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Abstract Normal distribution based discriminant methods have been used for the
classification of new entities into different groups based on a discriminant rule con-
structed from the learning set. In practice if the groups are not homogeneous, then
mixture discriminant analysis of Hastie and Tibshirani (J R Stat Soc Ser B 58(1):155–
176, 1996) is a useful approach, assuming that the distribution of the feature vectors
is a mixture of multivariate normals. In this paper a new logistic regression model
for heterogenous group structure of the learning set is proposed based on penalized
multinomial mixture logit models. This approach is shown through simulation studies
to be more effective. The results were compared with the standard mixture discriminant
analysis approach using the probability of misclassification criterion. This compar-
ison showed a slight reduction in the average probability of misclassification using
this penalized multinomial mixture logit model as compared to the classical discrim-
inant rules. It also showed better results when applied to practical life data problems
producing smaller errors.
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1 Introduction

Consider the usual classification situation: the training sample consists of class mem-
bership matrix Yn×J for i = 1, . . . , n observations, j = 1, . . . , J groups and the pre-
dictor matrix Xn×p. The goal is to predict the class membership of the predictor vector
x . We wish to build a rule for predicting the class membership of an observation based
on p measurements of features X . Traditional methods used are different forms of dis-
criminant rules. The learning data group structure is sometimes not homogeneous. The
clusters in the data have often elliptic shape. So, it is a reasonable approach to model
the data by mixtures of elliptically symmetric densities. The multivariate normal dis-
tribution is extensively used in this area, because of its computational convenience. In
practice, the Gaussian assumptions are rarely satisfied. In that case the use of logistic
regression is a common practice. This paper focuses on classification when population
distributions are not mixtures of Gaussians.

This paper is organized as follows. The formulation of Penalized Multinomial Mix-
ture Logit Model is given in Sect. 2. Results of some simulation studies are presented
in Sect. 3. The classification results based on practical life data sets are presented in
Sect. 4. Section 5 summarizes our findings of the study and presents some issues for
future work.

2 Multinomial logit model

Multinomial logit models are used to model relationships between a polytomous
response variable and a set of regressor variables. The term multinomial logit is
often used in the econometrics literature to refer to the conditional logit model of
McFadden (1974). The term multinomial logit refers to a model that differs slightly
from conditional logit model. Theil (1969) in choice of transportation modes and
Schmidt and Strauss (1975) in occupational choice of individuals are early applica-
tions of the multinomial logit model in the econometrics literature. Schmidt and Strauss
(1975) analyzed occupational attainment using the multinomial logit model. The main
difference between McFadden (1974)’s conditional logit model and the multinomial
logit model is that the multinomial logit model makes the choice probabilities depend
on the characteristics of the individuals only, whereas the conditional logit model
considers the effects of choice attributes on choice probabilities as well. A detailed
explanation is provided in McCullagh and Nelder (1989) and Agresti (1990). McCul-
loch and Rossi (1994) developed new methods to provide finite sample likelihood
based analysis of multinomial probit model.

2.1 Mixtures of multinomial logit model

In a situation when the Gaussian assumptions are not valid and the group structure
of the learning data is also heterogeneous, the mixture approach to discriminant anal-
ysis can be extended to a case of multinomial logit models. The multinomial logit
models are an extension of binary logistic regression models, with a multi-category
response matrix instead of binary response in the logistic regression. The idea behind
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the multinomial logit model is a logistic regression of the categorical response matrix
Y on the feature vectors matrix X . In this case one category or group is taken as
comparison category. When the classes are also heterogeneous, the indicator response
matrix Yn×J (where each yi ∼ MultJ (1, π) and π = (π1, . . . , πJ )) in the usual
multinomial logit model is replaced with the blurred response matrix Zn×R . Each
class j is a mixture of R j subclasses and R = ∑J

j=1 R j is the total number of sub-
classes. The Z matrix is a mixture analogue of the indicator response matrix except
that observations can belong to several subclasses with associated probabilities. If
gi = j , i.e., i th observation from the training data falls in the class j , then fill the
j th block of R j entries in the i th row of Z with the values P̂(C jr |xi , j) and the rest
with 0′s, where P̂(C jr |xi , j) is the cluster probability of an observation i belonging to
sub-class r of class j . The random vector z = (z1, z2, . . . , zR) is assumed to follow a
mixture of multinomial distribution. For the fitting of the multinomial logit model we
need the subclass membership matrix Zn×R , but only Yn×J is known. EM algorithm
of Dempster et al. (1977) is used for this purpose, the E step being the expectation
step of sub-group membership estimation, while the M step is the multivariate itera-
tive re-weighted least squares estimation for the unknown parameters; see, for details,
Wilhelm et al. (1998).

