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Summary
The k points that optimally represent a distribution (usually in terms of a squared error loss) are called
the k principal points. This paper presents a computationally intensive method that automatically
determines the principal points of a parametric distribution. Cluster means from the k-means
algorithm are nonparametric estimators of principal points. A parametric k-means approach is
introduced for estimating principal points by running the k-means algorithm on a very large simulated
data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical
and simulation results are presented comparing the parametric k-means algorithm to the usual k-
means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric
k-means algorithm.
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1 Introduction
One of the classic statistical problems is to find a set of points that optimally represents a
distribution or to determine an optimal partition of a distribution. Applications related to this
problem include: optimal grouping (Cox 1957,Connor 1972), optimal stratification (Dalenius
1950,Dalenius and Gurney 1951), signal processing and quantization (e.g. see the March 1982
issue of the IEEE Transactions on Information Theory which is devoted to the subject), optimal
sizing of clothing and equipment (Fang and He 1982,Flury 1990,1993), selective assembly and
optimal binning (Mease et al. 2004), and representative response profiles in clinical trials
(Tarpey et al. 2003). The problem of determining and estimating an optimal representation of
a distribution by a set of points has been studied by many authors (Eubank 1988,Gu and Mathew
2001,Flury and Tarpey 1993,Iyengar and Solomon 1983,Li and Flury 1995,Graf and Luschgy
2000,Luschgy and Pagés 2002,Pötzelberger and Felsenstein 1994,Rowe 1996,Stampfer and
Stadlober 2002,Su 1997,Tarpey 1994,1995,1997,1998,Tarpey et al. 1995,Yamamoto and
Shinozaki 2000a,b,Zoppé 1995,1997). This paper presents a very simple but computer
intensive approach to solving this problem based on the k-means clustering algorithm (e.g.
MacQueen 1967,Hartigan 1975,Hartigan and Wong 1979).

The single point that best approximates the distribution of a random variable X in terms of
mean squared error is the mean μ: E||X − μ||2 ≤ E||X − m||2 for any m. The framework for
determining a set of points that optimally represents a distribution in terms of mean squared
error is to generalize the mean from one point to several points as follows. Let X denote a p-
dimensional random vector. For a given set of k points: {y1, y2, … yk} with yj ∈ ℜp, denote
the set of points in ℜp closer to yj than the other yi as Dj = {x ∈ ℜp: ||x − yj||2 ≤ ||x − yi||2, i ≠
= j}. Define a k-point approximation Y to X as

Y = y j, if X ∈ Dj. (1)
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The k points are called self-consistent points, or equivalently, Y is called self-consistent for
X if E[X|Y] = Y (Flury 1993,Tarpey and Flury 1996). The mean is the “center-of-gravity” of a
distribution and k self-consistent points represent a k-point generalization of the center-of-
gravity from one to many points because each self-consistent point yj is the conditional mean
of X over Dj. If Y is the optimal k-point approximation to X in terms of mean squared error
(i.e., E||X − Y ||2 ≤ E||X − Y 0||2, for any other k-point approximation Y 0 to X), then the points
yj in the support of Y are called the k principal points of X (Flury 1990). Flury (1990) showed
that a set of principal points must be self-consistent points. Thus, the set of principal points for
X can be determined by finding the optimal set of k self-consistent points. This definition of
principal points is given in terms of a squared error loss, but other loss functions could be
considered as well.

In applications of designing clothing or equipment, a single size may be based on the mean of
the distribution but multiple sizes (e.g. small, medium and large) can be based on the principal
points of the distribution. Section 6 provides an example of determining optimal sizes and
shapes of gas masks. In functional data analysis applications (Ramsay and Silverman 1997)
when the data consist of curves, principal point methodology can be used to determine a small
set of curves that represent the primary modes of variation (e.g. see Flury and Tarpey 1993).
For instance, using principal points to estimate a set of representative longitudinal response
curves from a clinical trial can be used to describe various patient types such as non-responders,
drug responders, placebo responders, drug/placebo responders (Tarpey et al. 2003). In signal
processing and digital communication the term quantization is used when a signal is
represented by a finite set of values. The solution to finding the set of values that minimizes
the loss of information due to quantization is mathematically equivalent to determining
principal points.

