
Formal Aspects of Computing (1998) 10: 436–451
c© 1998 BCS Formal Aspects

of Computing

Testing Algebraic Data Types and Processes:
A Unifying Theory

Marie-Claude Gaudel1 and Perry R. James2

1Lab. de Recherche en Informatique, Université de Paris-Sud and CNRS, Orsay, France;
2Dep. de Ciência da Computação, IME-Universidade de São Paulo, São Paulo, Brazil

Keywords: Black box testing; Formal testing; Full LOTOS

Abstract. There is now a lot of interest in program testing based on formal
specifications. However, most the works in this area focus on one formalized
aspect of the software under test. For instance, some previous works of the
first author consider abstract data type specifications. Other works are based on
behavioural descriptions, such as finite state machines or finite labelled transition
systems. This paper begins by briefly recalling the principles of test data selection
from algebraic data types specifications. Then, it transposes them to basic and
full LOTOS. Finally it exploits this uniform framework and suggests a new
integrated approach to test derivation from full LOTOS specifications, where
both behavioural properties and data types properties are taken into account
when dealing with processes.

1. Introduction

There is now a lot of interest in program testing based on formal specifications.
However, most the works in this area focus on one formalized aspect of the
software under test. For instance, some previous works consider abstract data
type specifications [BGM91, Gau95]. Other works are based on behavioural
descriptions, such as finite state machines [Cho78, FKG91, LeY94] or finite
labelled transition systems [dNH84, Hen88, Bri89, PiF90, Tre92].

This paper suggests a unification of the concepts and terminology in this
area on the basis of [BGM92]. Briefly, a notion of exhaustive test set is derived
from the semantics of the formal notation and from the definition of a correct

Correspondence and offprint requests to: Marie-Claude Gaudel, Lab. de Recherche en Informatique,
Université de Paris-Sud, mcg@lri.lri.fr, perry.james@acm.org

Testing Data Types and Processes 437

implementation. Then a finite test set is selected via some selection hypotheses,
which are chosen depending on

• some knowledge of the program,

• some coverage criteria of the specification,

• and ultimately cost considerations.

This paper begins in Section 2 by briefly recalling the application of this
framework to algebraic data types [BGM91, Gau95]. Then, Section 3 generalizes
this framework to the test-derivation method developed for basic and full LOTOS
by Brinksma and his colleagues [Bri89, Eer94, Tre92]. However, in this method,
the data types properties are not considered when selecting test data from the
behaviour part of the specification. Section 4 exploits the common framework
stated for the two kinds of specification and suggests a new integrated method
of test derivation from full LOTOS specifications. This approach is transposable
to other specification languages where data types and processes coexist, such as
SDL [CCI88] or Promela [Hol91].

2. Test Selection for Algebraic Specifications

Testing code against an algebraic specification consists of showing that the final
system satisfies the axioms in the specification.

To create tests for a given axiom, the variables of the axiom are instantiated
with values. To run such a test, the resulting expressions are evaluated. If the
results satisfy the axiom then the test is passed, otherwise it is failed.

In [Gau95], Gaudel discusses the formal basis of testing based on an algebraic
specification. Such a specification has two parts: a signature Σ=(S , F), where S
is a finite set of sorts and F is a finite set of operation names over the sorts in S ,
and Ax, a finite set of axioms. These axioms are equations or positive conditional
equations built from Σ-terms.

See for instance the specification of the Message data type in Fig. 1. There a
message is specified as a sequence of octets built by the . operation; there is
a Size operation, and it is possible to Pack two messages together.

2.1. Testing a Data Type Implementation against its Specification

If SP is a specification and P is an implementation under test against SP , the
implementation P has to provide some way to execute the operations of SP .

Let t be a ground Σ-term and tp its computation by P. Given a Σ-equation
τ = τ′, a test for this equation is any ground instance t = t′ of it. A test experiment
of P against t = t′ consists of evaluating tp and t′p and comparing the resulting
values. This comparison is the job of an oracle, that is, a process that can decide
if the computed results are equivalent. Note that this decision is easy for simple
data types, but far from being obvious in general. This point is discussed in
[Gau95].

In the Message example, a possible test, inspired by the fourth equation is
Size(A.B.C.ε)= Succ(Size(B.C.ε))

The corresponding test experiment consists in two computations and a com-
parison, namely

438 M.-C. Gaudel and P. R. James

1 specification Example1 : exit
2

3 library Boolean, OctetString, NaturalNumber endlib
4

5 type Message is
6 Octet, NaturalNumber, Boolean
7 sorts
8 Message
9 opns

10 ε : -> Message
11 . : Octet, Message-> Message
12 Pack : Message, Message -> Message
13 Size : Message -> Nat
14 eqns
15 forall m1, m2: Message, o1: Octet
16 ofsort Message
17 Pack(ε, m1) = m1;
18 Pack(b.m1, m2) = b.Pack(m1, m2);
19 ofsort Nat
20 Size(ε) = 0;
21 Size(o1.m1) = Succ(Size(m1));
22 endtype
23 behaviour

...
24 where
25 process Compact[inGate, outGate, control](Max: Nat) : exit :=
26 control ? newMax:Nat[newMax > 0];
27 (Compact[inGate, outGate, control](newMax)
28 [] control ? newMax:Nat[newMax = 0]; exit
29 [] inGate ? x:Message;
30 (inGate ? y:Message[Size(x) + Size(y)>Max];
31 outGate ! x ! y; Compact[inGate, outGate, control](Max)
32 [] inGate ? y:Message[Size(x) + Size(y) <= Max];
33 outGate ! Pack(x, y);
34 Compact[inGate,outGate, control](Max)
35)
36 endproc
37 endspec

Fig. 1. An example specification.