2.2 Estimation: EM algorithm

E-Step: The E-step of the EM algorithm gives the estimate of the components of zi ,
given the observed xi and the current fitted parameters at the kth iteration.
In the complete data, we need to estimate the sub-class membership zi jk

of each object. These zi jk are the current conditional probabilities that xi

belongs to each of the R subclasses. Therefore, the E-step is accomplished by
replacing zi jk by its conditional expectation given the observed value xi and
the parameters at the kth iteration, The cluster probabilities are updated as:

zi jk = Prob(z ∈ kth subclass of j |xi , j)

= P̂(C jk |xi , j)

= Pi jk
∑R j

r=1 Pi jr

, (1)

where Pi jk are the multinomial probabilities.
M-step: Estimate β ′s by multivariate iterative re-weighted least squares. For the

i th observation xi , the design matrix xi is a block diagonal of dimension
(R − 1) × p(R − 1):

xi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

xt
1i
...

xt
ci
...

xt
R−1,i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where each row xci consists of the cth block of entries xo, . . . , x p, while
0′s elsewhere.
The link function is defined as:

ηi = xiβ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η1i
...

ηci
...

ηR−1,i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where each entry ηci models the log odds of subclass c with reference to
baseline sub-class R, and the vector β is,

β =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1
...

βc
...

βR−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where each βc is a vector of p + 1 unknown parameters for each of the
R − 1 subclasses. The multinomial probabilities constitute the inverse logit
link function,

h(ηi ) = pi =

⎛

⎜
⎜
⎜
⎝

e(η1i )

1+∑R−1
c=1 e(ηci )

...

e(ηR−1,i )

1+∑R−1
c=1 e(ηci )

⎞

⎟
⎟
⎟
⎠

,

while 1 − pi = 1
1+∑R−1

c=1 e(ηci )
. In this case all the subclass probabilities

pi satisfy a multinomial distribution. The log-likelihood function for the
mixture of multinomial logit model in this setting is,

l(β) =
n∑

i=1

R−1∑

c=1

zic ln Pic +
n∑

i=1

[(

1 −
R−1∑

c=1

zic

)

ln

(

1 −
R−1∑

c=1

Pic

)]

(2)

The score function µ ˆ(βk) is

µ ˆ(βk) =
n∑

i=1

x́i q́i (Ui − Di ),
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where Ui is a vector of ratios of zic/pic for the first c = 1, . . . , R − 1
subclasses, Di is the same ratio for the reference subclass R and qi is the
vector of ∂h(ηi )/∂(ηi ).

Using Fisher’s scoring method, the updated estimates at k+1st iteration are:

β̂k+1 = β̂k + ν−1(βk)µ ˆ(βk),

where ν(βk) is the expected Fisher Information matrix. The parameters of
the multinomial logit model are estimated as:

β̂k+1 =
(

n∑

i=1

x́iwi xi

)−1 n∑

i=1

x́iwi zi , (3)

with wi = Dpi − pi pi
t and Dpi is the diagonal matrix of multinomial prob-

abilities pi on the main diagonal. Thus the estimates are obtained by a ‘mul-
tivariate iterative reweighted least squares’ MIRLS of a working response
variable Z on X , where zi = xiβk + z∗

i and z∗
i = Ui − Di 1. The weight

matrix W and the adjusted response matrix Z are updated at each iteration,
based on current estimates of multinomial probabilities pi .

2.2.1 Initial values

For starting this EM algorithm, initial estimates are required for the cluster-member-
ship matrix Z , and the parameter vector β. The most obvious way to obtain suitable
initial estimates for the parameters when the groups follow a mixture structure is to
apply some form of cluster analysis to the data; see, for example, Everitt and Hand
(1981). K-Means clustering is used to estimate the cluster probabilities P̂(C jr |xi , j)
for R j subclasses of each class j , while the estimates of the parameter vector β for
each subclass are chosen arbitrarily as [1, 0, . . . , 0].

