Skip to main content
Log in

On maximum likelihood estimation of a Pareto mixture

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper we deal with maximum likelihood estimation (MLE) of the parameters of a Pareto mixture. Standard MLE procedures are difficult to apply in this setup, because the distributions of the observations do not have common support. We study the properties of the estimators under different hypotheses; in particular, we show that, when all the parameters are unknown, the estimators can be found maximizing the profile likelihood function. Then we turn to the computational aspects of the problem, and develop three alternative procedures: an EM-type algorithm, a Simulated Annealing and an algorithm based on Cross-Entropy minimization. The work is motivated by an application in the operational risk measurement field: we fit a Pareto mixture to operational losses recorded by a bank in two different business lines. Under the assumption that each population follows a Pareto distribution, the appropriate model is a mixture of Pareto distributions where all the parameters have to be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad K (1988) Identifiability of finite mixtures using a new transform. Ann Inst Stat Math 40: 261–265

    Article  MATH  Google Scholar 

  • Atienza N, Garcia-Heras J, Munoz-Pichardo J, Villa R (2007) On the consistency of MLE in finite mixture models of exponential families. J Stat Plan Inference 137: 496–505

    Article  MathSciNet  MATH  Google Scholar 

  • Brooks S, Morgan B (1995) Optimization using simulated annealing. Statistician 44: 241–257

    Article  Google Scholar 

  • Casella G, Robert C (2004) Monte Carlo statistical methods, 2nd edn. Springer, NewYork

    Google Scholar 

  • Dempster N, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc B 39: 1–38

    MathSciNet  MATH  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6: 721–741

    Article  MATH  Google Scholar 

  • Ingrassia S (1992) A comparison between the simulated annealing and the EM algorithms in normal mixture decompositions. Stat Comput 2: 203–211

    Article  Google Scholar 

  • Johnson D, Aragon C, McGeoch L, Schevon C (1989) Optimization by simulated annealing: an experimental evaluation, part I, graph partitioning. Oper Res 37: 865–892

    Article  MATH  Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220: 671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Kleiber C., Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, New York

    Book  MATH  Google Scholar 

  • Kroese D, Porotsky S, Rubinstein R (2006) The cross-entropy method for continuous multi-extremal optimization. Methodol Comput Appl Probab 8: 383–407

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann EL, Casella G (1998) Theory of point estimation, 2nd edn. Springer, NewYork

    Google Scholar 

  • Little R, Rubin D (1987) Statistical analysis with missing data. Wiley, Hoboken

    MATH  Google Scholar 

  • McLachlan G, Krishnan T (1996) The EM algorithm and extensions. Wiley, Hoboken

    Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, NewYork

    Book  MATH  Google Scholar 

  • McNeil A, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques, tools. Princeton University Press, Princeton

    Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth N, Teller A, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21: 1087–1092

    Article  Google Scholar 

  • Nadarajah S (2006) Information matrices for Laplace and Pareto mixtures. Comput Stat Data Anal 50: 950–966

    Article  Google Scholar 

  • Pareto V (1895) La legge della domanda. Giornale degli Economisti 10: 59–68

    Google Scholar 

  • Pearson K (1894) Contribution to the mathematical theory of evolution. Philos Trans R Soc A 185: 71–110

    Article  MATH  Google Scholar 

  • Pincus M (1968) A closed form solution of certain programming problems. Oper Res 16: 690–694

    Article  MathSciNet  MATH  Google Scholar 

  • Pincus M (1970) A Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Oper Res 18: 1225–1228

    Article  MathSciNet  MATH  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0

  • Redner R, Walker H (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26: 195–239

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinstein R (1997) Optimization of computer simulation models with rare events. Eur J Oper Res 99: 89–112

    Article  Google Scholar 

  • Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodol Comput Appl Probab 2: 127–190

    Article  Google Scholar 

  • Rubinstein R, Kroese D (2004) The cross-entropy method. Springer, NewYork

    Book  MATH  Google Scholar 

  • Sankaran P, Nair MT (2005) On a finite mixture of Pareto distributions. Calcutta Stat Assoc Bull 57: 67–83

    MathSciNet  MATH  Google Scholar 

  • Severini T (2000) Likelihood methods in statistics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Titterington D, Smith A, Makov U (1985) Statistical analysis of finite mixture distributions. Wiley, NewYork

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bee, M., Benedetti, R. & Espa, G. On maximum likelihood estimation of a Pareto mixture. Comput Stat 28, 161–178 (2013). https://doi.org/10.1007/s00180-011-0291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0291-z

Keywords

Navigation