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Abstract. The weakest precondition semantics of recursive procedures with local
variables are developed for an imperative language with demonic and angelic
operators for unbounded nondeterminate choice. This does not require stacking
of local variables. The formalism serves as a foundation for a proof rule for total
correctness of (mutually) recursive procedures with local variables. This rule is
illustrated by a simple example. Its soundness is proved for arbitrary well-founded
variant functions.

1. Introduction

In imperative programming, procedures are complex commands designed to
satisfy a given specification. We regard Hoare triples as the most adequate way
to specify procedures and other commands. One can use Hoare logic to define
derivability of Hoare triples, but weakest preconditions form a more convenient
semantic formalism that is sufficiently close to Hoare triples. We therefore use
Hoare triples in our correctness rule for recursive procedures and then prove this
rule by means of weakest preconditions. The proof of this correctness rule is
a kind of case study that reveals many interesting points. We do not aim at a
general description of a rich procedural language.

Formalisms for weakest preconditions for imperative programs usually treat
predicates as boolean functions on a single state space, cf. [BvW90, DiS90, Hes92,
Nel89]. It follows that procedures cannot have local variables. For nonrecursive
procedures, local variables can be made global by careful renaming. Actually, this
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is also possible for recursive procedures by means of methods analogous to those
developed below. A major drawback, however, is the lack of abstractness: it is
preferable that local variables be hidden from global arguments, cf. [OHT95]. The
present paper, therefore, is devoted to a clean treatment of weakest preconditions
of recursive procedures with local variables.

The urge to do so was triggered by a recent investigation in the semantics of
object-oriented languages [AbL98] and the predicate transformer approach to Z
of [Mah99]. Even more urgent to us was the realization that, in [Hes93], we had
applied and advocated a proof rule for total correctness of recursive procedures
that, in the presence of local variables, lacked a firm semantic foundation. Such
a foundation is supplied here.

The language treated consists of commands constructed from basic commands
(e.g., assignments, guards, assertions) by means of operators for sequential compo-
sition, Dijkstra’s demonic choice, the angelic choice of [BvW90, Hes90, MoG90],
together with procedures that may have local variables and may be mutually
recursive.

We construct predicate transformation semantics for this language. The same
was done for the language without local variables in [Hes94]. There we also
constructed a corresponding operational semantics, based on a kind of game
theory, similar to the alternating Turing machines of [CKS81]. This approach is
possible here as well, but it requires a stack for the local variables, cf. [AbL98],
and the proof of adequacy will be tedious.

We introduce pairs of frames to determine the accessible and the modifi-
able variables. We use extension and abstraction functions to transform predicate
transformers defined over one pair of frames to another pair of frames. We finally
show that the operators for extension, abstraction and composition of predicate
transformers have the natural operational interpretations when restricted to rela-
tionally defined predicate transformers.

1.1. Overview

In Section 2, we briefly discuss related work. In Section 3, we introduce frames and
the corresponding state spaces and spaces of predicates. We then introduce framed
Hoare triples to specify commands, present a correctness rule for parameterless
recursive procedures with local variables, and give an example to show the
application of this rule. In Section 4, we generalize this rule to a theorem about the
correctness of specifications of mutually recursive procedures, where termination
is guaranteed by means of an arbitrary well-founded ordering. The theorem is
proved by assuming that Hoare triples are based on weakest preconditions and
that they satisfy certain rules.

In order to underpin these rules, we build in Section 5 a theory of extension
and abstraction between predicate transformer monoids for frame pairs. Pairs
of frames are considered here in order to distinguish variables that can be
modified from variables that can only be inspected. We abstain from introducing
categories and functors, but this section has a strong categorical flavour and can
be generalized widely.

In Section 6 we develop the formal programming language and its weakest
precondition semantics, which consist of a family of predicate transformers in-
dexed by frame pairs. In Section 7, we come back to Hoare triples and prove the
postulates needed for the recursion theorem.
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Section 8 deals with parts of the adequacy problem. We show that, for rela-
tionally defined predicate transformers, extension, abstraction and composition
correspond to the natural relational definitions. Section 9 contains concluding
remarks.

1.2. Notation

We write X → Y for the set of functions from X to Y . Function application is
denoted by an infix dot, which binds stronger than other binary operators and
binds to the left; e.g., we have ξ.h.p.x = ((ξ.h).p).x.

2. Review of Existing Work

The semantics of procedural languages with local variables have been investigated
and explained in categorical terms in [Ole85, OHT95] and the references given
there. In these papers the languages get meaning by means of functors from the
category of the state spaces or frames to certain semantic sets or domains. They
concentrate on semantical models for arbitrary procedures, not on proving that
a given procedure satisfies a given specification. The languages allowed are much
richer than ours.

The recent book of Back and Von Wright [BvW98] treats recursive procedures
with reference parameters, value parameters, and local variables. The procedures
are transformed in such a way that the local variables are replaced by value
parameters. This approach is less elegant than the categorical approach via
variable state spaces or frames. The latter approach does occur in the recent
papers [BaB98, Mah99]. Our technical contributions are frame pairs and the
three operators ξ, ρ, •. We refer to [Hes93] for references to papers on proof
rules for recursive procedures.

3. Frames and Hoare Triples

A frame F is a set of typed program variables, e.g. variable v with type T .v,
where a type is a nonempty set. The state space corresponding to frame F is
therefore the cartesian product [F] = (Π v ∈ F :: T .v). It follows that [F] is
always nonempty. For the empty frame ∅, the state space [∅] is a one-point set.

We want to perform program verification by means of preconditions and
postconditions. So, we have to consider predicates on state spaces.

For a frame F , the boolean functions on the state space [F] are called
predicates over F . We write P.F = ([F] → B) for the set of predicates over F .
The boolean operators ∧, ∨, ¬ are lifted to P.F in the usual pointwise fashion,
i.e., (p ∧ q).x = p.x ∧ q.x for all x ∈ [F], etc. We use the equality sign on P.F for
equality of functions. The set P.F is ordered by universal implication, which is
denoted by F |= p 6 q for p, q ∈ P.F; so we have

(0) (F |= p 6 q) ≡ (∀ x ∈ [F] :: p.x⇒ q.x) .

It is well known that P.F with this ordering is a complete boolean lattice.
We now consider frames F and G with G ⊆ F . An element x ∈ [F] has a

natural projection (x|G) ∈ [G]. For x ∈ [F] and y ∈ [G], the update of x according
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to y along G is defined as the element (x;G : y) of [F] given by (x;G : y)|G = y
and (x;G : y)|(F \ G) = x|(F \ G).

We use “ ” at the position of a variable as a shorthand for functional
abstraction. E.g., if x ∈ [F] then (x;G : ) is a function from [G] to [F], the
update function of x. Also, any predicate p over G induces a predicate p ◦ ( |G)
over F , to be called the extension of p. If p is given as a syntactic expression in
the variables of G, the same syntactic expression can be used for the extension.