When applied to data, the k-means algorithm converges to a set of k self-consistent points for
the empirical distribution. The k-means algorithm seeks a partition of the data that minimizes
the within cluster sum of squares and hence cluster means from the k-means algorithm provide
nonparametric estimators for the principal points of the distribution. More efficient methods
of estimating principal points in terms of a lower mean squared error are available if certain
distributional assumptions hold (e.g. Stampfer and Stadlober 2002,Tarpey 1997). Defining
parametric estimators of principal points often requires knowledge of the principal points of
theoretical distributions. However, analytically determining principal points of theoretical
distributions is extremely difficult, particularly for multivariate distributions and mixture
models. In the next section, we define a parametric k-means algorithm that produces maximum
likelihood estimators of principal points automatically without requiring knowledge of the
principal points of the underlying population. The asymptotic performance of the parametric
k-means algorithm is provided in Section 3 and simulation results comparing the parametric
k-means algorithm to the usual nonparametric k-means algorithm are provided in Section 4.
The performance of the parametric k-means algorithm is examined for finite mixture
distributions in Section 5. The method is illustrated on a problem of fitting gas masks in Section
6 and the paper is concluded in Section 7.

2 The Parametric k-Means Algorithm
The idea behind the parametric k-means algorithm is very simple. The goal is to estimate the
k principal points of a distribution based on a sample x1, …, xn from the distribution. One
approach is to simply throw the data into the k-means algorithm. If a larger sample size were
available, then the principal point estimators would be more stable. The idea of the parametric
k-means algorithm is to run the k-means algorithm, not on the raw data, but on a simulated data
set with a huge sample size. The key is to simulate data from a distribution that is parametrically
estimated. The idea behind the parametric k-means algorithm is similar in spirit to the Monte
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Carlo EM algorithm (Wei and Tanner 1990) where the (typically intractable) analytical
computation of the E-step in the EM algorithm is replaced by an average obtained from a
simulated data set.

The following is a description of the parametric k-means algorithm. Let x1, …, xn denote a
sample from a population with distribution F (·; θ), where the parameter θ can be one-
dimensional or a vector.

1. Estimate θ obtaining θ ̂ (using for example maximum likelihood estimation).

2. Simulate a very large sample of size ns (say ns = 1, 000, 000) from F(·; θ ̂).
3. Run the k-means algorithm on the simulated data set from step 2.

The cluster means from step (3) are then used as estimators of the principal points of the
underlying distribution. High speed computing is readily available and thus it is very easy to
implement the parametric k-means algorithm.

Several of the references in Section 1 deal with the problem of determining principal points
for theoretical distributions. Steps 2 and 3 of the parametric k-means algorithm provide a
solution to this problem.

As with the usual nonparametric k-means algorithm, the parametric k-means algorithm may
converge to a local instead of a global optimum solution. Thus, it is generally a good idea to
run the k-means algorithm on the simulated data many times with different initial values when
searching for the globally optimal solution (i.e. the principal points). Hand and Krzanowski
(2005) have proposed an iterative refinement method based on simulated annealing that
generally offers an improvement over a “best of 20 random starts” approach. It should be
pointed out that these methods do not guarantee that the globally optimal solution will be found.

Note that implementing the parametric k-means algorithm requires that the user specify the
distribution F(·; θ). Exploratory data analysis and goodness-of-fit tests can be used to determine
a reasonable distribution to use for the parametric k-means algorithm.

In order to use the k-means algorithm, the number k of cluster means needs to be specified. In
many clustering applications, the number of clusters may be well-defined (e.g. male/female
clusters, different species of animals). However, for continuous distributions, there exists a set
of k principal points for all positive integers k. There is no right or wrong value for k. Instead,
the appropriate choice for k in principal point applications depends on the particular application
and needs to be determined by the investigator. The choice of k often depends on economic
factors as well as the desired degree to which the k principal points approximate the continuous
distribution. For instance, when manufacturing clothing or equipment (pants, shirts, gloves,
helmets, goggles etc.), k corresponds to the number of sizes to produce and can vary from k =
1 (one size fits all) to k → ∞ (tailor an outfit for each individual). In these types of applications,
a balance must be decided upon between the extra cost of producing many different sizes and
making sure enough size choices exist to guarantee a good fit for everyone. In other applications
such as optimal stratification (Dalenius 1950,Dalenius and Gurney 1951) or optimal grouping
for testing trends in categorical data (Connor 1972), the value of k may be chosen to achieve
a desired efficiency relative to estimators that do not use grouping.

