇒ runTi ∧ ¬endTi ∧Y¬runTi S (orig ∨ endTi) ∧XendTiR¬startTi) (28)∧
i∈L

(runTi ⇒
∨
j∈S:
`(j)=i

(runSj) ∧ (runTi S startTi) ∧ (runTi U endTi)) (29)

∧
i∈S

(endTi ⇒ runTi ∧Y¬endTi S (orig ∨ startTi)) (30)

A.2.3. Resource Constraints

The number of available cores in the system is constrained as follows:

Normal Version

∑
i∈S

(runTCi) + avaCC = p (31)

Labeling Version

∑
i∈L

(runTCi) + avaCC = p (32)

A.2.4. Counters Formulae

Normal Version

∧
i∈S

(runTCi ≥ 0 ∧ runTCi ≥ 0) ∧ avaCC ≥ 0 (33)∧
i∈S

(runTi ⇔ runTCi > 0) (34)∧
i∈S

((runTCi 6= XrunTCi)⇒ (XstartTi ∨ endTi)) (35)∧
i∈S

(remTCi ≥ XremTCi) (36)∧
i∈S

(remTCi 6= XremTCi ⇒ XendTi) (37)∧
i∈S

(endTi ⇒ (remTCi = YremTCi − runTCi)) (38)

38 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

Labeling Version∧
i∈S

(startEnabledSi ⇒ XremTC`(i) = |Ti|) (39)∧
i∈S

(runSi ⇒ remTC`(i) ≤ YremTC`(i)) (40)∧
i∈L

(runTCi ≥ 0 ∧ runTCi ≥ 0) ∧ avaCC ≥ 0 (41)∧
i∈L

(runTi ⇔ runTCi > 0) (42)∧
i∈L

((runTCi 6= XrunTCi)⇒ (XstartTi ∨ endTi)) (43)∧
i∈L

(remTCi 6= YremTCi ⇒ endTi ∨
∨
j∈S:
`(j)=i

(YstartEnabledSj)) (44)

∧
i∈L

(endTi ⇒ (remTCi = YremTCi − runTCi)) (45)

A.2.5. Initialization

Normal Version∧
i∈S

(¬runTi ∧ ¬runSi) (46)∧
i∈S

(remTCi = |Ti|) ∧ (runTCi = 0)) (47)

(avaCC = p) (48)

Labeling Version∧
i∈L

(¬runTi ∧ runTCi = 0) (49)

(avaCC = p) (50)

Using Formal Verification to Evaluate the Execution Time of Spark Applications 39

A.2.6. Clocks Formulae

In order to represent the duration of the various processing phases of each node we introduce different clocks:

• clkSi measures the duration of the runTj phase for each node/label j.

Reset conditions

• clkSj for each node/label - clock resets every time a new batch of tasks of node/label j starts running.∧
j∈S/L

(
(clkSj = 0) ⇐⇒ (orig ∨ startTj)

)
(51)

Task running duration Single interval, Normal variant:

∧
i∈S

 runTi ⇒(
runTi ∧ ¬endTi)U((clkSi ≥ αi − ε) ∧ (clkSi ≤ αi + ε) ∧ endTi)
∧(remTCi = YremTCi − runTCi)

) (52)

Single interval, Labeling variant:

∧
i∈S

 (runSi ∧ runT`(i) ⇒(
(runT`(i) ∧ ¬endT`(i))U((clkS`(i) ≥ αi − ε) ∧ (clkS`(i) ≤ αi + ε) ∧ endT`(i))
∧(remTC`(i) = YremTC`(i) − runTC`(i))

) (53)

40 L. Baresi, M.M. Bersani, F. Marconi, G.Quattrocchi and M.Rossi

function label(G)

I, C = ∅
for all node ∈ G do

I = I ∪ 〈node, getAncestors(node)〉
C = C ∪ {node}

do

oldC = C

reduce(G,C, I)

while C 6= oldC

id = 0

for all chain in C do

for all node in chain do

node.label = i

i = i+ 1

function redochains(C, a, b,PAIR)

modtail(b, tail(a, C), C)

p = PAIR[a]

if p 6= null then

redochains(C, p[0], p[1],PAIR)

else

C = C \ tail(a, C)

function reduce(G,C, I)

N,M,PAIR,USED = ∅
for all chain in C do

N = N ∪ {chain[0]}
while |N | > 0 do

for all head in N do

J = I[head]

for all anc in J do

if anc 6∈ USED then

T = tail(anc, C)

if |T | > 1 then

PAIR = PAIR ∪ 〈T [1], (head, anc)〉
USED = USED ∪ {anc}
M = M ∪ T [1]

else return

redochains(C, head, anc,PAIR)

N = M , M = ∅

Fig. 15. DAG labeling algorithm. (see Section 4)

