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Abstract

In intensive care, time series of vital parameters have to be analysed
online, i.e. without any time delay, since there may be serious con-
sequences for the patient otherwise. Such time series show trends,
slope changes and sudden level shifts, and they are overlaid by
strong noise and many measurement artefacts. The development
of update algorithms and the resulting increase in computational
speed allows to apply robust regression techniques to moving time
windows for online signal extraction. By simulations and applica-
tions we compare the performance of least median of squares, least
trimmed squares, repeated median and deepest regression for online
signal extraction.

Keywords: Robust filtering, least median of squares, least trimmed squares,
repeated median, deepest regression, breakdown point.

1 Introduction

The online analysis of vital parameters in intensive care requires fast and
reliable methods as a small fault can yield life-threatening consequences for
the patient. Methods need to be able to deal with a high level of noise and
measurement artefacts and provide robustness against outliers. The variables
in question include for example heart rate, pulse, temperature and different

blood pressures.

Davies, Fried and Gather (2004) apply robust regression techniques to mov-
ing time windows to extract a signal containing constant periods, monotonic

trends with time-varying slopes and sudden level shifts. In this context, they



compare Ly, repeated median (RM), and least median of squares (LMS) re-
gression. They report that repeated median regression is preferable to L; in
most respects; opposed to these methods, LM S regression tends to instabili-
ties and it is slower, but it traces level shifts better and it is less biased in the

presence of many large outliers.

These findings concern the signal approximation in the centre of each time
window, i.e. with some time delay. Since fast reaction is of utmost importance
in intensive care, we exploit online versions of such procedures. Resuming the

work from Davies et al. (2004) we compare four regression methods here:

In Rousseeuw, Van Aelst and Hubert (1999, p. 425), Rousseeuw points out
that he considers LM S to be outperformed by least trimmed squares (LT'S)
regression because of its smoother objective function which results in a higher
efficiency; the only advantage of LM.S would be its minimax bias among all
residual-based estimators. It is of interest here whether LTS regression may
outmatch LM S with respect to stability. Additionally, we investigate deepest
regression (DR), which is expected to deal well with asymmetric and het-
eroscedastic errors (Rousseeuw and Hubert 1999) and compare it to RM re-

gression which showed best performance for delayed signal extraction.

Section 2 introduces the methods of interest and discusses some of their proper-
ties. In Section 3, a simulation study is carried out in order to investigate the
performance of the methods in different data situations. Section 4 describes
applications to some time series from intensive care, and finally, Section 5

closes with some concluding remarks.

2 Procedures for Online Signal Extraction

In the following, we consider a real valued time series (y;);cz observed at
time points t = 1,..., N. For the applicability of robust regression methods,
we assume the data to be locally well approximated by a linear trend. This

means, within time windows of fixed length n = 2m + 1 we assume a model

Yi+i :/'Lt—i_ﬂti—i_gt,ia 1= -m,...,m, (1)
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where p; denotes the underlying level of the signal and [; the slope at time
t; €¢; denote independent error terms with zero median. Below, we consider

different distributional assumptions for €, ;.

Regarding only one time window, we may drop the index ¢ for simplicity.
Hence, for a time window centred at time ¢ we write y; = u + i + ¢; for
t = —m,...,m. The window width n is chosen based on statistical and medical

arguments as explained in Section 3.

2.1 Methods for Robust Regression

Let now y = (Y_m,---,Ym) denote a time window of width n from (y;):ez,
and let r; =y, — (0 + Bz), 1= —m,...,m, denote the corresponding residuals.
For estimation of the level p of the signal and the slope 3 we consider the

following robust regression functionals 7" : R" — R2:

1. Least Median of Squares (Rousseeuw 1984)

S

Trus(y) = (,ULMSaﬁLMS) = argmlﬁn {med( riy = —m,...
i

2. Least Trimmed Squares (Rousseeuw 1983)

Trrs(y) = (/JLTS;BLTS _arg

where (r?);., denotes the kth ordered squared residual for the current
time window, i.e.  (r¥)u, < ... < (e < ... < (1%, for any

ke {l,...,n}, and h is a trimming proportion. We take h = [n/2] + 1

below.
3. Repeated Median (Siegel 1982)

Trne(y) = (iirar, Brar)

with BRM = med(med]#yz, Yi
—J

and gy = med;( yi — Brari ; i=—m,...,m),

;z,j:—m,...,m)

where the median for an even sample size is defined as the mean of the

two midmost observations.