One could argue that if the data are sampled from a known parametric family of distributions,
then why not just compute the principal points of the distribution directly without using the k-
means algorithm? As noted above, analytical determination of principal points is usually very
difficult, often requiring numerical integration over complicated high dimensional regions (e.g.
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Tarpey 1998). The parametric k-means algorithm on the other hand produces the results
automatically by allowing the computer to do all the work.

3 Asymptotics
Suppose a random sample of size n is obtained from a distribution F(·; θ). Let θ ̂ denote an
asymptotically normal estimator of θ from the sample:

n(θ̂ − θ)⇒ N (0, Ψ), (2)

where Ψ is the covariance matrix. Let ξ(θ) denote the k principal points for the distribution F
(·; θ) and let ξn(θ) denote the principal points of the empirical distribution that can be obtained
by running the k-means algorithm on the sample data. Pollard (1981) proved strong consistency
of the k-means algorithm estimators and showed in Pollard (1982) that the k-means algorithm
estimators are asymptotically normal provided certain regularity conditions are satisfied (such
as finite second moments, a continuous density, a unique set of k principal points and a couple
other conditions typically satisfied by most common distributions). Let ns denote the simulation
sample size for the parametric k-means algorithm with ns ≫ n. A sample of size ns is simulated
from the distribution F(·; θ ̂) and the k-means algorithm is applied to this simulated data yielding
cluster means denoted by ξns (θ ̂). By the strong consistency and asymptotic normality results
for k-means clustering, we can write

ξns
(θ̂) = ξ(θ̂) + Op(1 / ns), (3)

Where Op(1/ ns) is the Landau symbol meaning at most of order ns
−1/2 in probability.

Suppose that ξ(θ) is a continuously differentiable function of θ. Then using a Taylor series
expansion of ξ(θ ̂) about θ, one can write

ξ(θ̂) = ξ(θ) + H (θ̂ − θ) + Op(1 / n), (4)

where H is the matrix of partial derivatives of ξ(θ) with respect to the parameters in θ.
Combining (3) and (4) gives

ξns
(θ̂) = ξ(θ) + H (θ̂ − θ) + Op(1 / n), (5)

provided ns > n2. Therefore, from (2), the parametric k-means estimators will be asymptotically
normal

n(ξns
(θ̂) − ξ(θ)) ⇒ N (0, HΨH ′).

If θ ̂ is the maximum likelihood estimator of θ, then we have just shown that the parametric k-
means estimators are asymptotically equivalent to maximum likelihood estimators of principal
points.

The following simple example illustrates the results. The k = 2 principal points of a N(μ, σ2)

distribution are μ ± 2
π σ (Flury 1990). Thus, ξ(μ, σ 2) = (μ − 2

π σ, μ + 2
π σ)′ Letting x̄

and s2 denote the sample mean and variance of the original data set, we have

ξns
(x̄, s 2) ≈ (x̄ − 2

π s, x̄ + 2
π s)′ for ns large. From the asymptotic normality of (x̄, s2), it
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follows that the k = 2 parametric k-means estimators for the normal distribution ξns (x̄, s2) are

asymptotically normal with mean (μ − 2
π σ, μ + 2

π σ)′ and covariance matrix

HΨH ′ = (1 − 1
2πσ

1 1
2πσ

)(σ2 0

0 2σ4)(1 − 1
2πσ

1 1
2πσ

)′ = σ2(1 + 1
π 1 − 1

π

1 − 1
π 1 + 1

π
). (6)

In this simple example, the principal points ξ(θ) are known and maximum likelihood estimators
can be computed using ξ (θ ̂) by invoking the invariance principal. However, in most practical
situations, the function ξ(θ) will be unknown. In fact, in only a few relatively simple cases
(small k and low dimension) have the principal points ξ(θ) been determined and these often
require iterative searches and/or numerical integration (see the references in Section 1). If one
knows the distribution F(·; θ) then the parametric k-means algorithm allows us to avoid these
difficulties.

4 Simulation Results
In this section, the k-means algorithm (Hartigan and Wong 1979) applied to the raw data will
be referred to as the nonparametric k-means algorithm in order to distinguish it from the
parametric k-means algorithm described in Section 2. This section presents simulation results
comparing the nonparametric and parametric k-means algorithms in a variety of situations. The
simulation results presented here were obtained using the R-software (R Development Core
Team 2003). The actual principal points for the distribution were determined from known
results or from extensive simulations whereby a very large sample size (usually of size ns =
500, 000 or 1, 000, 000) is simulated from the given distribution and the k-means algorithm is
then applied to the simulated sample several times (usually 20 to 25) with random initial seeds.
By the strong convergence of k-means clustering (Pollard 1981), the difference between the
values obtained for the principal points and the true principal points is of the order 1/ ns.
This process of determining the true principal points uses the parametric k-means algorithm
approach except that because we are simulating the data from a known distribution, the
parameters of the distribution do not need to be estimated.

