Skip to main content
Log in

The Monte Carlo EM method for estimating multinomial probit latent variable models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We propose a multinomial probit (MNP) model that is defined by a factor analysis model with covariates for analyzing unordered categorical data, and discuss its identification. Some useful MNP models are special cases of the proposed model. To obtain maximum likelihood estimates, we use the EM algorithm with its M-step greatly simplified under Conditional Maximization and its E-step made feasible by Monte Carlo simulation. Standard errors are calculated by inverting a Monte Carlo approximation of the information matrix using Louis’s method. The methodology is illustrated with a simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert JH and Chib S (1993). Bayesian analysis of polychotomous response data. J Am Stat Assoc 88: 669–679

    Article  MathSciNet  MATH  Google Scholar 

  • Ashford JR and Sowden RR (1970). Multi-variate probit analysis. Biometrics 26: 535–546

    Article  Google Scholar 

  • Bock RD and Gibbons RD (1996). High-dimensional multivariate probit analysis. Biometrics 52: 1183–1194

    Article  MathSciNet  MATH  Google Scholar 

  • Börsch-Supan A and Hajivassiliou V (1994). Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models. J Econometrics 58: 347–368

    Article  Google Scholar 

  • Bunch DS (1991). Estimability in the multinomial probit model. Transport Res 25: 1–12

    Article  MathSciNet  Google Scholar 

  • Chan JSK and Kuk AYC (1997). Maximum likelihood estimation for probit-linear mixed models with correlated random effects. Biometrics 53: 86–97

    Article  MathSciNet  MATH  Google Scholar 

  • Daganzo C (1980). Multinomial Probit. Academic, New York

    Google Scholar 

  • Dansie B (1985). Parameter estimability in the multinomial probit model. Transport Res 19: 526–528

    Article  Google Scholar 

  • Dempster AP, Laird NM and Rubin DB (1977). Maximum likelihood estimation from incomplete observations. J R Stat Soc B 39: 1–38

    MathSciNet  MATH  Google Scholar 

  • Diebolt J, Ip EHS (1998) Stochastic EM: method and application. In: Gilks W, Richardson S, Spiegelhalter DJ (eds) Markov Chain Monte Carlo in practice. Chapman & Hall, New York

    Google Scholar 

  • Geweke JF, Keane MP, Runkle DE (1994) Statistical inference in multiperiod probit model. Research Department Staff Report 177, Federal Reserve Bank of Minneapolis, MN

  • Hajivassiliou V, McFadden D, Ruud D (1992) Simulation of multivariate normal orthant probabilities: methods and programs, Discussion Paper 1021, Cowles Foundation, Yale University, CT

  • Hausman J and Wise D (1978). A conditional probit model for qualitative choice: discrete decisions recognizing interdependence and heterogeneous preferences. Econometrica 45: 319–339

    MathSciNet  Google Scholar 

  • Hartley H (1958). Maximum likelihood estimation from incomplete data. Biometrics 14: 179–194

    Article  Google Scholar 

  • Keane M (1992). A note on identification in the multinomial probit model. J Business Econom Stat 10: 193–200

    Article  MathSciNet  Google Scholar 

  • Jöreskog KG (1979) Advances in factor analysis. In: Jöreskog KG, Sörbom D (eds) Advances in factor analysis and structural equation models, Part I. Abt Books, Cambridge

  • Lee SY and Song XY (2003). Bayesian analysis of structural equation models with dichotomous variables. Stat Med 22: 3073–3088

    Article  Google Scholar 

  • Lerman S and Manski C (1981). On the use of simulated frequencies to approximate choice probabilities. In: Manski, C and McFadden, D (eds) Structural analysis of discrete data with econometric applications, pp 305–319. MIT, Cambridge

    Google Scholar 

  • Liu C and Rubin DB (1995). ML estimation of the t distribution using EM and its extensions, ECM and ECME. Stat Sinica 5: 19–39

    MathSciNet  MATH  Google Scholar 

  • Louis TA (1982). Finding the observed information matrix when using the EM algorithm. J R Stat Soc B 44: 226–233

    MathSciNet  MATH  Google Scholar 

  • McCulloch CE (1994). Maximum likelihood variance components estimation for binary data. J Am Stat Assoc 89: 330–335

    Article  MATH  Google Scholar 

  • McCulloch R and Rossi PE (1994). An exact likelihood analysis of the multinomial probit model. J Econometrics 64: 207–240

    Article  MathSciNet  Google Scholar 

  • McFadden D (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57: 995–1027

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan GJ and Krishnan T (1997). The EM algorithm and extensions. Wiley, New York

    MATH  Google Scholar 

  • Meng XL (1994). On the rate of convergence of the ECM algorithm. Ann Stat 22: 326–339

    Article  MATH  Google Scholar 

  • Meng XL and Rubin DB (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80: 267–278

    Article  MathSciNet  MATH  Google Scholar 

  • Meng XL and Schilling S (1996). Fitting full-information item factor models and an empirical investigation of bridge sampling. J Am Stat Assoc 91: 1254–1267

    Article  MATH  Google Scholar 

  • Natarajan R, McCulloch CE and Kiefer NM (2000). A Monte Carlo EM method for estimating multinomial probit models. Comput Stat Data Anal 34: 33–50

    Article  MATH  Google Scholar 

  • Song XY and Lee SY (2005). A multivariate probit latent variable model for analyzing dichotomous responses. Stat Sinica 15: 645–664

    MathSciNet  MATH  Google Scholar 

  • Stern S (1992). A method for smoothing simulated moments of discrete probabilities in multinomial probit models. Econometrica 60: 943–952

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner MA (1993). Tools for statistical inference: methods for the exploration of posterior distributions and likelihood functions. Springer, New York

    MATH  Google Scholar 

  • Walker S (1996). An EM algorithm for nonlinear random effects models. Biometrics 52: 934–944

    Article  MathSciNet  MATH  Google Scholar 

  • Wei GCG and Tanner MA (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithm. J Am Stat Assoc 85: 699–704

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Liu, X. The Monte Carlo EM method for estimating multinomial probit latent variable models. Computational Statistics 23, 277–289 (2008). https://doi.org/10.1007/s00180-007-0091-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-007-0091-7

Keywords

Navigation