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Abstract. In this paper, we propose a novel framework for the synthesis of robust and optimal energy-aware
controllers. The framework is based on energy timed automata, allowing for easy expression of timing constraints
and variable energy rates. We prove decidability of the energy-constrained infinite-run problem in settings with
both certainty and uncertainty of the energy rates. We also consider the optimization problem of identifying the
minimal upper bound that will permit existence of energy-constrained infinite runs. Our algorithms are based on
quantifier elimination for linear real arithmetic. Using Mathematica and Mjollnir, we illustrate our framework
through a real industrial example of a hydraulic oil pump. Compared with previous approaches our method is
completely automated and provides improved results.
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1. Introduction

Design of controllers for embedded systems is a difficult engineering task. Controllers must ensure a variety of
safety properties as well as optimality with respect to given performance properties. Also, for several systems,
e.g. [BGH+16, vBHLO17, PHM14], the properties involve non-functional aspects such as time and energy.

We provide a novel framework for automatic synthesis of safe and optimal controllers for resource-aware
systems based on energy timed automata. Synthesis of controllers is obtained by solving time- and energy-
constrained infinite run problems. Energy timed automata [BFL+08] extend timed automata [AD94] with
a continuous energy variable that evolves with varying rates and discrete updates during the behaviour of
the model. Addressing an open problem from [BFL+08], we prove decidability of the infinite run problem
in settings where rates and updates may be both positive and negative and possibly subject to uncertainty.
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Correspondence to: Giovanni Bacci, e-mail: giovbacci@cs.aau.dk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-020-00521-4&domain=pdf
http://orcid.org/0000-0001-8529-0681


4 G. Bacci et al.

Pump

Machine

2.2 l/s

Vmax

Vmin

Accumulator

l/s

s0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

0 2 4 6 8 10 12 14 16 18 20

m
ac
hi
ne

ra
te

time

(a) System Components (b) Cycle of the Machine

Fig. 1. Overview of the HYDAC system

Additionally, the accumulated energy may be subject to lower and upper bounds reflecting constraints on capac-
ity.Alsowe consider the optimization problems of identifyingminimal upper bounds thatwill permit the existence
of infinite energy-constrained runs. Our decision and optimization algorithms for the energy-constrained infinite
run problems are based on reductions to quantifier elimination (QE) for linear real arithmetic, for which we
combine Mathematica [Wol] and Mjollnir [Mon10] into a tool chain.

Todemonstrate the applicability of our framework,we revisit an industrial case studyprovidedby theHYDAC
company in the context of the European project Quasimodo [Qua]. It consists of an on/off control system
(see Fig. 1a) composed of (i) a machine that consumes oil according to a cyclic pattern of 20 s (see Fig. 1b), (ii) an
accumulator containing oil and a fixed amount of gas in order to put the oil under pressure, and (iii) a controllable
pump which can pump oil into the accumulator with rate 2.2 l/s. The control objective for switching the pump on
and off is twofold: first the level of oil in the accumulator (and so the gas pressure) shall be maintained within a
safe interval; second, the controller should try to minimize the (maximum and average) level of oil such that the
pressure in the system is kept minimal. We show how to model this system, with varying constraints on pump
operation, as energy timed automata. Thus our tool chain may automatically synthesize guaranteed safe and
optimal control strategies.

The HYDAC case was first considered in [CJL+09] as a timed game using the tool Uppaal- Tiga [CDF+05,
BCD+07] for synthesis. Discretization of oil-level (and time) was used to make synthesis feasible. Besides limiting
the opportunity of optimality, the discretization also necessitated posterior verification using PHAVER [Fre08]
to rule out possible resulting incorrectness. Also, identification of safety and minimal oil levels were done by
manual and laborious search. In [MFÅL15] the timed game models of [CJL+09] (rephrased as Timed Discrete
Event Systems) are reused, but BDDs are applied for compact representation of the discrete oil-levels and time-
points encountered during synthesis. [JST11] provides a framework for learning optimal switching strategies
by a combination of off-the-shelf numerical optimization and generalization by learning. The HYDAC case
is one of the considered cases. The method offers no absolute guarantees of hard constraints on energy-level,
but rather attempts to enforce these through the use of high penalties. [ZZKL12] focuses exclusively on the
HYDAC case using a direct encoding of the safety- and optimality-constraints as QE problems. This gives—like
in our case—absolute guarantees. However, we are additionally offering a complete and decidable framework
based on energy timed automata, which extends to several other systems. Moreover, the controllers we obtain
perform significantly better than those of [CJL+09] and [ZZKL12] (respectively up to 22% and 16% better) and
are obtained automatically by our tool chain combining Mjollnir and Mathematica. This combination permits
quantifier elimination and formula simplification to be done in a compositional manner, resulting in performance
surpassing each tool individually.We believe that this shows that our framework has a level of maturity that meets
the complexity of several relevant industrial control problems.

Our work is related to controllability of (constrained) piecewise affine (PWA) [BFTM00] and hybrid sys-
tems [ACHH93]. In particular, the energy-constrained infinite-run problem is related to the so called stability
problem for PWAs. Blondel and Tsitsiklis [BT99] have shown that verifying stability of autonomous piecewise-
linear (PWL) systems is NP-hard, even in the simple case of two-component subsystems; several global properties
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(e.g. global convergence, asymptotic stability and mortality) of PWA systems have been shown undecidable
in [BBKT01].

The current paper is an extended and improved version of [BBF+18], containing detailed proofs of the above
mentioned results. Furthermore, we elaborate on the HYDAC case synthesizing strategies for a more accurate
(non-flat) model of the oil pump system.

2. Energy timed automata

Given a finite setX of clocks, the set of closed clock constraints overX , denotedC (X ), is the set of formulas built
using g ::� x ∼ n | g ∧ g , where x ranges over X , ∼ ranges over {≤,≥} and n ranges over Q≥0. That a clock
valuation v : X → R≥0 satisfies a clock constraint g , denoted v |� g , is defined in the natural way. For a clock
valuation v , a real t ∈ R≥0, and a subset R ⊆ X , we write v + t for the valuation mapping each clock x ∈ X
to v (x ) + t , and v [R → 0] for the valuation mapping clocks in R to zero and clocks not in R to their value in v .
Finally we write 0X (or simply 0) for the clock valuation assigning 0 to every x ∈ X .

For E ⊆ R, we let I(E ) be the set of closed intervals of R with bounds in E ∩ Q. Notice that any interval
in I(E ) is bounded, for any E ⊆ R.

Definition 2.1 An energy timed automaton (ETA for short; a.k.a. priced or weighted timed automaton [ALP01,
BFH+01]) is a tuple A � (S ,S0,X , I , r ,T ) where S is a finite set of states, S0 ⊆ S is the set of initial states,
X is a finite set of clocks, I : S → C (X ) assigns invariants to states, r : S → Q assigns rates to states, and
T ⊆ S × C (X ) × Q × 2X × S is a finite set of transitions.

An energy timed path (ETP, a.k.a. linear energy timed automaton) is an energy timed automaton for which
S can be written as {si | 0 ≤ i ≤ n} in such a way that S0 � {s0}, and T � {(si , gi , ui , zi , si+1) | 0 ≤ i < n}.
We additionally require that all clocks are reset on the last transition, i.e., zn−1 � X .

Let A � (S ,S0,X , I , r ,T ) be an ETA. A configuration of A is a triple (�, v ,w ) ∈ S × (R≥0)X × R, where
v is a clock valuation, and w is the energy level. Let τ � (ti )0≤i<n be a finite sequence of transitions, with
ti � (si , gi , ui , zi , si+1) for every i ; the first and last components of those 5-tuples are states of the automaton,
while gi represents the clock constraint to be satisfied for the transition to be available, ui is the amount of
energy gained or consumed along the transition, and zi indicates which clocks are reset when the transition
takes place. The runs of an (energy) timed automaton A are the sequences of configurations visited by the
automaton when alternatively taking a transition of the automaton, and letting time elapse [AD94]. Formally,
given a sequence τ � (ti )0≤i<n with ti � (si , gi , ui , zi , si+1), a finite run inA on τ is a sequence of configurations
ρ � (�j , vj ,wj )0≤j≤2n such that there exists a sequence of delays (di )0≤i<n for which the following requirements
hold:

• for all 0 ≤ j < n, �2j � �2j+1 � sj , and �2n � sn ;
• for all 0 ≤ j < n, v2j+1 � v2j + dj and v2j+2 � v2j+1[zj → 0];
• for all 0 ≤ j < n, v2j |� I (sj ) and v2j+1 |� I (sj ) ∧ gj ;
• for all 0 ≤ j < n, w2j+1 � w2j + dj · r (sj ) and w2j+2 � w2j+1 + uj .

We will by extension speak of runs read on ETPs (those runs will then end with clock valuation 0). The notion
of infinite run is defined similarly. Given E ∈ I(Q), such a run is said to satisfy energy constraint E if wj ∈ E for
all j .