In the E-step, using the current estimates of the β ′s, compute the η′
i s, and hence the

multinomial probabilities pi ’s. The updates depend on initial values of parameters, and
different clustering criterion can produce different initial estimates. So the proposed
model estimates are sensitive to the initial clustering method used. The same has been
reported in literature; see Hastie and Tibshirani (1996). However, K-Means clustering
is used with fixed number of clusters because it does not require prior computation of
a proximity matrix of the distance/similarity of every case with every other case. The
initial Z matrix is updated using cluster probabilities from K-Means. The M step esti-
mates the parameter vector β, using the current estimates of the weights wi , working
response variable zi . The EM algorithm is iterated until convergence.

2.2.2 Posterior probabilities

After estimating the parameters for multinomial logit model for the classes, the poster-
ior probability that an unknown observation i belongs to the class j can be estimated
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using Bayes’ theorem. For the general j = 1, . . . , K group classification case, the
logistic posterior probabilities for an observation xi belonging to group j is:

P(G = j |xi ) = ex ′
i β j

1 + ∑K−1
j=1 ex ′

i β j
,

However, when each class j is a mixture of R j subclasses, the odds are a mix-
ture of R j subclasses odds with mixing proportions π j = (π j1, π j2, . . . , π j R j ). The
posterior probabilities can be generalized as:

P(G = j |xi ) =
∑R j

r=1 π jr ex ′
i β jr

1 + ∑R−1
c=1 πcex ′

i βc
,

where πc are the mixing proportions for the c = R − 1 subgroups such that for each
group j,

∑
r π jr = 1, and the β’s are estimated from the M-step of the multinomial

logit model. For the bivariate binary classification problem, where each group is a mix-
ture of R j subgroups, the posterior probability can be computed for an observation
belonging to group 1 as,

P(G = 1|xi ) = π11ex ′
i β11 + π12ex ′

i β12 + · · · + π1R1ex ′
i β1R1

1 + ∑R−1
c=1 πcex ′

i βc
,

where x ′
i = (1, xi1, xi2)

′. This proposed method of logistic regression in mixture mod-
els is different from Mixtures of Experts Models, where the conditional distribution
of the responses (given covariates) is considered as a mixture of Generalized Linear
Models; see, for example, Peng et al. (1996).

2.3 Computational issues

The mixture model problem of two groups, where each group was a mixture of two
subgroups was set up using multinomial logit models. The approach was to regard x
as fixed and take the unobserved subclass membership vector z to have multinomial
distribution. But a problem was encountered in the estimation. Because the subclasses
were separated by K-means clustering that was used to get initial estimates of sub-
group membership P̂(C jr |xi , j), so the cluster probability was either 0 or 1, resulting
in an infinite log-likelihood for the multinomial logit model and infinite parameter
estimates. The estimation is sensitive to initial values of estimates, however, if we
are somehow able to take initial P̂(C jr |xi , j) other than (0, 1), we can solve this
problem. The same problem has been reported in literature; see, for example, Ripley
(1996). The maximum likelihood has an infinite component if some groups can be
completely separable on a linear projection or quasi-complete separable from others.
In this case, the multinomial logit model has infinite slope. In logistic regression it has
been recognized that with small to medium-sized data sets, situations may arise where,
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although the likelihood converges, at least one parameter estimate is infinite; Albert
and Anderson (1984). These situations occur if the responses and non-responses can
be perfectly separated by a single risk factor or by a non-trivial linear combination of
risk factors. Therefore Albert and Anderson (1984) denoted such situations by ‘sep-
aration’. The phenomenon is also known as ‘monotone likelihood’. In general, one
does not assume infinite parameter values in underlying populations. The problem of
separation is rather one of non-existence of the maximum likelihood estimate under
special conditions in a sample. An infinite estimate can also be regarded as extremely
inaccurate.

