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Abstract. The concept “complete partial order” is generalized to the concept
“functionally complete partial order.” The correctness of a corresponding gener-
alization of the Knaster-Tarski fixpoint theorem is proved. The theory is applied
to yield a fixpoint mapping theorem.

1. Introduction

In [Hes90, Dij92, DiT93] certain generalizations of the Knaster-Tarski fixpoint
theorem [Tar55] are proved. In a recent “Call for Proofs” [Dij95] readers are
invited to submit their most elegant proof of yet another related generalization.
In this note I intend to meet a slightly different challenge, namely to find a still
more general version. The approach to this problem is suggested by the structure
of the proof in [DiT93]. In fact, large parts of that proof carry over to the proof
of the present generalization.

The outline of this paper is as follows. Section 2 introduces the basic termi-
nology. Section 3 sketches the challenge and Section 4 sketches the outline of the
proof. In Sections 5, 6 and 7 the challenge is met and the proof is given. Section
8 contains some specific consequences. Section 9 describes the precise extent of
the generalization. Section 10 contains a modest application to fixpoint mapping
(also known as “fixpoint fusion”). We conclude in Section 11.

2. Terminology

We assume the reader to be familiar with the notions of poset, upper bound,
supremum, complete lattice and monotonicity.
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In the rest of this section, (P , v ) is a fixed poset and f is a fixed endofunction on
P . The identity function is denoted by Id. Whenever no explicit type is mentioned
for some set, it is understood to be a subset of the universe P .
The irreflexive counterpart of v is denoted as @ .
If set S has a supremum, we denote it by tS .
Set S is called linear iff: p v q ∨ q v p, for all p, q ∈ S .
We call the partial order (P , v ) a complete partial order (cpo) iff: every linear
subset of P has a supremum in P .
Set S is called f-closed iff: f.p ∈ S , for all p ∈ S .
Element p is called a fixpoint of f iff: f.p = p.
Element p is called a prefixpoint of f iff: f.p v p.
Element p is called a maximal element of S iff: p ∈ S ∧ ¬(∃ q ∈ S :: p @ q).
Element p is called the maximum of S iff: p ∈ S ∧ (∀q ∈ S :: q v p).
Endofunction f is called expanding on set S iff: p v f.p for all p ∈ S . Also, in
this case we say that set S is f-expanding.

We will have use for the following fresh notions.
Set S ⊆ P inherits the supremum of a set T ⊆ S iff:

T has a supremum in P ⇒ tT ∈ S .
Endofunction f on P is called pseudo-monotonic iff:

p v q ∧ f.p v q ⇒ f.p v f.q, for all p, q ∈ P .
Set S is called f-narrow iff:

p v q ∨ f.q v p, for all p, q ∈ S .
Note that a monotonic endofunction is certainly pseudo-monotonic. Also, an
expanding function is certainly pseudo-monotonic. Finally, a set is linear if and
only if it is Id-narrow.

3. The Challenge

Tarski’s Lattice-theoretical fixpoint theorem in [Tar55] states that the fixpoints
of a monotonic endofunction on a complete lattice constitute a complete lattice
by themselves. In the course of the proof it is first shown that a monotonic
endofunction on a complete lattice has a least fixpoint. In Computing Theory
this is the most interesting aspect of the theorem. So much so, that quite often the
intermediate result is also called Knaster-Tarski’s theorem. We will follow suit.

In order to introduce the various versions of the Knaster-Tarski fixpoint
theorem we need the following concepts.

First a set property prop is identified, i.e. a boolean function on subsets of P .
Next we define: poset (P , v ) is prop-complete iff every set T satisfying prop has
a supremum in P . Finally, we define: set S in prop-complete poset (P , v ) is a
prop-complete subset iff S inherits the supremum of every set T ⊆ S that satisfies
prop. Note that if S is a prop-complete subset of a prop-complete universe and
prop does not depend on the universe, then (S, v ) is a prop-complete poset in
itself (with the obvious restriction of v to S).

The generic theorem is now stated as:

Let f be a monotonic endofunction on a prop-complete poset (P , v ). Then
f has a least fixpoint, denoted µf, and in addition:

(i) µf satisfies the equation in p : (∀x : f.x v x : p v x),

(ii) µf is contained in every f-closed prop-complete subset of P .
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By definition, in a complete lattice any set has a supremum. So the original
theorem of Knaster-Tarski corresponds roughly to the choice of prop given by
prop.S = true, for any S . Further, the theorem of Knaster-Tarski in [Hes90, Dij92,
DiT93] in a cpo corresponds to the choice of prop given by prop.S = “S is linear”,
for any S . Without proof we state that the theorem of Knaster-Tarski in [Dij95]
corresponds to the choice of prop given by prop.S = “S is the f-image of a linear
set”, for any S .