Example 2.1 Figure 2 displays an example of an ETP P and one of its runs ρ. Since no time will be spent in s2,
we did not indicate the invariant and rate of that state. The sequence ρ is a run of P . Spending 0.6 time units
in s0, the value of clock x reaches 0.6, and the energy level grows to 3 + 0.6 × 2 � 4.2; it equals 4.2 − 3 � 1.2
when entering s1. Then ρ satisfies the energy constraint [0; 5].

Definition 2.2 A segmented energy timed automaton (SETA for short) is a tuple A � (S ,T ,P ) where (S ,T ) is a
finite graph (whose states and transitions are called macro-states and macro-transitions), and P associates with
each macro-transition t � (s, s ′) of A an ETP with initial state s and final state s ′. We require that for any two
different transitions t and t ′ of A, the state spaces of P (t) and P (t ′) are disjoint and contain no macro-states,
except (for both conditions) for their first and last states.
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Fig. 2. An energy timed path P , and a run ρ of P with initial energy level 3.
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Fig. 3. A SETA A � (S ,T ,P ) with implicit global invariant y ≤ 1; omitted discrete updates are assumed to be zero. The map P associates
with each (si , sj ) ∈ T the ETP Pi,j . The infinite sequence ρ1 · (ρ2 · ρ3)ω is an infinite execution ofA with initial energy level 3 satisfying the
energy constraint E � [0; 5].

A SETA is flat if the underlying graph (S ,T ) is (i.e., for any s ∈ S , there is at most one non-empty path in
the graph (S ,T ) from s to itself [CJ98, BIL06]). It is called depth-1 whenever the graph (S ,T ) is tree-like, with
only loops at leaves.

A (finite or infinite) execution of a SETA is a (finite or infinite) sequence of runs ρ � (ρi )i such that for all i ,
writing ρi � (�ij , v

i
j ,w

i
j )0≤j≤2ni

, it holds:

• �i0 and �i2ni
are macro-states of A, and ρi is a run of the ETP P (�i0, �

i
2ni

);

• �i+10 � �i2ni
and w i+1

0 � w i
2ni

.

Hence a run in a SETA should be seen as the concatenation of paths ρi between macro-states. Notice also that
each ρi starts and ends with all clock values zero, since all clocks are reset at the end of each ETP, when a main
state is entered. Finally, given an interval E ∈ I(Q), an execution (ρi )i satisfies energy constraint E whenever all
individual runs ρi do.

Remark 2.1 In contrast with ETAs, the class of SETAs is not closed under parallel composition. Intuitively, the
ETA resulting from the parallel composition of two SETAsmay not be “segmented” into a graph of energy timed-
paths because the requirement that all clocks are reset on the last transition may not be satisfied. Furthermore,
parallel composition does not preserve flatness because it may introduce nested loops.

Example 2.2 Figure 3 displays a SETAAwith twomacro-states s0 and s2, and twomacro-transitions. Themacro-
self-loop on s2 is associated with the energy timed path of Fig. 2. The execution ρ � ρ1 · (ρ2 ·ρ3)ω is an ultimately-
periodic execution of A. This infinite execution satisfies the energy constraint E � [0; 5] (as well as the (tight)
energy constraint [1; 4.6]).
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Fig. 4. Energy relation for P with E � [0; 5].

In this paper, we consider the following energy-constrained infinite-run problem [BFL+08]: given an energy
timed automaton A and a designated state s0, an energy constraint E ∈ I(Q) and an initial energy level w0 ∈ E ,
does there exist an infinite execution in A starting from (s0,0,w0) that satisfies E ?

In the general case, the energy-constrained infinite-run problem is undecidable, even when considering ETA
with only two clocks [Mar11]. In this paper, we prove:

Theorem 2.1 The energy-constrained infinite-run problem is decidable for flat SETA.

Theorem 2.2 Given a fixed lower bound L, the existence of an upper boundU , such that there is a solution to the
energy-constrained infinite-run problem for energy constraintE � [L; U ], is decidable for flat SETA. If such aU
exists, then for depth-1 flat SETA, we can compute the least one.

The rest of this section is devoted to the proof of the above two decidability results. In Sects. 2.1, 2.2, and
2.3 we first introduce some technical tools that we will use in Sect. 2.4 for developing the algorithms witnessing
decidability of our problems.

2.1. Binary energy relations

Let P � ({si | 0 ≤ i ≤ n}, {s0},X , I , r ,T ) be an ETP from s0 to sn . Let E ⊆ I(Q) be an energy constraint.
The binary energy relationRE

P ⊆ E ×E for P under energy constraint E relates all pairs (w0,w1) for which there
is a finite run of P from (s0,0,w0) to (sn ,0,w1) satisfying energy constraint E . This relation is characterized by
the following first-order formula:

RE
P (w0,w1) ⇐⇒ ∃(di )0≤i<n . �timing ∧ �energy ∧ w1 � w0 +

∑n−1
k�0 (dk · r (sk ) + uk )

where �timing encodes all the timing constraints that the sequence (di )0≤i<n has to fulfill, while �energy encodes
the energy constraints. More precisely:

• timing constraints are obtained by computing the clock valuations in each state of the execution, and express-
ing that those values must satisfy the corresponding invariants and guards. The value of a clock in a state is
the sum of the delays dj since the last reset of that clock along the ETP.

• energy constraints are obtained by expressing the value of the energy level in each state as the sum of the
initial energy level, the energy r (si ) · di gained or consumed in each intermediary state, and the updates ui of
the transitions that have been traversed. All those values are constrained to lie in E .

Fourier-Motzkin elimination is a classical technique for removing existentially-quantified formulas from
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conjunctions of linear expressions such as the one defining RR
P . Basically, there exists a value for variable x

satisfying a conjunction E(x ,Y ) of linear constraints defined as
∧

1≤j≤m

x ≤ φj (Y ) ∧
∧

1≤k≤n

x ≥ ψk (Y )

if, and only if, for any 1 ≤ j ≤ m and any 1 ≤ k ≤ n, it holds ψk (Y ) ≤ φj (Y ). In other terms,

{Y | ∃x . E(x ,Y )} � {Y | ∀ j ∈ [1; m]. ∀ k ∈ [1; n]. ψk (Y ) ≤ φj (Y )}.
By noticing that ∃x . (E(x ,Y ) ∨ E ′(x ,Y )) is equivalent to ∃x . (E(x ,Y ) ∨ ∃x . E ′(x ,Y )), we can eliminate
existentially-quantified variables for any boolean combination of linear constraints. By duality, universally-
quantified variables can be eliminated with the same procedure.

It follows that RE
P is a closed, convex subset of E × E , and can be described as a conjunction of a finite set

of linear constraints over w0 and w1 (with non-strict inequalities).

Example 2.3 We illustrate this computation on the ETP of Fig. 2. For energy constraint [0; 5], the energy relation
can be written (after removing redundant constraints) as

RE
P (w0,w1) ⇐⇒ ∃d0, d1. d0 ∈ [0.25; 1] ∧ d1 ∈ [0; 1] ∧ d0 + d1 � 1 ∧

w0 ∈ [0; 5] ∧ w0 + 2d0 ∈ [0; 5] ∧ w0 + 2d0 − 3 ∈ [0; 5] ∧
w1 � w0 + 2d0 + 4d1 − 3 ∧ w1 ∈ [0; 5].

Applying quantifier elimination, the above simplifies to

RE
P (w0,w1) ⇐⇒ (w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1).

The corresponding polyhedron is depicted in Fig. 4.

2.2. Energy functions

We now focus on properties of energy relations. First notice that for any interval E ∈ I(Q), the partially-ordered
set (I(E ),⊇) is ω-complete, meaning that for any chain (Ij )j∈N, with Ij ⊇ Ij+1 for all j , the limit

⋂
j∈N Ij also

belongs to I(E ). By Cantor’s Intersection Theorem, if additionally each interval Ij is non-empty, then so is the
limit

⋂
j∈N Ij .

With an energy relationRE
P , we associate an energy function (also denoted withRE

P , or simplyR, as long as
no ambiguity may arise), defined for any closed subinterval I ∈ I(E ) as

R(I ) � {w1 ∈ E | ∃w0 ∈ I . R(w0,w1)}.
Symmetrically, we let

R−1(I ) � {w0 ∈ E | ∃w1 ∈ I . R(w0,w1)}.
Observe that R(I ) and R−1(I ) also belong to I(E ) (because the relation R is closed and convex). Moreover, R
and R−1 are monotonic: for any two intervals I and J in I(E ) such that I ⊆ J , it holds that R(I ) ⊆ R(J ) and
R−1(I ) ⊆ R−1(J ).

The energy functionsR and R−1 also satisfy the following continuity properties:

Lemma 2.1 Let (Ij )j∈N be a chain of intervals of I(E ), such that Ij ⊇ Ij+1 for all j ∈ N. Then R−1(
⋂

j∈N Ij ) �
⋂

j∈N R−1(Ij ).

