
https://doi.org/10.1007/s00165-020-00507-2
BCS © 2020
Formal Aspects of Computing (2021) 33: 87–125

Formal Aspects
of Computing

Stepwise development and model checking of a
distributed interlocking system using RAISE
S. Geisler and A. E. Haxthausen
DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.

Abstract. This paper considers the challenge of designing and verifying control protocols for geographically
distributed railway interlocking systems. It describes how this challenge can be tackled by stepwise development
and model checking of state transition system models in a new extension of the RAISE Specification Language.

Railway interlocking systems are reconfigurable systemswhich can be configured by supplying data describing
the network to be controlled and other details. Therefore, such systems are natural candidates for being modelled
by generic state transition systems, which abstract away from the concrete configuration at the time of modelling,
and can later be instantiated with concrete data.

For a real-world case study, a generic state transition system is developed in steps, starting with an abstract
model of the essential system behaviour and incrementally adding details and restrictions. The stepwise develop-
ment method allows different variants of the control protocol to be explored. The generic models are instantiated
with concrete configuration data, after which desired properties, in particular safety properties, of the system
models are verified using model checking.

Keywords: Stepwise development, Model checking, RAISE, Railway interlocking systems, Distributed systems

1. Introduction

This paper considers the challenge of formally modelling and verifying the safety of the real-world geographically
distributed railway interlocking system presented in [HP00]. The engineering concept of this was originally
developedby INSYGmbHBerlin for their railway control systemRELIS2000designed for local railwaynetworks
that are not highly frequented by trains and consist of a single line connecting a series of small, adjacent stations
having one or two tracks.

Correspondence to: S. Geisler, E-mail:sgei@dtu.dk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-020-00507-2&domain=pdf
http://orcid.org/0000-0003-4806-2043

88 S. Geisler and A. E. Haxthausen

1.1. Background

A railway interlocking system is a safety-critical system controlling the track side equipment and movement
of trains in a railway network such that train collisions and derailments are avoided. Current computer-based
interlocking systemsusually have a centralised design, but in a fewcases, as for instancedescribed in [HP00,FH18],
the control has been geographically distributed to communicating processors deployed at the sensors and actuators
(e.g. points) along the track layout and to onboard train control computers. One of themotivating factors for such
distributed interlocking systems is the lower cost for track side installation and maintenance as signals and many
copper cables are replaced by wireless communication. Furthermore, system configuration and thereby also the
certification of system configurations is considerably simplified (and thereby also cheaper) as the configuration
data of each control component along the track layout only depends on local (adjacent) track elements and
the configuration data for a train control computer only depends on its own route, while the configuration of a
centralised system in the form of a global route control table is very complex, cf. the discussion in [FGH+16].
This in particular means that re-configuration due to network changes only requires small local changes in a
few components for a distributed system, while the whole route control table for a centralised system must be
completely recreated. These advantages make distributed interlocking systems an attractive solution, especially
for small, local railway networks which can only operate if the costs for (re-)configuration, installation and
maintenance of the system are low.

To verify the safety of distributed railway interlocking systems is even more challenging than for centralised
systems. For centralised interlocking systems, there is a global notion of the state of the system, which can be
observed by the control computer to make interlocking decisions. In contrast to this, in the geographically dis-
tributed approachwhere each train is equippedwith a train control computer, and additional control components
are distributed throughout the railway network, the interlocking data must be distributed (but also duplicated
to some extent) in the different control components. Furthermore, the control components must collaborate in
order to make safe decisions, so communication between the control computers must be introduced. This adds
additional threats which would not be present in a centralised system. Hence, the distribution of control gives
rise to new challenges for the safety verification.

Using formal methods for the verification of distributed interlocking systems is a natural choice, as formal
methods are strongly recommended by the CENELEC standard EN 50128 [ECfES11] for safety-critical rail-
way control components and have proved useful for many applications. For instance, Haxthausen and Peleska
demonstrated this in [HP00], where they modelled and verified the distributed interlocking system considered
in this paper. For this they used the RAISE Specification Language (RSL) [RAI92], and the RAISE theorem
prover, respectively.

Theorem proving, as used in [HP00], handles complex systems very well, but the proof derivation process
is very time consuming, as it must be directed by a human. Furthermore, theorem provers are often unable to
give counter-examples when a proof fails. With model checking, the verification process is fully automated, and
if some asserted property is not satisfied in some state of the system, the model checking tool will produce a
counter-example, usually showing the path to that state. The path can then be investigated in order to discover
the unintended behaviour. Therefore, in this paper, we will investigate the use of model checking for verifying the
safety of the considered interlocking system.

1.2. Contribution

The main contribution of the paper is a method for modelling and verifying a distributed system by stepwise
specification andmodel checking, and the application of this method to a distributed railway interlocking system.

For the system specification the method uses a new extension of RSL, which we call RSL�. We have built
RSL� on top of another extension of RSL, called RSL-SAL [PG07], which allows to specify systems by state
transition system models. RSL� provides additional convenient language constructs, allowing the use of generic
variables and named collections of transition rules. In contrast to this work, the work in [HP00] used the RSL
process algebra to specify the final model of the system. The formal verification is now performed using the SAL
symbolic model checker [SAL01] which is a back-end to the RAISE tool set rsltc [Geo03] supporting RSL-SAL
and now also RSL�. The challenge of capturing the system behaviour in appropriate detail was tackled by using
stepwise development of state transition system models. This approach is novel in the context of RAISE.

Stepwise development of interlocking systems 89

Compared to the previously published work by the same authors [GH18], the main extensions to this paper
are as follows:

1. The language constructs of the new RSL� language are presented for the first time.
2. New functionality that the RSL tools framework has been equipped with in order to support RSL� is pre-

sented.
3. Models and assertions are now specified in RSL� instead of RSL-SAL.
4. Additional details of the generic models are presented.
5. A complete list of properties to be verified has been presented and examples of formal specifications of some

of these are shown.
6. All example configurations which have been verified are shown and it is explained how they have been selected.
7. Performance data for model checking is shown.
8. The tools, the formal specifications and the performance results have been made available on a GitHub

repository.
9. It is shown by an example how functions used in the models have been tested.

10. The related work has been expanded and the number of references has been more than doubled.

1.3. Related work

Formal verification of interlocking systems is an active research topic, investigated by several research groups.
An overview of recent trends can be found in [Fan14, BtBF+18].

The formal verification method used may be theorem proving, such as in [CDP+17, Sab16] and [HP00] (the
work fromwhich the case study of this paper originates). The theoremproving approach is generally characterised
by being once-and-for-all, such that every possible instance of the specified system has been proven to be correct
with respect to some defined properties of e.g. safety.

There are also several examples of usingmodel checking as the formal verificationmethod suchas in [FMGF10,
VHP17, JMN+14a, Win02, BtBFL19, RFT16]. This approach has the advantage over theorem proving of being
fully automated.However,model checking of the desired propertiesmust be repeated for each system instance one
wishes to verify. There are examples of using many different model checking tools such as UPPAAL ([BtBFL19])
and nuSMV ([FMGF10]) for the verification of interlocking systems. Like in this paper, in [HBK10, Hax14]
RSL-SAL and SAL was used for modelling and verifying an interlocking system, but in contrast to the work of
this paper, the system was not distributed, but centralised, not computer-based, but relay-based, and no stepwise
development of the state transition models was used.

We develop in this paper a system model by stepwise specification, starting out with an abstract model
and gradually adding details and restrictions. Such stepwise development methods are well-known from other
languages, for example from TLA/TLA+, where one can formally define refinement relations between models
at different levels of abstraction [Mer08]. The same idea of refinement, progressing from an abstract model to a
concrete one through a number of steps is incorporated in both classical B and Event-B [Abr18]. In this paper we
suggest to use two refinement techniques. We use guard strengthening, where the admissible events of the system
are restricted by strengthening guards of (some of) the guarded commands. The refinement in this case is based on
trace inclusion, which is well known from other languages which can be used to specify state-based systems. For
example, such refinements are used in Event-B [MFTFL18, Abr18]. The other refinement technique we suggest
to use is event decomposition: we decompose each of the collaborative events into multiple sub-events of the
original event. This development step uses the same idea as refinement of Event-B models using decomposition
of atomic events as shown in [But09]. The idea in the method from Event-B is to first model the desired outcome
as an atomic event, and then decompose the atomic event into multiple sub-atomic events.

Most of the works using formalmethods for verification of interlocking systemsmentioned above are focusing
on centralised interlocking with fixed block interlocking, where movement authority is granted based for static
blocks of track sections. The system in the case study of this paper also uses fixed block interlocking, but is
distributed. Moving block interlocking is used in CBTC (communications-based train control) systems and in
ERTMS Level 3 [HBR18]. With moving block interlocking, trains are instead surrounded by so-called envelopes

90 S. Geisler and A. E. Haxthausen

which must not overlap with each other. Such systems have for instance been explored and verified by [CDP+17,
CLM+19].

As current computer-based interlocking systems usually have a centralised design, there are only a few exam-
ples, e.g. [HP00, FH18], of formal verification of distributed interlocking systems. In [HP00], the same distributed
system as we consider was also formallymodelled and verified. For the specification of the behavioural model, the
RSL [RAI92] process algebra was used rather than the RSL� guarded command language that we are using, and
for the verification the RAISE theorem prover was used rather than the SAL model checker. The specification
of data types representing the state spaces of components, and the specification of guards and updater functions
were in both papers specified in pure RSL and are almost equivalent. There are some changes in the choice of
datatype representations and formulation of functions as we need to be able to translate our specifications into
SML and SAL. The guards used in the models in the first two steps of our development correspond to the guards
used in the fifth step in the development in [HP00], while the guards used in the sixth step of [HP00] are more
restrictive, requiring that a train reserves the segments of its route one by one in the order they are to be visited
according to its route (but still only as far as the train wishes). The guards used in our third model are even more
restrictive than that, only allowing a train to reserve the next segment in its route.
In [FHN17], a geographically distributed railway interlocking system was formally modelled and verified using
UMC [UMC, tBFGM11] instead of RSL-SAL and SAL. The control protocol presented in [FHN17] radically
differs from the one considered in our case study: in [FHN17], full train routes are allocated before trains
start moving. This is done using a two-phase commit protocol for determining agreement between the control
components. The control protocol in our case study allows trains to allocate each section of their routes separately,
which allows for greater flexibility, since train routes can be interleaved to a greater extent.

For validation of configuration data there are twomajor approaches: static checking [HØ16, LJ18] andmodel
checking [PKHP19]. In this paper we use static checking.

1.4. Paper overview

First, Sect. 2 gives a brief introduction to the new language constructs of RSL� and the new functionality of
the RSL tools framework. The reader may skip this section. Then, Sect. 3 gives a brief introduction to the case
study: the engineering concept of the considered distributed interlocking system and an overview of the formal
development. The following sections (Sects. 4, 5 and 6) give an overview of the generic model specifications and
the development steps between them. The verification of model instances is described in Sect. 7. Finally, Sect. 8
gives a conclusion and states ideas for future work.

2. Language constructs of RSL� and added tool support

This section gives a short introduction to RSL� which is used in this paper to create and instantiate generic
specifications for system models of a distributed interlocking system.

RSL� is an extension to RSL-SAL, which itself is an extension to RSL. RSL is a wide-spectrum, formal
specification language that enables the formulation of modular specifications in several different styles. RSL-
SAL provides the possibility of specifying state transition systems in a guarded command style and later model
checking properties of the systems using the SAL model checker.

We have extended the existing RSL-SAL specification language with new language constructs better suited
for the specification of generic models. In particular, this extended version of RSL, which we call RSL�, provides
the possibility of declaring generic variables, generic constants, initialisation constraints, and naming collections of
transition rules. Functionality supporting the use of these constructs in conjunction with the SAL model checker
have been added to the RSL tools environment. We will elaborate on each these additions in the following.

2.1. Specifications in RSL�

The specification of a transition system model in RSL� consists of

1. Type declarations.

Stepwise development of interlocking systems 91

2. Value declarations (i.e. constants and functions).
3. Axioms.
4. (State) variable declarations.
5. An (optional) initialisation constraint on the variables.
6. A transition relation specification.

Declared types can be used in the value declarations and the variable declarations, and the declared values and
variables can be used in axioms and in the initialisation constraint (if included) and in the transition relation.

2.1.1. Generic specifications in RSL�

Interlocking systems are reconfigurable systems which can be instantiated by specifying configuration data, e.g.,
for the railway network which should be controlled. Therefore, it is natural to model an interlocking system as
a generic model, that is, a model which abstracts away from the concrete configuration and which can later be
instantiated with the desired configuration.

In RSL� it is possible to abstract from concrete configuration data by using abstract types

type T1

and underspecified constant values

value v : T2

which can later be concretised by instantiating the types with concrete types, ty:

type T1 � ty

and by instantiating the values with concrete values, val, either by adding val as in:

value v : T2 � val

or by adding an axiom:

axiom v � val

Furthermore, it is possible to abstract away from the initial values of variables by simply not specifying these.
Later, during instantiation, the initial values can be added by specifying initialisation constraints.

In the following sections, some language constructs which ease the specification of generic transition system
models, and which are helpful for the reader to know about, are introduced. Some of these language constructs
are from the existing RSL-SAL, and some of them are new language constructs added in RSL�. It will be noted
in the section whether the language construct introduced is from RSL-SAL or RSL�.

2.2. Notation for generic variables

In RSL� we allow the declaration and referencing of so-called generic variables. The generic variables provide an
elegant way of specifying that there exists a variable for each value of a given type. The declaration of a generic
variable is thus a shorthand for a set of variable declarations. This is particularly useful when creating generic
models of systems which may contain a set of similar entities for each of which some state variable(s) must be
maintained.