4. Deepest Regression (Rousseeuw and Hubert 1999)

Tor(y) = (fipr, Opr) = arg max {rdepth((/], B), Y) }7

a8

where the regression depth of a fit (f1, 3) to a sample y is defined as

rdepth((7B),y) = min LminL¥G) + R (1), R*(0) + L ()} }

—m<i<m

with  L*(i) = L (i) = #{ je{—m,...;i} : v B) > o}
and R (i) = R, (i) = #{j clit1,....m}: r(id) <o}.
L~ (i) and R*(i) are defined analogously.

Applying such regression functionals, we estimate the level of the signal and its
slope in the centre of the current time window, as in Davies, Fried and Gather
(2004). This implies a delay of m time units for the current estimation. As
we are rather interested in the level at the most recent time point, which is at
the end of the window, we investigate the behaviour of the online estimates
defined as "¢ = [ + Bm.

2.2 Algorithms and Computational Speed

We use update algorithms for all estimates (Bernholt 2004), which prevents
calculating the new value for each time window from scratch and thus enhances

the computational speed.

The algorithms for LM S and LTS regression are based on the results of Edels-
brunner and Souvaine (1990). The repeated median algorithm is described in
detail by Bernholt and Fried (2003), and the deepest regression estimates are
computed by an update algorithm based on results from van Kreveld, Mitchell,
Rousseeuw, Sharir, Snoeyink and Speckmann (1999). This algorithm does not
take the average over all deepest regression fits, if there are several, but chooses
one of the deepest fits at random which increases the speed of computation

but might lead to some loss of efficiency.

Table 1 shows the computational complexities of the resulting update algo-

rithms. However, these values only reflect asymptotic behaviour. Therefore,
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LMS LTS RM DR
time O(n?) O(®?* O(n) O(nlog’n)
memory space  O(n?) O(n?) O(n?) O(n)

Table 1: Computational complexity of the considered algorithms.

LMS LTS RM DR
n=21 0161 0.161 0.035 0.747
n=31 0323 0324 0.049 0.956

Table 2: Mean computation time of 10000 updates in msec.

Table 2 shows the mean time needed for an update in milliseconds for small
sample sizes, measured on a PC with Pentium [V processor with 2.4 GHz and
512 MB memory.

It turns out that, when using these update algorithms, the repeated median
is by far the fastest method for the considered sample sizes. In contrast to its
low asymptotic computation time, an update of the DR estimate takes about
20 times longer than that of the repeated median. The algorithms for LM S
and LTS are faster than that for DR for the small sample sizes considered
here; the smaller asymptotic computation time of the latter seems to need

considerable sample sizes to become dominant.

2.3 Breakdown and Exact Fit

In case of normal errors, least squares is the most efficient regression method.
However, least squares regression can be strongly influenced by a single outlier,
resulting in a finite sample replacement breakdown point of 1/n. Since medical
data can contain several outliers within short time spans, we prefer robust
methods which show stable results and small bias even for a high percentage
of contamination, preferably combined with satisfactory efficiency in periods

without measurement problems and artefacts.

LMS, RM, and LTS (with h = |n/2|+1) possess a finite sample replacement
breakdown point of |n/2]/n ~ 50% which is the highest possible value for a
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regression equivariant functional (Rousseeuw and Leroy 1987). Rousseeuw
and Hubert (1999) show that deepest regression has a breakdown point of at
least about one third in any case. This raises the question if its breakdown
is larger in case of a fixed design, as it is here at hand. For example, the L,
breakdown point is 1/n if contamination in the explanatory variable is allowed,
while it increases to about 29.3% in case of an equally-spaced design. However,
below we will provide evidence that even in this case deepest regression only
guarantees protection against up to one third contaminated observations in

the sample.