Proof For any i ∈ N, we have Ii ⊇ ⋂
j∈N Ij . By monotonicity ofR−1, we getR−1(Ii ) ⊇ R−1(

⋂
j∈N Ij ). It follows

that
⋂

i∈N R−1(Ii ) ⊇ R−1(
⋂

j∈N Ij ).
Now, let w0 ∈ ⋂

j∈N R−1(Ij ). Then for all i ∈ N, there exists w i
1 such that R(w0,w i

1 ). It follows that for
any i ∈ N, R({w0}) ∩ Ii is a non-empty interval of I(E ). Applying Cantor’s Intersection Theorem, we get that⋂

i∈N R({w0})∩ Ii is a non-empty interval of I(E ). This intersection can be rewritten asR({w0})∩ ⋂
i∈N Ii ; hence

there exists w1 ∈ ⋂
i∈N Ii such thatR(w0,w1), which proves that w0 ∈ R−1(

⋂
i∈N Ii ). �
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2.3. Composition and fixpoints of energy functions

Consider a finite sequence of paths (Pi )1≤i≤k . Clearly, the energy relation for this sequence can be obtained as the
composition of the individual energy relationsRE

Pk
◦ · · · ◦RE

P1
; the resulting energy relation still is a closed convex

subset of E ×E that can be described as the conjunction of finitely many linear constraints over w0 and w1. As a
special case, we write (RE

P )
k for the composition of k copies of the same relationsRE

P .
Now, using Lemma 2.1, we get that the greatest fixpoint νR−1 ofR−1 in the complete lattice (I(E ),⊇) exists

and equals:

νR−1 �
⋂

i∈N
(R−1)i (E ).

Moreover νR−1 is a closed (possibly empty) interval. Note that νR−1 is the maximum subset SR of E such that,
starting with any w0 ∈ SR, it is possible to iterate R infinitely many times (that is, for any w0 ∈ SR, there exists
w1 ∈ SR such thatR(w0,w1)—any such set S is a post-fixpoint ofR−1 in the sense that S ⊆ R−1(S )).

In the end, ifR is the energy relation of a cycle C in the SETA, then νR−1 precisely describes the set of initial
energy levels allowing infinite runs through C satisfying the energy constraint E .

Now ifR is the energy relation for a cycle C, described as the conjunction φC of a finite set of linear constraints,
we can characterize those intervals [a, b] ⊆ E that constitute a post-fixpoint forR−1 by the following first-order
formula:

a ≤ b ∧ a ∈ E ∧ b ∈ E ∧ ∀w0 ∈ [a; b]. ∃w1 ∈ [a; b]. φC(w0,w1). (1)

Applying quantifier eliminination (to w0 and w1), the above formula may be transformed into a direct con-
straint on a and b, characterizing all post-fixpoints ofR−1. We get a characterization of νR−1 by computing the
values of a and b that satisfy these constraint and maximizing b − a.

Example 2.4 We again consider the SETA of Fig. 3, and consider the energy constraint E � [0; 5]. We first focus
on the cycle C on the macro-state s2: as explained in Example 2.3, the energy relation for this cycle can be written
as

RE
C (w0,w1) ⇐⇒ (w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1).

Our first-order formula for the fixpoint then reads as follows:

0 ≤ a ≤ b ≤ 5 ∧ ∀w0 ∈ [a; b]. ∃w1 ∈ [a; b].
(
(w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1)

)
.

Applying quantifier elimination, we end up with

2 ≤ a ≤ b ≤ 4.

This characterizes all post-fixpoints; the greatest fixpoint then obviously is [2; 4].
Now, the energy relation for the path P from s1 to s2 is

RE
P (w0,w1) ⇐⇒ ∃d0, d1. 0 ≤ d0 ≤ 1 ∧ 0 ≤ d1 ≤ 1 ∧ d0 + d1 ≥ 1 ∧

0 ≤ w0 ≤ 5 ∧ 0 ≤ w0 + 1 ≤ 5 ∧
w1 � w1 + 1 − d1 ∧ 0 ≤ w1 ≤ 5

which reduces to 0 ≤ w0 ≤ 4 ∧ w0 ≤ w1 ≤ w0 + 1.
Finally, the initial energy levels w0 for which there is an infinite-run in the whole SETA are characterized by

the following constraint:

∃w1. (0 ≤ w0 ≤ 4 ∧ w0 ≤ w1 ≤ w0 + 1) ∧ (2 ≤ w1 ≤ 4),

which, after quantifier elimination, reduces to 1 ≤ w0 ≤ 4.

2.4. Algorithm for flat segmented energy timed automata

Following Example 2.4, we now prove that we can solve the energy-constrained infinite-run problem for any flat
SETA. The next theorem is crucial for our algorithm:
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Theorem 2.3 LetR be the energy relation of an ETPP with energy constraintE , and let I be a closed sub-interval
of E . Then either I ∩ νR−1 �� ∅ orRn (I ) � ∅ for some n.

Proof We assume that I ∩ νR−1 � ∅, and prove that Rn (I ) � ∅ for some n. We have:

I ∩ νR−1 � I ∩
⋂

n∈N

(R−1)n (E )

� I ∩
⋂

n∈N

(Rn
)−1

(E ) (byR−1 ◦ R−1 � (R ◦ R)−1)

�
⋂

n∈N

(
I ∩ (Rn

)−1
(E )

)
.

Note that
(
I ∩ (Rn )−1(E )

)
n∈N is a decreasing sequence because

(
(R−1)n (E )

)
n∈N is. From our assumption that

I ∩ νR−1 � ∅, we get that
⋂

n∈N
(
I ∩ (Rn )−1(E )

) � ∅. By Cantor’s intersection theorem, it follows that I ∩
(Rn

)−1
(E ) � ∅ for some n ∈ N.

Now, assume Rn (I ) �� ∅, and pick w1 ∈ Rn (I ). Then for some w0 ∈ I , we have Rn (w0,w1), so that also
w0 ∈ (Rn )−1(E ), so that I ∩ (Rn

)−1
(E ) �� ∅. HenceRn (I ) must be empty. �

We will show that the energy-constrained infinite run problem is decidable for flat SETAs. For a SETAA, an
infinite run exists if and only if the underlying graph of A has a path P � (m0,m1)(m1,m2) · · · (mk−1,mk ) and
cycle C � (mk ,mk+1)(mk+1,mk+2) · · · (mk+n−1,mk+n ) where mk � mk+n , such that

νR−1
C ∩ RP (I0) �� ∅ (2)

where RC � RP (mk+n−1,mk+n ) ◦ · · · ◦ RP (mk ,mk+1) and RP � RP (mk ,mk−1) ◦ · · · ◦ RP (m1,m0). Intuitively, the interval
I � RP (I0) represents the energy interval I0 propagated forward along the path P until reaching mk . Moreover,
if the SETA is flat, we have that the cycle C can be unambiguously represented by its initial statemk—recall that
flatness entails that any state belongs to at most one cycle.

The decision procedure traverses the underlying graph of A, forward propagating an initial energy interval
I0 ⊆ E for all reachable macro statesm then looking for a simple cycle C starting fromm such that νR−1

C ∩ I �� ∅,
where I ⊆ E is the energy interval forward-propagated until reaching m.

Algorithm 1 gives a detailed description of the decision procedure. It traverses the underlying graph (S ,T )
of the flat SETA A, using a waiting list W to keep track of the macro-state s that need to be further explored.
The list W contains tasks of the form (m, I ,flag) where the first component m ∈ S is the current macro-
state reached following some path P in A, the second component I ∈ I(E ) is the current energy interval, i.e.,
I � RP (I0), and the third component flag ∈ {c, c̄} is a flag indicating whether the algorithm should consider m
as the last element of the prefix path P and explore the cycle it belongs to (flag � c), or if it should proceed by
exiting that cycle (flag � c̄) further extending the prefix path.

The algorithm initialises the waiting list with the initial task (cf. line 1). The main while loop processes each
task in the waiting list, as long as the list is not empty. It picks a task (m, I ,flag) from W (line 3). If flag � c̄,
the exploration will continue from macro-state s m ′ adjacent to m by forward propagating the current energy
interval I following the timed path P (m,m ′) (cf. lines 6–7). Note that the choice of the arcs (m,m ′) ensures that
m ′ does not belong to the same cycle as m, thus skipping the (unique) cycle containing m.

Otherwise, if flag � c, the exploration attempts to follow the simple cycle that contains m. If m does not
belong to any cycle, the current task will be simply put back in the waiting list with the opposite flag (cf. line 23).
In casem belongs to the simple cycle C � (m1,m2) · · · (mk ,mk+1), the energy relationRE

C is used to check if, for
the current energy interval, there exists an infinite run along the cycle C. If such is not the case, the cycle will be
iterated only finitely many times (cf. lines 17–21). This is done by inserting inW the current task with the flag set
to c̄—corresponding to zero executions of the cycle—then for each execution i of C, the cycle is unfolded up to its
j -th transition and the task (mj+1,RE

Pj
((RE

C )i (I )), c̄) is added to the waiting list—corresponding to i executions
of C followed by a tail (m1,m2) · · · (mj ,mj+1). Theorem 2.3 ensures termination of the while loop of lines 17–21.