Example. Consider frames F = {j : Z, k : N} and G = {k : N}. Then [F] = Z×N
and [G] = N. A state (s, t) ∈ [F] has the projection t in [G]. Predicate p = (k > 3)
over G extends to a predicate with the same denotation over F . �

For each command c, we introduce frames D0.c and D1.c with D standing for
declaration. The modifiable frame D0.c consists of the variables that c is allowed
to modify. The accessible frame D1.c consists of the variables that c has access to
(may read). We assume D0.c ⊆ D1.c.

The call of a procedure h is a command and has therefore two frames
D0.h ⊆ D1.h. Procedure h is declared with a body body.h, which is a command
with two frames Bi.h = Di.(body.h) for i = 0, 1. The body must have the same
external access rights as the call. So, we postulate that Di.h ⊆ Bi.h for i = 0, 1.
We also postulate that all external variables modifiable in the body are externally
modifiable, i.e., D1.h∩B0.h = D0.h. The elements of B1.h \D1.h are local variables
of h.

On the semantic level, the presence of local variables forces us to distinguish
the state spaces where procedure h and its body are acting. The body of h uses
the state space [B1.h], but the semantics of h is an abstraction that restricts
the attention to [D1.h]. On the other hand, the meaning of a call of h requires
an extension of the semantics of h to the frame of the variables relevant at
the position of the call. So we need to define the concepts of abstraction and
extension of semantics.

A program is a rooted tree of procedure declarations with the root main .
We write H to denote the set of procedure names. If procedure k is a child of
procedure h, we must have D1.k ⊆ B1.h and D0.k ⊆ B0.h. Child k can be called in
the body of h, and also in the bodies of all descendants h′ of h with D1.k ⊆ D1.h

′
and D0.k ⊆ D0.h

′. In fact, external variables of k cannot be local variables of h′.
We now introduce framed Hoare triples to specify commands. If c is a

command that only refers to program variables in a frame F (i.e. D1.c ⊆ F), and
P and Q are predicates over F , or of a subframe of F , the framed Hoare triple

F |= {P } c {Q}
is interpreted to mean that, in state space [F], every execution of command c that
starts in a state where P or its extension holds, terminates in a state where Q or
its extension holds. So, we use framed Hoare triples for total correctness, and the
predicates in a framed Hoare triple are extended to the frame.

Following [Dij76], we specify a declaration of a parameterless procedure h by
a heading of the form

(1) proc h
{ glovar Fm , glocon Fc ; all i ∈ I :: pre P .i , post Q.i } .

List Fm holds the modifiable external variables, so that D0.h = Fm . List Fc holds
the constant external variables, i.e., the external variables that can be accessed
but must not be modified. We thus have D1.h = Fm ∪Fc. The specification means
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that P .i and Q.i are predicates over D1.h such that procedure h satisfies the framed
Hoare triples D1.h |= {P .i} h {Q.i} , for all i ∈ I .

An implementation of h consists of a frame Fl of local variables, disjoint from
Fm ∪ Fc and a command body that only uses variables in B1.h = Fm ∪ Fc ∪ Fl ,
and only modifies variables in B0.h = Fm ∪ Fl . Total correctness of a possibly
recursive implementation can be verified by means of the rule:

(2) Correctness Rule. Let, for all i ∈ I , integer valued functions vf.i in the external
variables be given. Consider, for given integer m, the induction hypothesis IH(m)
asserting, for all values i ∈ I and all predicates R ∈ P.(Fc ∪ Fl ), the validity of the
framed Hoare triples

(3) B1.h |= { P .i ∧ vf .i < m ∧ m > 0 ∧ R }
h { Q.i ∧ R } .

Assume that, for every integer m, hypothesis IH(m) implies, for every i ∈ I ,
(4) B1.h |= {P .i ∧ vf .i = m} body {Q.i} .

Then the Hoare triples of specification (1) are correct.

This rule is a “framed” version of rule (10) of [Hes93]. That rule also allows
value parameters and reference parameters. For simplicity, we have omitted these
here. In applications of the rule, the induction hypothesis is used to handle the
recursive calls of h in its body. The induction hypothesis is only useful if the
recursive calls occur in a context with a smaller value of vf .i. For negative m, the
induction hypothesis is vacuously true and therefore useless. So, then, recursive
calls should not occur.

Note that the conjunctions in the precondition and the postcondition of (3)
require that predicates P .i and Q.i be extended from frame D1.h to B1.h and that
R be extended from Fc ∪ Fl to B1.h. The first conjunction in the precondition
of (3) can be taken both before and after extension. This ambiguity is harmless
since, as is easily seen, extension commutes with all logical operators.

We prove rule (2) in Section 4 below, but let us first give an application to
show how the rule works out in the presence of recursion and local variables.

Example. We give a simple example with integers where a local variable must be
retained during a recursive call. Let q be a constant with q > 1 and let H be the
function of two integer arguments given by

H(y, z) = z , if y 6 0 ,
H(y, z) = q ∗H(y div q, z) + y mod q , if y > 0 .

We claim that function H is computed by

proc rev
{ glovar y, z ; all i ∈ Z :: pre i = H(y, z) , post i = z }

var x : integer ;
if y > 0 then

x := y mod q ;
y := y div q ;
rev ;
z := q ∗ z + x ;

fi
endproc .
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Note how the specification constant i is used to relate the final value of z with the
initial values of y and z. For simplicity, we have no constant external variables;
we therefore omit glocon and have D0.rev = D1.rev . Operationally, the procedure
needs a stack for the local variables x. Yet the formal semantics can do without
the stack. Correctness of the declaration is proved by means of proof rule (2) as
follows.

We choose function vf = y, independent of specification constant i. The
accessible frame of the body is B1.rev = {y, z, x}. The induction hypothesis
analogous to (3) is that for all values i, and all predicates R ∈ P.{x}, we have

B1.rev |= { i = H(y, z) ∧ y < m ∧ m > 0 ∧ R }
rev { i = z ∧ R } .

Now it suffices to verify the correctness of the analogue of (4), i.e., of the following
annotated procedure body.

B1.rev |= { i = H(y, z) ∧ y = m }
if y > 0 then

{ i = q ∗H(y div q, z) + y mod q ∧ 0 < y = m } ;
x := y mod q ;
y := y div q ;
{ i = q ∗H(y, z) + x ∧ 0 6 y < m } ;

(∗ introduce a new specification constant j ∗)
{ j = H(y, z) ∧ 0 6 y < m ∧ i = q ∗ j + x }

rev ; (∗ induction hypothesis with i := j and
R : i = q ∗ j + x ∗)

{ j = z ∧ i = q ∗ j + x }
z := q ∗ z + x ;
{ i = z }

else { i = H(y, z) ∧ y 6 0 }
{ i = z }

fi (∗ collect branches ∗)
{ i = z } .