Therefore, we first regard the exact fit property: Data from intensive care
often contain repeated values as the measurements are on a discrete scale, and
the patient’s physiological parameters can stay steady for some time. In such

situations the exact fit property is informative.

A regression functional T : R — R? possesses the exact fit property if for some
fit (ji,8) and k € {0,1,...,[n/2] — 1} the following is satisfied: Whenever
y; = fu+ (i fits at least n — k of the n observations exactly, then T = (/E,B)
whatever the other k observations are. Roughly spoken: if the majority of the
data lies on a straight line, the solution of the functional 7" will be exactly this
line (Rousseeuw and Leroy 1987, p. 122).

The smallest possible fraction of contamination which can cause a regression
functional T' to deviate from (fi, ) is called the ezact fit point: consider a
sample y,, of size n such that y; = i + ﬁz for all ¢, and let yy,, be a sample
where k out of the n observations of y,, are replaced by arbitrary values. Then,
the exact fit point of 71" is defined as

k ~
(T, yn) = mk@n {— ‘ there exists a sample yy, ,, such that T(y,) # (f, ﬁ)}
n

For regression and scale equivariant functionals as considered here, this value
gives an upper bound for the finite sample replacement breakdown point €
(Rousseeuw and Leroy 1987, pp. 122-124), i.e.

en(Tyyn) < 05(T,yn)-

The exact fit point for LMS and LTS is @ (Rousseeuw and Leroy 1987,
Section 3.4). For RM one less observation is needed to pull the fit away



ni o5 7 9 11 13 15 17 19 21 23 25 27

n|29 31 33 35 37 39 41 43 45 47 49 51

k{10 10 11 12 12 13 14 14 15 16 16 17

Table 3: Upper bound for the exact fit point k/n of the deepest regression

functional for selected sample sizes n.

from the line in case of a sample of odd size, because its slope component is
[n/2]

n

calculated by taking sets of two observations. Hence, its exact fit point is

which is equal to its breakdown point.

For deepest regression an upper bound for the exact fit point can be derived
as follows: consider a sample y,, ; of size n where n — k observations lie on a
straight line ly : y; = po+05oj, j = —m, ..., m. The exact fit point J; equals the
smallest fraction k/n of values not lying on [y such that the deepest regression

fit departs from the line /5. This means we are searching for a number £ with
Tpr(Ynk-1) = (ko fo) and Tpr(ynx) # (Ho, Bo)-

W.l.o.g. we assume 1y = 0 and 3 = 0. Furthermore, we take the first n — k
observations to lie on the line [y, i.e. we have y; =0 for j = —m,...,m — &,
and we put the remaining & observations on another line [; : y; = p; + 17 for
j=m—k+1,...,m, with y; = —”T“ and 31 = 1 # [y. This guarantees that
[; has a regression depth of at least k, because at least k& observations lie on
l1. Also, the residuals of these observations have the same (positive) sign with
respect to lp. In this way, the fit of [y to the full sample y,,  is worsened with
increasing k. Table 3 gives the smallest number k of non-zero observations
which, in this configuration, forces the deepest regression estimate away from

(0,0) for small to moderate sample sizes.

In this particular data situation and for the considered sample sizes, we see that

n+1

=] observations from [y can cause the deepest regression

the departure of |
fit to do so too.



Hence, we can conclude that the smallest k with Tpr(y,x) # (1, 3) is at most

|24 | and thus

1
5;;(TDR7Y) S - \‘
n

n-+1
5 )

Rousseeuw and Hubert (1999) show that the breakdown point of the Tpg at

any data set is at least one third:

e,(Tpr,y) > % Gﬁ-‘ — 1> ~

Thus,

L ([31-1) <itony < 8Tony < 1 - | "5

This leads to the claim that, even in case of an equally-spaced design, the

breakdown point of the DR functional equals 1/3.

3 Monte Carlo Study

In the following, we compare the performance of the online estimates ji°""¢ =

o+ Bm in different data situations. In particular, we consider scenarios which
are of importance in the online monitoring context. The performance of the es-
timates will be judged by their standard deviation, bias and root mean squared
error. For comparison, we also include results for least squares (L.S) regression.