• computing the representation in P of A.B.C.ε, calling the SizeP function in P
on it, and storing the result;

• similarly, calling SizeP on B.C.ε, and adding 1 to the result;

• comparing the two results.

A program performing this experiment is called a tester and can be easily
derived from the equation.

An exhaustive test set for a specification SP is the set exhaustive(SP) of all
the possible well-typed ground instantiations of all of the Σ-axioms. This notion

Testing Data Types and Processes 439

is directly derived from the definition of the satisfaction of a set of axioms as
stated for instance in [EhM85].

The term “exhaustive” is inspired from Goodenough and Gerhart’s pioneering
paper [GoG75].

However, an implementation’s passing all of the tests in the set exhaustive(SP)
does not necessarily mean that it satisfies SP , since exhaustive(SP) is exhaustive
with regard to the values expressible in SP , but not necessarily to those com-
putable by P. Therefore, P satisfies SP only if all the values computed by P can
be reached by TΣ, the ground terms that can be produced by the operations of
Σ. By construction of exhaustive(SP), the success of all its tests ensures that an
implementation P satisfies SP only if P defines a finitely generated Σ-algebra. This
assumption on P is called the minimal hypothesis Hmin. Practically, it corresponds
to:

• The realizations of the operations of Σ by P are deterministic;

• P has been developed following reasonable programming techniques, ensuring
encapsulation; in P any computed value of a data type must always be a
result of a specified operation of this data type.

An implementation satisfying this minimal hypothesis is said to be Σ-testable.

2.2. Selection Hypotheses

Generally exhaustive(SP) is too large to be useful. It is possible to assume
stronger hypotheses on the behaviour of the implementation and reduce the
number of tests necessary to show that it satisfies the specification. These kinds
of hypotheses are known as selection hypotheses, and the two most commonly
used are uniformity and regularity hypotheses.

A uniformity hypothesis is an assumption that the input space can be divided
into sub-domains such that if a test set containing a single element from each
sub-domain is passed, then the test set exhaustive(SP) is also passed. An example
for integers is “if the function works correctly for a negative value, for a positive
value and for zero, then it will work correctly for all integers”. This notion is
similar to the reliability property of a partition criteria mentioned in [GoG75].

A regularity hypothesis uses a size function from ground Σ-terms to N and
has the form “if a set of tests made up of all the ground terms of size less than
or equal to a given limit is passed, then exhaustive(SP) also is”. An example of
such a hypothesis for a list would be “if the add operation works correctly for all
lists of length less than or equal to 4, then it will work correctly for all lists”.

Various hypotheses can be formulated simultaneously about an implementa-
tion.

A test strategy is defined by the choice of selection hypotheses. Exposing the
hypotheses makes clear the assumptions made on the implementation. A test
context is a pair (H , T) of a set of hypotheses and one of tests. A test context is
considered valid if H implies that if T is passed then exhaustive(SP) is as well. A
context is considered unbiased if H implies that if exhaustive(SP) is passed then
T is as well. Assuming H , validity guarantees that all incorrect implementations
are rejected, and being unbiased guarantees that no correct implementation is
rejected.

By construction, (Hmin, exhaustive(SP)) is both valid and unbiased. Another

440 M.-C. Gaudel and P. R. James

extreme example that is both valid and unbiased is (Hmin ∧ P satisfies exhaus-
tive(SP), ∅), which indicates that if the implementation is assumed to be correct
then no tests are needed. Interesting test contexts are those that are valid and
unbiased, that is, those that are passed by all and only correct implementations.
Weak hypotheses correspond to large test sets, and strong hypotheses correspond
to small test sets. The goal is to make reasonable hypotheses stronger enough to
reduce the set of tests to a tractable size. The selection of such hypotheses can
be based on the formal specification, on some knowledge of the program, or in
some of the characteristics of the system environment, see for instance [DGM93].

Remark 1. As it is defined here, for sake of brevity, exhaustive(SP) contains
useless tests, namely the tests corresponding to instantiations of conditional
equations where the premise is false. Thus exhaustive(SP) can be simplified. For
an improved definition see [BGM91].

Remark 2. In [Bri89, Tre92, Eer94], a different terminology is used for notions
similar to validity and unbias. A test is said to be sound if it only rejects incorrect
implementations, which is the same as unbiased. A test set is said to be exhaustive
if it rejects all incorrect implementations, and possibly more. It is said to be
complete if all and only incorrect implementations are rejected, which is the same
as valid and unbiased.

3. LOTOS Processes and Their Testers

3.1. A brief overview of LOTOS

LOTOS is a well-known specification language with a standardized definition
[ISO89].