2.4 Penalized multinomial logit model

To overcome the problem caused by the complete separation between the subgroups,
the concept of penalized multinomial mixture logit model was introduced with a
penalty inducted in to bring down the infinite component of the maximum likelihood
estimators. Good and Gaskins (1971) were the first to introduce the idea of roughness
penalty estimation in density estimation. Hoerl and Kennard (1970a) presented the
idea of ridge regression which is a simple form of penalized regression, to cope with
multicollinearity of regressors in case of linear regression using quadratic penalty.
Other penalties lead to lasso of Tibshirani (1996) or to bridge regression of Frank and
Friedman (1993). The penalized or shrinkage methods have a long history in many
fields since 1970 such as linear discriminant analysis (Friedman 1989), logistic regres-
sion (Schaefer et al. 1984). Heinze and Schemper (2002) provided the solution to the
problem of separation using modified score function of Firth (1993). The penalized
log-likelihood in the case of proposed model is:

l∗(β) = l(β) − 0.5λβ ′�β,

where λ > 0 is the ridge parameter that controls the size of the coefficients (increasing
λ value decreases their size) and � is a p(R − 1) × p(R − 1) block diagonal penalty
matrix with entries �c = V ar(X) in each of R − 1 blocks, while the entries corre-
sponding to the parameter β◦ are set as zero. This sets the regression coefficients to
penalization, not the offset β◦. In this setting the ridge coefficient λ is a perturbation
of the diagonal entries of X ′W X to encourage non-singularity. Then the penalized
multinomial mixture logit model parameter estimation is performed, replacing Eq. (3)
with Eq. (4). This results in a biased estimate β̂k+1.

β̂k+1 =
(

n∑

i=1

x́iwi xi + λ�

)−1 n∑

i=1

x́iwi zi , (4)

Penalization makes the norm of the coefficient matrix smaller, helping avoid over-
fitting problem. The general idea behind penalization is to avoid arbitrary coefficients
estimates. The choice of ridge parameter λ is crucial and has been under discussion in
many contexts in literature, the most widely used approach is the cross validation CV.
Criterion for the performance of CV are either misclassification rate or the strength of
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prediction. In our proposed model as classification of entities is the main concern, we
tried different values of λ and the value that was able to tackle the problem of separable
subclasses and thus shrinking the log-likelihood for finite parameter estimation and
giving smaller errors was chosen. However, further study can be conducted for the
choice of λ in the context of proposed penalized multinomial mixture logit models
(pmml).

3 Simulations

This section describes the results of different sets of simulations performed to study
the performance of our model as compared to the classical methods of discrimination.

3.1 Multivariate normal data

This simulation was carried out using a mixture of two bivariate Gaussian compo-
nents. Each of the two groups consisted of two multivariate Gaussian subgroups. The
sub-group means were: µ11 = [1.5 1.5]′, µ12 = [−1.5 1.5]′, µ21 = [1.5 − 1.5]′, and
µ22 = [−1.5 − 1.5]′. The training sample had 80 observations with equal priors for
the two groups, while the test sample size was 40. The common covariance was the
identity matrix. The errors of misclassification for the training and the test data are
presented in Table 1. In this table, the first row represents the errors of misclassifi-
cation using penalized multinomial mixture logit models (pmml), while the second row
represents errors, using mixture discriminant analysis (mda) approach of Hastie and
Tibshirani (1996). The last two rows also report the simulation results from linear and
quadratic discriminant analysis (lda) and (qda), respectively. The values reported in
Table 1 are averages of misclassification errors over 30 simulations, with the standard
error of the average in parentheses. The errors are much higher in both these models,
as the distributional assumptions are not satisfied. As the data were generated from
mixture of Gaussian distributions, so the approach of Hastie and Tibshirani (1996)
worked much better as compared to our proposed model. The mixture of penalized
logit models was tried with different values of the shrinkage parameter λ and the value
of λ = 0.00025 was chosen for this simulation. However the existence of solution
for penalized multinomial mixture logit model depends on the value of λ that is able
to reduce the effect of separation of subclasses due to K-Means clustering in the ini-
tial stage. However, each simulation would produce different configuration of the n
sample points. So repetition of the simulations, with a fixed value of λ to penalize the
regression coefficients was not possible a large number of times.

Table 1 Errors of
misclassification for multivarite
normal data

Methods Training Test

pmml 0.0594 (0.0324) 0.0913 (0.0383)

mda 0.0038 (0.0100) 0.0088 (0.0147)

lda 0.2350 (0.0483) 0.2662 (0.0545)

qda 0.2650 (0.0545) 0.2662 (0.0409)
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Table 2 Errors of
misclassification for Example 1
data set

Methods Training Test

pmml 0.4050 (0.0453) 0.4492 (0.0641)

mda 0.4446 (0.0381) 0.4967 (0.0966)

lda 0.4609 (0.0457) 0.4933 (0.1032)

qda 0.3862 (0.0559) 0.4525 (0.0893)

It is clear from Table 1 that as data were generated from mixture of Gaussian dis-
tributions, so the standard mda approach performed far much better than the proposed
penalized multinomial mixture logit model (pmml).