The nonparametric and parametric k-means algorithms will be compared in terms of a mean
squared error (MSE) between the estimated principal points and the actual principal points:

MSE = E ∑
j=1

k
∥ ξ̂ j − ξ j∥

2 , (7)

where ξj and ξ ̂j, j = 1, …, k, are the k principal points and the k estimated principal points
respectively of the underlying distribution. To compute the MSE, the expectation in (7) is
estimated by averaging ∑ j=1

k ∥ ξ̂ j − ξ j∥
2 , over 200 simulated data sets in the examples

below. The parametric k-means algorithm was implemented using ns = 100,000 for each data
set.

As an illustrative first example, two principal points were estimated from a N(0, 1) distribution
using the usual k-means algorithm and the parametric k-means algorithm. The two principal

points of N(0, 1) are ± 2
π  (see Section 3). The parametric k-means algorithm was implemented

by (i) estimating the sample mean x̄ and standard deviation s from the simulated data set, (ii)
simulating 100,000 random variates from a N(x̄, s2) distribution, and (iii) running the k-means
algorithm on this larger simulated data set. Figure 1 shows a plot of the estimated MSE’s for
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the nonparametric and parametric k-means algorithm for sample sizes ranging from n = 10 to
400 in increments of ten. Because the MSE is of the order 1/n, the plots show n × MSE for the
various samples sizes n. As Figure 1 clearly illustrates, the parametric k-means algorithm is
considerably more efficient than the nonparametric k-means algorithm with a smaller MSE. In
fact, for each sample size, n × MSE for the parametric k-means algorithm is about half that of
the nonparametric k-means algorithm. Tarpey (1997) derived the asymptotic value for n × MSE
for the nonparametric k-means estimator as 4(π2 − 2π + 2)/(π(π − 2)) ≈ 6.2306 and 2 + 2/π ≈
2.6366 for the maximum likelihood estimators. The horizontal line shown in Figure 1
corresponds to the asymptotic value for the maximum likelihood estimators which can be
derived from (6). The MSE for the parametric k-means estimators varies about this asymptotic
value for all sample sizes. Note that the degree of jaggedness in the simulation curves in Figure
1 depends on the number of data sets simulated (in this case 200) and not on the sample size
of the data sets.

The next illustration is again for the standard normal distribution, except this time k = 5
principal points will be estimated. Figure 2 shows the plot of n × MSE for the nonparametric
and parametric k-means algorithm for sample sizes ranging from n = 50 to 400 in increments
of ten. As Figure 2 shows, the parametric k-means algorithm is performing even more
efficiently than the nonparametric k-means algorithm for estimating k = 5 principal points
compared to k = 2 principal points shown in Figure 1. In particular, n × MSE is about three
times greater for the nonparametric k-means compared to the parametric k-means for k = 5 for
larger sample sizes. The reason for the bigger difference between the parametric and
nonparametric k-means when k = 5 is that the nonparametric k-means algorithm is estimating
more parameters (five cluster means compared to two cluster means). Because there are fewer
points per cluster when k = 5 versus k = 2, the estimated cluster means are less stable. However,
for the parametric k-means algorithm, only the mean x̄ and standard deviation s need to be
estimated regardless of the number k of cluster means specified. Thus, as the number k of
principal points increases, the nonparametric k-means algorithm will deteriorate in terms of
efficiency compared to the parametric k-means algorithm.

In order to illustrate the performance of the parametric k-means algorithm versus the
nonparametric k-means algorithm for multivariate data, k = 2 principal points were estimated
for a bivariate normal distribution with mean zero and a diagonal covariance matrix diag(σ2,
1). The two principal points for this distribution lie along the first principal component axis
(Tarpey et al. 1995) and are given by:

( − 2/ πσ
0 ) and ( 2/ πσ

0 ).
Letting x̄ and S denote the sample mean and covariance matrix, the parametric k-means
algorithm is run by simulating data from a N(x̄, S) distribution.