Generic variables in RSL� are declared by statements in the following form:

variable generic var name[t1 : T11, . . ., tn : T1n] : T2

This specifies a collection of concrete variables, generic var name[t1, . . . tn], where the collection ranges over one
or more parameters ti of finite types T1i . Each member, generic var name[t1, . . . tn], of the collection has the
same variable type, T2.

It is possible to refer to an instance of a generic variable anywhere where a variable reference may normally
occur. A reference to an instance of a generic variable has the following form:

generic var name[ta1, . . ., tan]

92 S. Geisler and A. E. Haxthausen

where tai is some actual value belonging to the type T1i over which the variable is defined.
We will show an example of the declaration of and reference to a generic variable. Suppose that we are

specifying a system in which there is a configurable number of trains, each identified by a unique train identifier
of the type TrainID. For each train we wish to keep track of its position. Suppose that a position is simply given
by a single track segment of type SegmentID. We could then declare the following generic variable:

variable position [t : TrainID] : SegmentID

This states that there exists a variable, position[ta], of type SegmentID for each value ta belonging to the type
TrainID.

Now suppose that the type TrainID is an enumeration variant type declared as follows:

type TrainID �� t1 | t2 | t3

A reference to the specific instance of the generic variable associated with t1 could then be written as follows:

position [t1]

In our previously published work [GH18], where we used RSL-SAL not providing generic variables, we had
to make a work-around using the map RSL-construct, mapping component (e.g. train) identifiers to state values
(such as a train’s position), as follows:

variable position : TrainID →m SegmentID

Using that work-around is less intuitive, as e.g., the train positions of all trains are stored in a single variable, and
not in individual variables as it is the case for a real-world distributed system such as the one considered in this
paper.

The addition in RSL� of generic variables offers an elegant way of specifying state variables at the generic
level. Additionally, using a dedicated construct makes it clearer for any readers which variables are generic.

Using generic variables (which can be unfolded to regular variables, cf. Sect. 2.8) is an advantage when
translating to model checker input languages, as many of them do not support data structures such as maps.

2.3. Notation for initialisation constraints

In RSL�, it is possible to initialise variables using an initialisation constraint. An initialisation constraint is
a conjunction of basic initialisation constraints and quantified initialisation constraints. A basic initialisation
constraint has the following form:

init constraint
v � value expression

where v is a variable reference. (This variable reference may be a simple variable reference or a reference to an
instance of a generic variable.)

A quantified initialisation constraint representing a conjunction over a set of constraints only differing by an
index parameter t of finite type T, can be expressed as follows (here for a generic variable):

init constraint
(∀t : T • v[t] � value expression)

where v is a generic variable defined over the type T and t may occur in value expression. It is a shorthand for
writing the conjunction of all constraints that can be obtained by substituting a value val of type T for t in the
constraint, v [t] � value expression.

2.4. Notation for generic constants

RSL� supports generic constants similar to generic variables.Generic constants inRSL� are declared by statements
in the following form:

value generic const name[t1 : T11, . . ., tn : T1n] : T2

Stepwise development of interlocking systems 93

This specifies a collection of concrete constants, generic const name[t1, . . . tn], where the collection ranges over
one or more parameters ti of finite typesT1i . Each member, generic const name[t1, . . . tn], of the collection has
the same type, T2.

It is possible to refer to an instance of a generic constant anywhere where a value expression may normally
occur. A reference to an instance of a generic constant has the following form:

generic const name[ta1, . . ., tan]

where tai is some actual value belonging to the type T1i over which the constant is defined.
For instance, one can write

axiom generic const name[ta1, . . ., tan] � val

where val is some value of type T2.

2.5. Notation for transition rules

In RSL-SAL, and thereby in RSL�, transition rules are specified in a guarded command style. A basic transition
rule has the following form:

value expression /∗ must be Boolean ∗/
−→
v1

′ � value expression1, . . ., vn
′ � value expressionn

where v ′
i is the primed version of a variable reference, vi . The rule consists of a guard and an effect (separated by

−→), where the guard is a predicate over the state variables determining for which states the effect of the rule can
be applied, and the effect of the rule is a collection of state variable updates. In the state variable updates, primed
versions of the variables refer to the variables in the resulting post state.

Transition rules can be combined by non-deterministic choice (���). Suppose two rules are combined by the
non-deterministic choice operator:

guard1 −→ v1
′ � value expression1

���	
guard2 −→ v2

′ � value expression2

Then the non-deterministic choice operator allows the effect of the first rule to take place if the guard, guard1
evaluates to true. Similarly, the operator allows the effect of the second rule to take place if the guard, guard2
evaluates to true. If both guard1 and guard2 evaluate to true, then a non-deterministic or “random” choice is
made between the effect of the first rule and the effect of the second rule.

A non-deterministic choice over a set of rules of the same form, only differing by a parameter t of finite type
T , can be expressed as a quantified transition rule:

(���	 t : T •
value expression
−→
v1

′ � value expression1, . . ., vn
′ � value expressionn)

where t may occur in the value expressions and/or as an access parameter in the variable references vi , if vi is an
instance of a generic variable.

Such a rule is a shorthand for writing a non-deterministic choice between all rules that can be obtained by
substituting a value val of type T for t in the rule, value expression −→ v ′

1 � value expression1, . . . , v ′
n �

value expressionn .
In particular, a non-deterministic choice between updating different instances of a generic variable v defined

over the type T, can be expressed as follows:

(���	 t : T •
value expression
−→
v ′ [t] � value expression)

94 S. Geisler and A. E. Haxthausen

2.6. Named collections of transition rules

RSL� allows the naming of collections of transition rules. Named collections of transition rules provide a simple
way of compartmentalising the specification into logical parts. A named collection of transition rules has the
following form:

[Name] � (
rule1
���	
. . .

���	
rulen

)

where each rulei is a transition rule (or the name of another named collection of transition rules1). A collection
of transition rules must consist of at least one (possibly quantified) rule.

The names of collections of transitions can be referred to in a system composition, which has the following
form:

transition rules
C1 ���	 . . . ���	 Cn

where
[C1] � (. . .),
. . .

[Cn] � (. . .)
end

where eachCi is the name of a collection of transition rules. Alternatively, it is possible for the system composition
to combine a mix of names of collection of transition rules and just transition rules.

We now show an example of the declaration and usage of a named collection of transition rules. Suppose that
we are specifying a system with trains, where an overall logical partition of the possible events in the system could
be (1) rules related to moving the trains, (2) rules related to the trains making reservations for track sections, and
(3) rules related to the locking of points in the tracks.

For this system, the collection of transition rules related to the moving of trains could be specified as follows
(where the ellipsis indicate additional rules):

[Move] � (
(���	 t : TrainID •
allowed move(t) −→ position′[t] � next position(t)

)
���	
. . .

)

Suppose that the collections of transition rules related to reservation and locking, respectively, were declared
as named collections in a similar manner. Then, a system composition of the named collections of transitions
could be declared as follows:

transition rules
Move ���	 Reservation ���	 Locking
where
[Move] � (. . .),
[Reservation] � (. . .),
[Locking] � (. . .)

end

2.7. Notation for LTL properties

LTL properties in RSL-SAL (and RSL�) are logical value expressions where the temporal operators of LTL, G,
F and X, are allowed as function symbols:

1 Since nesting of named collections of transition rules inside other collections is allowed, cyclic references are disallowed.

Stepwise development of interlocking systems 95

• G expresses “always” or “globally”.
• F expresses “eventually” or “in the future”.
• X expresses “in the next state”.

A quantified property representing a set of properties only differing by a parameter t of finite type T , can be
expressed as follows:

(∀t : T • value expression)

where t may occur in the value expression.
It is a shorthand for writing the conjunction of all properties that can be obtained by substituting a value val

of type T for t in value expression.

2.8. Tool support

We have added tool support to the existing RAISE rsltc tool [Geo03] for the extensions of RSL� introduced in
Sects. 2.2, 2.3, 2.4, and 2.6. We have added syntax and type checking support for the constructs, and moreover,
we have added an unfolder to the RSL framework. The extended rsltc tool for the RSL� is free to use, and can be
found online.2

Theunfolder takes as input amodel specification inRSL�andoutputs a so-calledunfoldedmodel specification.
In the unfolded model specification, the generic constructs have each been replaced with what they are shorthand
for. Thus, the unfolded model specification is within the subset of RSL-SAL supported by the RSL to SAL
translator (i.e. RSL-SAL). This allows us to continue using the translator, and thereby the SAL model checker
as back-end.

The input model specification of the unfolder must be non-generic, i.e. it must be instantiated with concrete
types and values, as these are used in the creation of the unfolded model specification.

3. Case study

3.1. Engineering concept

The control strategy of the system must ensure the safety of the system by preventing derailment and collision
of trains. In this engineering concept, safety is achieved by only allowing one train on each track segment at the
same time and ensuring that points are locked in correct position while trains are passing them. To this end, trains
must reserve track segments before entering them and lock points in correct position before passing them.

The control components of the system are responsible for implementing the control strategy. Each train is
equippedwith a train control computer. In the railwaynetwork, several switchboxes are distributed, each associated
with a single point or an endpoint of the network. These components communicate with each other in order to
collaboratively control the system. Each control component has its own, local state space for keeping track of the
relevant information. As can be seen from Fig. 1, each of the train control computers has information about the
train’s route (a list of track segments) with its switchboxes, the train position, and the reservations and locks it has
achieved. Each switchbox has information about its associated sensor (used to detect whether a train is passing
the critical area close to the point), which segments are connected at its associated point (if any), for which train
the point is locked (if any), and for which train each of the associated segments is reserved (if any).
The basic idea of the control strategy is as follows:

1. Permission to enter a segment: For a train control computer (TCC) to decide whether it is legal to enter the
next segment of its route, the TCC must observe its local state space and check whether it has the needed
reservations and locks. More precisely, the following must hold:

2 https://github.com/raisetools/rslstar

https://github.com/raisetools/rslstar

96 S. Geisler and A. E. Haxthausen

Fig. 1. An example system.

• the next segment must have been reserved for the train at the two upcoming switchboxes, and
• the point must have been switched in the direction for the train route and locked for the train at the next
switchbox.

In the scenario shown in Fig. 1, for the train T1, this means that it must have reservations for segment S2 at
both the switchboxes SB1 and SB2, and a lock for the point at SB1, before it can be allowed to enter S2.

2. Making reservations and locks: Reservations and locks are made by the trains by issuing requests to the
relevant switchboxes. Depending on its local state, a switchbox may or may not comply with a request from
a train. The switchbox can only fulfil a segment reservation request if the segment is not already reserved at
the switchbox. Similarly, a switchbox can only lock a point (after potentially having switched the point in the
direction for the train route), if the point is not already locked. Additionally, a request for locking a point
can only be made if the train has reservations for the two segments in its route on either side of the point to
be locked. In the scenario shown in Fig. 1, for the train T1, this means that it must have a reservation for
segments S1 and S2 at the switchbox SB1, before it can request to switch and lock the point at SB1.
If a switchbox can meet a request, it will update its state space accordingly. In any case, the switchbox will
send a response to the train, based on which the train can determine whether the request has been met and,
thereby, whether the train should update its state space as well.

3. Release of reservations and locks: When a train enters the critical area of a switchbox, the sensor associated
with the switchbox will become active, and when the train later leaves the critical area of the switchbox, the
sensor will become passive which in turn causes both the lock and reservations for that train at that switchbox
to be released in the state space of the switchbox. When the train leaves the critical area of the switchbox, also
the lock and reservations at that switchbox will be released in the state space of the train.

3.2. Overview of formal development

The modelling process follows a stepwise development paradigm, where several different models are developed,
going from a very abstract view of the real-world system to a more concrete view. In this way, three specifications
of generic state transition system models were developed.

The first is an abstract model capturing the system behaviour, but abstracting away from the explicit commu-
nication between the control components. Hence, e.g. a reservation event is treated as an atomic event, abstracting
away from the intermediate steps issuing requests and acknowledgements.

Stepwise development of interlocking systems 97

However, it was known from the start that these intermediate steps should later be explicitly modelled. The
starting point is thus a stage where there is already an idea of needing event decomposition. This affects the
specification of the first model, where the auxiliary functions for checking and updating the state spaces of the
control components are divided into functionality for train control computers and switchboxes, respectively.

The secondmodel is developedusing event decomposition for collaborative events (i.e. events involving explicit
communication between control components) of the first model in order tomodel the steps of the communication
protocols for such events. At this modelling level, the transition rules are specified in a property-oriented manner,
resulting in the least restrictive possible behaviour of the system. This allows for several different legal orders of
events.

The third model is an example of restricting the second model to a more specific control protocol for each
collaborative event, enforcing a specific order of events. This is achieved by restricting the guards of relevant
transition rules, such that the corresponding transitions can only be executed in fewer cases. Thus the set of paths
of the state transition system of the third model is a subset of that of the second model.

The specified system models are generic, i.e. without any configuration data describing the railway network
and the control components with their data. To verify the models by model checking, they must be instantiated
with configuration data. The instantiation and verification will be described in Sect. 7, while the generic models
will be explained in Sects. 4, 5, and 6. The instantiated models for all the configurations we consider in later
sections can be found online.3

4. First generic model

The specification of the first (generic) model can be divided into several different parts:

• Types and values for the static configuration data.
• Types and state variables for the dynamic control component data.
• Functions for describing wellformedness of static configuration data.
• Functions for describing state invariants for dynamic control component data.
• Functions for describing the safety of the system.
• Guard and state updater functions.
• Transition system rules.

In addition there are verification obligations, which are specified as test cases and as LTL assertions, which
use the functions for describing wellformedness of the static configuration data and the functions for describing
state invariants for dynamic control component data and for safety. The following sections will elaborate on the
different parts of the generic model and show examples of the specification of test cases and LTL assertions using
the aforementioned functions. Further details on the verification of the test cases and LTL assertions can be
found in Sects. 7.1.3 and 7.1.4, respectively.