A LOTOS specification is made of two parts, a data type part and a behaviour
part. The data type part is an algebraic specification of some abstract data type
(cf. Fig. 1). The behaviour part describes the behaviour of the system as a
behaviour expression which is generally a composition of actions and processes;
processes are also defined by a behaviour expression (cf. Fig. 1).

The basic component of a process is an action. An action may be observable
or internal.

An internal action is noted i, and is ignored by the environment of the process.
An observable action corresponds to some communication via some gate. If g

is a gate identifier, and exp a well formed expression then g!exp is an observable
action which sends the value of exp to another process, which must be ready to
receive such a value, on gate g. If s is a sort, and cond is a boolean expression,
g?x:s[cond]is an observable action which receives on gate g a value v of sort s
satisfying cond and assigns it to the variable x.

There are three main ways of composing actions and processes.

• Action prefixing : a;P, where a is an action and P a process or a behaviour
expression.

• Choice between possibly guarded behaviour expressions : (P []Q) or
(cond1 → P []cond2 → Q)

• Parallel composition with synchronization on some specified gates :
P |[g1, ..., gn]| Q, on all the gates: P||Q, or on no gate: P||| Q.

Testing Data Types and Processes 441

There is an identification of the state of a process with its behaviour expression,
i.e. a process P = a; P′ is in state a;P ′ ; after executing the a action, it will reach
the state P ′. The a action is said to be executable from the state a;P ′.

Due to the choice construction, there may be several executable actions from
a given state. In some cases, it is convenient to use the notion of the set of the next
observable executable actions of a state. In this set, internal actions are ignored
and each of them is replaced by its following next observable actions.

Also due to the choice construction, there may be several states reachable
after an action (or a sequence of actions). For instance, in P = (a; Q) [](i; a;
R) two states are reachable after a, the one corresponding to Q and the one
corresponding to R.

As an example of the use of the choice construct consider the last part of
Fig. 1. The Compact process begins by a choice. It may

• receive a positive value on the control gate, assign it to newMax and start
again;

• receive a 0 on the control gate, and then terminate;

• receive a message on the inGate gate; then either it receives a second message
such as the total size of the two messages is greater than Max and it resends
them via the outGate gate; or the total size of the two messages is less than
Max and it packs them and sends the resulting message via the outGate gate.

In a parallel composition with synchronization on gate g, for instance P |[g]|
Q, it is possible to execute either an executable action of P not concerning gate g,
or an executable action of Q not concerning gate g, or a common communication
action via gate g with the important constraint that a such an action is executable
only if it is executable from both P and Q and satisfies some synchronization
conditions. More precisely, it is possible to synchronize the following couples of
actions:

• g!exp and g?x:s[cond]: in this case, if the result r of exp is of sort s and
satisfies the condition cond, then the event <g, r> occurs in both processes P
and Q. Informally, the value r is assigned to x.

• g!exp1 and g!exp2: in this case, if exp1 and exp2 have the same result r, <g,
r> occurs in both processes P and Q.

• g?x1:s[cond1]and g?x2:s[cond2]: in this case, an event <g, r> occurs in
both processes P and Q, where r is a value of sort s satisfying cond1 ∧ cond2.
The value r is assigned to x1 and x2.

An important remark is that a process can block (deadlock). For instance,
there is no executable action from the following states :

g!1; P |[g, h]| g?x:Nat[x > 1]; Q
g!v; P |[g, h]| h?x:s; Q
In the first example, the value 1 does not satisfy the condition x > 1. For the

second example, the action g!v is refused by the process h?x:s; Q and the action
h?x:s is refused by g!v; P.

There is a special observable action, known as stop, which leads to a state
where there is no executable action.

The internal action i does not need to synchronize. For instance, in P|| i ; Q,
the action i is executable whatever are the executable actions of P and leads to
the state P || Q.

A sequence σ of events is executable by a process P if the successive events of

442 M.-C. Gaudel and P. R. James

σ can be successfully executed, possibly with interspersed internal actions. Such
sequences are interesting since they correspond to observable behaviours of the
process. The set of these sequences is called the traces of the process, and will be
noted traces(P). It is closed under prefix, since when a sequence σ belongs to it,
all its prefixes belong to it.

Coming back to the example, a trace of the Compact process is
<control, 25>, <inGate, H.E.L.L.O.ε>, <inGate, W.O.R.L.D.ε>,
<outGate, H.E.L.L.O.W.O.R.L.D.ε>

Remark. Actually, there is no significant difference between an event <g, r> and
an action g!r. Of course, there is a distinction, since a sequence of events is a
trace and a sequence of actions is a process. However, a convenient way to decide
if a trace (<gi, ri >, i = 1, ...n) is executable by a process P, is to run the process
P || g1! r1 ; ... ; gn!rn and to observe whether this execution proceeds without
blocking until the occurrence of event <gn, rn >. Thus in the rest of the paper
we will identify the trace (<gi, ri >, i = 1, ...n) and the tester process g1!r1 ; ... ;
gn!rn.

3.2. Testing Processes

A test set of a process P is a set of processes. The elements of this set are called
tests or testers. A test run or a test experiment of a test T is the parallel execution
of P and T: P||T with full synchronization of the observable actions. Thus P and
T must have the same observable actions to avoid meaningless deadlocks.