Because the two principal points must lie along the first principal component axis, we can
modify the parametric k-means algorithm by constraining the cluster means to lie along the
first sample principal component axis. The constrained principal point estimators are given by
x̄ + β ̂1ξ ̂j for j = 1, …, k, where x̄ is the sample mean, β ̂1 is the eigenvector of the sample
covariance matrix associated with the largest eigenvalue, and ξ ̂1, …, ξ ̂k are cluster means from
the parametric k-means algorithm applied to the first principal component scores. Figure 3
shows a plot of n × MSE versus sample size for the nonparametric and parametric k-means
algorithm along with the constrained method results using σ = 1.5. Once again, the parametric
k-means performs more efficiently than the nonparametric k-means at all sample sizes. Also,
the constrained method performs slightly more efficiently than the parametric k-means
indicating a modest increase in efficiency. It would be interesting to extend the asymptotic
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results for the parametric k-means algorithm in Section 3 to the constrained parametric k-means
algorithm.

The performance of the parametric k-means algorithm depends on the validity of the parametric
assumptions. For instance, suppose the parametric k-means algorithm is implemented
assuming the data are from a bivariate normal distribution as above when in fact the true
distribution is a bivariate t (Fang et al. 1990, page 85). A small scale simulation was performed
to evaluate the performance of the misspecified parametric k-means algorithm in this situation
for sample sizes ranging from 50 to 200, degrees of freedom ranging from 5 to 50, and for k =
2 and 5 principal points. In each case the parametric k-means algorithm based on the erroneous
normality assumption performed much better than the nonparametric k-means algorithm with
n × MSE being about 2 to 3 times greater for the nonparametric k-means algorithm compared
to the parametric k-means algorithm, even for low degrees of freedom.

Another non-normal simulation was run using the chi-square distribution. k = 2 principal points
were estimated for samples of sizes n = 25, 50, 75 and 100 using the nonparametric and
parametric k-means algorithms. For the parametric k-means algorithm, a random sample of
100,000 was simulated from the correctly specified chi-square distribution with degrees of
freedom equal to the sample mean. A parametric k-means algorithm was also run by
misspecifying a normal distribution even though the true underlying distribution is chi-square.
The simulation results, shown in Figure 4, were obtained for degrees of freedom ranging from
1 to 100 (horizontal axis). As expected, the correctly specified parametric k-means algorithm
(long dashed curves) performs best. For large degrees of freedom, the chi-square is
approximately normal and the misspecified parametric k-means based on the normal
distribution (short-dashed curves) performs better than the nonparametric k-means algorithm
(solid curves). For low degrees of freedom, the chi-square is very non-normal being strongly
skewed to the right. In these cases the mis-specified parametric k-means algorithm either
performs about the same as the nonparametric k-means for low sample sizes or performs
slightly worse than the nonparametric k-means for larger sample sizes. For larger sample sizes,
one should have the power to detect the non-normality (using a goodness-of-fit test for
example) and therefore misspecifying a normal distribution for the parametric k-means
algorithm can hopefully be avoided. However, for smaller sample sizes when it is more difficult
to detect non-normality, the misspecified parametric k-means performs no worse than the
nonparametric k-means algorithm.

5 Parametric k-Means Applied to Finite Mixtures
This section illustrates the parametric k-means algorithm in the setting of finite mixture
distributions (see e.g. McLachlan and Krishnan 1997,Titterington et al. 1985) where closed
form expressions do not typically exist for parameter estimates. Very little is known about
principal points for mixture distributions. Yamamoto and Shinozaki (2000b) studied two
principal points for the specialized case of a mixture of two spherically symmetric distributions.
Determining principal points analytically for a mixture distribution is very difficult because of
the wide variety of ways mixture distributions can be parameterized in terms of number of
mixture components, mixing proportions, means and covariance structures of the mixture
components.

In order to apply the parametric k-means algorithm, maximum likelihood estimation of the
parameters of the mixture distribution are obtained via the EM algorithm (Dempster et al.
1977). Next, a very large sample size is simulated from a mixture distribution with parameters
equal to the maximum likelihood estimates. In practice, one needs to specify the number of
mixture components in order to run the EM algorithm. There have been numerous studies for
determining the number of “groups” in a data set. A promising and simple approach is proposed
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by Sugar and James (2003) who also provide a review of many other methods of determining
the number of groups in a data set.

In principal point applications involving finite mixtures, the number of principal points
required will often differ from the number of mixture components. For example, suppose
helmets are to be used for men and women and k different sizes need to be determined. The
full population consists of two mixture components (males and females) but more than two
sizes may be needed. In these types of applications, the number of mixture components is
known and does not need to be determined. In fact, if the data identify who is male and who
is female, then the EM algorithm is not needed to estimate the parameters of the two mixture
components.