4.1. Static configuration data

The static configuration data consist of data describing the railway network under consideration as well as route
information for each train running in the network.

4.1.1. Network data

The data for the railway network includes information about which segments and switchboxes appear in the
network and how the layout (relative placement) of these is. The data also includes information about which
trains run in the network. The network layout data is included in the models solely for the purpose of being able
to verify the consistency of the control component data (i.e. routes, reservations, etc.) with respect to the network
layout.

3 https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc

https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc

98 S. Geisler and A. E. Haxthausen

Unique identifiers for segments, switchboxes, and trains of the system are given by types. These are not further
specified in the generic model, but are intended to be defined by variant types enumerating the concrete identifiers
when the model is instantiated. Train identifiers must at least include the special value t none and switchbox
identifiers must at least include the special value sb none. We specify the subtypes TrainID′ and SwitchboxID′ of
the train identifier and switchbox identifier types, respectively, which do not contain the special values.

type
SegmentID,
TrainID �� t none | ,
TrainID′ � {| t : TrainID • t
� t none |},
SwitchboxID �� sb none | ,
SwitchboxID′ � {| sb : SwitchboxID • sb
� sb none |}
The network layout describing how the segments of the system are connected is given by a value network of

an explicitly defined type Network.

type
Network � Connection-set,
Connection �� conn(fst : SegmentID, snd : SegmentID) | border(e : SegmentID)

value
network : Network

The network value is not specified further in the generic model, but is intended to be explicitly defined by a
constant when the model is instantiated. The network should be represented as the set of all connections (of the
form conn(S1,S2)) between neighbouring segments S1,S2 of the network and all border segments (of the form
border (S)) of the network. The network is oriented according to two distinguished destinations,DOWN andUP,
such that at each segment there is a uniquely defined direction to reach DOWN and UP, respectively. Driving in
the direction from DOWN to UP will be referred to as the up-direction. The opposite direction (i.e. from UP to
DOWN) is referred to as the down-direction. We assume that the connections of the network that have the form
conn(S1,S2) are all given such that they describe the connection in the up-direction.

The wellformedness requirements for the network value will be elaborated on in Sect. 4.3.
We must also describe how the switchboxes are placed in the network. This is given by a value netSwitchboxes

of an explicitly defined type SwitchboxDesc.

type
SwitchboxDesc � SwitchboxID →m SwitchboxConnection,
SwitchboxConnection ::
stem : SegmentID
branches : SegmentID-set

value
netSwitchboxes : SwitchboxDesc

As for the network value, the netSwitchboxes value is not specified further in the generic model, but should be
defined by a constant when the model is instantiated. This constant should map each switchbox identifier of the
network to a description of what its stem and branch segments are. Recall that a switchbox is associated with
a point or an endpoint. For a point, the stem segment refers to the fixed part of the point (for SB1 in Fig. 1
this corresponds to segment S1), and the branch segments refer to those segments which the point can switch
between (for SB1 in Fig. 1 this corresponds to the segments S2 and S3). A special case is if a switchbox is placed
at the joint of just two segments, i.e. there is a fixed connection between two segments (a one-one-link). In this
case, there will only be a single “branch” segment, and the switchbox at that point cannot switch direction. An
endpoint has only a stem, but no branch segments (for SB0 in Fig. 1 this means that its stem is the segment S1
and that its set of branch segments is empty).

The wellformedness requirements for the netSwitchboxes value will be elaborated on in Sect. 4.3.

4.1.2. Static control component data

In Sect. 3.1, we introduced the information which train control computers and switchboxes, respectively, must
keep track of. Each control component has its own data with fields corresponding to the information shown in
Fig. 1 for the train control computers and the switchboxes, respectively.

Stepwise development of interlocking systems 99

In this section we show the specification of suitable types for the static fields in the control component data
and show the specification of generic constants of these types. Wellformedness requirements for the constants
will be described in Sect. 4.3. The specification of suitable types for the dynamic fields in the control component
data and specification of generic variables of these types will be shown in Sect. 4.2.

We have the following types for the static information stored in the train control computers:

• The route, which is a sequence of adjacent segments, is modelled as a value in the type, Route, which is a
mapping from segment identifiers to segment identifiers, such that, e.g., the route (S1,S2,S4) (for the train
T1 in Fig. 1) is described by the value [S1 �→ S2,S2 �→ S4]. This way of modelling the route was chosen
because RSL-SAL does not support lists, which would otherwise have been the natural choice for the type.

type Route � SegmentID →m SegmentID

• The switchboxes, which is a sequence of adjacent switchboxes along the route, is modelled as a value in the
type, Switchboxes, which is a mapping from switchbox identifiers to switchbox identifiers, similarly to the
Route type. This means that the switchbox sequence (SB1,SB2,SB3) (for the train T1 in Fig. 1) is described
by the value [SB1 �→ SB2,SB2 �→ SB3].

type Switchboxes � SwitchboxID′ →m SwitchboxID′

We declare static values using the types shown above. In the generic model, the values are underspecified, so
they must be given values when the model is instantiated.

We use generic constants for modelling the static data of the train control computers. The generic constants
have the form value name[t : TrainID′] : type. Note that we are using the marked train identifier type, i.e., the
subtype which does not contain the special t none value.

For the train control computers, we have the following generic constants, describing the route and the switch-
boxes along the route, respectively:

value
route[t : TrainID′] : Route,
switchboxes[t : TrainID′] : Switchboxes,

4.2. Dynamic control component data

We show the specification of suitable types for the dynamic fields in the control component data and show the
specification of generic variables of these types.

We have the following types for the dynamic information stored in the train control computers:

• The train position, which is described by one or two segments (depending on whether the train is currently
crossing a boundary between two segments or not),4 is modelled as a value in the variant type Position which
can either be a single position consisting of a single segment identifier or a double position consisting of two
segments.

type Position �� single(seg : SegmentID) | double(tlseg : SegmentID, hdseg : SegmentID)

• The reservations stored in a train is modelled as a value in the type TReservation, which is a mapping from
switchbox identifiers to sets of segment identifiers, such that multiple segments can be reserved by a train at
the same switchbox. For each train, the domain of this map will be the set of switchboxes at which the train
currently has reservations. This means that the reservation for the train T1 in Fig. 1 is described by the value
[SB1 �→ {S1}].
type TReservation � SwitchboxID′ →m SegmentID-set

• The locks stored in a train is modelled as a value in the type TLock, which is a set of switchbox identifiers such
that if a switchbox identifier is included in the set, the train has a lock at that particular switchbox. This means
that the reservation for the train T1 in Fig. 1 is described by the value {} (since the train has not acquired any
locks yet).

type TLock � SwitchboxID′-set

4 For the considered local railway, trains are shorter than any segment, so they will at most occupy two segments at a time.

100 S. Geisler and A. E. Haxthausen

Similarly, we have types for the information stored in switchboxes:

• The associated sensor’s status is modelled as a value in the variant type, SensorState.

type SensorState �� active | passive

• The current connection of segments at the point of the switchbox is modelled as a value in the variant type
Connection already shown above. The current connection for the switchbox SB1 in Fig. 1 is described by the
value conn(S1,S3).
type Connection �� conn(fst : SegmentID, snd : SegmentID) | border(e : SegmentID)

• The reservations stored in a switchbox is modelled as a value in the type SbReservation, which is a mapping
from segment identifiers to train identifiers. For each switchbox, the domain of this map will be exactly the set
of segments which that switchbox is connected to. The value corresponding to a segment will be the special
value t none when no reservation is made. This means that the reservations for the switchbox SB1 in Fig. 1
is described by the value [S1 �→ T1,S2 �→ t none,S3 �→ t none].
type SbReservation � SegmentID →m TrainID

• The locks stored in a switchbox is not modelled as a value in any additional type, but just a value in the type
TrainID. When no lock is present, the special value t none will be used.

Several state variables are declared in the transition system model using the types shown above. The ini-
tial values of these determine the initial state of the transition system. In the generic model, the variables are
uninitialised, so they must be given values when the model is instantiated for model checking.

For modelling the dynamic data of each control component, we use generic variables. The generic variables
have the form variable name[t : TrainID′] : type and variable name[sb : SwitchboxID′] : type. Note that we
are using the marked train and switchbox identifier types, i.e., the subtypes which do not contain the special none
values.

For the train control computers, we have the following generic variables, describing the position, the next
switchbox5 (to be passed next or which is currently being passed), the reservations, and the locks, respectively:

variable
pos[t : TrainID′] : Position ,
nextSb[t : TrainID′] : SwitchboxID,
tReservations [t : TrainID′] : TReservation,
tLocks[t : TrainID′] : TLock

Similarly, for the switchboxes, we have the following generic variables, describing the sensor value, the con-
nection, the reservations, and the locks, respectively:

variable
sbSensor[sb : SwitchboxID′] : SensorState,
sbConnection[sb : SwitchboxID′] : Connection,
sbReservations[sb : SwitchboxID′] : SbReservation,
sbLock[s : SwitchboxID′] : TrainID

4.3. Wellformedness of static configuration data

The static configuration data values for a model instance must adhere to specific requirements to ensure that the
data is wellformed. There may be requirements for a value itself, or the requirements may relate the value to the
value of other static configuration data.

Because the requirements only deal with static data, we can use static checking (rather than model checking)
to verify that the requirements hold for a model instance. The static verification is performed by expressing the
wellformedness requirements as test cases and executing those.Wewill give further details on the static verification
in Sect. 7.

5 Needed for keeping track of the progression through the map of switchboxes.

Stepwise development of interlocking systems 101

Below we will informally describe the wellformedness requirements. In two cases, we will also show how they
are expressed formally. For the rest, we will show the name of the test case, such that the reader can find it in the
specification files. The specification of test cases is generic such that it can be re-used for different model instances.

Network wellformedness. The network value must be wellformed. Recall that the network is represented as a set
of values of the form conn(S1,S2) and border (S1), where a value of the form conn(S1,S2) indicates that the
segments S1 and S2 are neighbours in the up-direction.

For the network it must hold that (1) the network is non-empty; (2) the network has no loops;6 (3) each border
segment must have at least one neighbour segment; (4) all neighbour segments of a border segment must be on
the same side of the border segment; and (5) each non-border segment in the network must have at least one
neighbour in each direction. This can be expressed by the test case:

test case
[network wf] network wf(network)

where the function network wf is specified as follows:

network wf : Network → Bool
network wf(net) ≡
net
� {} ∧ /∗ (1) ∗/
no loops(conns of net(net)) ∧ /∗ (2) ∗/
(∀c : Connection • c ∈ net ⇒
case c of
border(segm) → /∗ (3) and (4) ∗/
(¬ is fst in conn (segm, net) ∧ is snd in conn(segm, net)) ∨
(is fst in conn (segm, net) ∧ ¬is snd in conn(segm, net)),

conn(segm1,segm2) → /∗ (5) ∗/
(∃c2 : Connection • c2 ∈ net ∧ c2
� c ∧
segm1 ∈ segments of conn(c2)) ∧

(∃c2 : Connection • c2 ∈ net ∧ c2
� c ∧
segm2 ∈ segments of conn(c2))

end)

using several auxiliary functions: no loops checks for loops in the network; conns of net extracts all connections
which are not border segments from the network; is fst in conn and is snd in conn check whether a segment is
the first, respectively second, component of some connectionwhich is not a border segment; and segments of conn
extracts the segments from a Connection value.

Consistency between net switchboxes and network. The netSwitchboxes value must be consistent with the network
value: It must hold that (1) for each switchbox it describes, each branch segment is a neighbour to the stem in the
network; and (2) for each pair of adjacent segments and each border segment in the network, there is one and
only one matching switchbox in netSwitchboxes in terms of stem and branch segments.

In a way similar to above, this is expressed by a test case named cons sb desc net using a function cons sb
desc net : SwitchboxDesc × Network → Bool.

Consistency between train routes and network. For each train t , its train route (map) in the route [t] value must
represent a sequence of adjacent segments in the network value: as the route is represented as a map, the invariant
can be checked by checking that (1) the domain of the map has exactly one more segment s1 than the range and
the range of the map has exactly one more segment sn than the domain (such that the map represents a linear
sequence of distinct segments s1, . . ., sn , where si+1 � route[t](si) for i = 1, . . ., n-1) and that (2) each segment is
mapped to a neighbour segment in the network. This can be expressed by the test case:

[cons route network]
(∀t : TrainID′ • cons route network(route[t] , network))

where the function cons route network is specified as follows:

6 Anti-symmetry is a consequence of this requirement.

102 S. Geisler and A. E. Haxthausen

cons route network : Route × Network → Bool
cons route network(route, net) ≡
card(dom(route) \ rng(route)) � 1 ∧ card(rng(route) \ dom(route)) � 1 /∗ (1) ∗/ ∧
(∀seg : SegmentID • seg ∈ dom(route) ⇒ are neighbors in net(seg, route(seg), net) /∗ (2) ∗/

and the auxiliary function are neighbors in net is specified as follows:

are neighbors in net : SegmentID × SegmentID × Network → Bool
are neighbors in net (seg1, seg2, net) ≡
conn(seg1, seg2) ∈ net ∨ conn(seg2, seg1) ∈ net ,

Consistency between train switchboxes and network. For each train t , its switchboxes map in the switchboxes [t]
value must represent a sequence of switchboxes which are adjacent in the netSwitchboxes value. This is expressed
by a test case named cons switchboxes netswitchboxes.

Consistency between train switchboxes and routes. For each train t , its sequence of switchboxes, switchboxes [t] ,
and its route, route [t] , must be mutually consistent: each (key, value)-pair of segments in a train’s route can be
paired with a switchbox from the sequence of switchboxes, and vice versa. This is expressed by a test case named
cons switchboxes route.