Optimal and robust controller synthesis using energy timed automata with uncertainty 11

Input: A flat SETA A � (S ,T ,P ); initial state m0 ∈ S ; energy interval I0
1. W ← {(m0, I0, c)} � initialise the waiting list
2. while W �� ∅ do
3. pick (m, I ,flag) ∈ W � pick an element from the waiting list
4. W ← W \ (m, I ,flag) � remove the element from the waiting list
5. if flag � c̄ then � the node m shall be explored without following a cycle
6. for each (m,m ′) ∈ T that is not part of a simple cycle of (S ,T ) do
7. W ← W ∪ {(m ′,RE

P (m,m ′)(I ), c)} � add this new task to the waiting list
8. else � the node m shall be explored by following a cycle
9. if m belongs to a cycle of (S ,T ) then

10. let C � (m1,m2) · · · (mk ,mk+1) be the simple cycle s.t. m � m1 � mk+1
11. letRC � RP (mk ,mk+1) ◦ · · · ◦ RP (m1,m2) � energy relation of the cycle
12. if I ∩ νR−1

C �� ∅ then � check if there is an infinite run via the cycle C
13. return tt
14. else � the cycle can be executed only finitely many times
15. W ← W ∪ {(m, I , c̄)} � add a new task to the waiting list
16. i ← 0 � initialise the number of cycle executions
17. while Ri

C(I ) �� ∅ do � while i -th energy relation is satified
18. for 1 ≤ j < k do
19. letRPj

� RP (mj ,mj+1) ◦ · · · ◦ RP (m1,m2) � unfold C up to mj+1

20. W ← W ∪ {(mj+1,RPj
(Ri

C(I )), c̄)} � add a task to the waiting list
21. i ← i + 1 � increment the number of cycle executions
22. else � m doesn’t belong to a cycle
23. W ← W ∪ {(m, I , c̄)} � add a new task to the waiting list
24. return ff � no infinite run could be found

Algorithm 1: Infinite Run

As for the correctness of the procedure, one can note that each task (m, I ,flag) is used to represent a path P
from m0 to m having I � RP (I0). In particular, when flag � c the task indicates that the prefix P should be
tested against condition (2) w.r.t. a possible cycle starting fromm; whereas, when flag � c the task indicates that
the prefix P still has to be extended by at least one more step. Note that tasks having flag � c are inserted inW
only if a cycle having m was not already tested against condition (2) (cf. line 4 and 7); while tasks with flag � c̄
are inserted inW only after having tested against condition (2) a cycle passing through such state (cf. lines 15, 20,
and 23). The for loop at lines 6–7 ensures that all reachable states are eventually inserted in the waiting list;
whereas the while loop at lines 17–21 ensures that all extensions of the current prefix obtained by appending to
it a finite unfolding of a cycle are added to the waiting lists. Therefore, all possible prefixes are eventually tested
against condition (2). It is worth noting that the flatness assumption for the SETA A ensures that all cycles are
tested, because for each prefix P ending inm there exists at most one cycle havingm. This proves our first result:

Theorem 2.1 The energy-constrained infinite-run problem is decidable for flat SETA.

Notice that the technique does not trivially extend to SETAs with nested cycles, because they may have
infinitely many different cycles.

Example 2.5 Consider the SETA A � (S ,T ,P ) depicted in Fig. 5 and the energy constraint E � [0; 6].
We describe a step-by-step execution of Algorithm 1 starting with s0 ∈ S and initial energy interval I0 � [0; 0].

The waiting list is initialised as W0 � {(s0, I0, c)}. After the first execution of the main while loop, W1 �
{(s0, I0, c̄)} because s0 does not belong to any simple cycle of (S ,T ). In the second iteration, we pick the task
(s0, I0, c̄) and we update the waiting list as W2 � {(s1, [4; 4], c), (s2, [0; 1], c)}. In the third iteration, we pick
the task (s2, [0; 1], c) from W2. Since s2 belongs to the self-cycle C � (s2, s2), we compute [0; 1] ∩ νR−1

C �
[0; 1] ∩ [ 53 ; 6] � ∅. Thus, we proceed by computing R0([0; 1]) � [0; 1], R1([0; 1]) � [0; 0] and R2([0; 1]) � ∅,
and update the waiting list as W3 � (

W2 \ (s2, [0; 1], c)
) ∪ {(s2, [0; 1], c̄), (s2, [0; 0], c̄)}. In the fourth and fifth

iterations, we pick the tasks (s2, [0; 1], c̄) and (s2, [0; 0], c̄), respectively. Since s2 cannot escape from the self-cycle,
wewill not insert any tasks in thewaiting list, thus havingW5 � {(s1, [4; 4], c)}. During the sixth iteration, we pick
the task (s1, [4; 4], c). Since s1 belongs to the self-cycle C ′ � (s1, s1), we compute [4; 4]∩ νR−1

C′ � [4; 4]∩ ∅ � ∅.
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s0(S, T ) :

s1

s2

s1

r : − 1

P1,1: s4

r : 3

s1
u :−3 u : − 1x = 1

x := 0

s0

r : 0

P0,1: s1
u : 4x = 1

x := 0

s1

r : − 1

P1,2: s2
u : 2x = 1

x := 0

s0

r : 0

P0,2: s5

r : 5

s2
u : 4 u : − 5x = 1

x := 0

s2

r : 2

P2,2: s6

r : 5

s7

r : 2

s2
u :−3 u : 0 u : 0x = 1

x := 0

Fig. 5. An example of SETA A � (S ,T ,P ) with implicit global variant x ≤ 1. The map P associates with each (si , sj ) ∈ T the ETP Pi,j .

Thus we proceed by computing R0([4; 4]) � [4; 4], R1([4; 4]) � [0; 3], R2([4; 4]) � [2; 2], and R3([4; 4]) � ∅
and obtaining W6 � (

W5 \ (s1, [4; 4], c)
) ∪ {(s1, [4; 4], c̄), (s1, [0; 3], c̄), (s1, [2; 2], c̄)}. In the seventh iteration,

we pick the task (s1, [4; 4], c̄). The only transition that escapes from the self-cycle of s1 is (s1, s2), thus we get
W7 � (

W6 \ (s1, [4; 4], c̄)
) ∪ {(s2, [5; 5], c)}. Finally, we pick the task (s2, [5; 5], c) and since [5; 5] ∩ νR−1

C′′ �
[5; 5] ∩ [ 53 ; 6] �� ∅ where C ′′ � (s2, s2), we stop the computation and return tt.

We are now ready to prove our second main result of this section.

Theorem 2.2 Given a fixed lower bound L, the existence of an upper boundU , such that there is a solution to the
energy-constrained infinite-run problem for energy constraintE � [L; U ], is decidable for flat SETA. If such aU
exists, then for depth-1 flat SETA, we can compute the least one.

Proof Let A be a flat SETA and L ∈ Q be the fixed lower bound.
Let C be a simple cycle of A (which may formally be the concatenation of several energy timed paths but

w.l.o.g. we can assume it is a single energy timed path). We analyze when this cycle can be iterated, and for which
upper bound U . Adding U as a parameter, we can refine the approach of Sect. 2, and safely define the ternary
energy relationRC(w0,w1,U ) asR[L; U ]

C (w0,w1). It is a convex subset ofR3, described as a conjunction of a finite
set of linear constraints over w0, w1 and U (with non-strict inequalities and rational coefficients). We can then
define the predicateR∞

C (a, b,U ) as:

R∞
C (a, b,U ) ⇐⇒ L ≤ a ≤ b ≤ U ∧ ∀w0 ∈ [a; b], ∃w1 ∈ [a; b]. RC(w0,w1,U )

characterizing the intervals [a; b] and upper-boundsU such that C can be iterated infinitely many times from any
initial value in [a; b] with energy constraint [L; U ]. This relation is again a closed convex subset ofR3, described
as a conjunction of a finite set of linear constraints over a, b and U (with non-strict inequalities and rational
coefficients).

For a fixedU ∈ Q, this predicate coincides with the greatest fixpoint ν(R[L; U ]
C )−1 that was discussed on page 9.

HenceR∞
C (a, b,U ) holds if, andonly if, for everyw0 ∈ [a; b], there is an infinite run starting at (s0,0,w0) (where s0

is the first state of C) satisfying the energy constraint [L; U ]. Furthermore, the set {a ∈ R | ∃b,U . R∞
C (a, b,U )}

is a closed subset of R, defined as a conjunction of linear constraints with rational coefficients, and bounded
below by L; thus there is a least value aC

min ∈ Q such that the set {(b,U ) | R∞
C (aC

min, b,U )} is non-empty. For this
value aC

min:

Lemma 2.2 The following properties hold

• For any energy level w < aC
min, and for any U , there are no infinite runs from (s0,0,w ) cycling around C and

satisfying energy constraint [L; U ];
• For every w ≥ aC

min, there exist U and an infinite run from (s0,0,w ) cycling around C and satisfying energy
constraint [L; U ].