3.2 Multivariate logistic data

This section presents different simulation examples for mixture of logistic data gener-
ated with certain degree of distinctness and compares the performance of the penalized
multinomial mixture logit model (pmml) with other classical methods.

Example 1 Here we sampled mixtures of bivariate logistic data from location set
[−1,−1] × [1, 1] and scale being fixed as [2, 1].

The test error rates for this simulation are shown in Table 2. The values reported
in Table 2 are averages of errors over 30 simulations, with the standard error of the
average in parentheses. In this case, both our proposed model and the qda work better
than mda and lda, as quadratic or non-linear discriminant function better describe the
decision boundaries in this type of data structure as also shown in Fig. 1. The decision
boundary produced using our model is very wiggly, so smoothed functions of deci-
sion boundary from our model are plotted. Over-specifying the number of subgroups
assuming no a prior knowledge of the number of subgroups in the mixture caused
estimation problems. The value of λ = 0.016 was chosen from a grid of penalties
between 0 and 1, producing minimum test errors. The test errors for this grid show in
general a rising pattern for higher values of λ as shown in Fig. 2.

Example 2 This simulation was carried out using a mixture of two logistic distribu-
tions. Each of the two groups was generated as a mixture of two logistic components.
The sub-group means were: µ11 = [−1.5 − 1.5]′, µ12 = [1.5 − 1.5]′, µ21 =
[−1.5 1.5]′, and µ22 = [1.5 1.5]′, while the scale was assumed identity. The training
sample comprised of 80 observations with equal priors for the two groups, while the
test sample size was 40. The performance of our proposed model was slightly poor as
compared to other methods. In this situation, none of the non-linear methods signifi-
cantly outperform the lda in terms of test error rates. The classes seem to have linear
separation shown in Fig. 3. Different values for shrinkage parameter were tried, but
λ = 0.0008 resulted in the test errors reported in Table 3 using the proposed model.
The values reported in Table 3 are averages of errors over 30 simulations, with the
standard error of the average in parentheses. The test errors plotted as a function of λ

are shown in Fig. 4. We also tried to over-specify the number of subgroups, but faced
estimation problems.
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Fig. 1 Data structure for mixtures of bivariate logistic groups classification problem of Example 1. Here
the smoothed function of the decision boundary produced by pmml is shown

Fig. 2 Choice of λ for the classification problem of Example 1
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Fig. 3 Example 2 data structure along with decision boundary of pmml

Table 3 Example 2: errors of
misclassification

Methods Training Test

pmml 0.1758 (0.0491) 0.1950 (0.0617)

mda 0.1733 (0.0605) 0.1742 (0.0464)

lda 0.1667 (0.0480) 0.1742 (0.0596)

qda 0.1675 (0.0499) 0.1725 (0.0634)

Example 3 In this simulation, the logistic components means were: µ11 = [2.5 2.5]′,
µ12 = [0 0]′, µ21 = [1 1]′, µ22 = [0.5 0.5]′, while the scale vector was fixed as
(0.5, 0.25). The first class almost completely surrounds the second class as shown in
Fig. 5. The training and the test sample was of the same structure as in previous sim-
ulation. Different values for shrinkage parameter were tried, but λ = 0.004 resulted
in minimum test errors. The results are reported in Table 4, where the values reported
are averages of errors over 30 simulations, with the standard error of the average in
parentheses. The performance of our model is much better than all the three classical
methods producing minimum test errors of 0.2087. Smaller values of λ in this case
resulted in smaller test errors, as shown in Fig. 6.

Example 4 In this simulation, the logistic components means were: µ11 = [0 0]′,
µ12 = [1.5 1.5]′, µ21 = [0 0]′, µ22 = [−1.5 1.5]′, while the scale was randomly
generated from Uniform (0,1). The training and the test samples were of the same
structure as in previous simulation. Different values for shrinkage parameter were
tried, but λ = 0.01 resulted in minimum test errors. Our proposed model pmml did not
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Fig. 4 Choice of λ in Example 2. Here each point represents test errors produced for a roughness penalty
parameter value

Fig. 5 Example 3 data classification problem: class 1 almost completely surrounds the class 2
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Table 4 Example 3: errors of
misclassification