4.4. State invariants

There are several state invariants which should hold for the values of the control components’ state variables in
each model instance. The values in the state variables must be mutually consistent (i.e. in agreement), and the
values must be consistent with the static configuration data as well. We will give further details on the verification
of invariants in Sect. 7.

Below we will informally describe the state invariants we have considered. For one of the invariants, we will
also showhow it is expressed formally as anLTL formula. For the rest, wewill show the nameof the invariant, such
that the reader can find it in the specification files. The specification of state invariants is generic such that it can
be re-used for different model instances. The first seven invariants express internal consistency between different
variables and between variables and constants of each train control computer, the next invariant expresses that
the state of each train control computer must be consistent with the network data, the following two invariants
express that the state of each switchbox must be consistent with the network data, and the three last invariants
express mutual consistency between the states of train control computers and the states of switchboxes.

Consistency between train position and reservations. For each train, t , its reservations, tReservations [t] , must
be consistent with its position, pos[t] , such that the train has the necessary reservations for legally being in its
current position: a train in a single position should always at least have a reservation for its current segment at its
next switchbox, and a train in a double position should always at least have a reservation for each of its current
segments at the next switchbox (which is the one it is passing) along with a reservation for its front-most segment
at the switchbox after its next switchbox. This can be expressed by the formula:

[cons res pos]
(∀t : TrainID′ • G(cons res pos(tReservations[t] , pos[t] , nextSb[t] , switchboxes[t])))

where G is the global temporal operator from LTL and the function cons res pos is specified as follows:

cons res pos : TReservation × Position × SwitchboxID × Switchboxes→ Bool
cons res pos(res , pos, nextsb, switchboxes) ≡
case pos of

single (seg) → seg ∈ res(nextsb),
double(tlseg ,hdseg) → hdseg ∈ res(nextsb) ∧ tlseg ∈ res (nextsb)

∧ nextsb ∈ dom(switchboxes) ∧ hdSeg ∈ res(switchboxes(nextsb))
end

Consistency between train position and locks. For each train, t , its locks, tLocks[t] , must be consistent with its
position, pos[t] , such that the train at least has the necessary lock for legally being in its current position: a
train in a single position does not need to have any locks, but a train in a double position should always at least

Stepwise development of interlocking systems 103

have a lock for its next switchbox (which is the one it is passing). This is expressed in the LTL assertion named
cons locks pos.

Consistency between train reservations and route. For each train, t , its reservations, tReservations [t] , must be
consistent with its route, route [t] : the reservations should only be for segments in the route. This is expressed in
the LTL assertion: cons res route.

Consistency between train locks and switchboxes. For each train, t , its locks, tLocks[t] , must be consistent with its
sequence of switchboxes, switchboxes [t] : the locks should only be for switchboxes in the sequence of switchboxes,
but should never contain a lock for the last switchbox in the switchbox sequence (as the train should never pass
this switchbox). This is expressed in the LTL assertion named cons locks switchboxes.

Consistency between train position and route. For each train, t , its position, pos[t] , must be consistent with its
route route [t] : a single train position must use a segment which is in the route and a double position must use
adjacent segments of the route. This is expressed in the LTL assertion named cons pos route.

Consistency between a train’s next switchbox and its switchboxes. For each train, t , its next switchbox, nextSb[t] ,
must be consistent with its sequence of switchboxes switchboxes [t] : the next switchbox must be in the train’s
sequence of switchboxes. This is expressed in the LTL assertion named cons nextsb switchboxes.

Consistency between a train’s next switchbox and its position. For each train, t , its next switchbox, nextSb[t] ,
must be consistent with its position, pos[t] : the next switchbox must be associated with all segments of the train’s
position (the netSwitchboxes value is used for retrieving the associated segments of the next switchbox). This is
expressed in the LTL assertion named cons nextsb pos.

Consistency between train position and network. For each train, t , its position, pos[t] , must be consistent with
the network value: a single train position must use a segment in the network and a double position must use two
segments which are adjacent in the network. This is expressed in the LTL assertion named cons pos network.

Consistency between point connection and network. For each switchbox, sb, its current recorded connection of
its associated point, sbConnection[sb] , must be consistent with the netSwitchboxes value: if a switchbox’ current
connection connects two segments, that connection of segmentsmust be possible according to the netSwitchboxes
value. If a switchbox’ current connection does not connect two segments (i.e. is describing a border segment),
the corresponding part of the netSwitchboxes value must have no branch segments. This is expressed in the LTL
assertion named cons connection netswitchboxes.

Consistency between switchbox reservations and network. For each switchbox, sb, its reservations, sbReservations
[sb] , must be consistent with the netSwitchboxes value: the set of segments that are given a reservation in
sbReservations [sb] must consist of the stem segment and any branch segments belonging to the switchbox accord-
ing to the netSwitchboxes value. This is expressed in the LTL assertion named cons reservations netswitchboxes.

Consistency between train reservations and switchbox reservations. For each train, t , its reservations, tReservations
[t] , must be consistent with the reservations saved in each of the switchboxes’ state spaces, sbReservations [sb] :
if a train has recorded a reservation for one or more segments at a switchbox, then that switchbox’ reservations
must also contain the reservation of those segments for that train. This invariant is expressed in the LTL assertion
named cons t sb res .

Similarly, the reservations saved in eachof the switchboxes’ state spacesmustbe consistentwith the reservations
saved in each of the trains’ state spaces.7 This is expressed in the LTL assertion named cons sb t res .

7 Note that this consistency should only be required to hold when the system is not in the middle of making a new reservation. This is only
relevant in the second and third models where the events have been decomposed.

104 S. Geisler and A. E. Haxthausen

Consistency between train locks and switchbox locks. For each train, t , its locks, tLocks[t] , must be mutually
consistent with the locks saved in each of the switchboxes’ state spaces, sbLock[sb]: if a train has a lock for a
switchbox, then the switchbox must be locked for that train; and if a switchbox is locked for a train, then that
train has a lock for that switchbox.8 This is expressed in the LTL assertion named cons locks.

Consistency between train position and switchbox sensor. For each train, t , the sensor, sbSensor[sb] , of its next
switchbox, sb = nextSb[t] , must be consistent with the train position, pos[t] : if a train’s position is a double
position, then the sensor associated with the train’s next switchbox should be active. This is expressed in the LTL
assertion named cons sensor pos.

4.5. Safety invariants

The safety invariants for the system are specified in a similar manner to the other state invariants. We will give
further details on the verification of the safety invariants in Sect. 7.

No collision of trains. It is a requirement for safety that trains never collide. Two trains, t1 and t2, in the system,
should never occupy the same segment(s): the intersection of the sets of segments in their positions, pos[t1] and
pos[t2] , should be empty. The invariant can be expressed by the formula:

[no collide]
(∀t1 , t2 : TrainID′ • G(no collide(t1 , t2 , pos[t1] , pos[t2])))

where the function no collide is specified as follows:

no collide : TrainID × TrainID × Position × Position → Bool
no collide (tid1 , tid2 , pos1, pos2) ≡
tid1
� tid2 ⇒ segments of pos(pos1) ∩ segments of pos(pos2) � {}

where the function segments of pos retrieves the segments of a Position value as a set.

No derailment of trains. It is a requirement for safety that trains are never derailed. For each train, t , in the system,
its position, pos[t] , should, while passing a point (i.e. is not on a single segment), fit the position of the point:
the train’s position should correspond to the current connection of the switchbox it is passing. The invariant can
be expressed by the formula:

[no derail]
(∀t : TrainID′, sb : SwitchboxID′ • G(sb � nextSb[t] ⇒ no derail(pos[t] , sbConnection[sb])))

where the function no derail is specified as follows:

no derail : Position × Connection → Bool
no derail (pos, c) ≡

¬ is single pos (pos) ⇒ (c � conn(hdseg(pos), tlseg (pos)) ∨ c � conn(tlseg(pos), hdseg(pos)))

4.6. Guard and state updater functions

The guard and state updater functions are used when specifying the transition system. They are used in the
transition system rules, where each rule consists of a guard and a collection of effects, i.e. state updates.

An example of a guard function is t can reserve , which is used to determine, from the point of view of a
train, whether a reservation of a specific segment at a specific switchbox can be made. This should be the case if
the train is in a single position; the train has not already made the same reservation; the switchbox is one of the
switchboxes along the train’s route; and the segment to be reserved is a segment in the train’s route.

8 Note that this consistency should only be required to hold when the system is not in the middle of making a new lock. This is only relevant
in the second and third models where the events have been decomposed.

Stepwise development of interlocking systems 105

t can reserve : Position × Switchboxes × Route × TReservation × SegmentID × SwitchboxID → Bool
t can reserve (pos, switchboxes, route, res , seg, sb) ≡

is single pos (pos) ∧
¬(sb ∈ dom(res) ∧ seg ∈ res (sb)) ∧
(sb ∈ dom(switchboxes) ∨ sb ∈ rng(switchboxes)) ∧
seg ∈ segments of route(route)

The parameters of the guard function are the position of the train (pos), the train’s switchboxes (switchboxes), the
train’s route (route), the train’s reservations (res), the segment to be reserved (seg) and the switchbox at which to
make the reservation (sb).

Another example of a guard function is sb can reserve , which is used to determine, from the point of view
of a switchbox, whether a reservation can be made. This should be the case if the switchbox is associated with
the segment to be reserved and the segment is not reserved already by any train at the switchbox.
sb can reserve : SbReservation × SegmentID → Bool
sb can reserve (res , seg) ≡ seg ∈ dom(res) ∧ res (seg) � t none

The parameters of the guard function are the segment which should be reserved (seg) and the reservations of the
switchbox itself (res).

An example of an updater function is the following reserve sb, which updates the reservations of a switchbox:
reserve sb : SbReservation × TrainID × SegmentID → SbReservation
reserve sb (res , t , seg) ≡ res † [seg �→ t]

where † is the override operator, overriding the first map (res) with the second map ([seg �→ t]), when the domain
value matches seg. The parameters for the updater function consist of the data component, i.e. the reservations
of the switchbox (res), to which changes should be made, and the data necessary for the change, i.e. the train (t)
for which the segment (seg) should be reserved.

There is another updater function, reserve t, which updates the reservations of a train:
reserve t : TReservation × SwitchboxID × SegmentID → TReservation
reserve t (res , sb, seg) ≡
if sb ∈ dom(res) then
res † [sb �→ add to segset(res(sb), seg)]

else
res † [sb �→ {seg}]

end

where add to segset(set ,elem) is an auxiliary function which adds a segment elem to the set of segments set.
The parameters for the updater function consist of the data component, i.e. the reservations of the train (res), to
which changes should bemade, and the data necessary for the change, i.e. the switchbox (sb) at which the segment
(seg) should be reserved.

For other events e there are similar guard functions and updater functions.

4.7. Transition system rules

The rules of the transition system define the possible events (state transitions) of the system.
In this first model, for each collaborative event e, there is a rule of the following form:

(���	 sb : SwitchboxID′, t : TrainID′, . . . •
[rule name]
t can e (. . .) ∧ sb can e(. . .)
−→
tData′ [t] � t new value(. . .),
sbData′[t] � sb new value(. . .))

The ellipsis in the first line represents any extra values needed for that particular event; tData and sbData are place-
holders for variables in the train control computer state space and the switchbox state space, respectively, changed
by the transition (multiple variables from each state space may be changed by one transition); t new value(. . .)
and sb new value(. . .) are place-holders for functions calculating the new values for the variables.

The transition rules are divided into three collections of transition rules:Move,Reserve and Lock. This means
that the system composition looks as follows:
Reserve ���	 Lock ���	 Move

106 S. Geisler and A. E. Haxthausen

The Reserve collection contains a single rule for reserving a segment seg for a train t at a switchbox sb.
[Reserve] �
((���	 sb : SwitchboxID′, t : TrainID′, seg : SegmentID •
[reserve]
t can reserve (pos[t] , switchboxes[t] , route[t] , tReservations [t] , seg, sb) ∧
sb can reserve (sbReservations[sb] , seg)
−→
tReservations ′ [t] � reserve t (tReservations [t] , sb, seg),
sbReservations ′ [sb] � reserve sb (sbReservations[sb] , t , seg)))

As can be seen, two guard functions are used to determine whether the reservation can be made: only if both
the train and the switchbox agree, the event can take place. The effect of the rule is specified using two updater
functions to update the reservations of both the train and the switchbox in question.

The Lock collection contains a single rule for switching and locking a point associated with a switchbox sb in a
connection con for a train t .
[Lock] �
((���	 sb : SwitchboxID′, t : TrainID′, con : Connection •
[lock]
t can lock (pos[t] , con, route[t] , switchboxes[t] , tReservations [t] , sb, tLocks[t]) ∧
sb can lock(con, sbLock[sb], sbSensor[sb])
−→
sbConnection′[sb] � con,
tLocks′[t] � lock t(tLocks[t] , sb),
sbLock′[sb] � t))

The rule uses twoguard functions todeterminewhether thepoint canbe switched to thedesired connectionand
subsequently locked in this position. As for reservations, the switchbox and train must agree on the legality of the
event. The effect of the rule uses two updater functions to update the locks of the train and switchbox, respectively.
In addition, the current connection of the switchbox (sbConnection) is updated to the desired connection.

TheMove collection contains two rules: one for moving a train when it is in a single position and one for moving
the train when it is in a double position. Move is not a collaborative event, so it does not follow the same pattern
as the rules for reserving and locking.