We have seen in Section 2 that the notion of a correct implementation with
respect to an algebraic specifications is based on logical satisfaction. For processes
it is based on simulation and/or containment of behaviours, behaviours being
characterized by traces and deadlocks. There are several possible implementation
relations for processes. They are discussed and compared in the literature (see for
instance Chapter 3 of [Tre92]). In the works on test derivation, two relations are
usually considered, the testing preorder, usually named the red relation, and its
weaker version, namely the conf relation.

Definition (The red relation). I red S ⇐⇒ if a sequence of observable actions, σ,
is executable by I and can lead to a state where all the actions of a set A are
refused, then the sequence σ is also executable by S and can lead to a state where
all the actions of A are refused.

The intuition behind this definition is that, if after σ I may block on a set of
actions, then S must also have the possibility of blocking on those actions. The
implementation does not add deadlock possibilities.

Definition (The exhaustivered test set). Paraphrasing the above definition, the
exhaustive test set is given by the following set of processes

exhaustivered(S) = {σ; []ai∈A ai; stop | σ ∈ L∗, A ⊆L}
where L is the set of all actions g!v where g is any observable gate of S, and

v is any value of a sort s used by S.
This test set contains all the traces obtainable from L followed by (a choice

in) all the sets of actions of L.

Definition (Verdict for exhaustivered). The verdict of a test experiment I||T, where
T = σ; []ai∈A ai; stop, is defined by

Testing Data Types and Processes 443

1. if σ is not executed by I then success

2. if σ is executed by I and some action in A is accepted by I after σ then
success

3. if σ is executed by I and all of the actions in A are refused by I after σ then

(a) if σ is executable by S and all of the actions in A are refused by S after
σ then success

(b) otherwise, failure

The first case corresponds to the detection of a deadlock before the end of σ.
In the second case, the test experiment reaches one of the stops in T. The third
case corresponds to the detection of a deadlock just after σ.

Remark. As numerous authors we assume that deadlocks are detected by some
suitable time-out mechanism.

As mentioned above, the minimal hypothesis Hmin must include the fact that
S and I have the same sets of atomic observable actions. However, more is needed
to ensure that the tests of exhaustivered(S) are all successful if and only if I satisfies
the specification S, since a trace σ can lead to several states. In practice, the only
way to cope with non-determinism, when testing with a black box strategy, is to
repeat each experiment “a sufficient number of times”. This corresponds to an
hypothesis that the non determinism of the implementation is such that after a
number p of executions of the same experiment, all the possible choices in the
implementation are covered. This number depends on the length of σ since some
choices can be done at any action of the trace. For instance, if c is known as
the maximum number of choices for any action in I, then p(σ) must be chosen
greater or equal to |σ| × c , its value depending on the way the non determinism
is known to be balanced in the implementation.

Hmin is the conjunction of the two above properties. We now require p(σ)
successful test experiments for each test σ;[]ai∈A ai; stop, for I to pass exhaus-
tivered(S).

Then, the test context (Hmin, exhaustivered(S)) is valid and unbiased since I red
S implies the success of exhaustivered(S), assuming Hmin, and vice versa.

We will see below that exhaustivered(S) contains useless tests. It can be reduced
without loss of validity and unbias and without strenghthening of Hmin.

Remark. The above minimal hypothesis is not always adequate. Other minimal
hypotheses may arise, depending on the knowledge on the way non-determi-nism
is implemented. For instance [BBP98] reports a case study where Ada 95 was used
as implementation language. The used compiler implemented the select statement
by a sequential choice. This was quickly understood during some preliminary
tests, and the corresponding hypothesis was used for stating the exhaustive test
set and defining the selection.

Another, weaker, notion of implementation correctness is the conf relation.

Definition (The conf relation). I conf S ⇐⇒ if a trace of S, σ, is executable by
I and can lead to a state where all the actions of a set A are refused, then the
sequence σ when executed by S can lead to a state where all the actions of A are
refused.

Intuitively, this definition only considers sequences of actions which are traces

444 M.-C. Gaudel and P. R. James

of the specification. There is no requirement on what happens for other sequences
of actions. Thus it is clear that I red S implies I conf S.

Definition (The exhaustiveconf test set). The exhaustive test set with respect to conf
is given by

exhaustiveconf(S) = {σ; []ai∈A ai; stop | σ ∈ traces(S), A ⊆L}
with the same verdict as above.

Assuming Hmin, an implementation I passes this test set if and only if I conf
S. The testing context (Hmin, exhaustiveconf(S)) is valid and unbiased with respect
to conf.

If the red relation is the correctness reference for an implementation, it is
necessary to make a stronger hypothesis on the implementation to ensure unbias
and validity of exhaustiveconf(S) with respect to red.

Basically, such an hypothesis assumes the success of all the tests which belong
to exhaustivered(S) and not to exhaustiveconf(S). Namely, every t in

{ σ; []ai∈A ai; stop | σ 6∈ traces(S), A ⊆L }
is passed by I. In [Pha94] this kind of testing is called robustness testing, thus we
call this hypothesis robustness hypothesis.