Data are generated from the simple linear model
Yi=p+pi+e, i=—m,....,m.

where for £; we consider

e normal errors,

heavy tailed errors,
e skewed errors,
e normal errors with additive outliers at random time points,

e normal errors with subsequent additive outliers.

We set © = = 0 w.l.o.g., since all methods considered here are regression
equivariant, and set the error variance to one w.l.o.g. because of the scale

equivariance. In each case S = 10000 independent samples are generated.



On the one hand, the assumption of a linear trend within each time window
becomes less reliable if a large window width is chosen: in this case, even a
small bias in the estimation for the window centre can cause a considerable
bias of the online estimates as these are based on linear extrapolation. On the
other hand, a large window width stands for smaller variability and produces
smoother estimates. As a compromise, a choice of m = 10 or m = 15 is
considered acceptable for the physiological data we have in mind, leading to
window widths of n = 21 or n = 31 respectively, with the time units being

minutes.

3.1 Standard Normal Errors

In the ideal situation of normal errors all methods yield unbiased results, due

to the symmetry of the underlying error distribution.

Repeated median and deepest regression do not perform much worse than least
squares (LS) regression whilst the LM .S and LTS estimates spread much fur-
ther (cf. Table 4). The similar behaviour of LM S and LT'S can be explained
by the fact that both pick about 50% of the observations which can be op-
timally described by a straight line, without restrictions for symmetry, while
RM and DR seek for a balanced fit.

As a result, the LM S and LTS online estimates are only slightly more than
20% as efficient as LS, while for DR we have about 61%, and for RM ap-
proximately 70% efficiency. This is consistent with previous research, and the
results here even reflect the fact that for small samples LMS regression is

slightly more efficient than LTS regression (Rousseeuw and Leroy 1987).

3.2 Heavy Tails and Skewness

As real data sets may contain large aberrant values, the normal distribution is
often not appropriate to model the error term. Therefore, we examine errors
from a re-scaled t-distribution with three degrees of freedom and unit variance
as well as errors from a shifted lognormal distribution with zero median and

unit variance.



LMS LTS RM DR LS

standard normal | n =21 0.875 0.887 0.500 0.533  0.420
errors n=31 0.767 0.78 0.422 0.450 0.352
heavy tailed n=21 0544 0.551 0.345 0.354 0.413
errors n=31 0450 0.455 0.279 0.287 0.342
skewed n=21 0489 0495 0.353 0.384 0.429
errors n=31 0389 0399 0285 0.317 0.350

Table 4: Standard deviations for the estimates at standard normal, re-scaled

t3 distributed and re-scaled lognormal data.

At the t3-distribution, all methods yield unbiased results because of symmetry.
Again, the results for LM .S and LTS regression are similar, like those for RM
and DR. The standard deviations (cf. Table 4) show that compared to the
standard normal situation the variability has decreased for all robust methods,
while for least squares it remains about the same since its standard deviation

only depends on the error variance.

A larger window width causes less variability, but the proportions of the out-
comes from the different methods stay approximately the same for different
window widths. The LM S and LTS standard deviations are about 60% the
size of their values in the standard normal case, but nevertheless they are still
outperformed by LS. This is not true for RM and DR, having standard devia-
tions about 66% of their former size, with repeated median regression showing

the smallest variability here.

Figure 1 shows boxplots of the results for the online estimates at lognormal
errors with a window width of n = 31. The black line in the box denotes the

median, the grey line the arithmetic mean.

The figure clearly shows systematic differences among the considered methods.
Rousseeuw, Van Aelst and Hubert (1999) point out that LMS and LTS are
‘mode-seeking’ in contrast to the 'median-like’ behaviour of deepest regression
and, as we want to add, the repeated median. Indeed, the least median of
squares and least trimmed squares estimates lie mainly between the mode and

the median of the underlying error distribution, while repeated median and
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Online Estimatesfor Lognormal Data
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Figure 1: Boxplots of the simulation results for the window width n = 31.

deepest regression yield results centred at the median and least squares at the

expectation.