Note that predicate R indeed only uses program variable x. The same proof can
be used if q is treated as an external variable in Fc. Then, indeed, q is also allowed
to occur in R ∈ P.[Fc ∪ Fl ]. �

There is a second point to Hoare triples: one does not only want to prove
them, one also wants to apply them. We therefore need the following rule.

(5) Extension rule. Assume that command c over frame F satisfies Hoare triple
F |= {P } c {Q} .
(a) Then G |= {P } c {Q} holds for every frame G that contains F .
(b) If R is a predicate over G \ D0.c, then it holds that G |= {P ∧ R} c {Q ∧ R} .

Rule (5) will be proved in Section 7.

4. Well-founded Triples and the Recursion Theorem

In this section, we generalize correctness rule (2) and prove the generalization
from more basic principles, namely from extension rule (5), the existence of
weakest preconditions, and the “equivalence” of a procedure with its body. The
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generalization is to mutual recursion and arbitrary well-founded triples. In fact,
mutual recursion is useful to accomodate value parameters, and termination
arguments of recursive procedures sometimes need arbitrary well-founded triples,
compare [DiG86].

A well-founded triple consists of a set Z , a binary relation < on Z and a
subset N of Z such that every nonempty subset S of N has a minimal element
with respect to <; here s ∈ S is called a minimal element of S iff t /∈ S for every
element t ∈ Z with t < s.

Remarks. The standard example is that Z is the set of the integers, N the set
of the natural numbers, and < is the ordinary “less than” relation. In general,
however, relation < need not be transitive. We include Z in the triple for greater
flexibility. E.g., in (2), function vf .i may have negative values. �

The principle of well-founded induction over the triple (Z,<,N) states that, for
any boolean function f ∈ Z → B,

(6) (∀ m ∈ Z : m /∈ N ∨ (∀ n ∈ Z : n < m : f.n) : f.m)
⇒ (∀ m ∈ Z :: f.m) .

We now lift this principle to families of predicates over various frames. This
lifted version is the key to the recursion theorem below. Consider a family of
triples (F.i, p.i, q.i) consisting of frames F.i and predicates p.i, q.i ∈ P.(F.i) for
every i ∈ I . We let i range over I .

(7) Local well-founded induction. Let vf .i ∈ [F.i] → Z be a family of functions.
Assume that, for every m ∈ Z , it holds that

(8) (∀ i :: F.i |= (p.i ∧ vf .i < m ∧ m ∈ N) 6 q.i)
⇒ (∀ i :: F.i |= (p.i ∧ vf .i = m) 6 q.i) .

Then we have F.i |= p.i 6 q.i for all i ∈ I .
Proof. We define f.m = (∀ i :: F.i |= (p.i ∧ vf .i = m) 6 q.i) for m ∈ Z . Then our
proof obligation satisfies

(∀ i :: F.i |= p.i 6 q.i)
≡ { definition 6; let x range over [F.i] }

(∀ i, x :: p.i.x ⇒ q.i.x)
≡ { one-point rule, let m range over Z }

(∀ i, x, m :: p.i.x ∧ vf .i.x = m ⇒ q.i.x)
≡ { definition of f and 6 }

(∀ m :: f.m) .

By rule (6), it now suffices to verify, for arbitrary m ∈ Z , that

f.m
⇐ { definition of f and (8) }

(∀ i :: F.i |= (p.i ∧ vf .i < m ∧ m ∈ N) 6 q.i)
≡ { definition of 6 }

(∀ i, x :: (p.i.x ∧ vf .i.x < m ∧ m ∈ N) ⇒ q.i.x)
⇐ { calculus, let n range over Z }

m /∈ N ∨ (∀ n, i, x :: p.i.x ∧ vf .i.x = n ∧ n < m ⇒ q.i.x)
⇐ { definition of f and 6 }

m /∈ N ∨ (∀ n ∈ Z : n < m : f.n)
�
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Remark. The antecedent of (8) is called the induction hypothesis. The negation
of the conjunct m ∈ N in the lefthand side of this induction hypothesis serves as
the base case of the induction. �

In order to prove a generalization of rule (2), we postulate a relation between
the meaning of a procedure and its body.

(9) Body rule. For predicates P , Q over D1.h, we have

(D1.h |= {P } h {Q} )
≡ (B1.h |= {P } body.h {Q} ) .

We also postulate that the framed Hoare triples are defined by means of
framed weakest precondition functions wpF via

(10) (F |= {P } c {Q} ) ≡ (F |= P 6 wpF .c.Q) ,

where, by convention, P and Q are extended to frame F if necessary.
These two postulates in combination with extension rule (5) are sufficient to

prove the following generalization of rule (2).
Let (Z,<,N) be a well-founded triple. Consider a family of mutually recursive

procedures (i ∈ I :: h.i) with families (i :: P .i) and (i :: Q.i) of predicates over
frames F.i = D1.(h.i) and a family of state functions vf .i from [F.i] to Z . Write
G.i = B1.(h.i).

(11) Recursion theorem. Assume that, for all m ∈ Z and i ∈ I , we have the
implications

(12) (∀ k ∈ I, R ∈ P.(G.i \ D0.(h.k)) : F.k ⊆ G.i :

G.i |= {P .k ∧ vf .k < m ∧ m ∈ N ∧ R}
h.k {Q.k ∧ R} )

⇒ (G.i |= {P .i ∧ vf .i = m} body.(h.i) {Q.i} ) .

Then it holds that F.i |= {P .i} h.i {Q.i} for all i ∈ I .
Proof. In view of rule (7), we observe that

(∀ k :: F.k |= (P .k ∧ vf .k < m ∧ m ∈ N) 6 wpF.k.(h.k).(Q.k))

≡ { (10) }
(∀ k :: F.k |= {P .k ∧ vf .k < m ∧ m ∈ N} h.k {Q.k} )

⇒ { (5); allow predicates R over G.i \ D0.(h.k) }
(∀ i, k, R : F.k ⊆ G.i :

G.i |= {P .k ∧ vf .k < m ∧ m ∈ N ∧ R} h.k {Q.k ∧ R} )

⇒ { (12) }
(∀ i :: G.i |= {P .i ∧ vf .i = m} body.(h.i) {Q.i} )

≡ { (9) }
(∀ i :: F.i |= {P .i ∧ vf .i = m} h.i {Q.i} )

≡ { (10) }
(∀ i :: F.i |= (P .i ∧ vf .i = m) 6 wpF.i.(h.i).(Q.i)) .

By rule (7), this implication implies that F.i |= P .i 6 wpF.i.(h.i).(Q.i) for all i.
By (10), this concludes the proof. �
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Rule (2) is the special case of this recursion theorem with the standard triple
(Z, <,N) where all procedures h.i are equal.