Since σ is not a trace of S, a test experiment t|| I is a success only if the
premise in the definition of red does not hold, i.e, either σ is not executable by
I or for all A ⊆ L, at least one action in A is executable after σ. This last
property cannot be true for all subsets of L, since it is obviously false for the
empty set. Thus the robustness property reduces to the fact that any trace which
is not a trace of S is not executable by I, i.e.

Hrobust = traces(I) ⊆ traces(S)

This leads to a simplification of exhaustivered(S) into

exhaustive’ red(S) = exhaustiveconf(S)∪{σ ; stop | σ 6∈ traces(S)}
where the verdict on the tests of exhaustiveconf(S) is unchanged, and the verdict
on the unspecified traces is a success if the experiment blocks before the end of
the trace, and a failure otherwise.

It is also possible to simplify exhaustiveconf(S), and thus exhaustive′red(S). Let
us consider a test

T = σ; []ai∈Aai; stop

where σ is a trace of S. If all of the actions in A are refused by S after σ then,
from the definition of the verdict, the test experiment T||I is a success for any
implementation I, and thus it is useless. It means that the only useful tests are
those where at least one action of A is always executable after σ.

exhaustive’ conf(S) = {σ; []ai∈Aai ; stop | σ ∈ traces(S),outS (σ) ∩A 6= ∅}
The definition of outS (σ) is a bit tricky since, as mentioned above, there may

be several states reachable after a trace. Let us note “S after σ” this set of states.
Since we only consider cases where a deadlock is impossible, we require there to
be at least one action of A that is executable in any of these states. Let us call
exec(s) the set of observable actions executable from state s. We get

outS (σ) = ∩s∈S after σexec(s)
Here, the verdict of a test experiment T|| I is a success when the execution

reaches one of the stops in T and a failure otherwise.
Such tests are called must tests in [Hen88]. In [Tre92], they are associated

Testing Data Types and Processes 445

with the property “after σ mustA”. Our exhaustive’conf(S) is the same as Πtr
conf(S)

which is shown to be complete, i.e. valid and unbiased, in [Tre92].
The transposition of the notions of uniformity and regularity hypotheses,

presented in Section 2, to conformance testing of communication protocols has
been studied in Phalippou’s thesis [Pha94]. Moreover, Phalippou proposed some
new kinds of selection hypotheses such as independence hypothesis or fairness
hypothesis. We do not address these last points here.

Regularity hypotheses have been implicitely used for a long time to deal with
processes with infinite behaviours. When a S is not terminating, for instance
because of a recursive definition, traces(S) contains infinite traces, and thus
exhaustive’conf(S) contains arbitrary long testers. It means non terminating test
experiments, which are not practically acceptable. A natural selection hypothesis
is to assume that: When all the test experiments with testers of “length” less
than a given limit are successful, then all the test experiments are successful. The
“length” may be defined as the number of observable actions or, more naturally
in our opinion, as the number of recursive calls performed. Another possibility is
to make a uniformity hypothesis on this number, that is to test for an arbitrary
number of recursive calls.

Uniformity hypotheses can be stated in a way to ensure that the control
structure of the process under test is covered. Namely, for each variable occuring
in a process, some relevant values are chosen in such a way that every possible
syntactical path of the process is exercised.

As an example, some testers for Compact(7) could begin by

• control!4; . . .

• control!0; . . .

• inGate!H.E.L.L.O.ε ; inGate!W.O.R.L.D.ε ;
outGate!H.E.L.L.O.ε!W.O.R.L.D.ε ; . . .

• inGate!H.E.L.ε ; inGate!W.O.ε ; outGate!H.E.L.W.O.ε ; . . .

Here, there is a first uniformity hypothesis on the parameter Max, for which
an arbitrary Nat value is chosen, namely 7. Then the first test corresponds to
a uniformity hypothesis on the sub-domain newMax > 0, and 4 is chosen. The
third test corresponds to the sub-domain Size(x) + Size(y) > Max, and the last
one to Size(x) + Size(y) ≤ Max.

The computation of the suitable sub-domains can be supported by a symbolic
execution tool for LOTOS specifications.

This approach corresponds to the test derivation procedures described by
Eertink in [Eer94]. In the next section we suggest some way of finding out
weaker uniformity hypotheses by using not only the syntactic definition of the
processes, but also the properties of the used data types.

4. Test Selection for full LOTOS Specifications

A first approach to test selection from a full LOTOS specification is to use
independently the two approaches presented in Sections 2 and 3. It means that a
test context is built for the data type part of the specification, and another one
for the behaviour part. This approach is illustrated below on the specification
shown in Fig. 1.

446 M.-C. Gaudel and P. R. James

4.1. Algebraic Data Types

First, let us present the exhaustive test set for the data type part of this speci-
fication. For the data type Message, there are four axioms. Therefore exhaustive
(Message) is the union of four test sets:

exhaustax1 = {Pack(ε, m)= m | m ∈ TMessage}
exhaustax2 = {Pack(o1.m1, m)= o1.Pack(m1, m)| o1 ∈ TOctet, m1,

m ∈ TMessage}
exhaustax3 = {Size(ε)= 0 }
exhaustax4 = {Size(o1.m)= Succ(Size(m))| o1 ∈ TOctet, m ∈ TMessage},
where Ts is the set of ground terms of sort s.