Since the methods apparently estimate different quantities, an examination of

bias is not sensible. Thus, we will only regard variability (cf. Table 4).

The RM and DR standard deviations are only about 70% that for the stan-
dard normal situation, and for LM S and LTS they are only about half as
large. Comparing the results of the robust methods to least squares we see
that the RM standard deviation is only slightly more than 80% as large as
the corresponding least squares value, while the DR standard deviation is ap-
proximately 90% as large. LMS and LTS on the other hand perform again
worse than least squares where LT'S shows a little more variability than LM S.

Hence, again the repeated median provides the best results.

3.3 Additive Outliers

In intensive care, data suffer from a broad variety of perturbations, either
caused by medical reasons or by external sources such as a loose cable. As
these disturbances often produce similar deviations at several time points, we

investigate the influence of additive outliers with same sign and size.

11



Standard Deviation Bias RMSE

1.5
?J A/‘/AﬂA
N o A5
0 1.0+ A- A AL
5 05e="°
O
0.0
[ [ [ [ [ [
0 2 4 6 8 10
©
© 3 3
N
2 > a
2
5 1 ® 1- A A A A o8 ¥ & -
o ot A et
o~ . [ n SN e 0~
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
6 6 6
S ] 5 |4 Lms
@ LTS
N — —] —]
N 4 4 | e rM
5 3 3 3 DR
s ] 4{')” i / ]
= = @
O I+ Aissse O ,ﬂ;./‘/‘ 1 v e® & 1 P = 7».71;%,\/
0~ He—e2 8 X4 Ao A 4 AA .
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Number of outliers Number of outliers Number of outliers

Figure 2: Standard deviation, bias and root mean squared error (RMSE) for
the online estimates at standard normal data with additive outliers at random

time points.

We generate samples from a standard normal model and add a value a €
{2,4,6,8,10} to an increasing number k € {1,...,10} of observations chosen
at random from the sample. Negative additive outliers would yield analogous

results. For the sake of brevity we only consider the sample size n = 21.

Outliers at random time points do not cause a bias for the slope, but for
the level estimation, which also affects the online estimates. Figure 2 shows
standard deviation, bias and root mean squared error (RMSE) of the online
estimates for outliers of size 2, 6 and 10. Results for outlier sizes of 4 and 8 lie

in between.
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Again, the similarity of the RM and DR outcomes shows up clearly, and the
differences in the results between LM S and LT'S regression are negligible.
LTS is only slightly less variable than LMJS for a large number of 9 — 10
outliers. We also see that LM .S and LTS are more heavily affected by smaller

outliers than by larger ones.

Comparing repeated median and deepest regression, RM is preferable here as
it yields a smaller standard deviation and bias for all considered numbers and
sizes of outliers. However, this advantage is only significant in case of seven
or more outliers in accordance with the lower breakdown point of deepest

regression.

Overall, LM S and LTS perform best in terms of bias although with respect
to the RMSFE they only outperform the other methods in case of many large
outliers. For small outliers or a small to moderate number of outliers the
repeated median should be preferred as it has the smallest RMSFE.

3.4 Outlying Sequences

For online monitoring it is of special importance to track sudden jumps in
the signal because this may point at an abrupt change of the patient’s state.
Looking at single time windows such a level shift is indicated by a patch of

outlying values of the same size and sign at the end of a time window.

We simulate such situations by generating positive additive outliers of the same
size as in the previous subsection - only that now the value a € {2,4,6,8,10}
is added to k € {1,...,10} subsequent values at the end of the time window.

Again, only the case n = 21 is investigated.

As the online estimates approximate the level at the end of the window, a
small bias w.r.t. level in the centre of the time window is not necessarily what
we aim at: in intensive care monitoring, as a medical rule of thumb a sequence
of five or more largely deviating values is assumed to indicate a shift whereas
a smaller number is typically regarded as series of outliers (Imhoff, Bauer,
Gather and Fried 2003). Hence, a method performs well if it maintains the

central level in case of a few subsequent outliers but jumps up to the level
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Figure 3: Standard deviation, bias and root mean squared error (RMSE) for

the online estimates at standard normal data with additive outliers, occurring

subsequently at the end of the time window.

of these largely deviant observations when their number is five or more - to

estimate the new (higher) level rather than the former (lower) one in the centre

of the window.