Our aim is to justify all our postulates. For this purpose it now remains to
construct functions wpF such that the framed Hoare triples defined by (10) satisfy
rules (5) and (9).

5. Extension, Abstraction and Composition

In order to construct the framed weakest preconditions that can serve in (10),
we have to define extension and abstraction of predicate transformers. In view of
rule (5.b), we have to distinguish from the outset between the modifiable frame
and the accessible frame. We therefore combine these frames in a so-called frame
pair.

Definition. A frame pair E is a pair of frames E = (E0, E1) with E0 ⊆ E1.

In 5.1, we associate to each frame pair E a boolean lattice pt .E of predicate
transformers over E and to each inclusion of one frame pair into another, say E
into F , an extension function ξ ∈ pt .E → pt .F . In 5.2, we construct a left inverse
of function ξ, which is called abstraction. In 5.3, we introduce composition of
predicate transformers, so that the sets pt .E turn into monoids. Finally, in 5.4,
we restrict the attention to monotone predicate transformers. The requirement
E0 ⊆ E1 in the definition of frame pairs is needed for the definitions of extension
and composition.

5.1. Frame Pairs and Extensions

A command that uses a frame E1 but only modifies variables in a frame E0 ⊆ E1

can be specified by how it transforms postconditions over E0 to preconditions
over E1. It can therefore be specified by a function from P.E0 to P.E1. This leads
to the following formalization.

We define the set of predicate transformers over frame pair E as pt .E =
(P.E0 → P.E1). This set is ordered by the order induced from P.E1. Since the
latter is a complete boolean lattice, pt .E is a complete boolean lattice as well.

The frame pairs are ordered by pairwise inclusion:

E v F ≡ E0 ⊆ F0 ∧ E1 ⊆ F1 .

For frame pairs E and F with E v F , we define the extension function ξEF ∈
pt .E → pt .F by

(13) ξEF .h.p.x = h.(p ◦ (x|F0;E0 : )).(x|E1) ,

where h ∈ pt .E, p ∈ P.F0, x ∈ [F1]; it follows that (x|F0;E0 : ) ∈ [E0]→ [F0] and
hence h.(p◦(x|F0;E0 : )) ∈ P.E1. So, the definition is well typed. Our definition of
ξ is equivalent to the more complicated definition of frame extension in [Mah99]
2.2.

This definition of ξ can be justified as follows. State x is regarded as giving the
initial values of all variables in frame F1. Predicate p is regarded as a postcondition
only concerned with values for F0. The values of x for F0 \ E0 do not change;
therefore p is composed with the update function (x|F0;E0 : ). Function h yields
a precondition in terms of frame E1; therefore the final argument is the restriction
x|E1. A more formal but also operational justification is given in Section 8.
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If the two pairs are equal, function ξ is the identity; more precisely, ξEE is the
identity of pt .E. This follows from (13) and E0 = F0 and E1 = F1. Prescription ξ
is functorial in the sense that

(14) E v F v G ⇒ ξFG ◦ ξEF = ξEG .

This is proved by observing that, for h ∈ pt .E, p ∈ P.G0, x ∈ [G1],

(ξFG ◦ ξEF ).h.p.x

= { composition and (13) for ξFG }
ξEF .h.(p ◦ (x|G0;F0 : )).(x|F1)

= { (13) for ξEF and restrictions }
h.(p ◦ (x|G0;F0 : ) ◦ (x|F0;E0 : )).(x|E1)

= { calculus }
h.(p ◦ (x|G0;E0 : )).(x|E1)

= { (13) for ξEG }
ξEG.h.p.x .

In a context with only two frame pairs, E and F with E v F , we usually omit
the decorations and write ξ instead of ξEF .

Using the pointwise definition of conjunction and disjunction on predicate
transformers, one can easily verify that ξ ∈ pt .E → pt .F is universally bijunctive,
i.e., both universally conjunctive and universally disjunctive, cf. [DiS90]. It also
commutes with negation. The next result is the key to the proof of rule (5.b).

(15) Lemma. Let E, F be frame pairs with E v F . Let G be a frame with G ⊆ F0

and G ∩ E0 = ∅. Let h ∈ pt .E, q ∈ P.F0, r ∈ P.G. Then

F1 |= ξ.h.q ∧ (r ◦ ( |G)) 6 ξ.h.(q ∧ (r ◦ ( |G))) .

Note that the underline to the left refers to an argument in [F1], whereas the
underline to the right is of type [F0].

Proof. It suffices to observe that, for every x ∈ [F1],

ξ.h.(q ∧ (r ◦ ( |G))).x

≡ { (13) }
h.((q ∧ (r ◦ ( |G))) ◦ (x|F0;E0 : )).(x|E1)

≡ { calculus using G ∩ E0 = ∅ }
h.((q ◦ (x|F0;E0 : )) ∧ r.(x|G)).(x|E1)

⇐ { use second conjunct }
h.(q ◦ (x|F0;E0 : )).(x|E1) ∧ r.(x|G)

≡ { (13) }
ξ.h.q.x ∧ r.(x|G) .

�

5.2. Abstraction and Order

For frame pairs E and F , with E v F , we also define the abstraction function
ρFE ∈ pt .F → pt .E given by

(16) ρFE.h.p.x = (∀ y ∈ [F1] :: h.(p ◦ ( |E0)).(y;E1 : x)) ,
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where h ∈ pt .F , p ∈ P.E0, x ∈ [E1]. Here, since function h acts on postconditions
over F0, the argument p is extended to F0 in the usual way. The result is regarded
as a precondition over F1, but since x only specifies values over E1, prestate x
is extended to F1 by demonic nondeterminacy. A more formal justification of
definition (16) is given in Section 8.

Function ρFE is the left inverse of ξEF . In fact, for h ∈ pt .E, p ∈ P.E0,
x ∈ [E1],

(ρFE ◦ ξEF ).h.p.x
= { (16) }

(∀ y ∈ [F1] :: ξEF .h.(p ◦ ( |E0)).(y;E1 : x))
= { (13) }

(∀ y ∈ [F1] :: h.(p ◦ ( |E0) ◦ ((y;E1 : x)|F0;E0 : )).((y;E1 : x)|E1))
= { calculus }

(∀ y ∈ [F1] :: h.p.x)
= { [F1] is nonempty }

h.p.x .

This proves that ρFE ◦ ξEF is the identity of pt .E. Therefore ξEF is injective and ρFE
is surjective.

More generally, for frame pairs F , G, H with F v H and G v H , one can
define the intersection E = (E0, E1) with Ei = Fi∩Gi for i = 0, 1. In this situation,
we have

(17) ρHG ◦ ξFH = ξEG ◦ ρFE in pt .F → pt .G.