Proof The first part of the lemma is a direct consequence of the analysis of the fixed point ν(R[L; U ]
C )−1 made in

Sect. 2.1.
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For the second property, we first realize that there is (b,U ) ∈ Q2 such that R∞
C (aC

min, b,U ) (because relation
R∞

C (a, b,U ) is a finite conjunction of linear contraints with rational coefficients). This means in particular
that there is an infinite run from (s0,0, aC

min) cycling around C and satisfying the energy constraint [L; U ].
By mimicking the same delays from (s0,0, aC

min), we create an infinite run along which the energy levels are simply
shifted up by w − amin. This way, we have built an infinite run from (s0,0,w ) satisfying the energy constraint
[L; U + w − aC

min]. �
Coming back to our automaton A: if there is a solution to the energy-constrained infinite-run problem in A

for some upper bound U , the witness infinite run must end up cycling in one of the cycles of A. Let C be a
cycle. We know from the lemma above that, to be able to generate a witness infinite run cycling around C, one
needs to be able to reach the start of that cycle with at least energy level aC

min. Note that if we find a finite run
reaching the start of cycle C with energy level w ≥ aC

min and satisfying the energy constraint [L; +∞) (only a
lower-bound constraint) along the way, then for someU ′ this finite path satisfies the energy constaint [L; U ′]; the
concatenation of that finite run with a witness infinite run cycling along C while satisfying some [L; U ]-energy
constraint gives a witness infinite run for the existence of an upper bound (with upper bound max(U ; U ′)).

We therefore study finite runs leading to the start of cycle C, with only the lower bound L on the energy
level. Recall that this problem is in general not easy to solve [BLM14], and only single-clock automata can be
handled in general [BFLM10]. However in the special setting of flat SETA, we are able to decide the existence of a
well-adapted finite run reaching the start of cycle C. LetP be an energy timed path. Following a similar approach
to the approach developed on Sect. 2.1, one can define a predicate SP (w0,w1) that is true whenever there is a run
satisfying the energy constraint [L; +∞), starting with energy level w0 and ending with energy level w1. From
that predicate, one can derive the predicates S↑

P (w0) (resp. S�
P (w0), S×

P (w0)) such that:

• S↑
P (w0) ⇐⇒ ∃w1 > w0 s.t. SP (w0,w1);

• S�
P (w0) ⇐⇒ SP (w0,w0) and ¬S↑

P (w0);
• S×

P (w0) ⇐⇒ ∀w1 ≥ w0, ¬SP (w0,w1).

In the first two cases, and only in these cases, the path can be iterated while satisfying the energy constraint
[L; +∞). In the first case, by iterating the path, one can increase the energy level up to an arbitrarily high value.
In the second case, only energy level w0 can be reached. These properties are straightforward (since there is no
upper bound), and are therefore omitted.

Let A be a SETA with initial energy level w0. We perform the following (partial) labelling λ of the graph in a
forward manner:

• we label the initial macro-state m0 with λ(m0) � � if there is a path P from m0 to itself, where S↑
P (e0) holds;

otherwise we set λ(m0) � w0.
• let m be a macro-state which does not belong to a cycle, and such that all its predecessors have been already
labelledwith λ.Write (mi )1≤i≤p for a non-empty list of its predecessors, with redundancies if there aremultiple
transitions betweenmacro-states. For each 1 ≤ i ≤ p, writePi for the ETP labelling the edge (mi ,m). If there
is some i such that λ(mi ) � �, then set λ(m) � �. Otherwise, define w ′

i for the largest energy level such that
SPi

(wi ,w ′
i ) holds (w

′
i can be equal to +∞ whenever w ′

i can be made arbitrarily large). If there is a cycle C
starting atmi such that S↑

C (w
′
i ), then set λ(m) � �. If w ′

i � +∞ for some i , then set λ(m) � �, otherwise set
λ(m) � max1≤i≤p w ′

i .

The following lemma concludes the decidability proof for the existence of an upper bound.

Lemma 2.3 There is a solution to the upper-bound existence problem if, and only if, there is a cycle C starting at
some macro-state m in A such that aC

min is well-defined, and such that λ(m) � � or λ(m) ≥ aC
min.

Proof We can prove the following invariant to the labelling algorithm:

• λ(m) � � if, and only if, for every α ∈ R there is w ≥ α such that energy level w can be achieved when
reaching m;

• λ(m) � α if, and only if, α is the maximal energy level that can be reached at m. �

It remains to discuss the synthesis of the least upper bound for which there is a solution to the upper bound
synthesis problem. In this case, we will restrict to depth-1 flat SETA, that is the graph underlying the SETA is a
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tree, with self-loops at leaves.1 We assume we have found a boundU such thatA satisfies the infinite path problem
with energy constraint [L; U ].

Since A is depth-1, it can be decomposed as a union of timed paths followed by a cycle. Let P be such a
path, followed by cycle C. We assume w.l.o.g. that there is an infinite run satisfying the energy constraint [L; U ]
following P and cycling along C. We define the predicateRP·Cω (U ′) by

U ′ ≤ U ∧ ∃L ≤ a ≤ w1 ≤ b ≤ U ′ s.t. RP (w0,w1,U ′) and R∞
C (a, b,U ′)

Then RP·Cω (U ′) holds if, and only if, U ′ ≤ U is a correct upper bound for a witness along P · Cω. We can
simplify the predicateRP·Cω (U ′), and obtain the least upper bound as the smallest U ′ such thatRP·Cω (U ′) holds
for some P and C in A. �

3. Energy timed automata with uncertainties

The assumptions of perfect knowledge of energy-rates and energy-updates are often unrealistic, as is the case in
the HYDAC oil-pump control problem (see Sect. 4). Rather, the knowledge of energy-rates and energy-updates
comes with a certain imprecision, and the existence of energy-constrained infinite runs must take these into
account in order to be robust. In this section, we revisit the energy-constrained infinite-run problem in the setting
of imprecisions, by viewing it as a two-player game problem.

3.1. Adding uncertainty to ETA

Definition 3.1 An energy timed automaton with uncertainty (ETAu for short) is a tuple A � (S ,S0,X , I , r ,T ,
ε,), where (S ,S0,X , I , r ,T ) is an energy timed automaton, with ε : S → Q>0 assigning imprecisions to rates
of states and  : T → Q>0 assigning imprecisions to updates of transitions.

In the obvious manner, this notion of uncertainty extends to energy timed paths with uncertainty (ETPu) as
well as to segmented energy timed automata with uncertainty (SETAu).

Let A � (S ,S0,X , I , r ,T , ε,) be an ETAu, and let τ � (ti )0≤i<n be a finite sequence of transitions, with
ti � (si , gi , ui , zi , si+1) for every i . A finite run in A on τ is a sequence of configurations ρ � (�j , vj ,wj )0≤j≤2n
such that there exist a sequence of delays d � (di )0≤i<n for which the following requirements hold:

• for all 0 ≤ j < n, �2j � �2j+1 � sj , and �2n � sn ;
• for all 0 ≤ j < n, v2j+1 � v2j + dj and v2j+2 � v2j+1[zj → 0];
• for all 0 ≤ j < n, v2j |� I (sj ) and v2j+1 |� I (sj ) ∧ gj ;
• for all 0 ≤ j < n, it holds thatw2j+1 � w2j+dj ·αj andw2j+2 � w2j+1+βj ,where αj ∈ [r (sj )−ε(sj ), r (sj )+ε(sj )]
and βj ∈ [uj − (tj ), uj + (tj )].

Notice that uncertainty only affects the measure of energy, not the measure of time. We say that ρ is a possible
outcome of d along τ , and that w2n is a possible final energy level for d along τ , given initial energy level w0. Note
that in the case of uncertainty, any sequence d of delays may have several possible outcomes (and corresponding
energy levels) along a given transition sequence τ due to the uncertainty in rates and updates. In particular, we say
that τ together with d with initial energy level w0 satisfy an energy constraint E ∈ I(Q) if any possible outcome
run ρ for t and d starting with w0 satisfies E . All these notions are formally extended to ETPu.

Given an ETPuP , and a sequence d of delays forP satisfying a given energy constraintE from initial levelw0,
we denote by EE

P,d (w0) the set of possible final energy levels. It may be seen that EE
P,d (w0) is a closed subset of E .

Example 3.1 Figure 6 is the energy timed path P of Fig. 2 extended with uncertainties of ±0.1 on all rates and
updates. The runs associated with P and the delay sequence d � (0.6, 0.4) with initial energy level w0 � 3 satisfy
the energy constraint E � [0; 5]. The set of final energy levels in EE

P,d (w0) is then [2.5; 3.1].