It is clearly the case that the stronger prop is, the weaker the notion of prop-
completeness will be and the stronger the resulting theorem. So we strive to have
prop as strong as feasible.

4. The Map

Our choice of prop is suggested by the steps of the proof in [DiT93]. There, prop
is given by prop.S = “S is linear”, for all S . We summarize the landmarks of that
proof:

(a) there is a smallest f-closed prop-complete subset, say M,
(b) if f is expanding or monotonic, prop.M holds, therefore tM exists and is

contained in every prop-complete subset; tM is the unique fixpoint of f in
M,

(c) if f is monotonic, tM is the least prefixpoint of f in P .

Interestingly, in the course of the proof it is also shown that M is f-expanding
and f-narrow. So M satisfies a property stronger than linearity and we are led to
consider the possibility that the same type of proof still holds if we choose prop.S
as: S is f-closed, f-expanding and f-narrow. In a further attempt to strengthen
prop while retaining the proof, I observed that M contains ⊥. Thereupon, Wim
H. Hesselink observed that M inherits the suprema of all of its linear subsets and
suggested to strengthen prop accordingly. Also, it turns out that the condition “f
is expanding or monotonic” in landmark (b) can be weakened to “f is pseudo-
monotonic”. And lastly, the theorem can be generalized to cover not only the
least fixpoint, but other fixpoints as well.

In the following section we fill in the details of the resulting definitions and
travel to landmark (a). Our specific choice of prop will be expressed as “being a
trail”.

5. First Steps

Throughout this section, we assume that (P , v ) is a partial order and f an
endofunction on P . The domains P and Pow(P ) will be implicit.

We introduce the following notions:

(1) Definition. A set S is an f-stretch (or stretch for short, if function f is clear
from the context) iff:

(a) S is f-expanding,

(b) S is f-narrow, and

(c) S is f-closed.
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(2) Definition. A set T is an f-trail (or trail for short, if function f is clear
from the context) iff:

(a) T is f-expanding,

(b) T is f-narrow,

(c) T is f-closed, and

(d) T inherits suprema of all subsets S ⊆ T .

Observe that, if an f-trail has a supremum, that supremum is contained in it
because of (2.d), and is a fixpoint of f because of (2.a) and (2.c).

(3) Definition. The triple (P , v , f), is a functionally complete partial order
(fcpo) if and only if every f-trail has a supremum.

(4) Definition. Let (P , v , f) be an fcpo. A subset Q of P is a sub-fcpo iff:

(a) Q is f-closed, and

(b) Q inherits suprema of all f-stretches S ⊆ Q.

For examples of stretches, trails and fcpo’s we refer the reader to section 9.
Instead of the defining property (4.b) the reader may have expected the weaker:

“Q inherits suprema of all f-trails T ⊆ Q”. With that choice however, not every
sub-fcpo would necessarily correspond to an fcpo. The source of this complication
is the introduction of t-inheritance as one of the defining properties of an f-trail.
As a consequence, “being an f-trail” depends implicitly on the universe.

Evidently, if (P , v , f) is an fcpo, then P is a sub-fcpo. Also, any f-trail is
both an f-stretch and a sub-fcpo. Note further, that all defining properties are
preserved by intersection. It follows that the intersection of an arbitrary collection
of f-stretches (resp. f-trails, sub-fcpo’s) is itself an f-stretch (resp. f-trail, sub-
fcpo).

On inspection of the definitions (3) and (2) we find that, if (P , v ) is a cpo and
f an endofunction on P , then (P , v , f) is an fcpo. The converse for the special
endofunction Id is Corollary (31) in Section 8. In Section 9 we will exhibit an
fcpo (P , v , f) such that (P , v ) is not a cpo.

We now prove a small collection of useful properties concerning existence and
inheritance of suprema. Notably, we will show that every sub-fcpo corresponds
to an fcpo.

Any subset of an f-stretch is both f-expanding and f-narrow. Therefore the
following property is sometimes useful.

(5) Property. Let set S be f-expanding and f-narrow. Then S is linear and f
is monotonic on S .

Proof : That S is linear is easily proved. In order to prove that f is monotonic
on S we assume p, q ∈ S and observe:

f.p v f.q

⇐ { S is f-expanding }
f.p v q

⇐ { S is f-narrow }
¬(q v p)

= { S is linear, v is antisymmetric }
p v q ∧ p 6= q
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Additionally, we observe p = q ⇒ f.p v f.q.

Next we prove two properties of stretches in sub-fcpo’s.