Again, Figure 3 shows standard deviation, bias and RMSFE only for outlier

sizes 2, 6 and 10 as the results for the sizes 4 and 8 lie in between.

No method shows exactly the bias behaviour described above, although for

medium-sized to large outliers the LM S and LTS bias curves remain con-

stantly low for a smaller number of outliers and then show a sudden drastic
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increase. However, the number of outliers which is necessary to make the LM S
or L'T'S bias increase is the larger, the larger the size of the outliers is. In other
words: the LM S and LTS online estimates follow a large level shift with a
considerable delay, in contrast to the estimates obtained by these methods in
the window centre, see Davies et al. (2004). On the other hand, the RM and

DR estimates typically smear a moderately large shift.

Also, one can derive from Figure 3 that the standard deviations of RM and DR
are always smaller than those of LM S and LTS regression, and further that
they stay almost constant. Again, the difference between LM S and LTS, and
between RM and DR is negligible, both with respect to bias and variability,
in spite of the different breakdown points of the latter.

4 Application to Time Series

In this section, we analyse the stability of the estimates as well as their ability
to track trends, slope changes and sudden level shifts by applying them to a
simulated and to a real time series. In both cases we use a window width of

n = 21 observations.

The simulated time series is 250 time units long and consists of a signal contain-
ing constant as well as trend periods and a level shift, plus additive standard
normal noise. 10% of the observations are replaced by positive additive outliers
of size 6, which are bundled in patches of four subsequent outliers (twice), three
outliers (twice), two outliers (three times), and single outliers (five times). The

starting point of each sequence is chosen at random.

Figure 4 shows the online estimates and the underlying signal for the simulated
times series. All methods trace the trends and the slope changes. Also, the
similarity of the results from LM S and LTS regression as well as from repeated

median and deepest regression shows up clearly.

RM and DR yield more stable results than LM.S and LTS, and they are less
influenced by values deviating moderately from the underlying signal, e.g. see

the results around time points 50 — 60 and around time point 150.

15



Time Serieswith Standard Normal Noise and 10% Positive Outliers
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Figure 4: Online estimates based on windows of size n = 21.

As the online estimates are based on a linear extrapolation of the level esti-
mates for the centre of the time window, the LM S and LT'S estimates continue
the pre-level-shift trend until some time points after the level shift. This is

due to their small bias with respect to the ’old’ level before the shift.

Repeated median and deepest regression trace the level shift with a shorter
delay than LMS or LTS, but they do not capture the abruptness of the
jump. Also, the RM and DR estimates are closer to the signal around the
times of a slope change - especially around the times 150 and 200. After the
transition to the 'new’ level, subsequent to the shift, all methods overestimate
the signal, due to the strongly positive slope estimates around the shift. This
is a well-known phenomenon when using a local linear fit, see e.g. Einbeck and
Kauermann (2003).

Finally, we apply the methods to a medical time series of length 250, repre-

senting the mean pulmonary artery blood pressure of an intensive care patient.
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Time Seriesof a Mean Pulmonary Artery Blood Pressure
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Figure 5: Online estimates based on windows of size n = 21.

Figure 5 shows that RM and DR yield much more stable results while LM .S

and LTS are affected by moderate variation in the data.

The RM and DR method trace the level shift around time point 70 better than
LMS or LTS regression. Also, LM S and LTS overestimate the level right
after the shift by far more drastically. However, they capture the abruptness of
the shifts better (e.g. around the times 150 and 175) while RM and DR smear
them. Here, the analyst must decide whether it is better to get a ’smeared’
transition from one level to the other, or to catch the suddenness of the jump

with some time delay.