This is proved by observing, for h ∈ pt .F , p ∈ P.G0, x ∈ [G1], that

(ρHG ◦ ξFH ).h.p.x
= { (16) }

(∀ y ∈ [H1] :: ξFH.h.(p ◦ ( |G0)).(y;G1 : x))
= { (13) }

(∀ y ∈ [H1] :: h.(p ◦ ( |G0) ◦ ((y;G1 : x)|H0;F0 : )).((y;G1 : x)|F1))
= { calculus and definition of E1 }

(∀ y ∈ [H1] :: h.(p ◦ (((y;G1 : x)|H0;F0 : )|G0)).(y|F1;E1 : (x|E1)))
= { calculus and definition of E0 }

(∀ y ∈ [H1] :: h.(p ◦ (x|G0;E0 : ( |E0))).(y|F1;E1 : (x|E1)))
= { calculus and replace y by y|F1 }

(∀ y ∈ [F1] :: h.(p ◦ (x|G0;E0 : ) ◦ ( |E0)).(y;E1 : (x|E1)))
= { (16) }

ρFE.h.(p ◦ (x|G0;E0 : )).(x|E1)
= { (13) }

(ξEG ◦ ρFE).h.p.x .

Just as with ξ, we often write ρ instead of ρFE in a context with only two
frame pairs, E and F with E v F .

Abstraction preserves the ordering of predicates over the smaller frame in the
sense that, for frame pairs E v F , h ∈ pt .F , p ∈ P.E1, q ∈ P.E0,

(18) (E1 |= p 6 ρ.h.q) ≡ (F1 |= p ◦ ( |E1) 6 h.(q ◦ ( |E0))) .
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This is proved by

E1 |= p 6 ρ.h.q
≡ { (0) and (16) }

(∀ x ∈ [E1] :: p.x⇒ (∀ y ∈ [F1] :: h.(q ◦ ( |E0)).(y;E1 : x)))
≡ { calculus }

(∀ x ∈ [E1], y ∈ [F1] :: p.x⇒ h.(q ◦ ( |E0)).(y;E1 : x))
≡ { take z = (y;E1 : x), then x = (z|E1) }

(∀ z ∈ [F1] :: p.(z|E1)⇒ h.(q ◦ ( |E0)).z)
≡ { (0) }

F1 |= p ◦ ( |E1) 6 h.(q ◦ ( |E0)) .

By application of (18) to h := ξ.k for k ∈ pt .E, using that ρ is the left inverse of
ξ, we also obtain

(19) (E1 |= p 6 k.q) ≡ (F1 |= p ◦ ( |E1) 6 ξ.k.(q ◦ ( |E0))) .

Remark. It can be shown that, in general, ρ is not the upper adjoint of ξ. In
particular, there exist frames E v F with h ∈ pt .F and q ∈ P.F0 such that
¬ (F1 |= ξ.(ρ.h).q 6 h.q). Take E0 = E1 = ∅ and F0 = F1 = {v} for a variable v of
type integer. Let q be the predicate v = 0 and take h = wp.(v := v + 1). It turns
out that ξ.(ρ.h).q = q, whereas ¬ (F1 |= q 6 h.q). �

5.3. Monoid Structures

Predicate transformers on a single state space can be composed. Thus, if E0 =
E1 then pt .E equals (P.E1 → P.E1) and, hence, is a monoid under function
composition. For every frame pair E, we now provide pt .E with a composition
operator “•” given by

(20) (h0 • h1).p.x = h0.((h1.p) ◦ (x;E0 : )).x ,

for all h0, h1 ∈ pt .E, p ∈ P.E0 and x ∈ [E1]. Operator “•” is a generalization
of “◦” in the sense that h0 • h1 = h0 ◦ h1 if E0 = E1. In Section 8 we sketch a
relational justification of definition (20).

Functions ξ distribute over “•”. In fact, for frame pairs E v F and h0,
h1 ∈ pt .E, we have

(21) ξ.(h0 • h1) = ξ.h0 • ξ.h1 .

This is proved as follows. Let p ∈ P.E0 and x ∈ [F1]. On the one hand, we have

ξ.(h0 • h1).p.x
= { (13) }

(h0 • h1).(p ◦ (x|F0;E0 : −)).(x|E1)
= { (20) in pt .E }

h0.q.(x|E1) , where
q = (h1.(p ◦ (x|F0;E0 : −))) ◦ (x|E1;E0 : −) .

On the other hand, we observe that

(ξ.h0 • ξ.h1).p.x
= { (20) in pt .F }

ξ.h0.((ξ.h1.p) ◦ (x;F0 : )).x
= { (13) for ξ.h0 }
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h0.r.(x|E1) , where
r = (ξ.h1.p) ◦ (x;F0 : −) ◦ (x|F0;E0 : −) .

It remains to prove that q = r in P.E0. This is done by observing that, for every
y ∈ [E0],

r.y
= { definition r and calculus }

ξ.h1.p.(x;E0 : y)
= { (13) }

h1.(p ◦ ((x;E0 : y)|F0;E0 : )).((x;E0 : y)|E1)
= { calculus }

h1.(p ◦ (x|F0;E0 : )).(x|E1;E0 : y)
= { definition of q }

q.y .

This concludes the proof of (21).
For a frame pair B with B0 = B1, the identity function is the neutral element

of the monoid pt .B. Let us denote it by idB . For B v E, p ∈ P.E0 and x ∈ [E1],
we have

(22) ξBE .idB.p.x
= idB.(p ◦ (x|E0;B0 : )).(x|B1)
= p.(x|E0;B0 : (x|B1))
= p.(x|E0) .

This proves ξBE .idB is the function jdE ∈ pt .E given by jd .p = p ◦ ( |E0). In
particular, if E0 = E1, then ξBE .idB = idE .

(23) Theorem. For every frame pair E, the set pt .E is a monoid with operator
“•” and neutral element jdE . If E v F , then ξEF is a morphism of monoids from
pt .E to pt .F .

Proof. Let B and G be the frame pairs defined by B0 = B1 = E0 and G0 = G1 = E1.
Then B v E v G. Calculation (22) implies that jdE = ξBE .idB . Using (14) and (22),
we therefore have ξEG.jdE = idG. We now prove that jdE is the neutral element of
pt .E by observing that, for h ∈ pt .E,

jdE • h = h ∧ h • jdE = h
≡ { ξEG is injective }

ξEG.(jdE • h) = ξEG.h ∧ ξEG.(h • jdE) = ξEG.h≡ { (21) and ξEG.jdE = idG }
idG • ξEG.h = ξEG.h ∧ ξEG.h • idG = ξEG.h≡ { idG is neutral for ◦ and ◦ = • }
true .