(6) Property. Let (P , v , f) be an fcpo. Let Q be a sub-fcpo. Let S be an
f-stretch in Q . Let U be a subset of S . Let set T be defined by

(∗) p ∈ T ≡ p ∈ S ∧ (∃q ∈ U :: p v q)

Then we have:

(i) r is an upper bound of T ≡ r is an upper bound of U, for every r

(ii) T is an f-stretch ∨ U has a maximum

Proof : In order to prove (6.i) we observe:

r is an upper bound of T

⇒ { v reflexive, so U ⊆ T }
r is an upper bound of U

⇒ { (6.∗), definition of upper bound }
(∀p ∈ T :: (∃q ∈ U :: p v q ∧ q v r))

⇒ { v transitive }
r is an upper bound of T

In order to prove (6.ii) we assume that U has no maximum and prove that T
is an f-stretch. Because T is a subset of stretch S , it suffices to prove that T is
f-closed. Thus we assume that p is any element of T and have to prove f.p ∈ T .
From (6.∗) it follows that there exists a q ∈ U such that p v q. Now we note,
using (5), that from U ⊆ S it follows that U is linear. From the case premise it
then follows that U does not have a maximal element. So there exists an r ∈ U
such that q @ r. And now we observe:

f.p ∈ T
⇐ { instantiation of (6.∗) }

f.p ∈ S ∧ f.p v r

= { S is f-closed }
f.p v r

⇐ { p, r ∈ U, U ⊆ S , S is f-narrow }
¬(r v p)

= { p v q, q @ r }
true

(7) Property. Let (P , v , f) be an fcpo. Let Q be a sub-fcpo. Let S be an
f-stretch in Q. Let U be a subset of S . Then Q inherits the supremum of U.

Proof : In the case that U has a maximum, the property is trivial. For the rest
of the proof we assume that U has no maximum. We let T be defined by (6.∗).
From (6.ii) it follows that T is an f-stretch.

Now if p is the supremum of U, then by (6.i), it is also the supremum of the
stretch T . Therefore, since Q is a sub-fcpo that contains T , property (4) implies
p ∈ Q. This shows that Q inherits the supremum of U.

The following property is an extension of the defining property (3) of an fcpo.
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(8) Property. Let (P , v , f) be an fcpo. Let Q be an f-trail. Let U be a subset
of Q. Then U has a supremum.

Proof : The proof is by contradiction. We assume that U does not have a
supremum. It suffices to show that U has a supremum. We let T be defined by:

p ∈ T ≡ p ∈ Q ∧ (∃q ∈ U :: p v q)(9)

Because Q is an f-trail, Q is both a sub-fcpo and an f-stretch. From (6.ii) we find
that T is an f-stretch.

And now we prove that T is an f-trail by proving that stretch T inherits the
supremum of every set V ⊆ T . Thus, let V be any subset of T , and let V have a
supremum. It follows from (7) with S := Q and U := V that tV ∈ Q. Then we
observe:

tV 6∈ T
= { (9) with p := tV , tV ∈ Q }

(∀q ∈ U :: ¬(tV v q))

⇒ {tV ∈ Q, U ⊆ Q; Q linear }
(∀q ∈ U :: q v tV )

= { (7) with S,U := Q,V }
tV is an upper bound of U

= { (6.i) with S := Q }
tV is an upper bound of T

⇒ {V ⊆ T }
tV is the supremum of T

= { (6.i) with S := Q }
tV is the supremum of U

= { by assumption, U has no supremum }
false

This proves, that T is an f-trail in fcpo (P , v , f). It follows that T has a
supremum and, by (6.i), that U has a supremum.

The following property justifies the name sub-fcpo.

(10) Property. Let (P , v , f) be an fcpo. Let Q be a sub-fcpo. Then (Q, v , f)
is an fcpo (with v and f restricted to Q).

Proof : Two subtleties are involved: property (4.b) mentions stretches, not subsets
as in (2.d), and the supremum of a set (and consequently, being a trail) depends
implicitly on the universe.

With v and f restricted to Q, it is evident that (Q, v ) is a partial order
and f an endofunction. The remaining obligation is to prove that every trail in
(Q, v , f) has a supremum. Thus, let T be any trail in (Q, v , f).

Now T is certainly a stretch, so by (7), sub-fcpo Q inherits the supremum
in (P , v , f) of every subset of T . Because inheritance is transitive and trail T
inherits the supremum in (Q, v ) of every subset of T , T inherits the supremum
in (P , v ) of every subset of T . From definition (2) it then follows, that trail T in
(Q, v , f) is also a trail in fcpo (P , v , f). Therefore T contains its supremum with
respect to (P , v ), i.e. T has a maximum. That maximum is also the supremum
of T in (Q, v ).
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The following property gives a formally weaker, but (in an fcpo) equivalent
characterization of f-trails.

(11) Property. Let (P , v , f) be an fcpo. Then we have:

Q is an f-expanding, f-narrow sub-fcpo ≡ Q is an f-trail

Proof : The implication (⇐) follows directly from the definitions. In order to
prove the converse, we assume that Q is any f-expanding, f-narrow sub-fcpo.
From definitions (1) and (4) it follows that Q is a stretch, and by definition (2) it
suffices to show that Q inherits the supremum of every set U ⊆ Q. This follows
directly from (7) with S := Q.