Both examples show the superiority of repeated median and deepest regression
in terms of stability. Also, the repeated median does not overestimate the

signal after a shift as much as deepest regression.
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5 Conclusions

All of the considered methods follow trends and slope changes and trace level
shifts quite well. The differences in the outcomes from least median of squares
and least trimmed squares regression are negligible while repeated median and

deepest regression also show very similar results.

For symmetric, unimodal errors all methods provide unbiased estimates of the
median and the mode, which are identical in this case; in case of unimodal,
but skewed errors, the LM .S and LTS estimates lie somewhere in between the
median and the mode while RM and DR estimate the median.

LMS and LTS are less biased than RM and DR in the presence of many
large outliers. However, as explained in Section 3.4, in case of a level shift a
small bias does not mean better performance of the online estimates. Although
RM and DR smear a shift somewhat, these methods still might be preferred
because LM S and LTS follow a shift with a longer delay - especially if the shift
is large. In spite of the claim that deepest regression is particularly appropriate
for skewed errors due to its construction, the repeated median performed even

better for lognormal errors.

Further, repeated median and deepest regression yield a more stable signal
extraction; and the LM S and LTS estimates are stronger influenced by small

or medium-sized outliers.

Summarising, repeated median and deepest regression outperform LM S and
LTS regression w.r.t. online signal extraction without delay. Repeated me-
dian regression yields the best results in most respects: among these robust
methods, RM is the least variable in most of the considered situations; it
gives stable estimations in the applications and also, it is computationally the

fastest.

Acknowledgement: We gratefully acknowledge the financial support of the
Deutsche Forschungsgemeinschaft (SFB 475: 'Reduction of Complexity for

Multivariate Data Structures’).

18



References

Bernholt, T. (2004). Update Algorithms for the Repeated Median, LM S, LTS

and Deepest Regression, Personal Communication.

Bernholt, T. and Fried, R. (2003). Computing the Update of the Repeated
Median Regression Line in Linear Time, Inf. Process. Lett. 88 (1), 111-
117.

Davies, P.L., Fried, R. and Gather, U. (2004). Robust Signal Extraction for
On-line Monitoring Data, J. Stat. Plann. Inference 122 (1-2), 65-78.

Edelsbrunner, H. and Souvaine, D.L. (1990). Computing Least Median of
Squares Regression Lines and Guided Topological Sweep, J. Am. Stat.
Assoc. 85, No. 409, 115-119.

Einbeck, J. and Kauermann, G. (2003). Online Monitoring with Local Smooth-
ing Methods and Adaptive Ridging, J. Statist. Comput. Simul. 73, 913-
929.

Imhoff, M., Bauer, M., Gather, U. and Fried, R. (2002). Pattern Detection
in Intensive Care Monitoring Time Series with Autoregressive Models:
Influence of the AR-Model Order, Biom. J. 44, 746-761.

Rousseeuw, P.J. (1983). Multivariate Estimation with High Breakdown Point,
in W. Grossmann, G. Pflug, I. Vincze, W. Wertz (eds.) Proceedings of the
4th Pannonian Symposium on Mathematical Statistics and Probability,
Vol. B, D. Reidel Publishing Company, Dordrecht (The Netherlands).

Rousseeuw, P.J. (1984). Least Median of Squares Regression, J. Am. Stat.
Assoc. 79, No. 388, 871-880.

Rousseeuw, P.J. and Hubert, M. (1999). Regression Depth, J. Am. Stat. Assoc.
94, No. 446, 388-402.

Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and Outlier De-
tection, Wiley, New York (USA).

19



Rousseeuw, P.J., Van Aelst, S. and Hubert, M. (1999). Rejoinder to 'Regression
Depth’, J. Am. Stat. Assoc. 94, No. 446, 419-433.

Siegel, A.F. (1982). Robust Regression Using Repeated Medians, Biometrika
69, 242-244.

Van Kreveld, M., Mitchell, J.S.B., Rousseeuw, P.J., Sharir, M., Snoeyink, J.
and Speckmann, B. (1999). Efficient Algorithms for Maximum Regression
Depth, Proceedings of the 15th Annual ACM Symposium of Computa-
tional Geometry, ACM Press, New York (NJ), 31-40.

20