Since pt .G is a monoid with operation • = ◦, a similar argument can be used
to prove that • is associative on pt .E. In (21), we have that ξ distributes over •.
Preservation of the neutral elements follows from (22). �

5.4. Monotone Predicate Transformers

A predicate transformer h ∈ pt .E is called monotone iff, for every pair p, q ∈ P.E0,
we have

E0 |= p 6 q ⇒ E1 |= h.p 6 h.q .
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The set of the monotone predicate transformers in pt .E is denoted by mt .E.
The greatest lower bound (infimum) and least upper bound (supremum) of a
family of monotone predicate transformers are both monotone. Therefore mt .E
is a complete lattice in its own right and the injection from mt .E into pt .E is
universally bijunctive. Since the negation of a monotone predicate transformer is
usually not monotone, mt .E is not a boolean lattice.

The functions ξEF ∈ pt .E → pt .F and ρFE ∈ pt .F → pt .E preserve monotony
of predicate transformers and therefore induce functions ξEF ∈ mt .E → mt .F and
ρFE ∈ mt .F → mt .E. If h0 and h1 are monotone then h0 • h1 is also monotone. The
neutral element jdE is also monotone. Therefore mt .E is a submonoid of pt .E. It
is easy to see that, for functions h, k, h′, k′ ∈ mt .E, we have

(24) h 6 h′ ∧ k 6 k′ ⇒ h • k 6 h′ • k′ .

This property does not hold for pt .E; monotony of h or h′ is needed for the
proof.

6. Weakest Preconditions Defined

In 6.1, we introduce the programming language to define recursive procedures,
together with its formal semantics. In 6.2, guards and parametrized commands
are introduced to model conditional statements, assignments, and procedures with
value parameters. Subsection 6.3 contains two lemmas on weakest preconditions
needed to justify the postulates on Hoare triples.

6.1. Syntax and Semantics

We use the following abstract syntax for the definition of recursive procedures. It
is a variation of the syntax in [Hes94].

Let A be a set of symbols, to be called elementary commands. We assume that
a frame pair D.a = (D0.a, D1.a) is specified for each command a ∈ A. As before,
D0.a is the modifiable frame of a and D1.a is its accessible frame.

In order to allow infinite choice operators while remaining in classical set
theory, we fix a set of sets Unv , called the universe. Now, for every frame pair E,
we define the set of commands Cmd .E inductively by the clauses
• if a ∈ A has D.a v E then a ∈ Cmd .E ,
• if c, d ∈ Cmd .E then c ; d ∈ Cmd .E ,
• if I ∈ Unv and (i ∈ I :: c.i) is a family in Cmd .E then ( [] i ∈ I :: c.i) ∈ Cmd .E
and (♦ i ∈ I :: c.i) ∈ Cmd .E.
Here, the symbols ; , [] , and ♦ are operators for sequential composition, demonic
choice and angelic choice, respectively. Note that Cmd .E ⊆ Cmd .F for frame
pairs E and F with E v F .

We assume that the set A is the disjoint union of two sets S and H , which
may be infinite. The elements of S are called simple commands. The elements
of H are called procedure names. As before, every procedure h ∈ H is equipped
with a frame pair B.h = (B0.h, B1.h) such that D.h v B.h and B0.h ∩ D1.h = D0.h,
and with a body

body.h ∈ Cmd .(B.h) .
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Remark. Of course, we retain the condition that, if procedure h is a sibling or
a descendant of a sibling of procedure k and k is called in the body of h, then
D.k v D.h. In fact, the call of k must not access local variables of the body of h.
�

We now turn to the semantic side. We assume that every simple command
s ∈ S has given semantics ws .s ∈ mt .(D.s). In other words, we assume that, for
simple command s and postcondition q ∈ P.(D0.s), the weakest precondition is
given as ws .s.q ∈ P.(D1.s).

The aim is to define for every procedure h ∈ H the weakest precondition
function wp.h ∈ mt .(D.h). Since the procedures are possibly nested and mutually
recursive, we have to define wp.h for all procedures h at once. So we have to
define wp as an element of the cartesian product

mtH = (Π h ∈ H :: mt .(D.h)) .

As a product of complete lattices, the set mtH is itself a complete lattice.
In order to define wp ∈ mtH , we start to extend an arbitrary w ∈ mtH

to a function on all commands. First, for an elementary command a ∈ A, we
define w+.a by w+.a = w.a if a ∈ H and w+.a = ws .a if a ∈ S . We now define
wE ∈ Cmd .E → mt .E inductively by the clauses
• if a ∈ A has D.a v E then wE.a = ξD.aE .(w+.a).
• if c, d ∈ Cmd .E then wE.(c ; d) = (wE.c) • (wE.d).• if I ∈ Unv and (i ∈ I :: c.i) is a family in Cmd .E then wE.( [] i :: c.i) = (inf i ::
wE.(c.i)) and wE.(♦ i :: c.i) = (sup i :: wE.(c.i)).

We use the notation inf for the infimum, the greatest lower bound in the lattice,
and sup for the supremum, the least upper bound. Since the ordering is induced
by universal implication, it follows that, e.g., wE.( [] i :: c.i).q = (∀ i :: wE.(c.i).q). If
[] and ♦ act on a family of two elements c and d, we use the infix notation c [] d
and c♦ d, which have a lower binding power than sequential composition “;”.

The function w 7→ wE from mtH to Cmd .E → mt .E is monotone, since ξ is
monotone, composition of monotone functions is monotone (24), and forming
infima and suprema is monotone.

(25) Lemma. Let E and F be frame pairs with E v F and let w ∈ mtH . For every
command c ∈ Cmd .E, we have c ∈ Cmd .F and wF.c = ξEF .(wE.c).

Proof. This is proved by straightforward induction over the structure of Cmd .
We use (14) for elementary commands, (21) for sequential composition, and the
universal bijunctivity of ξ for the two choice operators. �

We now use body.h ∈ Cmd .(B.h) to define function rec by

rec.w.h = ρB.hD.h.(wB.h.(body.h)) ∈ mt .(D.h) .

This defines rec as an endofunction of the complete lattice mtH . The abstraction
function ρ is monotone. Since w 7→ wE is also monotone, we have that endofunc-
tion rec is monotone. Therefore, by the Theorem of Knaster-Tarski, function rec
has a least fixpoint.

Definition. Function wp ∈ mtH is defined as the least fixpoint of rec. This function
induces a function wpE ∈ Cmd .E → mt .E for every frame pair E. Finally, the
semantics of a command c ∈ Cmd .E is defined as wpE.c ∈ mt .E.