1 The general case of flat SETA might be solvable, but we do not have a complete proof of that general case yet.
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s0

y ≤ 1
r : +2 ± 0.1

P: s1

y ≤ 1
r : +4 ± 0.1

s2
y ≥ 1

4

u : −3 ± 0.1

y := 0
x = 1
x := 0
y := 0

u : 0 ± 0.1

w

t
10

s0

s0

s1

s1

s2

Fig. 6. An energy timed path P with uncertainty, and a representation of the runs corresponding to the delay sequence (0.6, 0.4) with initial
energy level 3.

Now let A � (S ,T ,P ) be an SETAu and let E be an energy constraint. A (memoryless2) strategy σ returns
for any macro-configuration (s,w ) (s ∈ S and w ∈ E ) a pair (t, d ), where t � (s, s ′) is a successor edge in T
and d ∈ Rn

≥0 is a delay sequence for the corresponding energy timed path, i.e. n �| P (t) |. A (finite or infinite)
execution of (ρi )i writing ρi � (�ij , x

i
j ,w

i
j )0≤j≤2ni

, is an outcome of σ if the following conditions hold:

• s i0 and s i2ni
are macro-states of A, and ρi is a possible outcome of P (s i0 , s

i
2ni

) for d where σ (s i0 ,w
i
0 ) �

(
(s i0 , s

i
2ni

), d
)
;

• s i+10 � s i2ni
and w i+1

0 � w i
2ni

.

Now we may formulate the infinite-run problem in the setting of uncertainty:

Definition 3.2 Let A be a SETAu, E ∈ I(Q) be an energy constraint, and (s0,w0) an initial macro-configuration
(s0 macro-state of A and w0 ∈ E energy level). The energy-constrained infinite-run problem is as follows: does
there exist a strategy σ for A such that all runs (ρi )i that are outcomes of σ starting from configuration (s0,w0)
satisfy E ?

3.2. Ternary energy relations

Let P � ({si | 0 ≤ i ≤ n}, {s0},X , I , r ,T , ε,) be an ETPu and let E ∈ I(Q) be an energy constraint.
The ternary energy relation UE

P ⊆ E × E × E relates all triples (w0, a, b) for which there is a sequence of delays
whose outcomes from (s0,0,w0) all satisfy E and end in a configuration (sn ,0,w1) where w1 ∈ [a; b]. This
relation can be characterized by the following first-order formula:

UE
P (w0, a, b) ⇐⇒ ∃(di )0≤i<n .∀(αi ∈ [r (si ) − ε(si ); r (si ) + ε(si )])0≤i<n .

∀(βi ∈ [uj − (tj ); uj + (tj )])0≤i<n . �timing ∧ �u
energy ∧ a ≤ w0 +

n−1∑

k�0

(dk · αk + βk ) ≤ b

where �timing encodes all the timing constraints that the sequence (di )0≤i<n has to fulfill and is identical to that
used in the case of full precision. Also �u

energy encodes the energy constraints relative to E . Formula �u
energy is

similar to �energy from Sect. 2, but refers to αi and βi rather than to the nominal rates r (sj ) and updates ui .
The expression above has two drawbacks: it mixes existential and universal quantifiers (which may severely

impact efficiency), and the arithmetic expression is quadratic (for which no efficient tools provide quantifier
elimination). A better way to characterize the ternary relation is by expressing inclusion of the set of reachable
energy levels in the energy constraint:

2 For the infinite-run problem we consider it may be shown that memoryless strategies suffice.
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UE
P (w0, a, b) ⇐⇒ ∃(di )0≤i<n . �timing ∧ �i

energy ∧

w0 +
n−1∑

k�0

(r (sk ) · dk + uk ) +
n−1∑

k�0

([−ε(sk ); ε(sk )] · dk + [−(tk ); (tk )]) ⊆ [a; b]

where �i
energy encodes the energy constraints as the inclusion of the interval of reachable energy levels in the

energy constraint (in the same way as we do on the second line of the formula). Interval inclusion can then be
expressed as constraints on the bounds of the intervals. This way, we get linear arithmetic expressions and no
quantifier alternations. Applying Fourier-Motzkin elimination, UE

P is a closed, convex subset of E ×E ×E and
can be described as a finite conjunction of linear constraints over w0, a and b.

Example 3.2 We illustrate the above translation on the ETPu of Fig. 6. For energy constraint [0; 5], the energy
relation can be written as:

UE
P (w0, a, b) ⇐⇒ ∃d0, d1. d0 ∈ [0.25; 1] ∧ d1 ∈ [0; 1] ∧ d0 + d1 � 1 ∧ w0 ∈ [0; 5] ∧

w0 + [1.9; 2.1] · d0 ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1; −2.9] ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1; −2.9] + [3.9; 4.1] · d1 ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1; −2.9] + [3.9; 4.1] · d1 + [−0.1; 0.1] ⊆ [a; b] ⊆ [0; 5]]

Applying quantifier elimination, we end up with:

UE
P (w0, a, b) ⇐⇒ 0 ≤ a ≤ b ≤ 5 ∧ b ≥ a + 0.6 ∧ a − 0.2 ≤ w0 ≤ b + 0.7 ∧

(4.87 + 1.9 · a)/3.9 ≤ w0 ≤ (7.27 + 2.1 · b)/4.1
We can use this relation in order to compute the set of initial energy levels from which there is a strategy

to end up in [2.5; 3.1] (which was the set of possible final energy levels in the example of Fig. 6). We get
w0 ∈ [7.4/3; 13.78/4.1], which is (under-)approximately w0 ∈ [2.467; 3.360].

3.3. Algorithm for SETAu

LetA � (S ,T ,P ) be a SETAu and let E ∈ I(Q) be an energy constraint. LetW ⊆ S ×E be the maximal set of
configurations satisfying the following:

(s,w ) ∈ W ⇒ ∃ t � (s, s ′) ∈ T . ∃a, b ∈ E . UE
P (t)(w , a, b) ∧ ∀w ′ ∈ [a; b]. (s ′,w ′) ∈ W (3)

This expresses that from any (s,0,w ) with (s,w ) ∈ W , there is a macro-transition (s, s ′) that can be taken,
ending up in configurations (s ′,0,w ′) with (s ′,w ′) ∈ W . Thus W characterizes the set of configurations (s,w )
that satisfy the energy-constained infinite-run problem. Unfortunately this characterization does not readily
provide an algorithm.We thus make the following restriction and show that it leads to decidability of the energy-
constrained infinite-run problem:

(R) in any of the ETPu P (t) of A, on at least one of its transitions, some clock x is compared with a positive
lower bound. Thus, there is an (overall minimal) positive time-duration D to complete any P (t) of A.

Theorem 3.1 Let A be an SETAu satisfying (R), E ∈ I(Q) an energy constraint, and (s0,w0) an initial macro-
configuration. Then it is decidable whether the energy-constrained infinite-run problem is satisfied.

Proof Under hypothesis (R), there is a minimum level of imprecision for any transition t � (s, s ′): whenever
UE
P (t)(w , a, b) then | b − a |≥ D · min, where min is the minimal imprecision within all ETPu P (t) of A. Thus

if (s,w ) ∈ W “due to” some transition t � (s, s ′), then for some interval [a, b] with | b − a |≥ D · min all

configurations (s ′,w ′) with w ′ ∈ [a, b] must be inW . Now letN �
⌈

|E |
D ·min

⌉
. It follows that the subset of E given

by Ws � {w | (s,w ) ∈ W} may be divided into at most N disjoint intervals [as,j , bs,j ] (1 ≤ j ≤ N ), each of size
at leastD ·min. We may therefore characterize the set of configurations (s0,w0) satisfying the energy-constained
infinite-run problem as being those for which there exist values (as,j , bs,j )s∈S ,1≤j≤N such that
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w0 ∈
⋃

1≤j≤N

[as0,j ; bs0,j ] ∧
∧

s∈S

∧

1≤j≤N

(
[as,j ; bs,j ] ⊆ E ∧

∀w ∈ [as,j ; bs,j ].
∨

(s,s ′)∈T

(
∃a, b ∈ E . UE

P (s,s ′)(w , a, b) ∧
∨

1≤k≤N

([a; b] ⊆ [as ′,k ; bs ′,k ])
))

(4)

By quantifier elimination, the above may be rewritten as a boolean combination of linear constraints over the
variables as,j , bs,j , and determining the satisfiability of the formula is decidable. �

It is worth noticing that we do not assume flatness of the model for proving the above theorem. Instead, the
minimal-delay assumption (R) has to be made.

Example 3.3 We pursue on Example 3.2. If ETPuP is iterated (as on the loop on statem2 of Fig. 3, but now with
uncertainty), the setW (there is a single macro-state) can be captured with a single interval [a, b]. We characterize
the set of energy levels fromwhich the pathP can be iterated infinitely often while satisfying the energy constraint
E � [0, 5] using Eq. (4), as follows:

0 ≤ a ≤ b ≤ 5 ∧ ∀w0 ∈ [a; b]. UE
P (w0, a, b).