[Move] �
((���	 t : TrainID′, sb : SwitchboxID′ •
[move single to double]
is single pos (pos[t]) ∧
sb � nextSb[t] ∧
t can move(seg(pos[t]), nextSb[t] , route[t] , switchboxes[t] , tLocks[t] , tReservations [t])
−→
pos′ [t] � move pos single(pos[t] , route[t]),
sbSensor′ [sb] � active)

���	
(���	 t : TrainID′, sb : SwitchboxID′ •
[move double to single]
¬ is single pos (pos[t]) ∧
sb � nextSb[t]
−→
pos′ [t] � move pos double(pos[t]),
nextSb′ [t] � move nextsb(sb, switchboxes[t]),
tReservations ′ [t] � move t reservations(sb, tReservations [t]),
tLocks′[t] � move t locks(sb, tLocks[t]),
sbSensor′ [sb] � passive,
sbReservations ′ [sb] � move sb reservations(pos[t] , sbReservations[sb]),
sbLock′[sb] � t none))

Stepwise development of interlocking systems 107

In the first rule, move single to double, we use a guard function to determine whether the train is allowed to
move. Note that there is only a guard function for the train, as movement legality is determined solely from a
train’s local state space. It is also checked that the switchbox from the quantification (sb) is equal to the train’s
next switchbox, as the effects of the rule should only take place in this case. If the guard holds, we can make the
updates to the train’s position and to the sensor, which will become active (i.e., detecting something).

In the second rule we do not call any guard function, as a train will always have a correct reservation when
it has been allowed to move partly onto the next segment (corresponding to the front segment of the train). The
guard for the rule has the same check for the train’s next switchbox as in the guard for the first rule.

In the effects of the rule, several variables are updated, changing the trains position and next switchbox,
making the sensor passive (i.e., not detecting anything), and releasing reservations and locks in the train state
space and the switchbox state space (cf. the explanation of the Engineering Concept in Sect. 3.1).

Note that there is an indirect communication from the train to the switchbox via the sensor associated with the
switchbox: When a train passes a sensor, the sensor changes state, and as there is a wired connection between the
sensor and its associated switchbox, a change in the sensor state is considered as being registered immediately in
the switchbox’ sensor variable. And immediately when the switchbox’ sensor becomes passive (i.e. in the moment
when a train has fully passed the sensor), the switchbox’ reservation and lock variables are updated. Hence, the
two move rules above include updates of the sbSensor [sb] variable, and the second rule additionally includes
updates of the sbReservations [sb] variable and the sbLock [sb] variable.

5. Second generic model

In the second step, the model has been refined to explicitly model a communication scheme between the control
components of the system.

The collaborative events of the system (reservation and locking) are decomposed into multiple sub-events,
such that a simple request-acknowledge protocol scheme is modelled. The event refinement has been chosen to
be atomic (i.e. all the sub-events of an event have to be completed before a new event can happen) in order to keep
the state space as small as possible. It can be shown that removing the atomicity requirements from the resulting
model M2 leads to a model M

′
2 which is behaviourally equivalent to M2 with respect to the externally (physical)

observable state, i.e. train positions and point positions. This is because the internal protocol states of different
communication events are disjoint, so that every set of interleaved communication transactions has an outcome
which is equivalent to that of a serialised execution of the same transactions in some specific order. Hence, any
safety conditions proved forM2 will also hold forM

′
2.

In contrast to the reservation and locking events, the move event does not include an explicit communication
scheme between the control components, where requests and acknowledgements are sent from and to the control
components. As previously explained, a train’s movement indirectly affects a switchbox’ sensor variable, which in
turn affects the switchbox’ reservations and locks. The change of the sensor variable is viewed as instant since there
is a wired connection between the physical sensor and the switchbox. After the change to the sensor variable,
the variables for the switchbox’ reservations and lock are updated almost immediately (within one hundred
milliseconds which is at a significantly higher speed than the train’s velocity). It would be possible to decompose
the second move rule, move double to single into two separate rules (representing two consecutive sub-events):
rule (1) which only updates the sensor variable and the train’s variables, and rule (2) which, based on the change
in the sensor variable, updates the reservations and lock variables of the switchbox. However, since the second
event happens so quickly, we consider it as happening instantly and have therefore chosen not to decompose the
move double to single rule.

In the communication protocols for the collaborative events, the train control computers are the initiating
party, issuing requests to the switchboxes. When a switchbox receives a request, it decides whether it is able to
comply with the request and, depending on this, sends either a positive or negative acknowledgement to the train.
If the switchbox can comply with the request, it will also update its state space accordingly. Similarly, when a train
control computer receives a positive acknowledgement, it will update its state space accordingly. If the switchbox
cannot comply with the request, neither the state space of the switchbox nor of the train control computer will
be updated.

108 S. Geisler and A. E. Haxthausen

To model the communication between the control components, the collaborative events of the system have
been decomposed in the following manner. For each collaborative event e, the single transition rule in the first
model is now replaced with several separate sub-rules:

• train request e, which is the initiation of the event. This corresponds to a train control computer issuing a
request to a specific switchbox with any relevant information for the event in question.

• switchbox ack e, which is thepositive acknowledgement rule for the switchbox.This corresponds to the switch-
box accepting the request, changing its own state space accordingly and issuing the positive acknowledgement
to the train control computer in question.

• train e ack, which concludes the event. This corresponds to the train control computer receiving the positive
acknowledgement signal from the switchbox and updating its own state space accordingly.

• switchbox nack e, which is the negative acknowledgement rule for the switchbox. This corresponds to the
switchbox not being able to comply with the request, and therefore issuing a negative acknowledgement to
the train control computer in question.

• train e nack is an auxiliary action for “consuming” the negative acknowledgement from a switchbox and
not changing the state space of the train control computer.

To keep track of the messages sent between the control components, several variables have been added to the
model:

Interface variables are used to record whether a message is a request, an acknowledgement or a negative acknowl-
edgement, and to record who the sender and receiver are:

req[t : TrainID′] : SwitchboxID,
ack[sb : SwitchboxID′] : TrainID,
nack[sb : SwitchboxID′] : TrainID

For instance, ack [sb] � t models a positive acknowledgement from a switchbox sb to a train t. ack [sb] � t none
models that no positive acknowledgement has been sent from a switchbox sb to a train t.
Data variables are used for storing data sent as part of a request. For example, for a reservation request, the
following variable9 is used to store the segment to be reserved:

reqSeg : SegmentID

Event variables are used to keep track of which type of the collaborative events is currently ongoing (if any). There
is a Boolean variable for each kind of collaborative event. For example, for the reservation event, the following
variable is used:10

reserveEvent : Bool

The variable is set to truewhenever a train control computer requests a reservationof a segment at some switchbox,
and set to false when the train control computer has received an acknowledgement (either positive or negative).

As an example of how the new rules of the transition system are specified and how the additional variables
are used, consider the Reserve rules for requesting, acknowledging and concluding the reservation event:

Reserve �
((���	 sb : SwitchboxID′, t : TrainID′, seg : SegmentID •
[train request reservation]
¬reserveEvent ∧ ¬switchLockEvent ∧ /∗ idle ∗/
req[t] � sb none ∧
t can reserve (pos[t] , switchboxes[t] , route[t] , tReservations [t] , seg, sb)

−→
req ′ [t] � sb,
reqSeg′ � seg,
reserveEvent ′ � true

)

9 Since only one event should be allowed at the same time in this model, it is sufficient to store a segment rather than having a generic variable
over the train identifier type with type SegmentID, where for each train t , reqSeg [t] could hold data sent by t .
10 For this variable there is a similar comment as for reqSeg.

Stepwise development of interlocking systems 109

���	
(���	 sb : SwitchboxID′, t : TrainID′ •
[switchbox ack reservation]
reserveEvent ∧
req[t] � sb ∧
sb can reserve (sbReservations[sb] , reqSeg)
−→
ack′ [sb] � t,
req ′ [t] � sb none,
sbReservations ′ [sb] � reserve sb (sbReservations[sb] , t , reqSeg)

)

���	
(���	 sb : SwitchboxID′, t : TrainID′ •
[train reserve ack]
reserveEvent ∧
ack[sb] � t
−→
tReservations ′ [t] � reserve t (tReservations [t] , sb, reqSeg),
ack′ [sb] � t none,
reserveEvent ′ � false

)

���	 . . .

���	 . . .

)

The train request reservation rule can be applied when the system is idle, i.e. when no events are ongoing,11

when the train control computer has not already sent a request and when the reservation is legal from the train
control computer’s point of view.As its effect, the rule sets the request variable for the train identifier and switchbox
identifier in question, sets a data variable to the segment to be reserved and enables the reservation event variable.

The switchbox ack reservation rule can be applied when the reservation event variable is enabled, a request
has been issued, and the reservation event is legal from the point of view of the switchbox. As its effect, the rule
issues a positive acknowledgement, removes the issued request and updates the state space of the switchbox with
the reservation (here, the segment data variable from before is used).

Finally, the train reserve ack rule can be applied when the reservation event variable is enabled and a positive
acknowledgement has been received. As its effect, the rule updates the state space of the train control computer
(and again uses the segment data variable), removes the acknowledgement and disables the reservation event
variable.

There are two additional rules (not shown here) for expressing the sending of a negative acknowledgement
from a switchbox to a train and for the train receiving it, respectively.

For the lock event there is a similar set of rules for the communication between the train control computers
and the switchboxes.

As the move event does not include explicit communication between the control components and should not
be decomposed, as explained in the start of the section, the rules for this event are identical to those of the first
model.

Relation to the first model.

Instances of this model are clearly able to simulate all possible events of the corresponding instances of the
first generic model, which was the intention with this step in which no behaviour should be lost. Furthermore,
instances of the first model are able to simulate all atomic events of the corresponding instances of this second
generic model.

11 It is this condition which enforces the atomic event refinement.

110 S. Geisler and A. E. Haxthausen

6. Third generic model

The third model has been restricted to model a just-in-time allocation principle. In the previous models, any order
of legal events was possible. This means, for example, that nothing was preventing a train from reserving the last
segment of its route as the first event (other than if the segment was already reserved, of course). This third model
should now specify a control strategy, stating that a train must only make reservations of the next upcoming
segment in its route (at the two upcoming switchboxes of its route), and must only lock the point at the next
upcoming switchbox. This strategy is just one of many choices, and is used to demonstrate the possibility and
technique of restricting the protocol of the second model to enforce events to happen in a more specific order.

As mentioned, the train control computers are the initiating party for collaborative events. Therefore, the
desired restriction can be achieved by strengthening the guard functions used by the train control computers.
This limits the amount of possible events such that they match the steps of the control strategy.

The restriction of the guard functions is accomplished by using the following pattern. If the guard function
was previously of the form

t can e : . . . → Bool
t can e (. . .) ≡ . . .

then the new, restricted guard function is of the form

t can e restricted : . . . → Bool
t can e restricted (. . .) ≡
t can e(. . .) ∧ new restriction 1 ∧ . . . ∧ new restriction n

The extra conjunct(s) can, in some cases, lead to the possibility of the properties of t can e to be reduced. This
is the case when one of the new restrictions implies (parts of) the properties found in the t can e guard function.

For the reservation event, the restrictions to be included in the updated guard function consist of only allowing
a train t to reserve a segment segm at a switchbox sb, if (1) sb is one of the two upcoming switchboxes of the
route of t and (2) the segment segm is the next segment with respect to the train’s position and route.

Hence, the restricted guard function is specified as follows:

t can reserve restricted : Position × SwitchboxID × Switchboxes × Route × TReservation × SegmentID ×
SwitchboxID → Bool

t can reserve restricted (pos, nextsb, switchboxes, route, res , segm, sb) ≡
is single pos (pos) ∧
¬(sb ∈ dom(res) ∧ segm ∈ res(sb)) ∧
(nextsb ∈ dom(switchboxes) ∧ (sb � nextsb ∨ sb � switchboxes(nextsb))) ∧ /∗ new restriction (1) ∗/
seg(pos) ∈ dom(route) ∧ segm � route(seg(pos)) /∗ new restriction (2) ∗/
In this case it turned out that some of the added sub-properties imply some of the sub-properties in t can

reserve (pos, switchboxes , route , res , seg, sb), so we simplified the conjunction.
The transition rule for train request reservation is obtained from the second model by replacing t can re-

serve(pos[t], switchboxes[t], route[t], tReservations[t], seg, sb) with t can reserve restricted(pos[t], nextSb[t], switch-
boxes[t], route[t], tReservations[t], seg, sb).

Likewise, the transition rule for train request lock is obtained by replacing t can lock(pos[t], c, route[t], switch-
boxes[t], tReservations[t], sb, tLocks[t]) with t can lock restricted(pos[t], nextSb[t], c, route[t], switchboxes[t],
tReservations[t], sb, tLocks[t]).

Relation to second model.

Instances of the second model can clearly simulate all possible behaviours of the corresponding instances of this
third generic model.

Stepwise development of interlocking systems 111

7. Verification

This section describes our verification method, consisting of (1) the verification activities performed during the
stepwise development of a generic model and (2) the verification activities performed after the generic model was
fully developed.

7.1. Verification activities during development

A part of the stepwise development method for the generic models is to verify the models at each step. The
main goal of this verification is to gain confidence in the correctness of the generic models. The models must
be instantiated to allow for verification. The steps for verifying a model at one of the development steps are as
follows:

1. Instantiate the model with configuration data.

2. Verify wellformedness of the configuration data using static verification.12

3. Verify properties, including the safety invariants, of the model instance using model checking.

In Sect. 7.1.2, we show how a generic model can be instantiated with concrete data. Then, in Sect. 7.1.3, we
give details on the verification of the wellformedness of the configuration data using the test cases which were
introduced in Sect. 4.3. In Sect. 7.1.4, we give details on the verification of properties using model checking.

Since the intention is that the final generic model can be instantiated with different configurations which are
not known at the time of specification, during the development we perform the verification on instantiations of
fragments of typical configurations where wrong behaviour of the control system could lead to unsafe states.

7.1.1. Reasons for verifying at each development step

It should be noted that we have not formally verified a formal refinement/simulation relation between the models,
which would require considerably higher verification effort, but only discussed this informally in the previous
sections.