And now we are ready for landmark (a).

(12) Theorem. Let (P , v , f) be an fcpo and U a subset of P . Then there exists
a smallest sub-fcpo (with respect to set inclusion) that contains U.

Proof : The intersection of all sub-fcpo’s that contain U is a sub-fcpo that
contains U, and it is the smallest one.

Thus, in view of (10), landmark (a) has been reached with the choice: prop.S =
“S is an f-trail,” for all S .

6. Carrying On

Landmark (b) requires a somewhat longer journey. It is subsumed by the following
theorem.

(13) Theorem. Let (P , v , f) be an fcpo. Let f be pseudo-monotonic. Let f be
expanding on subset X. Let M be the smallest sub-fcpo that contains X.
Finally, suppose that the following holds:

(∗) (∀p ∈ X, q ∈M :: p v q ∨ f.q v p)

Then we have:

(i) M is an f-trail,
(ii) tM is the unique fixpoint of f among the upper bounds of X in M.

6.1. Proof of Theorem (13)

Note that subset X is f-expanding and f-narrow, but not necessarily f-closed.
Concerning the proof of (13.i) we observe that M is a sub-fcpo. From property
(11) we conclude that it suffices to prove

(a) M is f-expanding, and
(b) M is f-narrow.

Concerning the proof of (13.ii) we observe that, on condition that (13.i) has been
proved, it follows, because (P , v , f) is an fcpo, that the supremum of M exists
and is a fixpoint of f. As X is a subset of M, the supremum of M is an upper
bound of X. So it suffices to show:

(c) p = f.p ⇒ p = tM for any p ∈M such that (∀q ∈ X :: q v p).

We proceed and fulfil these three proof obligations sequentially.
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6.1.1. Proof of (a)

The proof of (a) amounts to the proof that M ⊆ A, where the set A is defined by

p ∈ A ≡ p v f.p, for all p(14)

Because M is the smallest sub-fcpo that contains X, it suffices to show that A is
a sub-fcpo that contains X.
Because X is f-expanding, it follows directly from (14) that A contains X. By
definition (4) the proof that A is a sub-fcpo amounts to the proof that A is
f-closed and inherits suprema of stretches.
We prove that A is f-closed by observing for any p:

f.p ∈ A
= { (14) }

f.p v f.(f.p)

⇐ { f is pseudo-monotonic }
p v f.p ∧ f.p v f.p

= { (14), v reflexive }
p ∈ A

We prove that A inherits suprema of stretches by observing for any stretch S ⊆ A
that has a supremum:

tS ∈ A
= { (14) }
tS v f. tS

= { property of t }
(∀p : p ∈ S : p v f. tS)

⇐ { v transitive }
(∀p : p ∈ S : p v f.p ∧ f.p v f. tS)

= { S ⊆ A, (14) }
(∀p : p ∈ S : f.p v f. tS)

⇐ { f pseudo-monotonic }
(∀p : p ∈ S : p v tS ∧ f.p v tS)

= { S is f-closed }
(∀p : p ∈ S : p v tS)

= { property of t }
true
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6.1.2. Proof of (b)

A central role in the proof of (b) will be played by the function E : P → Pow(P )
that is closely related to f-narrowness and defined by:

p ∈ E.q ≡ p v q ∨ f.q v p, for any p, q ∈ P .(15)

This function E enjoys the following weak f-closure property:

(16) Property. Let f be pseudo-monotonic on P . Then we have for any
p, q ∈ P :

p ∈ E.q ∧ q ∈ E.p ⇒ f.p ∈ E.q .
Proof : For any p, q ∈ P we have:

p ∈ E.q ∧ q ∈ E.p
= { definition (15) }

( p v q ∨ f.q v p ) ∧ ( q v p ∨ f.p v q )

⇒ { distribution, weakening, ordering, v is anti-symmetric }
f.p v q ∨ p = q ∨ ( q v p ∧ f.q v p )

⇒ {Leibniz, v is reflexive, f is pseudo-monotonic }
f.p v q ∨ f.q v f.p ∨ f.q v f.p

= { ∨ idempotent, definition (15) }
f.p ∈ E.q

The second useful property of E is:

(17) Property. For any q, the set E.q inherits suprema of arbitrary subsets.

Proof : Let S be any subset of P that has a supremum in P . We prove S ⊆
E.q ⇒ tS ∈ E.q by starting from the consequent:

tS ∈ E.q
= { definition (15) }
tS v q ∨ f.q v tS

= { property of t }
(∀p : p ∈ S : p v q) ∨ f.q v tS

= { distribution }
(∀p : p ∈ S : p v q ∨ f.q v tS)

⇐ { p ∈ S ⇒ p v tS , transitivity of v }
(∀p : p ∈ S : p v q ∨ f.q v p)

= { definition (15) }
S ⊆ E.q

Still for the purpose of a compact formulation of the proof of (b) we define the
set B by:

p ∈ B ≡ (∀q ∈M :: p ∈ E.q)(18)

From this and (15) we find immediately:
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(19) Property. Premise (13.∗) is equivalent to (∀q ∈ M :: X ⊆ E.q) as well as
to X ⊆ B.