It follows that an elementary command a with D.a v E has semantics wpE.a =
ξD.aE .(wp+.a). In particular, a simple command s has wpE.a = ξD.aE .(ws .a) and a
procedure name h has wpE.h = ξD.aE .(wp.h).
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Remark. The main difference with the construction in [Hes94] is the appearance of
ρ in the definition of function rec: the meaning of a procedure is the abstraction
of the meaning of its body. Function ξ and operator “•” are also new, but they
are rather innocent, since ξ is injective and is able to transform “•” into “◦”. �

6.2. Conditional Statements and Parameters

Conditional statements are modelled by means of so-called guards. Guards are
unimplementable simple statements, regarded as the quarks of programming
[War93]. They are attributed to [Kar59]. We use the notation of [Hes92].

If F is a frame, we associate to a predicate b ∈ P.F the guard ?b ∈ S given by
D0.(?b) = ∅, D1.(?b) = F , and ws .(?b).q = (b⇒q) for q ∈ P.∅ = B. One can verify
that wpE.(?b).q = (b⇒ q) for every frame pair E with D.(?b) v E and q ∈ P.E0,
where the predicates b and q are extended to E1. Guards are introduced primarily
to model conditional statements. In fact, if c, d ∈ Cmd .E and b ∈ P.E1, we define

if b then c else d fi = ( ?b ; c [] ?¬b ; d ) .

It is easy to verify that this command has the weakest preconditions expected.
Guards are also needed for the application of parametrized commands. A

parametrized command is a family of commands (u ∈ U :: c.u), say in Cmd .E. In
order to apply such a command, we need an argument that may depend on the
state in which the command is called. So, in general, a call of c uses a function
f ∈ [E1]→ U to supply the argument. We define the call with argument supplied
by f by means of

c⊗ f = ( [] u ∈ U ::?(f = u) ; c.u) .

In fact, we have

wpE.(c⊗ f).q = (∀ u ∈ U :: (f = u)⇒ wpE.(c.u).q) .

Using the one-point rule, it follows that, for x ∈ [E1], we have the expected
equality

wpE.(c⊗ f).q.x = wpE.(c.(f.x)).q.x .

The most important parametrized command is the (multiple) assignment.
The modifiable frame of a multiple assignment consists of the variables to
be modified. An actual multiple assignment is parametrized by the tuple of
expressions. Therefore, as a parametrized command, a multiple assignment is a
family indexed by the tuples of possible values. This is formalized as follows.

For every frame F , the multiple assignment ass .F is defined as the family
(u ∈ [F] :: ass .F.u) with D.(ass .F.u) = (F, F) and ws .(ass .F.u).q.x = q.u for all u,
x ∈ [F]. For a frame pair E with (F, F) v E and a function f ∈ [E1] → [F], the
assignment F := f is defined as ass .F ⊗ f in Cmd .E. One can verify that, for
q ∈ P.E0 and x ∈ [E1], it satisfies

wpE.(F := f).q.x
= { definition }

wpE.(ass .F ⊗ f).q.x
= { see above }

wpE.(ass .F.(f.x)).q.x
= { wp of simple command }

ξ
(F,F)
E .(ws .(ass .F.(f.x))).q.x
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= { (13) }
ws .(ass .F.(f.x)).(q ◦ (x|E0;F : )).(x|F)

= { definition of ws of ass }
(q ◦ (x|E0;F : )).(f.x)

= { calculus }
q.(x|E0;F : f.x) ,

as should be expected.
A procedure with value parameters is treated as a parametrized procedure.

If the procedure is recursive, it is modelled as a family of mutually recursive
procedures. A systematic treatment of reference parameters or of procedure
parameters falls outside the scope of this paper.

6.3. Conjunction and Body Rule

The next result is the reason for introducing frame pairs.

(26) Lemma. Let E, F be frame pairs with E v F . Let G be a frame with G ⊆ F0

and G ∩ E0 = ∅. For c ∈ Cmd .E, q ∈ P.F0 and r ∈ P.G, we have

F1 |= wpF .c.q ∧ (r ◦ ( |G)) 6 wpF .c.(q ∧ (r ◦ ( |G))) .

Proof. This follows immediately from rule (25) with w := wp and rule (15) with
h := wpE . �

In order to prove body rule (9), we formulate and prove an analogue for wp.

(27) Lemma. Let h be a procedure. Let F and G be frame pairs with D.h v F v G
and B.h v G and F1 ∩ B1.h = D1.h. Then we have

wpF .h = ρGF .(wpG.(body.h)) .

Proof. We first note that the assumptions yield the following sequence of inclusions

D0.h ⊆ F0 ∩ B0.h ⊆ (F1 ∩ B1.h) ∩ B0.h = D1.h ∩ B0.h = D0.h .

This implies that D0.h = F0 ∩ B0.h. We conclude by observing

wpF .h
= { definitions of wp and rec }

ξD.hF .(ρB.hD.h.(wpB.h.(body.h)))
= { (17), D0.h = F0 ∩ B0.h and D1.h = F1 ∩ B1.h }

ρGF .(ξ
B.h
G .(wpB.h.(body.h)))

= { (25) with w := wp }
ρGF .(wpG.(body.h)) . �

7. Back to Hoare Triples

In this section, we fulfil the remaining obligations: we define framed Hoare triples
in such a way that rules (5), (9) and (10) hold.

In framed Hoare triples, we want to interpret the precondition and the
postcondition with respect to the same frame. For each frame F , we therefore
define the frame pair d.F = (F, F). Now framed Hoare triples are defined by
postulating (10) where, by abuse of notation, we read wpF as standing for wpd.F .
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In order to prove body rule (9), we consider a procedure h ∈ H with its frame
pairs D.h and B.h. We write F = D1.h and G = B1.h. For predicates P , Q ∈ P.F ,
we have

F |= {P } h {Q}
≡ { (10) }

F |= P 6 wpd.F .h.Q≡ { (27) with F := d.F and G := d.G }
F |= P 6 ρd.Gd.F .(wpd.G.(body.h)).Q

≡ { (18) with E := d.F and F := d.G}
G |= P ◦ ( |F) 6 wpd.G.(body.h).(Q ◦ ( |F))

≡ { (10) where predicates are extended to G }
G |= {P } body.h {Q} .

This proves body rule (9).

We can now prove rule (5.a) and strengthen it to an equivalence. For frames
F and G with F ⊆ G, a command c ∈ Cmd .(d.F), and predicates P and Q, we
have

(28) (F |= {P } c {Q} ) ≡ (G |= {P } c {Q} ) .

This is proved by

F |= {P } c {Q}
≡ { (10) }

F |= P 6 wpd.F .c.Q≡ { (19) }
G |= P ◦ ( |F) 6 ξd.Fd.G.(wpd.F .c).(Q ◦ ( |F))

≡ { (25) }
G |= P ◦ ( |F) 6 wpd.G.c.(Q ◦ ( |F))

≡ { (10) }
G |= {P } c {Q} .