Methods Training Test

pmml 0.1869 (0.0564) 0.2087 (0.0650)

mda 0.4844 (0.0508) 0.5175 (0.0994)

lda 0.3775 (0.0645) 0.3962 (0.0886)

qda 0.2106 (0.0644) 0.2600 (0.0710)

Fig. 6 Choice of λ for simulation Example 3

Table 5 Example 4: errors of
misclassification

Methods Training Test

pmml 0.2513 (0.0598) 0.2808 (0.1006)

mda 0.2629 (0.0649) 0.2825 (0.0785)

lda 0.2542 (0.0582) 0.2708 (0.0799)

qda 0.2550 (0.0651) 0.2608 (0.0827)

outperform than all the three classical methods as is shown from test errors in Table 5.
Figure 7 displays graphically the data structure with decision boundary, while Fig. 8
shows test errors plotted as a function of λ. Figure 8 gives no evidence of any pattern
between test errors as a function of λ. So choice of λ in this example was random.

Example 5 (3 Groups) To study the performance of this method in a complex data
structure, we generated data for 3 groups. Each of the three groups were generated as
a mixture of two logistic components. The sub-group means were: µ11 = [2.5 2.5]′,
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Fig. 7 Example 4 data Classification. There is an overlap between the points from the two classes in the
middle region

Fig. 8 Choice of λ for Example 4 data classification problem
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Table 6 Three groups
classification problem: errors of
misclassification

Methods Training Test

pmml 0.2475 (0.0491) 0.2844 (0.0685)

mda 0.5264 (0.0915) 0.5389 (0.0966)

lda 0.3825 (0.0412) 0.3939 (0.0579)

qda 0.3344 (0.0532) 0.3467 (0.0542)

Fig. 9 Data structure for Example 5 with three groups

µ12 = [0 0]′, µ21 = [1 1]′, µ22 = [−0.5 −0.5]′, µ31 = [−2 2]′, µ32 = [−0.5 0.5]′,
while the scale vector was (0.5 0.25). The training sample comprised of 120 obser-
vations with equal priors for the three groups, while the test sample size was 60. The
proposed model did very well as compared to other methods, as data were generated
from mixtures of logistics. The test errors are reported in Table 6, where the values
reported are averages of errors over 30 simulations, with the standard error of the
average in parentheses. At λ = 0.001 our model produced minimum test errors of
28% and was the optimal model chosen. The data structure for this example is shown
in Fig. 9.

All the simulation examples presented here show a general message about the
choice of penalty parameter λ, that smaller values of λ produce smaller test errors, as
is also intuitive that penalization produces biased estimates, smaller the value of λ,
better will be the classification.
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Table 7 Errors of
misclassification, t-distributions

Methods Training Test

pmml 0.2105 (0.0796) 0.3000 (0.0354)

mda 0.2667 (0.0059) 0.3563 (0.0619)

3.3 Mixtures of multivariate t-distributed data

For discrimination purposes, unstructured data were generated from a mixture of mul-
tivariate t-distributions, so there were outlying observations. We wanted to test the
performance of our proposed method as compared to standard mda approach in the
presence of outliers. There were four groups and each group was a mixture of three
spherical bivariate normal subgroups, with a standard deviation of 0.25. The means
of 12 subclasses were chosen at random (without replacement) from the integers
(1, . . . , 5) × (1, . . . , 5) and the degrees of freedom for each subclass was chosen as
5. Each subclass was comprising of 20 observations, with a total of 240 observations
in the training sample and test sample was of size 80; see, for example, Hastie and
Tibshirani (1996). The data have extremely disconnected class structure, so we expect
relatively higher misclassification errors. The errors of misclassification using the
pmml and mda approaches are presented in Table 7. With a value of λ = 0.000025,
we were able to estimate our parameters, but we were not able to perform a large
number of simulations, due to inability to estimate parameters with a fixed value of
λ. However, we think that this problem might be tackled with a better programming
facility, as well as using cross-validation approach. Table 7 shows that using the pro-
posed pmml model more accurate classification results were obtained with a test error
of 0.30 as compared to 0.35 using mda approach. This was expected, as data were
generated from heavier tailed mixtures of multivariate t-distributions, so mda which
is based on the assumption of multivariate normality breaks down. This also shows
that our model is more robust to outliers than mda model.