After this introduction of E and B we now turn to the proof of (b), i.e. the proof
that M is f-narrow. We observe:

M is f-narrow

= { definition of f-narrow }
(∀p, q ∈M :: p v q ∨ f.q v p)

= { definition of E.q, B and set calculus }
M ⊆ B ∩M

⇐ { definition of M }
B ∩M is a sub-fcpo containing X

That B ∩M contains X is immediate from the definition of M and (19). That
B ∩M inherits suprema of stretches follows from the fact that M does and (17).
Thus, we only have f-closedness left. In order to prove that B ∩M is f-closed
we assume that p is any element of B ∩M and prove f.p ∈ B ∩M by first
observing:

f.p ∈ B ∩M
= { p ∈M, M is f-closed }

f.p ∈ B

= { (18) }
(∀q ∈M :: f.p ∈ E.q)

⇐ { f is pseudo-monotonic, (16) }
(∀q ∈M :: p ∈ E.q ∧ q ∈ E.p)

= { p ∈ B, definition (18) }
(∀q ∈M :: q ∈ E.p)

= { set calculus }
M ⊆ E.p ∩M

⇐ {M is the minimal sub-fcpo that contains X }
E.p ∩M is a sub-fcpo that contains X

That E.p ∩M contains X is immediate from the definition of M and (19). That
E.p ∩M inherits suprema of stretches follows from the fact that M does and (17).
Thus, again we only have f-closedness left. We prove that E.p ∩M is f-closed by
observing for any q ∈M:

f.q ∈ E.p ∩M
= {M is f-closed }

f.q ∈ E.p
⇐ { f is pseudo-monotonic, (16) }

q ∈ E.p ∧ p ∈ E.q
= { p ∈ B, q ∈M, (18) }

q ∈ E.p
This concludes the proof of (b) and also the proof of (13.i), i.e. M is a trail.
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6.1.3. Proof of (c)

In order to prove (c), we let p ∈M be such that

p = f.p, and(20)

(∀q ∈ X :: q v p)(21)

We have to prove p = tM. First we observe:

p = tM
= { p ∈M }
tM v p

= { property of t }
(∀q ∈M :: q v p)

In order to prove the last line, we rewrite it as

M ⊆ C.p ∩M(22)

where the set C.p is defined by

q ∈ C.p ≡ q v p(23)

Because M is the smallest sub-fcpo that contains X it suffices to prove that
C.p ∩M is a sub-fcpo that contains X, i.e. that C.p ∩M is f-closed, inherits
suprema of stretches, and contains X.
In order to prove that C.p ∩M is f-closed we assume q ∈ C.p ∩M and observe:

f.q ∈ C.p ∩M
= { q ∈M, M is f-closed }

f.q ∈ C.p

= { (23) }
f.q v p

= { (20) }
f.q v f.p

⇐ { q ∈M, p ∈M, M is a trail, (2), (5) }
q v p

= { (23), q ∈ C.p }
true

In order to prove that C.p ∩M inherits suprema of stretches we assume that S
is a stretch in C.p ∩M and that S has a supremum. We observe:

tS ∈ C.p ∩M
= {M is a sub-fcpo }
tS ∈ C.p

= { (23) }
tS v p

= { property of t }
(∀q : q ∈ S : q v p)

= { (23) }
(∀q : q ∈ S : q ∈ C.p)

= { S ⊆ C.p }
true
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In order to prove that C.p ∩M contains X we observe for any q ∈ X:

q ∈ C.p ∩M
= { q ∈ X, M contains X }

q ∈ C.p

= { (23) }
q v p

= { q ∈ X, (21) }
true

7. Arrival

Landmark (c) requires some further traveling, but the result is expressed in:

(24) Theorem. Let (P , v , f) be an fcpo. Let f be monotonic on P . Let L be a
linear set of fixpoints of f. Let M be the smallest sub-fcpo that contains L.
Then we have:

(i) M is an f-trail,
(ii) tM is the least prefixpoint of f among the upper bounds of L.

Note that, because (P , v , f) is an fcpo, it follows immediately from (24.i) that
tM exists and is a fixpoint of f. From (24.ii) it then follows that tM is also the
least fixpoint of f among the upper bounds of L.