We end up with

2.435 ≤ a ∧ b ≤ 3.635 ∧ b ≥ a + 0.6.

so that the largest interval is [2.435; 3.635] (which can be compared to the maximal fixpoint [2; 4] that we
obtained in Example 2.4 for the same cycle without uncertainty).

3.4. Synthesis of optimal upper bound

As in the settingwithout uncertainties, we can also synthesize an (optimal) upper-bound for the energy constraint:

Theorem 3.2 LetA � (S ,T ,P ) be a depth-1 flat SETAu. Let L ∈ Q be an energy lower bound, and let (s0,w0) be
an initial macro-configuration. Then the existence of an upper energy boundU , such that the energy-constrained
infinite-run problem is satisfied for the energy constraint [L; U ] is decidable.

Furthermore, one can compute the least upper bound, if one exists.

Proof First, for a cycle ETPu C and a lower energy bound L, we may define a quaternary relationXL
C on E such

that XL
C (w , a, b,U ) holds if, and only if, U [L; U ]

C (w , a, b). Clearly XL
C can be described as a first-order formula

over linear arithmetic, and, by quantifier elimination, as a boolean combination of linear constraints over w , a,
b and U .

Now, sinceA is a depth-1 flat SETAu, we can assume w.l.o.g. thatA consists in a path followed by a cycle that
one tries to iterate. This is no loss of generality since a depth-1 flat SETAu can be seen as a finite union of such
simple automata.Hencewe assumeA � (S ,T ,P ) has twomacro states s and s ′, and twomacro-transitions (s, s ′)
and (s ′, s ′). We let P be the path P (s, s ′) and C be P (s ′, s ′). Since we consider only one cycle, we can captureWs ′
with a single interval [as ′ ; bs ′ ]. For any given U , following the idea of Eq. (4), the set of configurations (s0,w0)
satisfying the energy-constrained infinite-run problem is the set for which there exist as ′ and bs ′ such that

w0 ∈ [L; U ] ∧ ∃a, b. XL
P (w0, a, b,U ) ∧ [a; b] ⊆ [as ′ ; bs ′ ] ⊆ [L; U ] ∧

∀w ∈ [as ′ ; bs ′ ]. ∃a ′, b ′ ≥ L′. XL
C (w , a ′, b ′,U ) ∧ [a ′; b ′] ⊆ [as ′ ; bs ′ ]

By quantifier elimination, the above may be rewritten as a boolean combination of linear constraints over
the variables as ′ , bs ′ and U , denoted by ϕ(as ′, bs ′ ,U ). Determining the satisfiability of the formula ϕ(as ′ , bs ′ ,U )
is decidable. In addition, eliminating the quantifiers in the formula ∃as ′ , bs ′ . ϕ(as ′ , bs ′ ,U ) yields a boolean com-
bination of linear constraints over the single variable U . For the fact that such a formula has only one variable,
it needs to represent the interval of values for U which admit an energy-constrained infinite run. Clearly, the
lower bound of such interval is the minimal value of U . �
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4. Case study

In this section we present an industrial case study that was provided by the HYDAC company in the context of
a European research project Quasimodo [Qua]. The case study consists in an on-off control system where the
system to be controlled, depicted in Fig 1a, is composed of (i) a machine that consumes oil, (ii) an accumulator
containing oil and a fixed amount of gas in order to put the oil under pressure, and (iii) a controllable pumpwhich
can pump oil in the accumulator. When the system is operating, the machine consumes oil under pressure out of
the accumulator. The level of the oil, and so the pressure within the accumulator, can be controlled by pumping
additional oil in the accumulator (thereby increasing the gas pressure). The control objective is twofold: first the
level of oil into the accumulator (and so the gas pressure) shall be maintained within a safe interval; second, at the
end of each operating cycle, the accumulator shall be in a state that ensures the controllability of the following
cycle. Besides these safety requirements, the controller should also try to minimize the oil level in the tank, so as
to not damage the system.

4.1. Modelling the oil pump system

In this section we describe the characteristics of each component of the HYDAC case. Then we model the system
as a SETA.

The Machine. The oil consumption of the machine is cyclic. One cycle of consumptions, as given by HYDAC,
consists of 10 periods of consumption, each having a duration of two seconds, as depicted in Fig. 1b. Each period
is described by a rate of consumption mr (expressed in litres per second). The consumption rate is subject to
noise: if the mean consumption for a period is c l/s (with c ≥ 0) its actual value lies within [max(0, c − ε); c + ε],
where ε is fixed to 0.1 l/s.
The Pump. The pump is either On or Off, and we assume it is initially Off at the beginning of a cycle. While it
is On, it pumps oil into the accumulator with a rate pr � 2.2 l/s. The pump is also subject to timing constraints,
which prevent switching it on and off too often.
The Accumulator. The volume of oil within the accumulator will be modelled by means of an energy variable v .
Its evolution is given by the differential inclusion dv/dt−u ·pr ∈ −[mr+ε; mr −ε] (or−[mr+ε; 0] ifmr −ε < 0),
where u ∈ {0, 1} is the state of the pump.

The controller must operate the pump (switch it on and off) to ensure the following requirements: (R1) the level
of oil in the accumulator must always stay within the safety bounds E � [Vmin; Vmax]3 (R2) at the end of each
machine cycle, the level of oil in the accumulator must ensure the controllability of the following cycle.

By modelling the oil pump system as a SETA H, the above control problem can be reduced to finding a
deterministic schedule that results in a safe infinite run inH. Furthermore, we are also interested in determining
theminimal safety intervalE , i.e., finding interval bounds thatminimiseVmax−Vmin, while ensuring the existence
of a valid controller for H.

As a first step in the definition ofH, we build an ETP representing the behaviour of the machine, depicted in
Fig. 7. In order to fully model the behaviour of our oil-pump system, one would require the parallel composition
of this ETP with another ETP representing the pump. The resulting ETA would not be a flat SETA, and is too
large to be handled by our algorithm with uncertainty. Since it still provides interesting results, we develop this
(incomplete) approach in Sect. 5.

Instead, we consider a simplified model of the pump, which only allows to switch it on and off once during
each 2-second slot. This is modelled by inserting, between any two states of the model of Fig. 7, a copy of the
ETP depicted on Fig. 8. In that ETP, the state with rate p−m models the situation when the pump is on. Keeping
the pump off for the whole slot can be achieved by spending delay zero in that state. We name H1 � (M ,T ,P1)
the SETA made of a single macro-state equiped with a self-loop labelled with the ETP above.

In order to take into account the timing constraints of the pump switches, we also consider a second SETA
model H2 � (M ,T ,P2) where the pump can be operated only during every other time slot. This amounts to
inserting the ETP of Fig. 8 only after the first, third, fifth, seventh and ninth states of the ETP of Fig. 7.

3 The HYDAC company has fixed Vmin � 4.9 l and Vmax � 25.1 l.
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Fig. 7. The ETP representing the oil consumption of the machine.
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Fig. 8. An ETP for modelling the pump

Table 1. Characteristics of the synthesised strategies, compared with the strategies proposed in [CJL+09, ZZKL12]. (∗) Safety interval as
specified by the HYDAC company.

Controller [L; U ] [a ; b] Mean vol. (l)
H1 [4.9; 5.84] [4.9; 5.84] 5.43

H1(ε) [4.9; 7.16] [5.1; 7.16] 6.15
H2 [4.9; 7.9] [4.9; 7.9] 6.12

H2(ε) [4.9; 9.1] [5.1; 9.1] 7.24
G1M1 [CJL+09] [4.9; 25.1](∗) [5.1; 9.4] 8.2
G2M1 [CJL+09] [4.9; 25.1](∗) [5.1; 8.3] 7.95

[ZZKL12] [4.9; 25.1](∗) [5.2; 8.1] 7.35

We also consider extensions of both models with uncertainty ε � 0.1 l/s (changing any negative rate −m into
rate interval [−m−ε; −m+ε], but changing rate 0 into [−ε; 0]).We writeH1(ε) andH2(ε) for the corresponding
models.

4.2. Synthesizing controllers

For each model, we synthesise minimal upper bounds U (within the interval [Vmin; Vmax]) that admit a solution
to the energy-constrained infinite-run problem for energy constraint E � [Vmin; U ]. Then, we compute the
greatest stable interval [a; b] ⊆ [L; U ] of the cycle witnessing the existence of an E -constrained infinite-run.
This is done by following the methods described in Sects. 2 and 3 where quantifier elimination is performed using
Mjollnir [Mon10].