4 Results

The proposed penalized multinomial mixture logit model (pmml) is applied on two
different data sets to compare the classification performance of this method with other
classical methods of discrimination such as linear discriminant analysis (lda), qua-
dratic discriminant analysis (qda), etc.

4.1 Example: forensic glass data

This example is from forensic testing of glass. The glass data were obtained from the
UCI Machine Learning Repository maintained by Murphy and Aha (1995). After a
careful examination of the data, we found one of the variable was having repeated
values of 0, so we ignored this variable to avoid any unseen problems. We chose 7
predictors defined in terms of their oxide content (i.e. Na, Mg, Al, etc.) while leaving
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Table 8 Errors of
misclassification, forensic
glass test data

a lda = 0.3833, qda = 0.4833

Methods Errors (2-sub) Errors (3-sub)

pmml 0.3167 0.2500

mda 0.4333 0.4000a

out ID and refractive index. The training data consisted of two groups and 7 predic-
tors. The two groups are window float glass and window non-float glass. The variables
measured are weight proportions of different oxides. A sample of 80 observations with
equal priors for the two groups was chosen as the training set, while the test data were
of size 60. Assuming that the two groups are a mixture of two subgroups each, the data
were analyzed using mda as well as (pmml) models. The penalty parameter 0 < λ < 2
was tried. For λ = 0.55, the test errors were least using each group as a mixture of two
subgroups; see Table 8. With the assumption of three subgroups, λ = 1.5 produced
much improved classification with errors of 0.25 as compared to the errors of 0.40
by mda. The classical methods of discrimination lda and qda did not perform well
for this dataset with the test errors of 0.3833 and 0.4833 respectively. Therefore, the
pmml model with three subgroups within each group performed exceptionally well as
compared with all other classification methods tried.

4.2 Example: leukemia data

A very important use of discrimination methods is their application in image diag-
nostics and successful treatments afterwards. In practice the disease groups are not
homogeneous, as most of the discrimination methods assume. Then it seems natural
to think the groups as a mixture of subgroups and the application of models based on
mixture of distributions is quite rational. The proposed penalized multinomial mixture
logit model was applied to the leukemia data set of Golub et al. (1999) and obtained
from http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. This data set consists of
gene expressions of 72 patients of two types of leukemia, acute lymphoblastic leu-
kemia (ALL) and acute myeloid leukemia (AML). The ALL class is heterogeneous
and consists of 38 cases of type B-cell ALL and 9 cases of T-cell ALL, while the
AML class consists of 25 cases. Three preprocessing steps for filtering of genes were
applied to the data; see, for details, Dudoit et al. (2002). Furthermore, a large number
of genes do not show variability across groups, so their contribution to classification is
not significant. The most relevant p = 40 genes contributing most to the classification
were chosen by the ratio of between-group to within group sums of squares, based on
the learning set of 38 cases of Golub et al. (1999). In the learning set of 38, first 27
cases are of 2 types of ALL, while the last 11 cases belong to AML class leukemia.
Then pmml model was fitted to the training set of 38 patients and parameters estimated
assuming that the both ALL and AML classes were a mixture of two subgroups each,
so a total of R = 4 subgroups. Different values of λ were tested for estimation purposes
and λ = 0.0025 was chosen producing optimum classification results for the test data
of 34 observations. The comparison was made with Diagonal Linear Discriminant
Analysis (dlda) and Diagonal Quadratic Discriminant Analysis (dqda). The results are
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Table 9 Comparison of
classification for leukemia
data set

Methods Test error

pmml4 0.0588

pmml3 0.0294

dlda 0.0294

dqda 0.4412

Fig. 10 Choice of λ for leukemia data analysis

presented in Table 9. It is clear from Table 9 that dlda performed exceptionally well,
but the performance of penalized multinomial mixture logit model ( pmml4) was also
encouraging. Here pmml4 denotes a penalized multinomial mixture logit model with
four subgroups. Figure 10 graphically displays the choice of λ in this example. It is
evident from Fig. 10 that test errors show no fixed trend in relation to the value of the
shrinkage parameter λ.