7.1. Proof of (24.i)

Because any monotonic function is pseudo-monotonic, and a set of fixpoints of
f is certainly f-expanding, (i) follows from theorem (13) if we succeed in proving
premise (13.∗) for X := L. We observe:

(13.∗) with X := L

= { }
(∀p ∈ L, q ∈M :: p v q ∨ f.q v p)

= { definition of L }
(∀p ∈ L, q ∈M :: f.p v q ∨ f.q v f.p)

⇐ { f is monotonic }
(∀p ∈ L, q ∈M :: f.p v q ∨ q v p)

= { define E as in (15), set calculus }
(∀p ∈ L :: M ⊆ E.p)

Because M is the smallest sub-fcpo containing L, it suffices to prove that for any
p ∈ L, E.p is a sub-fcpo containing L, i.e. that E.p inherits suprema of stretches,
is f-closed and contains L. Thus, let p be any element of L.
From (17) it follows directly that E.p inherits suprema of stretches.
We show that E.p is f-closed by observing for any q:

f.q ∈ E.p
= { (15) }

f.q v p ∨ f.p v f.q

= { p is a fixpoint of f }
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f.q v f.p ∨ f.p v f.q

⇐ { f is monotonic }
q v p ∨ p v q

= { p is a fixpoint of f }
q v p ∨ f.p v q

= { (15) }
q ∈ E.p

We show that E.p contains L by observing for any q ∈ L:

q ∈ E.p
= { (15) }

q v p ∨ f.p v q

= { p is a fixpoint of f }
q v p ∨ p v q

= { p, q ∈ L, L is linear }
true

This concludes the proof of (24.i).

7.2. Proof of (24.ii)

Let U be the set of upper bounds of L. From (24.i) and the premise L ⊆ M we
conclude that tM is a fixpoint of f in U. In order to prove (24.ii) we define the
set D by

p ∈ D ≡ (∀q ∈ U : f.q v q : p v q) .(25)

We observe

tM is the least prefixpoint of f in U

⇐ {tM is a (pre)fixpoint of f in U }
tM is a lower bound of the prefixpoints of f in U

= { (25) }
tM ∈ D

⇐ { (i), so tM ∈M; M is the smallest sub-fcpo containing L }
D is a sub-fcpo containing L

We prove the last line by proving that D is f-closed, inherits suprema of stretches
and contains L. In order to prove that D is f-closed we observe for any p:

f.p ∈ D
= { (25) }

(∀q ∈ U : f.q v q : f.p v q)

⇐ { v is transitive }
(∀q ∈ U : f.q v q : f.p v f.q)

⇐ { f is monotonic }
(∀q ∈ U : f.q v q : p v q)

= { (25) }
p ∈ D
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In order to prove that D inherits suprema of stretches we observe for any set S
that has a supremum in P :

tS ∈ D
= { (25) }

(∀q ∈ U : f.q v q : tS v q)
= { property of t }

(∀q ∈ U : f.q v q : (∀p ∈ S :: p v q))
= { interchange }

(∀p ∈ S :: (∀q ∈ U : f.q v q : p v q))
= { (25) }

(∀p ∈ S :: p ∈ D))
= { }

S ⊆ D
In order to prove that D contains L we observe for any p:

p ∈ D
= { (25) }

(∀q ∈ U : f.q v q : p v q)
⇐ {U is the set of upper bounds of L }

p ∈ L
This concludes the proof of (24.ii).

8. Some Consequences

We mention some consequences of theorems (13) and (24).
First, in theorem (13) we take X to be the empty set. Because any element is an
upper bound of the empty set, we find:

(26) Corollary. Let (P , v , f) be an fcpo. Let f be pseudo-monotonic. Let M
be the smallest sub-fcpo. Then we have:

(i) M is a trail,
(ii) tM is the unique fixpoint of f in M.

Next, in theorem (24) we take L to be the empty set. We find:

(27) Corollary. Let (P , v , f) be an fcpo. Let f be monotonic. Let M be the
smallest sub-fcpo. Then we have:

(i) M is a trail,
(ii) tM is the least prefixpoint of f in P .

In the context of corollary (27) we note that tM is a fixpoint of f. So an
immediate consequence of corollary (27) is:

(28) Corollary. Let (P , v , f) be an fcpo. Let f be monotonic. Let M be the
smallest sub-fcpo. Then we have:

(i) f has a least fixpoint, µf,
(ii) µf is the least prefixpoint of f,
(iii) µf = tM.
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Another consequence of theorem (24) is:

(29) Corollary. Let (P , v , f) be an fcpo. Let f be monotonic. Let Q be the
set of prefixpoints of f. Then (Q, v , f) is an fcpo in itself (with v and f
restricted to Q).