Since there are no conditions on the variables in the specification, a first
selection strategy would be to make a uniformity hypothesis on all the variables.
This means that there are four tests, which are arbitrary instantiations of the
axioms.

If for some reason more tests are desired, one possibility is to unfold Pack

in the right hand side of the second axiom. The definition of Pack distinguishes
between ε and o1.m1 as first arguments. This leads to two new tests, which are
arbitrary ground instances of

Pack(o1.ε, m)= o1.m
and Pack(o1.o′1.m′1, m)= o1.o′1.Pack(m′1, m).

Here, the uniformity sub-domains for the first operand of Pack are the messages
of size 1 and the messages of size greater than 1.

Unfolding is a classical technique for discovering uniformity hypotheses from
a specification [Mar95]. It can be automated by using a narrowing procedure and
is briefly described below.

In presence of a conditional axiom such as

v1 = w1 ∧ . . . ∧ vn = wn ⇒ v = w,

an obvious candidate for a uniformity sub-domain is the set characterized by
the premisse of the axiom. It means that the axiom is tested once, with some
arbitrary values satisfying the premisse. However, it is possible to use the other
axioms of the specification to get weaker uniformity hypotheses, an more tests
for this axiom.

Assume that there is an occurrence of a term f(u) in the axiom above, that f
is defined by some axioms, and that among them there is the axiom

vv1 = vw1 ∧ . . . ∧ vvm = vwm ⇒ f(vv) = vw

The replacement of f(u) by vw in the first axiom is conditioned by the validity of
the premisse of the second one and the fact that u = vv (modulo some renaming
when necessary). More precisely, if we note v′1, . . . , v′n, w′1, . . . , w′n, v′, w′ the terms
obtained by replacing f(u) by vw in v1, . . . , vn, w1, . . . , wn, v, w, we get the formula

v′1 = w′1 ∧ . . . v′n = w′n ∧ u = vv ∧ vv1 = vw1 ∧ . . . ∧ vvm = vwm ⇒ v′ = w′

This defines a new uniformity sub-domain which is a combination of two cases
mentioned in the specification. If f is defined by p axioms, we get p test cases
for the original axiom. Note that the terms of the new formula can be simplified,
using other axioms. It is what we have done when unfolding Pack in the second
axiom.

The same technique can be applied to the fourth axiom, unfolding the second

Testing Data Types and Processes 447

occurrence of Size. Since Size is defined by two axioms, it gives two test cases, one
where m = ε and one where m = o′1.m′.

Another testing strategy is to choose a regularity hypothesis on k, the number
of Octets inserted in a Message. In this case, the set of tests is the set of all
the ground instances of the axioms where the Message variables are replaced by
ground terms with at most k Octets.

As mentioned earlier, a test context consists of a set of hypotheses and a test
set. The selection hypotheses used above can be combined to adjust the size of
the test set. Unfolding, regularity, random resolution of uniformity sub-domains,
are supported by the LOFT system [Mar95] which has been experimented on
several realistic case studies [DGM93, MTF92].

4.2. Processes

As mentioned in Section 3, in [Eer94], Eertink gives an algorithm that generates
a set of symbolic test cases for full LOTOS processes. The method is recursive,
determining actions that can be immediately performed by the process P under
test followed by the actions that can be performed by P after these initial actions.
Eerting gives several variants; here we follow Algorithm 4.16 of [Eer94].

As an example, we derive the test set TS(Compact(Max)).
Eertink uses the following notations

• The tester for an action with the form g?x:type[pred] is
choice x:type[][pred];→i;g!x,
meaning that any action g!v where v is a value of type type satisfying
the condition pred is executable. Using our notation of Section 3, it is the
generalized choice []v:type,pred[v/x] g!v among all the values v of type type
satisfying pred.

• The tester for g!v is just g!v.

• The tester for exit is success ; stop, where success is a special action which
indicates the success of the test.

The set of initial actions of Compact(Max) is the set
{control?newMax:Nat[newMax > 0],
control?newMax:Nat[newMax = 0],
inGate?x:Message },

thus the test set contains the processes
{choice newMax:Nat[][newMax > 0]→i;control!newMax; ta,
choice newMax:Nat[][newMax = 0]→i;control!newMax; tb,
choice x:Message[]→i;inGate!x; tc },

where
ta = TS(Compact(newMax)),
tb = success; stop,
tc = TS(Compact(Max) after inGate?x:Message).

The process Compact(Max) after inGate?x:Message is
inGate?y:Message[Size(x)+ Size(y)> Max];

outGate!x!y; Compact[inGate, outGate, control](Max)
[]

inGate?y:Message[Size(x)+ Size(y)<= Max];

448 M.-C. Gaudel and P. R. James

outGate!Pack(x,y); Compact[inGate, outGate, control](Max)

Applying the algorithm again to this new, shorter process gives the test set

tc = { choice y:Message[][Size(x)+ Size(y)> Max]→i;inGate!y; outGate!x!y;
TS(Compact(Max)),

choice y:Message[][Size(x)+ Size(y)<= Max]→i;inGate!y;
outGate!Pack(x,y); TS (Compact(Max))

}
and so there are four processes in TS (Compact(Max)):

{ choice newMax:Nat[][newMax > 0]→i;control!newMax;
TS(Compact(newMax)),

choice newMax:Nat[][newMax = 0]→i;control!newMax; success; stop,
choice x:Message[]→i;inGate!x ;

choice y:Message[][Size(x)+ Size(y)>Max]→ i; inGate!y;
outGate!x!y; TS(Compact(Max)),

choice x:Message[]→i;inGate!x ;
choice y:Message[][Size(x)+ Size(y)<= Max]→i;inGate!y;
outGate!Pack(x, y); TS (Compact(Max))

}.
The second element of TS (Compact(Max)) is finite. In fact, there is only a single
instantiation that will satisfy the predicate [newMax = 0].