Therefore, we perform the verification of properties for each instance of themodel at each development step in
order to gain confidence in the correctness of the generic models. Even if invariant properties for a model instance
of the first generic model has been model checked, we need to model check them again for the corresponding
instance of the second generic model as there are new intermediate states we want to be sure are safe. In principle,
themodel checking of invariant properties for amodel instance of the third genericmodel should not be necessary
when they have beenmodel checked for the corresponding instance of the second generic model (as all behaviours
of the third model are simulated by behaviours in the second model), but since we made some simplifications
of the guards in the third generic model, we also model check the properties for the model instance of the third
model.

Performing the verification of properties of the model at each development step has the advantage that the
first generic model is much less complex than the second and third generic model. Therefore, it is beneficial to
verify invariants already at this first development step, because the model checking process is quicker, which
means that we can discover possible errors already at this early point of the development.

7.1.2. Example of instantiation

In Fig. 2 we illustrate a small configuration, which corresponds to a fragment of a typical configuration where
two trains driving in opposite directions must pass through the same station. The two trains are shown in their
initial position and the lines show their routes (the striped train’s route is shown as a dashed line, whereas the
black train’s route is shown as a solid line).

12 Note that for each set of configuration data, this step needs only to be done once.

112 S. Geisler and A. E. Haxthausen

Fig. 2. An example system configuration with two trains and their routes.

The initial connections of the two points are shown by thick lines. We will now show how to instantiate the
generic models with data corresponding to this fragment. Instantiations of the three generic models with the
configuration data for the configuration shown in Fig. 2 are available online.13

The network configuration data for this instance is as follows:

type
SegmentID �� s1 | s2 | s3 | s4,
SwitchboxID �� sb0 | sb1 | sb2 | sb3 | sb none,
TrainID �� t1 | t2 | t none,

value
network : Network �

{conn(s1, s2), conn(s1, s3), conn(s2, s4), conn(s3, s4), border(s1), border(s4)},
netSwitchboxes : SwitchboxDesc �
[sb0 �→ mk SwitchboxConnection(s1, {}),
sb1 �→ mk SwitchboxConnection(s1, {s2, s3}),
sb2 �→ mk SwitchboxConnection(s4, {s2, s3}),
sb3 �→ mk SwitchboxConnection(s4, {})]
The static control component configuration data is specified by axioms defining the value of each instance

of each of the generic constants declared in Sect. 4.1.2. For example, the route constants for the two trains are
defined as follows:

axiom
route[t1] � [s1 �→s2, s2 �→s4],
route[t2] � [s4 �→s3, s3 �→s1]

Furthermore, instances of the generic variables declared in Sect. 4.2 are initialised with their initial values.
For example, the positions for the two trains are initialised as follows:

init constraint
pos[t1] � single (s1) ∧
pos[t2] � single (s4)

For some of the generic variables, all instances must be initialised to the same value. For example, since both
trains start in a single position, all sensors’ initial status are passive. This can be specified by using a quantified
constraint as follows:

init constraint
(∀sb : SwitchboxID′ • sbSensor[sb] � passive)

7.1.3. Configuration data checking

In Sect. 4.3, we introduced wellformedness and consistency requirements for the network configuration data and
static data of the train control computers. Because the data is static, the requirements on the data can be statically
verified.14

Static verification is carried out by specifying (generic) test cases once-and-for-all as explained in Sect. 4.3,
and then for each configuration example unfolding and translating the test cases to SML, and running SML to
get the results of each test case.

13 https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc/station-opposite-dir
14 It would be possible also to statically verify that the initial state of the model instances satisfy the state invariants in Sect. 4.4. However,
this is not strictly necessary as the state invariants will be checked to hold for the initial state as part of the subsequent model checking step.

https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc/station-opposite-dir

Stepwise development of interlocking systems 113

Fig. 3. An example system configuration with two trains with conflicting routes for some schedules.

Running SML on the unfolded and translated test cases results in a truth-value for each test case describing
whether the specified property holds for the given configuration data. For example, assuming that the network
value is indeed wellformed, the result of the test network wf (shown in Sect. 4.3) would be shown as follows:
[network wf] true

7.1.4. Model checking

In Sects. 4.4 and 4.5 we introduced (generic) consistency invariants and safety invariants, respectively, for the
dynamic control component data. In addition to these invariants, we have also expressed (generic) progress
properties that will be explained below. For a model instance, these invariant properties and progress properties
can be verified by model checking. For model checking we use the SAL symbolic model checking tool [SAL01].

Safety properties. The safety properties state the absence of derailments and collisions of trains in all reachable
states. (See Sect. 4.5.)

Consistency properties. The consistency properties state the consistency of the dynamic distributed data. (See
Sect. 4.4.)

Progress properties. The progress properties state that the system progresses, i.e. that something good eventually
happens.

We have expressed properties (only relevant for the second and third model) stating that decomposed collab-
orative events are always completed. For example, the fact that the reservation event is always completed is stated
as follows:
[finish reserve] G(resEvent ⇒ F(¬resEvent))

Note that model checking results for properties of the above form are only sound if there are no deadlocks, so
before checking these properties, the SAL deadlock checker should be run.

We also consider the progress property that there is at least one possible schedule where all trains reach their
destination. This property can be verified by contradiction: by model checking properties stating that the trains
do not all eventually arrive at their destination:
[not all trains arrive]
G(¬(∀t : TrainID′ • t is at end (route[t] , pos[t])))

where t is at end (route[t], pos [t]) expresses that the train’s position is a single position with the segment corre-
sponding to the last segment in its route. This property is expected to be false for admissible configurations and
should generate a counter example showing a trace where all trains arrive at their destination.

This property is interesting as it is possible to create model instances where any system run will lead to a
livelock preventing some trains from reaching their destination, e.g. for the very simple configuration example
shown in Fig. 4.15 For such a configuration, it would not be possible to create any schedule, as there are no
system runs where both trains are able to reach their respective destinations. Such cases cannot be found by the
deadlock checker (as there is no deadlock), but can be found by checking the not all trains arrive property.
If this produces a counterexample, then there does indeed exist a possible schedule where all the trains arrive as
desired. With no counterexample, however, there does not exist any trace allowing all the trains to reach their
destination, i.e. there are no possible schedules.

15 For instance, for the model instances of the second and third generic models for that configuration, there is no deadlock, but a livelock as
both trains are allowed to send reservation requests to their next switchbox for reserving their next segment. Such requests will subsequently
be denied, i.e. the trains will receive negative acknowledgements since the reservations are not possible as there is already a train occupying
(and thereby having a reservation for) the next segment.

114 S. Geisler and A. E. Haxthausen

Fig. 4. An example system configuration with no possible schedule allowing the trains to arrive at their destination.

Fig. 5. Another example system configuration with no possible schedule allowing the trains to arrive at their destination.

Even if a configuration is admissible, one should not expect that all trains arrive at their destination in any
possible trace. This is for instance the case for the configurations shown in Figs. 2 and 3.16 The reason is that
the control algorithms specified in the models do not ensure fairness for the trains (in the sense that every train
will repeatedly, until it reaches its destination, receive permission to move onto the next segment after a bounded
number of tries of making the needed reservations and locks). Ensuring such fairness is instead a task for the
train scheduler.17 During the train scheduling, it is checked that the timetables constructed by the scheduler are
feasible, allowing trains to reach their destination without blocking each other’s possibility to advance as in the
livelock scenario described above, cf. [HH19].

7.1.5. Choice of examples

In this section we will present the example configurations for which we during the model development have
performed the verification activities presented inSects. 7.1.3 and7.1.4 in order to gain confidence in the correctness
of the developed models.

The network layouts and train routes of the examples were primarily chosen such that they include critical
cases for which there is a potential risk of train collisions or derailments. More specifically, the network layouts
and train routes were chosen such that they include (1) cases where two trains have overlapping routes such that
there is a potential risk of a collision between the two trains on a common track segment, (2) cases where a train
should pass a point which is in a wrong position so there is a risk of derailment (if it is not able to switch and
lock the point in correct position before it moves over the point) and (3) cases where two trains require the same
point to be switched in different positions to pass the point such that there is a potential risk of a derailment.
In the railway domain, it is generally accepted that it is sufficient to consider two trains to check for collisions
as there is no possibility of a three train collision without a two-train collision first, and it is enough to consider
one train passing a point to check for derailments over that point cf. [Fan12] and [JMN+14b]. However, we also
check for derailments when there are two trains requiring conflicting point positions to be sure that a train lock
made by one train is not overruled by another train.

We only considered configurations where trains driving in opposite directions are using distinct track sections
through the stations, i.e. where trains driving in the up-direction at all stations use the tracks on one side and
trains driving in the down-direction use the tracks on the other side, because these are the characteristics of the
real-world systems for which the final generic model should later be configured.

Risk of collision. For a collision to take place, two trains must enter the same segment(s) in the network. This can
only happen if the two trains were previously on adjacent segments. First we consider two cases where the adjacent
segments have a fixed connection (a one-one-link) and then four cases where there is a switchable connection (a
point) between the adjacent segments: Figs. 4, 5, 6, 7, 8 and 9, respectively, show different cases where there is
a potential risk of collision between the two trains if they are allowed to move to their next segments (in their
route) as follows:

1. For the case shown in Fig. 4: if any of the two trains begin entering their next segment.

16 For instance, for the configuration shown in Fig. 3, there is a system run where the striped train first enters segment s3, thus preventing the
black train from progressing further. This, in turn, prevents the striped train from progressing further, but each train can still send requests
(and receive negative acknowledgements for these requests).
17 Note that in the railway domain it is standard to keep the responsibility for safety and liveness distinct. The former is ensured by the
interlocking system and the latter by a train scheduler.

Stepwise development of interlocking systems 115

Fig. 6. Two trains driving in the same direction where the striped train may collide with the black train on the station.

Fig. 7. Two trains driving in opposite directions where the striped train may collide with the black train on the open line.

Fig. 8. Two trains driving in the same direction where the striped may collide with the black train on the open line.

Fig. 9. Two trains driving in opposite directions where the striped train may collide with the black train on the open line.

Fig. 10. A single train which may drive over a point which is not in the correct position.

2. For the case shown in Fig. 5: if the striped train begins entering the next segment before the black train has
fully left it.

3. For the case shown in Fig. 6: if the striped train begins entering a station where a train driving in the same
direction already resides.

4. For the case shown in Fig. 7: if the black train begins entering the open line before the striped train has fully
left it.

5. For the case shown in Fig. 8: if the striped train begins entering the open line where a train driving in the
same direction already resides.

6. For the case shown in Fig. 9: if the striped train begins entering the open line where a train driving in the
opposite direction already resides.

Risk of derailment. For a derailment to take place in a one-train scenario a train must drive over a point which is
switched in the wrong direction, or a point must be switched while the train is passing that point. The first kind
of derailment can only happen if the train was previously driving towards a point on one of the point’s branching
segments and the point was switched to connect the stem with the other branch segment, as illustrated in Fig. 10.
The second kind of derailment can only happen if the train was previously passing a point in correct position, as
illustrated in Fig. 11.

116 S. Geisler and A. E. Haxthausen

Fig. 11. A single train passing a point.

Fig. 12. Same direction, following each other through a station.

Fig. 13. Opposite directions, passing each other at a station.

Fig. 14. Same direction, following each other on the open line.

Risk of not reaching destination. The two previously considered (undesirable/non-admissible) configurations in
Figs. 4 and 5 also constitute examples where not all trains are able to reach their final destination. For instances
of these configurations, it is expected that the not all trains arrive property should not to give rise to a counter
example.

Selected configurations. With these critical cases in mind, we have chosen the configurations illustrated in Figs. 4,
5, 12, 13, 14, 15 and 16. Here the configurations illustrated in Figs. 12 and 14 obviously cover the cases shown
in Figs. 6 and 8, respectively, while the configurations illustrated in Figs. 13 and 15 cover the cases shown in
Figs. 7 and 9, respectively, as the associated model instances include some system runs that reach the two desired
configurations, respectively.18 Lastly, Fig. 16 covers the cases shown in Figs. 10 and 11. It should be noted that
the configuration in Fig. 16 can only be used to check for freedom of derailments of a train over a point which
is not affected by other trains, while the configurations in Figs. 13 and 15 can be used to check for freedom of
derailments in the case where two trains need the same point in different positions.

While the selected configuration examples include the critical cases that we wish to investigate, Fig. 13 in
particular also includes the very common situation of two trains driving in opposite directions passing each other
at a station. Similarly, Fig. 15 includes the situation of two trains driving in opposite directions “competing” to
pass an open line between two stations. For these realistic configurations it is interesting not only to check for
safety, but also to check that there is a schedule where the trains can pass each other and reach their destination.

18 It is possible to use the SAL simulator tool to step through the model instances and see that one can reach the desired configurations.

Stepwise development of interlocking systems 117

Fig. 15. Opposite directions, “competing” for the open line.

Fig. 16. One train passing a station where both points are switched in the wrong direction.

Figure 16 also includes a common situation where a train must pass a station with no other trains near it. For
this configuration it is similarly interesting to check that the train is able to reach its destination.

Model instances for the seven selected configurations can be found online.19

7.1.6. Verification results

We have successfully statically verified all the desired wellformedness and consistency requirements (as explained
in Sect. 7.1.3) for each of the seven configuration examples selected in Sect. 7.1.5 andmodel checked all the desired
state invariants and progress properties for the corresponding model instances (as explained in Sect. 7.1.4). In
particular, the property not all trains arrive gave for the five configurations in Figs. 12, 13, 14, 15 and 16 as
desired, rise to a counter example demonstrating that there exists at least one schedule, where all trains arrive at
their destination, while it, as expected, did not give rise to a counter example for the configurations in Figs. 4 and
5.