On the other hand, consider a clinical trial where quadratic curves are used to model
longitudinal responses and the shape of the curve is clinically meaningful. Suppose the
population is a mixture of two components: those who do and do not experience a placebo
response. Membership in the two mixture components is not directly observed. Even if the
distribution within each mixture component is homogeneous (e.g. normal), there will often be
more than one representative response curve for individual components. For instance, if the
degree of the responses (weak to strong) and the timing of the responses (immediate to delayed)
vary according to a normal distribution, then the resulting response curves can take a variety
of different shapes (e.g. see Tarpey et al. 2003).

Our first illustration is to estimate k = 4 principal points of a univariate normal mixture
consisting of two components:

f (y) = π1 f 1(y) +π2 f 2(y),

where the prior probabilities are both set equal to a half: π1 = π2 = 1/2, f1 and f2 are univariate
normal distributions with unit variance and means μ1 and μ2 respectively. Figure 5 shows the
results for three different mixtures. In each case μ2 = 0 and μ1 takes values 6, 4 and 3 for the
three plots. In other words, the two mixture components are moving closer together from top
to bottom of Figure 5. The plots on the left in Figure 5 show the mixture densities along with
k = 4 principal points. The plots on the right show the corresponding n × MSE for the parametric
and nonparametric k-means algorithm. To implement the parametric k-means algorithm, the
EM algorithm was run on the data to obtain estimates of the prior probabilities π̂1 and π̂2 and
the parametric simulation sample size (ns = 100, 000) was split in two according to these
estimated prior probabilities.

For the plots at the top of Figure 5, the two mixture components are well separated (μ1 − μ2 =
6) and the parametric k-means algorithm performs much more efficiently than the
nonparametric k-means for all sample sizes. In particular, the MSE for the nonparametric k-
means is about twice as big as the MSE for the parametric k-means algorithm. It is interesting
to note that the parametric k-means in this case performs much more efficiently than the
nonparametric k-means although the parametric k-means requires estimating the mixture
components via the EM algorithm. In this first case (top panels in Figure 5), the EM algorithm
has an easy job because the mixture components are well separated. For the plots in the middle
and at the bottom in Figure 5, the mixture components are closer together which makes it more
difficult for the EM algorithm to accurately estimate the mixture components, especially for
small sample sizes. The bottom right plot in Figure 5 shows that the parametric and
nonparametric k-means perform about the same in terms of MSE for smaller sample sizes but
as the sample size increases the parametric k-means outperforms the nonparametric k-means
algorithm. In particular, once the sample size exceeds n = 170 the parametric k-means is about

Tarpey Page 8

Comput Stat. Author manuscript; available in PMC 2007 October 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



twice as efficient than the nonparametric k-means when the mixture component means differ
by 3 (bottom plots in Figure 5).

Next the nonparametric and parametric k-means algorithms are compared for a bivariate normal
mixture consisting of two components. For this illustration, k = 4 principal points are estimated
from a mixture of two bivariate normal distributions with equal prior probabilities. The first
component is centered at the origin with covariance matrix diag(2, 1) and the second component
is centered at the point (7, 1) and the covariance matrix has eigenvalues 2 and 1, similar to the
first component, but the distribution has been rotated by π/3 radians. Figure 6 shows a picture
of this mixture distribution by plotting the elliptical contours of equal density for each
component as well as k = 4 principal points. Implementing the parametric k-means algorithm
for a multivariate mixture distribution introduces some added complexity. As in the univariate
case, the parameters of the mixture components are estimated using the EM algorithm.
Simulating from the estimated mixture distribution in the multivariate case requires simulating
the correct covariance structure for each mixture component which requires extracting the
eigenvalues and vectors from the covariance matrices estimated from the EM algorithm. Figure
7 shows a plot of n × MSE versus sample size for the non-parametric and parametric k-means.
Once again, the parametric k-means is about twice as efficient as the nonparametric k-means.

6 Example
Flury (1990) coined the term principal points in the problem of determining optimal sizes and
shapes of protection masks for men in the Swiss army. For example, estimating k = 3 principal
points would be useful for determining a small, medium and large size mask. p = 6 head
dimension variables were measured on a sample of n = 200 men: minimal frontal breadth
(MFB), breadth of angulus mandibulae (BAM), true facial height (TFH), length from glabella
to apex nasi (LGAN), length from tragion to nasion (LTN), and length from tragion to gnathion
(LTG) (Flury 1997, page 8).