Proof : Note that set Q does not necessarily inherit suprema of stretches, so Q
is not necessarily a sub-fcpo. For monotonic f, the set of prefixpoints of f is
certainly f-closed. So, with v and f restricted to Q, (Q, v ) is a partial order
and f a monotonic endofunction on Q. We have to prove that every f-trail in
(Q, v , f) has a supremum in Q. Thus, let T be any f-trail in (Q, v , f). Then,
because v is anti-symmetric, T is a linear set of fixpoints of f. Let M be the
smallest sub-fcpo in (P , v , f) that contains T . From (24.ii) it follows that tM is
the supremum of T in Q.

Because the supremum of an f-trail is a fixpoint of f, another immediate conse-
quence of theorem (24) is:

(30) Corollary. Let (P , v , f) be an fcpo. Let f be monotonic on P . Let F be
the set of fixpoints of f. Then (F, v ) is a cpo in itself (with v restricted to
F).

Next we take f to be the identity function Id, and get the converse of an
observation in Section 5:

(31) Corollary. Let (P , v , Id) be an fcpo. Then (P , v ) is a cpo.

Finally, we remark that theorem (24) can be used to prove the ‘Lattice-
theoretical fixpoint theorem’ of [Tar55]. We omit the proof here, because it is
hardly shorter, and because the result is not new.

9. Is this New Territory?

One may rightfully ask whether the definition of an fcpo really is a generalization
of the definition of a cpo. We will presently show that the answer is ‘yes’. Another
relevant question is, whether there exists a formally stronger characterization of
an fcpo. We tackle the latter question first. To that end we prove two properties.

(32) Property. Let (P , v , f) be an fcpo. Let f be expanding. Then P has a
maximal element.

Proof : The proof is by contradiction. Thus we assume that P has no maximal
element. From the axiom of choice it follows that there is an endofunction maj
on P such that (∀p ∈ P :: p @ maj.p). Next we construct a function g according
to:

g.p = (if p = f.p then maj.p else f.p fi)(33)

We first prove that (P , v , g) is an fcpo. It suffices to prove that every g-trail
has a supremum. Thus, let T be any g-trail. We have to prove that T has a
supremum. It suffices to prove that T is an f-trail. Thereto we observe separately:

T is f-expanding

= { f is expanding on P }
true
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and

T is f-narrow

= { definition }
(∀p, q ∈ P :: p v q ∨ f.q v p)

⇐ { from (33) we have: f.q v g.q, for every q }
(∀p, q ∈ P :: p v q ∨ g.q v p)

= {T is g-narrow }
true

and

T is f-closed

= { definition }
(∀p ∈ T :: f.p ∈ T )

= { }
(∀p ∈ T : p 6= f.p : f.p ∈ T )

⇐ { (33) }
(∀p ∈ T :: g.p ∈ T )

= {T is g-closed }
true

and

T inherits the supremum of every subset of T

= {T is a g-trail }
true

This completes the proof that (P , v , g) is an fcpo. From definition (33) we
conclude that function g is expanding on P and has no fixpoint. So g is certainly
pseudo-monotonic and from corollary (26) with f := g, we find that g has a
fixpoint. This is a contradiction.

(34) Property. Let (P , v , f) be an fcpo. Let U be an f-expanding, linear
sub-fcpo. Then U has a maximum.

Proof : From (10) and (32) it follows that U has a maximal element in (U, v ).
So, because U is linear, U has a maximum.

From the last property it follows that there is an alternative characterization
of an fcpo in terms of a weaker notion of f-trail. The weakened definition of an
f-trail is as follows.

(35) Definition. A set T is an f-trail∗ iff:

(a) T is f-expanding,

(b) T is linear,

(c) T is f-closed, and

(d) T inherits the supremum of every stretch in T .

The alternative characterization of an fcpo is given by the following theorem.

(36) Theorem. Let (P , v ) be a partial order. Let f be an endofunction on P .
The triple (P , v , f) is an fcpo if and only if every f-trail∗ has a supremum.
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Omission of any of the four requirements (a–d) in (35) amounts to a weakening
of the notion of f-trail∗ and a formal strengthening of the corresponding notion
of an fcpo, i.e. “every f-trail∗ has a supremum.” That it amounts to a strict
strengthening of this property is shown by the following four examples. They
are numbered (a–d) according to the requirement of (35) that is omitted. In
each example we exhibit an fcpo that contains an f-trail∗∗ (yet weaker) without
supremum. In three of the cases the particular f-trail∗∗ is linear. This shows that
the definition of an fcpo is a proper generalization of the definition of a cpo.

(a) Let universe P be the set of natural numbers (including 0) and let P be linearly
ordered by 6. Let endofunction f on P be given by f.0 = 0, and f.x = x− 1
if x > 0. Function f is monotonic. The empty stretch has supremum 0. It
then follows (using expandingness) that T = {0} is the only trail. Since T has
supremum 0, (P ,6, f) is an fcpo. As particular f-trail∗∗ we take the universe
P . It is linear and f-closed and inherits suprema of all subsets. But f is not
expanding on P , and P has no upper bound, let alone a supremum. Also,
(P ,6) is not a cpo.