The other three processes are infinite, and there are two sources of their
non-finiteness. One of these is the recursive call to TS (Compact). Eertink notes
that since test cases must be finite, it is reasonable to limit the size of the tests at
some point, but he makes no comment on how this point should be determined
or quantified. As said at the end of Section 3, a regularity hypothesis can be made
on k, the number of times the recursive call is used to expand the test cases.

The other source of infiniteness is the presence of variables and parameters
which are of infinite types. Eerting describes how to propagate the constraints
on variables along a syntactic path of the process under test, and then to use a
resolution procedure to get a set of values satisfying these constraints (modulo
some problems due to unfeasible paths and non termination of the resolution
procedure). This is an implicit way of assuming a uniformity hypothesis for the
activation space of each path of the process under test, thus to have one test for
each path (path coverage).

4.3. Using Data-Type Properties to Test Processes

However, in presence of complex guards and conditions, making systematic
uniformity hypotheses on the predicates of the paths of the behaviour expressions
is not always desirable. A less brute-force way is to consider weaker uniformity
hypotheses derived from the specification of the data types inspired from the
techniques presented in Section 4.1.

For example, the fourth process in TS (Compact(Max)) includes the predicate
[Size(x) + Size(y) <= Max]. Using standard unfolding of <=, as it is implemented
in the LOFT system, this predicate can be broken into the two cases [Size(x) +
Size(y) < Max]and [Size(x) + Size(y) = Max].

Testing Data Types and Processes 449

Then, the test set given at the end of Section 3 for Compact(7) becomes, for
instance

• control!4 ; . . .

• control!0 ; . . .

• inGate!H.E.L.L.O.ε ; inGate!W.O.R.L.D.ε ;
outGate!H.E.L.L.O.ε!W.O.R.L.D.ε ;. . .

• inGate!H.E.L.ε ; inGate!W.O.ε ; outGate!H.E.L.W.O.ε ; . . .

• inGate!H.E.L.L.ε ; inGate!W.O.R.ε ; outGate!H.E.L.L.W.O.R.ε ; . . .

The fifth test introduced above corresponds to the limit value for packing the
messages.

Unfolding can also be used on the operations Size and Pack. For example,
Size differentiates between messages with the forms ε and o.m. In the third and
fourth processes of TS (Compact(Max)), Size occurs in the expression Size(x) +
Size(y). Unfolding once the two occurrences of Size in this expression gives four
cases.

For instance, the third test case of TS (Compact(Max)) is then replaced by the
following three processes (the case where x and y are ε being insatisfiable):

• choice x:Message[][x = ε]→i ; inGate!x;
choice o:Octet, y, y′:Message [][y=o.y′∧ Size(x)+ Size(y)>Max]→i;
inGate!y; outGate!x!y; TS(Compact(Max)),
which tests the case of a first empty message and a second non empty one of
size greater than Max,

• choice o:Octet, x, x′:Message [][x=o.x′]→i ; inGate!x;
choice y:Message[][y = ε ∧ Size(x)+ Size(y)>Max]→i; inGate!y;
outGate!x!y; TS(Compact(Max)),
which tests the case of a first non empty message of size greater than Max
and a second empty one , and finally

• choice o:Octet, x, x′:Message [][x=o.x′]→i ; inGate!x;
choice o′:Octet, y, y′:Message [][y=o′.y′∧ Size(x)+ Size(y)>Max]→i;
inGate!y; outGate!x!y; TS(Compact(Max)),
which tests the case of two non empty messages of total size greater than
Max.

In the second test case above, it appears that some backward propagation of
the second constraint on x must be performed as described by Eerting. The whole
process, unfolding and propagation, could be supported by some tool integrating
the functionalities of Eerting’s symbolic simulator [Eer94] with Marre’s LOFT
system [Mar95].

The same unfolding of Size can be performed on the two sub-cases obtained
above by unfolding <= in the fourth process of TS (Compact(Max)). It leads to
four cases in the “< Max” case, and three cases in the “= Max” case, since then
the case where both x and y are empty is unfeasible.

The success of these tests ensures that Compact behaves well in the nominal
cases and in two kinds of special cases: when the total size of the messages is
exactly Max, and when there are empty messages. It is worth noting that these
cases are obtained systematically as soon as the decision is made of weakening
the uniformity hypotheses on paths by unfolding once each occurrence of the
operations <= and Size, using the axioms of the data type part of the Full LOTOS
specification.