Below we present verification metrics for the model instances (of each the three generic models) for each of
the two configurations shown in Figs. 13 and 15, while the verification metrics for the remaining examples we
have considered can be found online.20 These two configurations were chosen to be presented in the paper as they
are representative and were those that took the most time and memory to model check. One of the reasons for
the latter is the fact that the train routes in these are longer than the train routes in the other configurations.

Table 1 shows metrics for the size of the configuration data: the number of segments, points, switchboxes, and
trains in the network, as well as the route lengths of the trains. These metrics determine, as shown in Table 2,
how many variables and transition rules the unfolded model instances have. For each of the configurations, the
number of variables and number transition rules in the corresponding instance of the first model differ from those
of the corresponding instances of the second and third models because of the extra variables introduced due to
the decomposition of events. The number of variables might not appear to be very high, but recall that many of
the variables have complex types (e.g. map types) allowing for quite many possible values.

Table 3 shows for each of the selected model instances, intervals for the time and memory consumption for
model checking any of the properties with the SAL model checker, version 3.3. The results were measured using
GNU Time21 on a machine with a Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz and 31GiB of memory. We
present the time and memory usage as an interval for proving any property rather than presenting the exact
numbers for each property separately as these numbers were very similar.22 The interested reader can find all the
raw data online23.

19 https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc
20 https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc
21 https://www.gnu.org/software/time/
22 Except for the properties cons t sb res and cons sb t res which were in some cases divided into two or four parts, in order to have a
similar time for verification as the other properties.
23 https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc

https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc
https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc
https://www.gnu.org/software/time/
https://github.com/raisetools/rslstar/tree/master/spec-examples/dracos/faoc

118 S. Geisler and A. E. Haxthausen

Table 1. Configuration data size.

Configuration Segments Points Switchboxes Trains Route lengths
Figure 13 4 2 4 2 3
Figure 15 5 2 6 2 3

Table 2. Number of variables and transition rules in the unfolded model instances.
Configuration Model Variables Transition rules
Figure 13 Model 1 24 178

Model 2/3 38 242
Figure 15 Model 1 32 386

Model 2/3 50 482

Table 3. Time and memory usage for verifying properties. Given as intervals since the numbers are similar for each property.

Configuration Model Time (mm:ss) Memory (MB)
Figure 13 Model 1 [00:02; 00:02] [94; 100]

Model 2 [00:12; 00:15] [133; 143]
Model 3 [00:06; 00:09] [103; 337]

Figure 15 Model 1 [00:19; 00:21] [133; 137]
Model 2 [05:44; 06:16] [177; 230]
Model 3 [08:51; 10:28] [182; 207]

The bar charts in Fig. 17 show the time taken to model check the no collide property for the model instances
of the first, second, and third model (M 1,M 2, andM 3, respectively) for each of the two selected configurations.
It is a general pattern for all the instances we have verified that it takes less time to verify properties of instances
of the first model than of instances of the other models (for the same configuration). This is not surprising, as
the instances of the first model have both fewer variables and fewer transition rules. There is no general pattern
for whether the instances of the third model take less time to verify than the instances of the second model (for
the same configuration)—for some configurations it takes less time and for others it takes a longer time, as can
be seen in the two bar-charts of Fig. 17.

The bar charts inFig. 18 show thememory consumption during themodel checking of the no collide property
for the model instances of the first, second and third model for each of the two selected configurations. Similar
to the time taken to verify the property, it is a general pattern that the verification of instances of the first model
consume less memory than instances of the second and third model. Comparing the memory consumption for
verifying instances of the second model and instances of the third model does not give rise to a general pattern.
For the instances of the configurations shown in Figs. 13 and 15, the third model requires less memory in both
cases, but for other instances (e.g. for the configurations shown in Figs. 12 and 14) the second model requires less
memory.

7.2. Verification of real-world systems

After the final (third) genericmodel has beendeveloped, it canbe instantiatedwith configurationdata representing
real-world railway systems to be verified.

Fig. 17. Time usage for verifying no collide for the three model instances for the configurations shown in Figs. 13 and 15, respectively.

Stepwise development of interlocking systems 119

Fig. 18.Memory usage for verifying no collide for the three model instances of the configurations shown in Figs. 13 and 15, respectively.

Fig. 19. An example of a typical local railway network.

Safety verification of such instances can be done in a similar manner to the verification done during the
development. First, the wellformedness of the static configuration data should be statically verified. Then, ideally,
the safety properties should be verified by performingmodel checking on the associatedmodel instance. However,
instantiating the third generic model with data corresponding to a real-world system will often lead to state
explosion problems, since adding stations and trains to the line may result in exponential growth of the state
space to be investigated by the model checker, even though the network topology is quite trivial. In this case, a
possibility may be to use a combination of model checking of smaller fragments of a system and compositional
reasoning [FHM17, LCPT16].

The RELIS 2000 system was intended for local railways with 10–20 stations with 1–2 track segments each
connectedby single lines andoperatedby 2–3 trains. Instantiating the third genericmodelwith data corresponding
to systems of this size resulted in memory exhaustion. Therefore, as will be explained below, we model checked
smaller fragments common to all configurations of the considered class of local railways and used compositional
reasoning for arguing for the safety of system instances (of the third model) for such local railways. As can be
seen from the case analysis below, compositional reasoning is quite simple for the type of railway network layouts
considered in this article.

7.2.1. Verification of two-train configurations

For the considered local railways, a typical initial state is the one illustrated in Fig. 19, where two trains are
driving in opposite directions from either end of a network with routes that use distinct track sections through
the stations (such that they can pass there). We will now argue by case analysis for the safety of systems having
these characteristics.

As the third model is using the just-in-time allocation principle, the two trains will initially not communicate
with the same switchboxes. We will now consider two cases: firstly, the case where the two trains still are in
positions where they do not communicate with the same switchboxes, and then, the case where the trains are
close enough to each other to communicate with the same switchboxes.

For the first case, we have already shown for the configuration in Fig. 16, that a train is able to safely pass a
station even if the points are initially in the wrong position compared to the train’s route. Therefore, it can also
safely pass several stations until it reaches the zone of influence of another train.

We now analyse the system to find configurations corresponding to the earliest possible time where the two
trains may interact with the same switchboxes, and thereby the earliest point that the trains’ reservations and
locks may interfere with each other.

Figures 20 and 21 show for two different positions of the black train, the earliest point of the striped train at
which the two trains can interact with the same switchbox. The switchboxes that each trainmay communicatewith
are marked in the train’s corresponding line type (i.e. dashed for the striped train and solid for the black train).
Since the two situations are included in the system runs of the model instance for the configuration illustrated in
Fig. 22, it is sufficient to verify that configuration.

120 S. Geisler and A. E. Haxthausen

Fig. 20. One of the two cases where two trains driving in opposite directions can communicate with the same switchbox: the black train is
fully at a station.

Fig. 21. The other of the two cases where two trains driving in opposite directions can communicate with the same switchbox: the black train
is partially at a station.

Fig. 22. A configuration which includes the cases where two trains driving in opposite directions can communicate with the same switchbox.

Fig. 23. An example of a typical local railway network with an extra train.

Note that the configuration where the striped train has moved one segment further (i.e. is inside the left-most
station) and the black train has not yet (fully) entered the right-most station (i.e. is fully or partially on the line
to the right of the right station) is equivalent to the two cases shown in Figs. 20 and 21, so we do not need to
also verify another configuration capturing these cases. Note that the situations where the trains are closer to
each other than shown in Fig. 21 (and thus still may communicate with some of the same switchboxes) are also
included in the configuration illustrated in Fig. 22. The safety properties of an instance of the third model for
the configuration shown in Fig. 22 were successfully verified, and the not all trains arrive property was (as
expected) false. Therefore, we can conclude that two trains can safely pass each other. This concludes the case
analysis for this kind of two-train configurations.

7.2.2. Verification of three-train configurations

In some local railways, a third train may be placed roughly in the middle between the two end-destinations as
shown in Fig. 23. This means that two trains may be going in the same direction, so we need additionally to
analyse a third case. (Even though the trains in the considered local railways are supposed not to be so close that
they can interfere and thereby constitute a risk of collisions, we still wish to verify the safety for a case where the
rear train is catching up on the front train and gets into the zone where it can interfere with the front train as
this could happen in the case of irregularities, e.g. if the front train had a break down). Figures 24 and 25 shows
for four different positions of the (black) front train, the earliest point of the (striped) rear train at which the
two trains can interact with the same switchbox. Since the four situations (and any situations where the trains
are closer to each other) are included in the system runs of the model instance for the configuration illustrated in
Fig. 26, it is sufficient to verify that configuration. The safety properties of an instance of the third model for this
configuration were successfully verified, and the not all trains arrive property was false as expected. Therefore,
we can conclude that two trains can safely drive behind each other when they are in each other’s influence zone.

Stepwise development of interlocking systems 121

Fig. 24. Two cases where two trains driving in the same direction can communicate with the same switchbox: the black train is either fully or
partially at the station.

Fig. 25. Two cases where two trains driving in the same direction can communicate with the same switchbox: the black train is either fully or
partially on the open line.

Fig. 26. A configuration which includes the cases where two trains driving in the same direction can communicate with the same switchbox.

Fig. 27. A configuration which includes the cases where three trains (two of them driving in the same direction) can communicate with the
same switchbox.

In addition, having a third train in the network means that there are cases where all three trains are close
enough that they can communicate with the same switchbox. The configuration illustrated in Fig. 27 includes the
two main situations where the three trains (two of them driving in the same direction) can all communicate with
the same switchbox. The first of these situations is the one where the dotted train has moved fully onto segment
s6. In this case, the three trains can all communicate with switchbox SB2. The second situation is the one where
the black train and the striped train have each moved one segment forward, i.e. onto segment s4 and segment
s2, respectively. In this case, the three trains can all communicate with switchbox SB3. The safety properties of
an instance of the third model for this configuration were successfully verified, and the not all trains arrive
property was false as expected. Therefore, we can conclude that three trains can operate safely when they are in
each other’s influence zone.

7.2.3. Verification metrics

In Table 4, we show the numbers for the configuration data size of the configurations shown in Figs. 22, 26 and
27. In Table 5 the resulting number of variables and transition rules of the unfolded model instances of the third
model are shown. Finally, in Table 6, we present the time and memory consumption for the verification of the
safety properties for the instances of the third model corresponding to the configurations shown in Figs. 22, 26
and 27, respectively.

122 S. Geisler and A. E. Haxthausen

Table 4. Configuration data size.

Configuration Segments Points Switchboxes Trains Route lengths
Figures 22 and 26 7 4 6 2 4
Figure 27 7 4 6 3 4

Table 5. Number of variables and transition rules in the unfolded model instances.
Configuration and model Variables Transition rules
Figures 22 and 26, model 3 50 794
Figure 27, model 3 55 1191

Table 6. Time and memory usage for verifying the safety properties for the instances of the third model.

Configuration and model Property Time (mm:ss) Memory (MB)
Figure 22, model 3 no collide 19:36 284

no derail 20:16 283
Figure 26, model 3 no collide 12:55 285

no derail 12:59 285
Figure 27, model 3 no collide 06:22 406

no derail 06:06 389

7.3. Other verification activities

Before beginning the process of symbolic model checking model instances against the desired properties, other
tools were used to gain confidence in the correctness of the function and transition system rule specifications.

• Testing of functions:As one of the first activities during the model development, important functions (e.g. for
expressing safety and consistency properties, which are used in the transition system assertions) were tested
once using theRSL test case construct. The functions were validated to ensure that the assertions to be verified
in the model checking process are correct. This testing activity was only needed in the first specification step,
as no new functions were used in the later steps.
For example, we tested the function for checking the consistency between train reservations and train position,
cons res pos(tReservations [t] , pos[t] , nextSb[t] , switchboxes [t]) (shown in Sect. 4.4). The validation of
the function was achieved by testing different cases, for example the following, where sb1, sb2, sb3, s1 and s2
are concrete values:

– Train reservations and position which are expected to be consistent.

[tc1] cons res pos([sb1 �→ {s1,s2}, sb2 �→ {s2}], double(s1,s2), sb1, {sb1 �→ sb2, sb2 �→ sb3])

– Train reservations and position which are expected to be inconsistent.

[tc2] cons res pos([sb1 �→ {s1,s2}], double(s1,s2), sb1, {sb1 �→ sb2, sb2 �→ sb3])

• Bounded model checking: The model instances were tested using the SAL bounded model checker, which
only explores the paths in the transition system to a certain, given depth. Therefore, attempting to verify the
properties stated above with the bounded model checker reveals bugs much faster, than when using the global
model checker.

Stepwise development of interlocking systems 123

For a givenmodel instance, one can decide on a suitable depth for discovering bugs by counting the (expected)
number of transitions at least needed for all the trains to reach their final destination. For example, for the
instance of the third model obtained by using the configuration shown in Fig. 2, the striped train must make
a reservation of segment s2 at sb1 and sb2 (6 transitions), then lock sb1 (3 transitions), and then move to
segment s2 (2 transitions). For the black train, a similar set of transitions must be made (possibly interleaved
with the above mentioned transitions of the striped train) for it to enter segment s3. Both the striped train and
the black train must then again make a similar set of transitions for reaching their respective next segments,
s4 and s1. This gives in total 44 transitions that must at least be made for the trains to be able to reach their
final destination for the configuration in Fig. 2, and thus, in this case we would choose 44 as the depth for the
bounded model checker.

8. Conclusion and future work

In this paper we have shown a method to stepwise develop a generic state transition systemmodel of a real-world
distributed railway interlocking system and verify safety properties and other properties of instances of these
models by model checking. This method could also carry over to other, similar applications. Although stepwise
refinement of state transition systems is well known from other languages, it is novel for RSL.

The models are expressed in a new extension to RSL and RSL-SAL [PG07]: RSL�, which has also been
presented. This extension provides language constructs that better facilitate the specification of generic systems.