(b) Let universe P be the set {a, b, c}. The order v is given by x v y ≡
x = a ∨ x = y. Let f be the identity function on P . The f-trails are
∅, {a}, {a, b}, {a, c}. Clearly, (P , v , f) is an fcpo. As particular f-trail∗∗ we take
the universe P . It is f-expanding, f-closed and inherits the supremum of every
subset of P , but it is not linear and has no least upper bound.

(c) Let universe P be the set of natural numbers (including 0) and let the partial
order v be given by

i v j ≡ i 6 j ∧ (i = 1 ⇒ j = 1)

Let endofunction f on P be given by f.0 = 1, and f.x = x if x > 0. Function
f is expanding. The empty stretch has supremum 0. So every trail contains
0 and, since it is f-closed, also 1. It then follows (using narrowness) that
T = {0, 1} is the only trail. Since 1 is the maximum of T , it is the supremum
of T . Therefore, (P , v , f) is an fcpo.
As particular f-trail∗∗, let Q be the set of numbers 6= 1. Set Q is linear,
f-expanding and inherits the supremum of every subset of Q, but Q is not
f-closed. Obviously, Q does not have an upper bound, let alone a supremum,
so (P , v ) is not a cpo.

(d) In the context of the previous example and as particular f-trail∗∗, let R be
the set of numbers > 1. Set R is f-expanding, linear and f-closed, but it does
not inherit the supremum of its empty subset and it has no upper bound, let
alone a supremum.

10. Least Fixpoint Mapping

Suppose we are given two partially ordered universes P and Q, a mapping f from
P to Q, and monotonic endofunctions g, h on P , Q respectively. One may be
interested to know sufficient conditions in order that f maps the least fixpoint of
g to the least fixpoint of h. The following theorem gives such conditions.
For convenience, we use the same symbol v for both partial orders. The g-image
of set S is denoted as g•S . Function f is called t-junctive for set S iff:

S has a supremum ⇒ (f•S has a supremum and f. tS = t(f•S) ).
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(37) Theorem. Let (P , v , g) and (Q, v , h) be fcpo’s. Let g and h be monotonic.
Let f be a function from P to Q. Then we have:

(i) (h ◦ f).µg v (f ◦ g).µg ⇒ µh v f.µg,
(ii) if f is t-junctive for all g-stretches then:

(∀p ∈ P :: (f ◦ g).p v (h ◦ f).p) ⇒ f.µg v µh.

Proof : It follows from corollary (28) that the least fixpoints of g and h exist. We
prove (37.i) by starting from the antecedent.

(h ◦ f).µg v (f ◦ g).µg
= { property of fixpoint }

h.(f.µg) v f.µg

⇒ { corollary (28.ii) for (Q, v , h) }
µh v f.µg

In order to prove (37.ii) we assume:

f is t-junctive for all g-stretches, and(38)

(∀p ∈ P :: (f ◦ g).p v (h ◦ f).p)(39)

We also define M to be the smallest sub-fcpo in (P , v , g).
We have to prove the consequent, which we rewrite:

f.µg v µh

= { corollary (28.iii) for (P , v , g) }
f. tM v µh

= { corollary (27.i), (2), (38) }
t(f•M) v µh

= { property t }
(∀p ∈M :: f.p v µh)

Because M is the smallest sub-fcpo in P , the last line can be proved by showing
that the set F is a sub-fcpo in P , where F is defined by

p ∈ F ≡ f.p v µh(40)

Thus it remains to be proved that F is g-closed and inherits suprema of g-stretches.
In order to prove that F is g-closed we observe for any p:

g.p ∈ F
= { (40) }

f.(g.p) v µh

⇐ { (39), v is transitive, µh is a fixpoint }
h.(f.p) v h.µh

⇐ { h monotonic }
f.p v µh

= { (40) }
p ∈ F

In order to prove that F inherits suprema of g-stretches we assume that S is any
g-stretch in F with a supremum in P . We prove tS ∈ F by observing:

tS ∈ F
= { (40) }
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f. tS v µh

= { S is a stretch, (38) }
tf•S v µh

= { property t }
(∀p ∈ S :: f.p v µh)

= { S ⊆ F , (40) }
true

11. Conclusion

We have given general conditions that guarantee the existence of a least fixpoint
for a monotonic endofunction on a partially ordered set. A generalized version
of the theorem of Knaster-Tarski is shown to hold in so-called “functionally
complete partial orders”. These are characterized by the property, that every
so-called “f-trail” contained in them has a supremum. We have taken care to
choose the defining properties of an fcpo and a sub-fcpo as weak as feasible, and
the defining properties of an f-trail as strong as feasible. Moreover, from a range
of equivalent characterizations of an fcpo, we have given both the weakest and
the strongest form that we could achieve.
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