Next the penalized multinomial mixture logit model was fitted to the training data
of 38 observations, but now assuming that just the ALL class is heterogeneous, not the
AML class, so a mixture of R = 3 subclasses. The value of λ that produced accurate
classification was 0.3. The results were comparable to dlda; see Table 9. With this
assumption, using pmml3, the test data error rate was almost 3%. Here pmml3 denotes
a penalized multinomial mixture logit model with 3 subgroups. The only observation
that was misclassified by a very small margin was actually on the border line of the
group ALL and AML. So pmml3 was equally efficient model to dlda in this case. For
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Table 10 Out-of-sample errors
for leukemia data set

Methods Median test error Standard deviation

pmml4 1 0.6645

dlda 0 0.4726

dqda 1 1.0222

this data set, observation number 66 from the test set was misclassified by dlda and
observation 67 misclassified from the test set using pmml3.

Then a re-randomization study was performed, i.e., an out of sample analysis on
100 random subdivision of the data set into a learning set of 48 observations and a test
set of 24 observations. For each subdivision, the 48 learning set observations were cho-
sen giving proportional weights to ALL and AML classes, to overcome the problems
of estimation of mixtures of subgroups. Again a mixture of 4 subgroups penalized
multinomial logit model (pmml4) was fitted to each learning set and then test errors
computed for each sub-division. The value of the ridge parameter λ = 0.0025, was
chosen after a number of trials testing different values. Again three different discrim-
inant rules were tested for their classification performance, i.e., pmml, dlda, dqda.
The results in Table 10 are the summary of classification errors over 100 random
sub-divisions of the data set.

From Table 10, it is clear that the median error rate for dlda is minimum, as
also reported by Dudoit et al. (2002), but the performance of our penalized model
is also quite encouraging, the observation number 66 was misclassified by all the
methods, whenever it was in the test sample, but pmml4 and dqda also misclassified
observation 67. However, in the re-randomization study of the leukemia data, pmml4
performed better than the dqda, while dlda being the best; see, Table 10. The perfor-
mance of pmml with three subgroups on the original test set of Leukemia data of Golub
et al. (1999) was similar to that of dlda, this method is recommended for classification
problems involving heterogeneous groups.

4.3 Example: breast cancer data

The breast cancer database was obtained from machine learning databases of Wolberg
and Mangasarian (1990). There are two groups and 33 variables. Each of the chosen
group has a total of 47 cases. Each record represents follow-up data for one breast
cancer case. These are consecutive patients seen by Wolberg and Mangasarian (1990)
since 1984, and include only those cases exhibiting invasive breast cancer and no evi-
dence of distant metastases at the time of diagnosis. The first 30 features are computed
from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image. Relevant features were selected
using an exhaustive search in the space of 1–4 features and 1–3 separating planes; see,
for detailed information about the attribute information, Wolberg and Mangasarian
(1990). The results of the analysis of these data are recorded in Table 11. The first
column shows the method of discrimination applied. The pmml2 is the proposed
penalized multinomial mixture logit model with two subgroups, while lda and qda
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Table 11 Errors for breast
cancer data set

Methods Error

pmml2 0

lda 0.0745

qda 0

are the traditional methods of classification. The values are the error probabilities using
resubstitution method. From Table 11, it is clear that performance of pmml2 was as
encouraging as that of qda compared to lda, which misclassified 7 cases. Further, with
the application of classical methods certain rank issues also arise, as these methods
set an upper limit on the number of variables available as compared to the number of
cases, but our model does not have such limitation.

5 Conclusion

This paper applies the concept of penalized logistic regression for multinomial mixture
logit models, to several data sets. We have shown that the use of penalized multinomial
mixture logit models help in the improvement of classification performance, when the
groups are not homogeneous. The proposed model performed better when the data
were generated from mixtures of logistics or t-distributions, as well as in the Forensic
Glass data problem and two cancer data sets classification. Though, in our random
sub-division study on leukemia data set, dlda performed a little better than the pro-
posed model, but the dlda has a drawback of ignoring the correlations between genes,
which are also important biologically; see, for example, Dudoit et al. (2002). Further-
more, we addressed only the problem of classification, using one method for selecting
desirable genes, but it can be tried using different methods of gene selection. Further
work needs to be done regarding the choice of the penalty parameter λ, which plays
crucial role in the working of our proposed model. Though, we fixed the value of λ

based on the classification results of Golub et al. (1999) test set, but it needs to be
adjusted for each random sub-division, because the configuration of sample points
in the learning set changes for each sub-division. Future work in this area needs to
address the issue of smart choice of penalty parameter λ, which helps in overcoming
the problem of separate subclasses resulting in infinite parameter space.
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