The Swiss head dimension data appears consistent with a multivariate normal distribution
(Flury 1990) and thus the parametric k-means algorithm will be used assuming the distribution
is multivariate normal. Without using the parametric k-means algorithm, it would be extremely
difficult to determine k > 4 principal points of a p = 6 dimensional multivariate normal
distribution.

In order to compare the performance of the nonparametric and parametric k-means algorithm,
a leave-one-out prediction error was computed for different values of k. The leave-one-out
prediction error was computed by leaving out a single data point and then estimating the k
principal points using both the nonparametric and parametric k-means algorithms. The squared
distance between the left-out point to the nearest estimated cluster mean was then computed.
This was repeated for all observations and the average squared error, called the Prediction
Mean Squared Error (PMSE) was computed. For each leave-one-out iteration, estimated cluster
centers from the full data set were used as starting seeds for the k-means algorithm so the
problem of multiple stationary points was minimized. 500,000 simulated observations were
used in the parametric k-means algorithm. The results, summarized in Figure 8, show that the
parametric k-means algorithm is superior to the nonparametric k-means algorithm for all values
of k = 2, …, 8, although the difference between the two methods is rather small for k = 5, 6
and 7 which may be attributable to slight departures from normality in the data.

The computation time required to implement the parametric k-means algorithm for this
example is modest. It took about 3 seconds to implement the parametric k-means using a
simulated sample size of 500,000 in this example for k = 2 and about 15 seconds for k = 8 on
a pentium 1.79GHz machine. The time required for the leave-one-out PMSE computations can
be computed by multiplying these times by the sample size n, in this case n = 200. More
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complicated models, like finite mixture models, would require additional time to get the initial
parameter estimates for the parametric k-means simulation.

A Self-Consistency Test
For the Swiss head data we assumed the distribution is multivariate normal when implementing
the parametric k-means algorithm. The validity of the normality assumption can be assessed
by evaluating the self-consistency of the parametric k-means solution. From the definition of
self-consistent points in Section 1 it follows that each estimated principal point from the
parametric k-means algorithm should be approximately equal to the average of the original
data points that are closest to the principal point. To illustrate, Figure 9 shows k = 6 estimated
principal points (large solid circles) for the Swiss head dimension data estimated using the
parametric k-means algorithm and projected into the subspace of the first two principal
components. The k = 6 points form a pentagon pattern with a center point. Let ξ ̂j denote an
estimated principal point (j = 1,…, k) and let x̄j denote the average of the original Swiss head
data points closest to ξ ̂j. The x̄j are plotted by the large open circles in Figure 9. The self-
consistency condition stipulates that ξ ̂j ≈ x̄j for j = 1 …, k. If the data deviates strongly from
normality, then the parametric k-means estimators of principal points should fail to be self-
consistent points for the data. In order to access the self-consistency condition, we can form
the test statistic:

T 2 = ∑
j=1

k
∥ ξ̂ j − x̄ j∥

2 . (8)

An approximate test of significance can be performed by evaluating T2 under the null
hypothesis that the data is from a normal distribution by the following steps:

i. Simulate N samples of size n from a N(x̄, S) distribution where x̄ and S are the sample
mean and covariance matrix of the original data;

ii. Estimate k-principal points using the parametric k-means algorithm for each simulated
sample;

iii. Compute T2 in (8) for each simulated sample; and

iv. Compute a p-value as the proportion of simulated T2’s exceeding the T2 for the
original data.

This self-consistency test was run on the Swiss head data using k = 6. The p-value (estimated
using N = 100) is p = 0.51 indicating that there is no evidence against self-consistency of the
k = 6 principal point estimates from the parametric k-means algorithm solution for the Swiss
head data. The small solid circles in Figure 9 correspond to the sample means x̄j for N = 100
data sets simulated from N(x̄, S). It is evident from Figure 9 that the differences between the
large solid and open circles (the ξ ̂j and x̄j) is consistent with the variability one would expect
to see with actual normal data since the large open circles fall within the cloud of points formed
by the small solid circles. The self-consistency test was also run for other values of k = 2, …,
8 for the Swiss head data (using N = 100) yielding p-values p = 0.81, 0.83, 0.47, 0.35, 0.51,
0.63, and 0.70 respectively indicating that there is no evidence against self-consistency of the
principal point estimates from the parametric k-means algorithm.