450 M.-C. Gaudel and P. R. James

5. Conclusions

This paper brings two main contributions. The first one develops the generic
framework for test derivation from formal specifications sketched in [BGM92].
This framework is first instantiated on algebraic data types, and then on the
behaviour part of LOTOS. In this last case, the exhaustive test set corresponds,
after some simplification, to the must tests of Hennessy and then to the approach
of the Brinksma’s group.

The fact that this framework works on features as different as data types and
processes confirms its generality.

The second contribution is the proposition of a new integrated test selection
method from full LOTOS specifications, considering the characteristics of the
data type part when treating the process part. This leads in a natural way to test
cases corresponding to special subdomains of the guards and conditions occuring
in a process description. This approach is clearly transposable to other languages
where data types and processes coexist, for instance SDL or Promela.

Acknowledgement

This work was partially supported by the DEVA Long Term Research Project
20072 of the ESPRIT program. Marie-Claude Gaudel thanks warmly the Instituto
de Matematica e Estatistica (IME), Universidade de São Paulo, for its kind
hospitality during the academic year 1996-97, and the members of the IFIP
Working Group 1.3 for fruitful discussions.

References

[BBP98] Barbey, S., Buchs, D. and Peraire, C.: Modeling the production cell case study using the
Fusion method. Technical Report 98, EPFL-DI, 1998.

[BGM91] Bernot, G., Gaudel, M.-C. and Marre, B.: Software testing based on formal specifica-
tions: A theory and a tool. IEE Sofware Engineering Journal, 6, November 1991.

[BGM92] Bernot, G., Gaudel, M.-C. and Marre, B.: A formal approach to software testing. In
Maurice Nivat, Charles Rattray, Teodor Rus, and Giuseppe Scollo, editors, Proceedings
of the Second International Conference on Algebraic Methodology and Software Technol-
ogy, Workshops in Computing, pages 243–253, London, May 22–25, 1992. Springer
Verlag.

[Bri89] Brinksma, E.: A theory for the derivation of tests. In Peter H. J. van Eijk, Chris A.
Vissers, and Michel Diaz, eds, The Formal Description Technique LOTOS: Results of the
ESPRIT/SEDOS Project, pages 235–247. Elsevier Science Publishers North-Holland,
1989.

[CCI88] CCITT. Specification and description lanuage (SDL). Recommendation Z.100, CCITT,
1988.

[Cho78] Chow, T. S.: Testing software design modeled by finite-state machine. IEEE Transactions
on Software Engineering, 4(3), 1978.

[DGM93] Dauchy, P., Gaudel, M.-C. and Marre, B.: Using algebraic specifications in software
testing: a case study on the software of an automatic subway. Journal of Systems and
Software, 21-3:229–244, 1993.

[dNH84] de Nicola, R. and Hennessy, M.: Testing equivalences for processes. Theoretical Computer
Sceience, 34, 1984.

[Eer94] Eertink, E. H.: Simulation Techniques for the Validation of LOTOS Specification. PhD
thesis, Universiteit Twente, the Netherlands, March 1994.

[EhM85] Ehrig, H. and Mahr, B.: Fundamental of Algebraic Specification 1. EATCS monographs
on Theoretical Computer Science. Springer Verlag, 1985.

Testing Data Types and Processes 451

[FKG91] Fujiwara, G., von Bochmann, S., Khendek, F. and Ghedamsi, A.: Test selection based
on finite-state models. IEEE Transactions on Software Engineering, 17(6), 1991.

[Gau95] Gaudel, M.-C.: Testing can be formal, too. Lecture Notes in Computer Science, 915:82–96,
1995.

[GoG75] Goodenough, J. B. and Gerhart, S. L.: Toward a theory of test data selection. IEEE
Transactions on Software Engineering, SE-1(2):158–173, june 1975.

[Hen88] Hennessy, M.: An algebraic theory of processes. MIT Press, 1988.
[Hol91] Holzmann, G. J.: Design and Validation of Computer Protocols. Prentice Hall, 1991.
[ISO89] ISO. LOTOS: A formal description technique based on the temporal ordering of

observational behaviour. Technical Report 8807, International Standards Organisation,
1989.

[LeY94] Lee, D. and Yannakakis, M.: Testing finite-state machines: state identification and
verification. IEEE Transactions on Computers, 43(3), 1994.

[Mar95] Marre, B.: LOFT: A tool for assisting selection of test data sets from algebraic
specifications. Lecture Notes in Computer Science, 915:799–800, 1995.

[MTF92] Marre, B., Thévenod-Fosse, P., Waeselynck, H., Le Gall, P. and Crouzet, Y.: An
experimental evaluation of formal testing and statistical testing. In SAFECOMP-92,
1992.

[PiF90] Pitt, D. H. and Freestone, D.: The derivation of conformance tests from LOTOS
specifications. IEEE Transactions of Software Engineering, 16(12), 1990.

[Pha94] Phalippou, M.: Relations d’implantation et hypothèses de test sur des automates à entrées
et sorties. PhD thesis, Université de Bordeaux, France, 1994.

[Tre92] Tretmans, J.: A Formal Approach to Conformance Testing. PhD thesis, Universiteit
Twente, the Netherlands, December 1992.

Received February 1998

Accepted in revised form October 1998