Finally, rule (5.b) follows from

Disjointness. Let c ∈ Cmd .E for a frame pair E. Let P , Q, R be predicates over
E1. Assume that E1 |= {P } c {Q} , and that R = (r ◦ ( |G)) for some r ∈ P.G
where G = E1 \ E0. Then we have

E1 |= {P ∧ R} c {Q ∧ R} .

This is proved by taking F = d.E1 and observing

E1 |= {P ∧ R} c {Q ∧ R}
≡ { (10) and definition of F }

E1 |= P ∧ R 6 wpF .c.(Q ∧ R)
⇐ { (26) and transitivity of 6 }

E1 |= P ∧ R 6 wpF .c.Q ∧ R
⇐ { calculus and (10) }

E1 |= {P } c {Q} .

8. Relational Interpretation

We now give relational justifications for the definitions of extension (13), abstrac-
tion (16), and composition (20) for predicate transformers. For this purpose we
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use relational semantics of programs as formalized in [Hes92], chapter 6. In this
context, function wp is accompanied by the weakest liberal precondition function
wlp even though wlp does not combine usefully with angelic choice, cf. [Hes94].

More directly than by wp, a command can be specified by the relation between
its initial state and its final state. Nontermination is formalized by the symbol ∞,
which is not in [F] for any frame F . For a frame pair E, a relation over E is
defined to be a function R ∈ ([E0] ∪ {∞} → P.E1). For a relation R over E we
interpret R.x′.x to mean that an execution starting in x may terminate in state
x′ if x′ 6= ∞, and that it may execute forever (nontermination) if x′ = ∞. Note
we use primed variables for the resulting states. More precisely, x ∈ [E1] specifies
the values of all accessible variables in the inital state whereas x′ ∈ [E0] only
specifies the modifiable variables in the final state; the other accessible variables
are unchanged.

We write Rel .E = ([E0] ∪ {∞} → P.E1) for the set of relations over E. For
R ∈ Rel .E, we define the weakest precondition functions wlp.R and wp.R in mt .E
by

(29) wlp.R.p.x = (∀ x′ ∈ [E0] : R.x′.x : p.x′)
wp.R.p.x = ¬R.∞.x ∧ wlp.R.p.x .

We now introduce the relational versions of extension and abstraction of com-
mands. So, let F be a frame pair with E v F . We introduce an extension function
ϕ ∈ Rel .E → Rel .F that extends the relation on E by the identity on the comple-
ment of E0, since the command corresponding to the relation should only modify
the E0-component. In this way we arrive at definition

(30) ϕ.R.y′.y = R.(y′|E0).(y|E1) ∧ (y′|F0 \ E0) = (y|F0 \ E0) ,
ϕ.R.∞.y = R.∞.(y|E1) .

Note that this is indeed the way the relational semantics of a command is
extended when the state space is enlarged by adding fresh variables.

Extension function ξ of (13) corresponds to the relational extension function
ϕ because of the equalities wlp ◦ ϕ = ξ ◦ wlp and wp ◦ ϕ = ξ ◦ wp. The first
equality is proved by observing that, for all R ∈ Rel .E, q ∈ P.F0, y ∈ [F1],

wlp.(ϕ.R).q.y
= { (29) over F }

(∀ y′ ∈ [F0] : ϕ.R.y′.y : q.y′)
= { (30) }

(∀ y′ ∈ [F0] : R.(y′|E0).(y|E1) ∧ (y′|F0 \ E0) = (y|F0 \ E0) : q.y′)
= { take x′ = y′|E0 then y′ = (y|F0;E0 : x′) }

(∀ x′ ∈ [E0] : R.x′.(y|E1) : q.(y|F0;E0 : x′))
= { (29) }

wlp.R.(q ◦ (y|F0;E0 : )).(y|E1)
= { (13) }

ξ.(wlp.R).q.y .

The proof of the second equality uses the same ingredients and may be left to
the reader.

The abstraction function ψ ∈ Rel .F → Rel .E is only concerned with the effect
on the E-component and starts with an arbitrary value for the complement. For



Transformers for Recursive Procedures 635

S ∈ Rel .F , relation ψ.S ∈ Rel .E is defined by

ψ.S.x′.x = (∃ y ∈ [F1], y′ ∈ [F0] :: S.(y′;E0 : x′).(y;E1 : x)) ,
ψ.S.∞.x = (∃ y ∈ [F1] :: S.∞.(y;E1 : x)) .

Note that the relational semantics of a procedure is indeed the abstraction to the
external frame of the meaning of its body (possible initialization of local variables
must be done in the body). Abstraction ρ of (16) corresponds to the relational
abstraction ψ because of the equalities wlp ◦ ψ = ρ ◦ wlp and wp ◦ ψ = ρ ◦ wp,
the proofs of which are left to the reader.

The set Rel .E is supplied with an operator “?” for sequential composition,
defined by

(R ? S).y.x = (∃ z ∈ [E0] : R.z.x : S.y.(x;E0 : z)) ,
(R ? S).∞.x = R.∞.x ∨ (∃ z ∈ [E0] : R.z.x : S.∞.(x;E0 : z)) ,

for R, S ∈ Rel .E, y ∈ [E0], x ∈ [E1]. Here state x serves as an initial state for an
application of R followed by S; state z ∈ [E0] holds intermediate values of the
modifiable variables and (x;E0 : z) holds intermediate values of the accessible
variables. It is a straightforward though tedious exercise to prove that

wlp.(R ? S) = wlp.R • wlp.S ,
wp.(R ? S) = wp.R • wp.S .

This justifies definition (20) of “•”, or rather its application in the definition of
wE in Section 6.1.

We do not want to restrict the predicate transformers allowed to those that
correspond to relations, but it is only for these predicate transformers that we have
an operational intuition. We therefore regard the above equalities as sufficient
justifications for the definitions of extension, abstraction, and composition.

9. Concluding Remarks

We have shown how local variables can be incorporated in the weakest precondi-
tion semantics of recursive procedures. No stacking is required. More specifically,
we have shown the soundness of Recursion Theorem (11) and the consequent
Correctness Rule (2) with respect to a weakest precondition semantics of recursive
procedures with local variables. For this purpose, we have generalized predicate
transformers on a single state space to predicate transformers for frame pairs.
New aspects in our approach are the introduction of frame pairs and the concen-
tration on the triple of special functions: the extension function ξ, the abstraction
function ρ, and the composition operator •.

It is possible to replace the ordering v between frame pairs E and F by
injective renaming functions E1 → F1 that map E0 into F0 and preserve types.
This would give a handle on procedures with reference parameters and may also
be useful in the treatment of modules.

The introduction of frames with the corresponding operations of extension,
composition and abstraction makes predicate transformers a more flexible tool to
specify modifications in various contexts. This may be a starting point for formal
verification of object-oriented programs. Indeed, objects are frames created dy-
namically, and extension function ξ models inheritance. A systematic application
of the above results to object orientation is a matter of future research.
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