R-code for implementing the parametric k-means algorithm for a multivariate normal
distribution and the self-consistency test can be found at:

http://www.math.wright.edu/People/Thad_Tarpey/thad.htm.
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Head dimension data was also available for n = 59 females. Combining the male and female
data would allow for determining sizes that could be used by both sexes. This is analogous to
a mixture distribution, except individual data points were identified as male or female, so the
EM algorithm was not needed to estimate parameters for males and females separately. The
nonparametric and parametric k-means algorithms were compared again in terms of PMSE for
the combined data and essentially both methods performed about the same. The reason the
parametric k-means did not perform consistently better than the nonparametric k-means
algorithm in this example is because the distribution for some of the variables for the females
deviated from normality. This illustrates that the optimality of the parametric k-means
algorithm depends on the validity of the parametric assumptions.

7 Discussion
Before powerful computing was readily available, determining optimal point representations
or optimal partitions of theoretical distributions was severely limited. The computer intensive
parametric k-means algorithm illustrated in this paper provides an almost effortless method of
determining and estimating principal points with maximum likelihood efficiency. The
simulation results in Section 4 demonstrate that the parametric k-means algorithm can be
considerably more efficient than the usual nonparametric k-means algorithm.

The performance of the parametric k-means algorithm depends on the validity of the parametric
assumptions. Section 4 reported some preliminary results on the performance of the parametric
k-means algorithm when the specified distribution (e.g. normal) differs from the true
distribution. It would be useful to perform an in depth investigation into the robustness of the
parametric k-means algorithm in the presence of outliers and other deviations from parametric
assumptions. It would also be useful to evaluate the performance of the parametric k-means
algorithm for high dimensional data. However, for moderate values of k that tend to be used
in practice, the space spanned by k principal points will often tend to be low dimensional
(Tarpey et al. 1995).

The Swiss head dimension data was used to illustrate the parametric k-means algorithm in
Section 6 since that was the original example that motivated the term principal points.
However, the motivation for this current work was the problem of clustering functional data
(Abraham et al. 2003,James and Sugar 2003,Luschgy and Pagés 2002,Tarpey and Kinateder
2003) where different cluster means can be used to identify representative curve shapes in the
data. It is anticipated that the parametric k-means algorithm will be very useful in these types
of applications due to the high dimensional nature of the data.
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Figure 1.
Plot of n × MSE versus sample size for estimating two principal points of the N(0, 1) distribution
using the nonparametric and the parametric k-means algorithms. The solid horizontal line
represents the asymptotic value of n × MSE for the maximum likelihood estimators of two
principal points.
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Figure 2.
Plot of n × MSE versus sample size for estimating k = 5 principal points of the N(0, 1)
distribution.
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Figure 3.
Plot of n × MSE for estimating two principal points of a bivariate normal distribution with
covariance matrix diag(1.52, 1).
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Figure 4. Chi-Square Distribution
n × MSE vs. degrees of freedom for the nonparametric k-means (solid curve), the correctly
specified parametric k-means (long dashed curve); and the misspecified parametric k-means
(short dashed curve). The four plots are for simulations using sample sizes n = 25, 50, 75 and
100.

Tarpey Page 17

Comput Stat. Author manuscript; available in PMC 2007 October 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
k = 4 principal points for a 2-component univariate normal mixture. Left panels: mixture
densities with k = 4 principal points. Right panels: n × MSE versus sample size for the
nonparametric (solid curve) and parametric k-means (dashed curve) algorithms.
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Figure 6.
k = 4 principal points for a mixture of two bivariate normal distributions with equal priors. One
component is centered at the origin with covariance matrix diag(2,1). The other component is
obtained from the first component by centering it at the point (7,1) and rotating the distribution
by π/3 radians.
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Figure 7.
n × MSE versus sample size for the nonparametric and parametric k-means algorithm for a
mixture of two bivariate normal distributions with k = 4 principal points.
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Figure 8.
Plot of the leave-one-out prediction error (PMSE) comparing the parametric (dashed curve)
and the usual nonparametric k-means algorithm for the p = 6 dimensional Swiss head data for
values of k = 2, 3, …, 8.
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Figure 9.
k = 6 principal points (large solid circles) for the Swiss head dimension data estimated using
the parametric k-means algorithm and projected into the subspace of the first two principal
components. The large open circles are the sample means of the Swiss data over the regions
formed by partitioning the data into clusters formed by the k = 6 principal points. The small
dots are the corresponding cluster means from 100 simulated N(x̄, S) data sets.
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