Finally for each model we synthesise optimal strategies that, given an initial volume w0 ∈ [a, b] of the
accumulator, return a sequence of pump activation times toni and toffi to be performed during the cycle. This is
performed in two steps: first we encode the set of safe permissive strategies as a quantifier-free first-order linear
formula having as free variables w0, and the times toni and toffi . The formula is obtained by relating w0, and the
times toni and toffi with the intervals [L; U ] and [a; b] and delays di as prescribed by the energy relations presented
in Sects. 2 and 3. We useMjollnir [Mon10] to eliminate the existential quantifiers on the delays di . Then, given an
energy value w0 we determine an optimal safe strategy for it (i.e., some timing values when the pump is turned on
and off) as the solution of the optimization problem that minimizes the average oil volume in the tank during one
consumption cycle subject to the permissive strategies constraints. To this end, we use the function FindMinimum
of Mathematica [Wol] to minimize the non-linear cost function expressing the average oil volume subject to the
linear constraints obtained above. Figure 9 shows the resulting strategies: there, each horizontal section of the
graph represents a strategy for an entire pump cycle when the system enters the cycle at a given initial oil level
(measured in decilitres). The green intervals indicate where the pump, according to the strategy, will be running.

Thefirst part ofTable 1 summarises the results obtained forourmodels. It gives theoptimal volumeconstraints,
the greatest stable intervals, and the values of the worst-case (over all initial oil levels in [a; b]) mean volume. It is
worth noting that the models without uncertainty outperform the respective version with uncertainty. Moreover,
the worst-casemean volume obtained both forH1(ε) andH2(ε) are significantly better than the optimal strategies
synthesised both in [CJL+09] and [ZZKL12].
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Fig. 9. Local strategies for a single cycle of the HYDAC system. (top-left) H1; (top-right) H2; (bottom-left) H1(ε); (bottom-right) H2(ε)
(ε � 0.1 l/s).

The reason for this may be that (i) our models relax the latency requirement for the pump, (ii) the strate-
gies of [CJL+09] are obtained using a discretisation of the dynamics within the system, and (iii) the strategies
of [CJL+09] and [ZZKL12] were allowed to activate the pump respectively two and three times during each cycle.

We proceed by comparing the performances of our strategies in terms of accumulated oil volume. Figure 10
shows the result of simulating our strategies for a duration of 200 s, i.e., 10 consecutive machine cycles. The plots
illustrate in blue (resp. red) the dynamics of the mean (resp. min/max) oil level in the accumulator as well as the
state of the pump—a green interval indicates that in that period the pump is on. The initial volume used for
evaluating the strategies is 8.3 l, as done in [CJL+09] for evaluating respectively the Bang-Bang controller, the
Smart Controller developed by HYDAC, and the controllers G1M1 and G2M1 synthesised with uppaal- tiga.4

Table 2 presents, for each of the strategies, the resulting accumulated volume of oil, and the corresponding
mean volume. There is a clear evidence that the strategies for H1 and H2 outperform all the other strategies.
Clearly, this is due to the fact that they assume full precision in the rates, and allow for more switches of the
pump. However, these results shall be read as what one could achieve by investing in more precise equipment.
The results also confirm that bothour strategies outperform those presented in [CJL+09]. In particular the strategy
for H1(ε) provides an improvement of 55%, 46%, 20%, and 19% respectively for the Bang-Bang controller, the
Smart Controller of HYDAC, and the two strategies synthesised with uppaal- tiga.

One can see in the plots in Fig. 10 all the strategies start by keeping the pump off until the oil volume reaches
a level within a stable interval (cf. Table 1). From there on, by following the strategies described in Fig. 9, the oil
level varies following a repetitive pattern.

4 We refer the reader to [CJL+09] for a more detailed description of the controllers.
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Fig. 10. Simulations of 10 consecutive machine cycles, started at initial oil level 83 decilitres, performed resp. with the strategies for (top-left)
H1; (top-right)H2; (bottom-left)H1(ε); and (bottom-right)H2(ε).

Table 2. Performance based on simulations of 200 s starting with 8.3 l.
Controller Acc. vol. (l) Mean vol. (l)

H1 1081.77 5.41
H2 1158.9 5.79

H1(ε) 1200.21 6.00
H2(ε) 1323.42 6.62

Bang-Bang 2689 13.45
hydac 2232 11.6
G1M1 1518 7.59
G2M1 1489 7.44

4.3. Tool chain

Our results have been obtained using Mathematica [Wol] and Mjollnir [Mon10]. Specifically, Mathematica was
used to construct the formulas modelling the post-fixpoints of the energy functions, callingMjollnir for perform-
ing quantifier elimination on them. The computation of the optimal upper bounds, and greatest stable intervals
were then handledwithMathematica, aswell as the computation of the optimal schedules and the respective simu-
lations. It is worthmentioning thatMathematica provides the built-in function Resolve for preforming quantifier
elimination, but Mjollnir was preferred to it both for its performances and its concise output. The combination
of both tools allowed us to solve one of our formulas with 27 variables in a compositional manner in ca. 20 ms,
while Mjollnir alone would take more than 20 minutes.

The Mathematica source code as well as the set up of our experiments are available at http://people.cs.aau.
dk/giovbacci/tools.html.

http://people.cs.aau.dk/giovbacci/tools.html
http://people.cs.aau.dk/giovbacci/tools.html
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Fig. 11. An ETP modelling the pump
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Fig. 12. Strategies for the m-stable interval [5.1; 8.9] l (for U � 11.5 l)

5. Non-flat model of the HYDAC case

We briefly present a more precise model of the HYDAC example, closer to what appeared in [CJL+09], using
a non-flat SETA. The model is built by considering two flat ETPs running in parallel: one ETP models the
consumption cycle of the machine (with fixed delays; see Fig. 7), and the second one models the state of the pump
over a complete cycle of the machine, allowing for instance at most 4 switches during one cycle (see Fig. 11). This
almost exactly corresponds to the model considered in [CJL+09].

The resulting model is an ETA, which can actually be turned into a non-flat SETA. Hence it only fits in our
framework with uncertainty. However, for fixed L and U , it is still possible to write down the energy relation,
with or without uncertainty: it results in a (large) list of cases, because of interleaving.

Following [CJL+09], we then compute m-stable intervals, i.e., intervals [a; b] of oil levels for which there is
a schedule to end up with final oil level in [a +m; b − m]. In the absence of uncertainties, fixing L � 4.9 l and
m � 0.4 l, we could then prove that there are m-stable intervals as soon as U ≥ 8.1 l.

With uncertainties, we obtain an m-stable interval [5.1; 8.9] l as soon as U ≥ 11.5 l. This again significantly
improves on [CJL+09] (which considered discrete time). Notice we did not apply our algorithm based on For-
mula (4) here (hence we may have missed better solutions): the formula would be very large, and would involve
(U − L)/0.2 intervals [as,j ; bs,j ] for each state of the automaton; this is much more than what our approach can
currently handle.

For them-stable interval [5.1; 8.9] l, we computed the constraints characterising all safe strategies. Figure 12
displays our strategies (notice the similarities with Fig. 5 of [CJL+09]).Wewere not able to select the optimal strat-
egy for themean volumebecause expressing themean volume results in a piecewise-quadratic function. Insteadwe
selected the strategy that fills in the tank as late as possible (which intuitively tends to reduce themean volume over
one cycle). Figure 13 shows a simulation performed over 10 cycles (which correspond to 200 s) starting from initial
volume 8.3 l. As before, the plot illustrates in blue (resp. red) the dynamics of the mean (resp. min/max) oil level
in the accumulator as well as the state of the pump—time intervals where the pump is on are indicated in green.
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Fig. 13. Simulation of 10 cycles

For this experiment we obtain a total accumulated volume of 1728.85 l, having mean accumulated volume 8.64 l
within the uncertainty interval [8.14, 9.14] l. In contrast with Fig. 10, in the simulation depicted in Fig. 13 the oil
level never touched the lower bound of the m-stable interval. This may indicate that the proposed strategy may
not be optimal.

Remark 5.1 We recall that energy-constrained infinite-run problem is in general undecidable. Hence the strategies
proposed in [CJL+09] and [ZZKL12] for theHYDACcase are basedonheuristics ormodelswhichusedpermissive
energy intervals where the scheduling could be (semi-automatically) proven to be found.

In this paper we showed that for the subclass of flat SETA, the energy-constrained infinite-run problem is, in
fact, decidable (Theorem 2.1) and that optimal energy bounds can be computed (Theorem 2.2). The class of flat
SETA is quite expressive, though it has some limitations. These limitations emerged also in our case study.

6. Conclusion

We developed a novel framework allowing for the synthesis of safe and optimal controllers, based on energy
timed automata. Our approach consists in a translation to first-order linear arithmetic expressions representing
our control problem, and solving these using quantifier elimination and simplification. We demonstrated the
applicability and performance of our approach by revisiting the HYDAC case study and improving its best-
known solutions.

Future work includes extending our results to non-flat and non-segmented energy timed automata. Existing
results [Mar11] indicate that we are close to the boundary of decidability, but we believe that by extending the
work on energy relations (Sect. 2.1) along the lines of [CFL19], it should be possible to further expand the horizon
of our decidability results towards the boundary set in [Mar11].

Another interesting continuation of this work would be to add Uppaal Stratego [DJL+14, DJL+15] to our
tool chain. This would allow to optimize the permissive strategies that we compute with quantifier elimination
in the setting of probabilistic uncertainty, thus obtaining controllers that are optimal with respect to expected
accumulated oil volume.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.
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