The stepwise development has shown to be very useful: Firstly, it allows the initial specification to abstract
away from details and complexity which can be added later in a development step. This means that a simpler
model expressing essential system behaviour can be developed first without worrying about concrete details. This
eases the modelling process. It also has the advantage that essential system behaviour can be verified already at
this stage, allowing the developer to gain confidence in the specification, before adding details. Secondly, the idea
of letting the second model be so general (e.g. without having a restriction on the ordering of reservations that
a train should send) that it can be refined to several different concrete behaviours (e.g. with specific orderings of
reservations) by restricting the guards is useful as the invariant properties which are shown to be satisfied by the
general model will also be satisfied by any restrictions. In this way one can create a library of different families of
models, and variants of different control protocols can be explored and compared.

For themodel checking, the SAL symbolic model checker was used, just for a proof of concept of ourmethod,
but other back-ends can be used as well.

The RSL-SAL model checker back-end could handle small networks, but not large networks. Therefore, in
future work we plan to experiment with other model checking techniques, e.g. SAT-based k-induction, and other
back-ends, e.g. RT-Tester [Ver13], in order to find an efficient verification technique that scales better up such that
compositional reasoning reasoning would not be needed. In another case study [VHP17], RT-Tester was used to
perform k-induction in order to prove a centralised interlocking system and turned out to be very efficient and
scale up to big networks. So we believe that this could also be the case for the system considered in this paper.

Acknowledgements

The authors would like to express their gratitude to Jan Peleska fromwhom the case study originates and together
with whom the second author had the great pleasure to verify the same case study by theorem proving [HP00].
We would also like to thank him and the reviewers for very useful comments to a draft of this paper.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

[Abr18] Abrial J-R (2018) On B and Event-B: principles, success and challenges. In: Butler M, Raschke A, Hoang TS, Reichl K (eds)
Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp 31–35. Springer, Cham

[BtBF+18] Basile D, ter Beek MH, Fantechi A, Gnesi S, Mazzanti F, Piattino A, Trentini D, Ferrari A (2018) On the industrial uptake of
formal methods in the railway domain—a survey with stakeholders. In: Furia CA, Winter K (eds) Integrated formal methods,
volume 11023 of Lecture notes in computer science, pp 20–29. Springer, Cham

124 S. Geisler and A. E. Haxthausen

[BtBFL19] Basile D, ter Beek MH, Ferrari A, Legay A (2019) Modelling and analysing ERTMS L3 moving block railway signalling with
Simulink and Uppaal SMC. In: Larsen KG, Willemse T (eds) Formal methods for industrial critical systems, volume 11687 of
Lecture notes in computer science, pp 1–21. Springer, Cham

[But09] ButlerM (2009) Decomposition structures for Event-B. In: LeuschelM,WehrheimH (eds) Integrated formal methods, volume
5423 of Lecture notes in computer science, pp 20–38. Springer, Berlin

[CDP+17] Comptier M, Deharbe D, Perez JM, Mussat L, Pierre T, Sabatier D (2017) Safety analysis of a CBTC system: a rigorous
approach with Event-B. In: Fantechi A, Lecomte T, Romanovsky A (eds) Reliability, safety, and security of railway systems.
Modelling, analysis, verification, and certification, volume 10598 of Lecture notes in computer science, pp 148–159. Springer,
Cham

[CLM+19] Comptier M, Leuschel M, Mejia LF, Perez JM, Mutz M (2019) Property-based modelling and validation of a CBTC zone
controller in Event-B. In: Collart-Dutilleul S, Lecomte T, Romanovsky A (eds) Reliability, safety, and security of railway
systems. Modelling, analysis, verification, and certification, volume 11495 of Lecture notes in computer science, pp 202–212.
Springer, Cham

[ECfES11] CENELEC European Committee for Electrotechnical Standardization (2011) EN 50128:2011—railway applications—
communications, signalling and processing systems—software for railway control and protection systems

[Fan12] Fantechi A (2012) Distributing the challenge of model checking interlocking control tables. In: Margaria T, Steffen B (eds)
Leveraging applications of formal methods, verification and validation. Applications and case studies, volume 7610 of Lecture
notes in computer science, pp 276–289. Springer, Cham

[Fan14] Fantechi A (2014) Twenty-five years of formal methods and railways: what next? In: Counsell S, Núñez M (eds) Software
engineering and formal methods, volume 8368 of Lecture notes in computer science, pp 167–183. Springer, Cham

[FGH+16] Fantechi A, Gnesi S, Haxthausen A, van de Pol J, Roveri M, Treharne H (2016) SaRDIn—a safe reconfigurable distributed
interlocking. In: Proceedings of the 11th world congress on railway research (WCRR 2016). Milano, Ferrovie dello Stato
Italiane

[FH18] Fantechi A, Haxthausen AE (2018) Safety interlocking as a distributed mutual exclusion problem. In: Howar F, Barnat J (eds)
Formal methods for industrial critical systems, volume 11119 of Lecture notes in computer science, pp 52–66. Springer, Cham

[FHM17] Fantechi A, Haxthausen AE, Macedo HD (2017) Compositional verification of interlocking systems for large stations. In:
Cimatti A, Sirjani M (eds) International conference on software engineering and formal methods, volume of 10469 of Lecture
notes in computer science, pp 236–252. Springer, Cham

[FHN17] FantechiA,HaxthausenAE,NielsenMBR (2017)Model checking geographically distributed interlocking systems usingUMC.
In: 2017 25th Euromicro international conference on parallel, distributed and network-based processing (PDP), pp 278–286

[FMGF10] Ferrari A, Magnani G, Grasso D, Fantechi A (2010) Model checking interlocking control tables. In: Schnieder E, Tarnai G
(eds) FORMS/FORMAT 2010—formal methods for automation and safety in railway and automotive systems, pp 107–115.
Springer, Cham

[Geo03] George C (2003) The development of the RAISE tools. In: Aichernig BK,Maibaum T (eds) Formal methods at the crossroads.
From Panacea to foundational support: 10th anniversary colloquium of UNU/IIST, the International Institute for Software
Technology of The United Nations University, Lisbon, Portugal, March 18–20, 2002. Revised papers, pp 49–64. Springer,
Berlin

[GH18] Geisler S, Haxthausen AE (2018) Stepwise development and model checking of a distributed interlocking system—using
RAISE. In: Havelund K, Peleska J, Roscoe B, de Vink E (eds) Formal methods, volume 10951 of Lecture notes in computer
science, pp 277–293. Springer, Cham

[Hax14] Haxthausen AE (2014) Automated generation of formal safety conditions from railway interlocking tables. Int J Softw Tools
Technol Transf (STTT), Spec Issue Form Methods Railw Control Syst 16(6):713–726

[HBK10] HaxthausenAE, BliguetML,Kjær AA (2010)Modelling and verification of relay interlocking systems. In: Choppy C, Sokolsky
O (eds) 15th monterey workshop: foundations of computer software, future trends and techniques for development, volume
6028 of Lecture notes in computer science, pp 141–153. Springer

[HBR18] Hoang TS, Butler M, Reichl K (2018) The hybrid ERTMS/ETCS level 3 case study. In: Butler M, Raschke A, Hoang TS,
Reichl K (eds) Abstract State Machines, Alloy, B, TLA, VDM, and Z, volume 10817 of Lecture notes in computer science, pp
251–261. Springer Verlag

[HH19] Haxthausen AE, Hede K (2019) Formal verification of railway timetables—using the UPPAAL model checker. In: ter Beek
MH, Fantechi A, Semini L (eds) From software engineering to formal methods and tools, and back: essays dedicated to
Stefania Gnesi on the occasion of Her 65th Birthday, volume 11865 of Lecture notes in computer science, pp 433–448. Springer
International Publishing, Cham

[HØ16] Haxthausen AE, Østergaard PH (2016) On the use of static checking in the verification of interlocking systems. In: Margaria
T, Steffen B (eds) Leveraging applications of formal methods, verification and validation, volume 9953 of Lecture notes in
computer science. Springer

[HP00] Haxthausen AE, Peleska J (2000) Formal development and verification of a distributed railway control systems. IEEE Trans
Softw Eng 26(8):687–701

[JMN+14a] James P, Möller F, Nguyen HN, Roggenbach M, Schneider S, Treharne H, Trumble M, Williams D (2014) Verification of
scheme plans using CSP||B. In: Counsell S, Núñez M (eds) Software engineering and formal methods, volume 8368 of Lecture
notes in computer science, pp 189–204. Springer

[JMN+14b] James P, Möller F, Nguyen HN, Roggenbach M (2014) Steve Schneider, and Helen Treharne. Techniques for modelling and
verifying railway interlockings. Int J Softw Tools Technol Transf 16(6):685–711

[LCPT16] Limbrée C, Cappart Q, Pecheur C, Tonetta S (2016) Verification of Railway Interlocking - Compositional Approach with
OCRA. In: Lecomte T, Pinger R, Romanovsky A (eds) Reliability, safety, and security of railway Systems. Modelling, analysis,
verification, and certification. RSSRail 2016. Lecture Notes in Computer Science, vol 9707, pp 134–149. Springer, Cham

[LJ18] Luteberget B, Johansen C (2018) Efficient verification of railway infrastructure designs against standard regulations. Form
Methods Syst Des 52(1):1–32

Stepwise development of interlocking systems 125

[Mer08] Merz S (2008) The specification language TLA+, pp 401–451. Springer, Berlin
[MFTFL18] MammarA, FrappierM, Tueno Fotso SJ, LaleauR (2018) An Event-Bmodel of the hybrid ERTMS/ETCS level 3 standard. In:

Butler M, Raschke A, Hoang TS, Reichl K (eds) Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp 353–366. Springer,
Cham

[PG07] Perna JI, George C (2007) Model checking RAISE applicative specifications. In: Proceedings of the fifth IEEE international
conference on software engineering and formal methods, 2007, pp 257–268. IEEE Computer Society Press

[PKHP19] Peleska J, Krafczyk N, Haxthausen AE, Pinger R (2019) Efficient data validation for geographical interlocking systems. In:
Reliability, safety, and security of railway systems. Modelling, analysis, verification, and certification, pp 142–158

[RAI92] The RAISE Language Group, George C, Haff P, Havelund K, Haxthausen AE, Milne R, Bendix Nielsen C, Prehn S, Wagner
KR (1992) The RAISE Specification Language. The BCS Practitioners Series. Prentice Hall Int.

[RFT16] Reichl K, Fischer T, Tummeltshammer P (2016) Using formal methods for verification and validation in railway. In: Aichernig
BK, Furia CA (eds) Tests and proofs, volume 9762 of Lecture notes in computer science, pp 3–13. Springer Verlag

[Sab16] SabatierD (2016)Using formal proof andBmethod at system level for industrial projects. In: LecomteT, PingerR,Romanovsky
A (eds) Reliability, safety, and security of railway systems. Modelling, analysis, verification, and certification, volume 9707 of
Lecture notes in computer science, pp 20–31. Springer Verlag

[SAL01] Symbolic Analysis Laboratory, SAL, Home page (2001). http://sal.csl.sri.com. Accessed 6 Feb 2020
[tBFGM11] ter BeekMH, Fantechi A,Gnesi S,Mazzanti F (2011) A state/event-basedmodel-checking approach for the analysis of abstract

system properties. Sci Comput Program 76(2):119–135
[UMC] UMC homepage. http://fmt.isti.cnr.it/umc/V4.2/umc.html. Accessed 6 Feb 2020
[Ver13] Verified Systems International GmbH (2013) RT-tester model-based test case and test data generator—RTT-MBT—user

manual. Available on request from http://www.verified.de. Accessed 6 Feb 2020
[VHP17] Vu LH, Haxthausen AE, Peleska J (2017) Formal modelling and verification of interlocking systems featuring sequential

release. Sci Comput Program 133(Part 2):91–115. https://doi.org/10.1016/j.scico.2016.05.010.
[Win02] WinterK (2002)Model checking railway interlocking systems. In: Proceedings of the twenty-fifth australasian computer science

conference (ACSC2002), pp 303–310

Received 9 July 2019
Accepted in revised form 22 January 2020 by Erik de Vink, Ana Cavalcanti, Jan Peleska, Bill Roscoe, and Cliff Jones
Published online 21 February 2020

http://sal.csl.sri.com
http://fmt.isti.cnr.it/umc/V4.2/umc.html
http://www.verified.de
https://doi.org/10.1016/j.scico.2016.05.010

	Stepwise development and model checking of a distributed interlocking system using RAISE
	Abstract
	1 Introduction
	1.1 Background
	1.2 Contribution
	1.3 Related work
	1.4 Paper overview

	2 Language constructs of RSL and added tool support
	2.1 Specifications in RSL
	2.1.1 Generic specifications in RSL

	2.2 Notation for generic variables
	2.3 Notation for initialisation constraints
	2.4 Notation for generic constants
	2.5 Notation for transition rules
	2.6 Named collections of transition rules
	2.7 Notation for LTL properties
	2.8 Tool support

	3 Case study
	3.1 Engineering concept
	3.2 Overview of formal development

	4 First generic model
	4.1 Static configuration data
	4.1.1 Network data
	4.1.2 Static control component data

	4.2 Dynamic control component data
	4.3 Wellformedness of static configuration data
	4.4 State invariants
	4.5 Safety invariants
	4.6 Guard and state updater functions
	4.7 Transition system rules

	5 Second generic model
	6 Third generic model
	7 Verification
	7.1 Verification activities during development
	7.1.1 Reasons for verifying at each development step
	7.1.2 Example of instantiation
	7.1.3 Configuration data checking
	7.1.4 Model checking
	7.1.5 Choice of examples
	7.1.6 Verification results

	7.2 Verification of real-world systems
	7.2.1 Verification of two-train configurations
	7.2.2 Verification of three-train configurations
	7.2.3 Verification metrics

	7.3 Other verification activities

	8 Conclusion and future work
	Acknowledgements
	References

