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Abstract In this article we propose an exact efficient simulation algorithm for the
generalized von Mises circular distribution of order two. It is an acceptance-rejection
algorithm with a piecewise linear envelope based on the local extrema and the inflexion
points of the generalized von Mises density of order two. We show that these points
can be obtained from the roots of polynomials and degrees four and eight, which can
be easily obtained by the methods of Ferrari and Weierstrass. A comparative study
with the von Neumann acceptance-rejection, with the ratio-of-uniforms and with a
Markov chain Monte Carlo algorithms shows that this new method is generally the
most efficient.
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256 S. Pfyffer, R. Gatto

1 Introduction

In this article we provide an efficient method for generating pseudo-random num-
bers from the generalized von Mises distribution of order two, which is a “circular”
distribution with interesting practical and theoretical properties. Circular distributions
are relevant in disciplines where observations take the form of two-dimensional direc-
tions. These observations can be represented as points on the unit circle or as angles
and are referred to as circular data. Examples can be found in various domains. In
geology, an analysis of paleocurrents to infer about the directions of flow of rivers
in the past is presented in Sengupta and Rao (1967). In ornithology, an analysis of
flight directions of birds is presented in Schmidt-Koenig (1963). In meteorology, the
correlation between wind directions and ozone levels is studied in Johnson and Wehrli
(1977). Circular data arise also from periodic phenomena with known periods, like
circadian rhythms in medicine, daily occurrence of road accidents, etc. For an his-
torical introduction with applications refer to Fisher (1993, Section 1). Two other
recent monographs on circular statistics are Jammalamadaka and SenGupta (2001)
and Mardia and Jupp (2000). A circular density is a non-negative 2π -periodic func-
tion defined on R integrating to one on [0, 2π) and therefore on any shift of it. A class
of circular densities with interesting theoretical and practical properties is given by

f (θ | μ1, . . . , μk, κ1, . . . , κk)

= 1

2πG(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

exp

⎧
⎨

⎩

k∑

j=1

κ j cos j (θ − μ j )

⎫
⎬

⎭
, (1)

for θ ∈ R, where κ j ≥ 0, μ j ∈ [0, 2π/j), for j = 1, . . . , k,

G(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

= 1

2π

2π∫

0

exp{κ1 cos θ + κ2 cos 2(θ + δ1) + · · · + κk cos k(θ + δk−1)}dθ, (2)

and where δ1 = (μ1 − μ2)mod π, δ2 = (μ1 − μ3)mod(2π/3), . . . , δk−1 = (μ1 −
μk)mod(2π/k). Gatto and Jammalamadaka (2007) called (1) the “generalized von
Mises of order k” (GvMk) density and denoted a circular random variable θ with
this density by θ ∼ GvMk(μ1, . . . , μk, κ1, . . . , κk). Some results of computational
nature related to GvM2 distributions are given in Gatto (2008), some information
theoretic results related to GvMk distributions are given in Gatto (2009) and rela-
tionships between GvMk distributions and “generalized von Mises–Fisher” distribu-
tions on the unitary hypersphere are given in Gatto (2010). The GvM1 distribution
is the well-known circular normal or von Mises (vM) distribution, given by f (θ |
μ, κ) = {2π I0(κ)}−1 exp{κ cos(θ − μ)}, for θ ∈ R, μ ∈ [0, 2π), κ > 0, where
In(z) = (2π)−1

∫ 2π

0 cos nθ exp{z cos θ}dθ, z ∈ C, is the modified Bessel function
of the first kind and integer order n (see e.g. Abramowitz and Stegun 1972, p. 376).
In this article we focus on the GvM2 distribution, which will be simply called GvM
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Simulation algorithm for the GvM distribution of order two 257

and we will denote GvM(μ1, μ2, κ1, κ2) = GvM2(μ1, μ2, κ1, κ2). Compared to the
vM, which is only circular symmetric and unimodal, the GvM distribution allows
for substantially higher flexibility in terms of asymmetry and bimodality. Also, GvM
distributions offer various advantages with respect to mixtures of two vM distributions,
for example, which are listed in Gatto (2008, p. 322 and 323).

There are some particular difficulties in constructing simple algorithms for genera-
tion of random variables from the GvM distribution. These difficulties arise essentially
from the following facts. First, the complexity of the normalizing constant (2) excludes
the construction of algorithms based on simple methods like the inverse transform or
the composition methods. This constant could be evaluated by the Fourier expansion
(3) below, but this would be inefficient in the context of simulation. Second, the non-
availability of a numerically efficient formula for the inverse of the GvM distribution
function. The GvM distribution function is available as infinite sum only, see Gatto
(2008, Equation 25). Third, the non-existence of invariance properties which would
allow to focus the analysis on a standardized version of the GvM distribution. If it
would be possible to express any GvM random variable as a transform of a standard-
ized one, i.e. from one with μ1, μ2, κ1 and κ2 fixed to some standard values, then it
would be substantially easier to develop specific simulation algorithms for that partic-
ular standard GvM random variable only. For example, normal random variables are
generated by linear transformations of standard normal random variables, which can be
generated by the Box–Müller algorithm. Fourth and last, the bimodality of the density
prevents direct applications of algorithms requiring log-concavity or log-convexity of
the density, as proposed e.g. by Gilks (1992), Gilks and Wild (1992) and Gilks et al.
(1995). General algorithms requiring concavity or convexity of the density can how-
ever be applied locally, after considering an appropriate partition of the domain of the
density, see for example Evans and Swartz (1998). The generation algorithm that we
propose for the GvM distribution does also exploit the local concavity and convexity
of the density. It is an acceptance-rejection algorithm with a piecewise linear envelope
obtained from the local extrema (i.e. the stationary points) and the inflexion points
of the GvM density. We show that all these local extrema and inflexion points can
be obtained by searching the roots of polynomials of degrees four and eight. For the
quartic equation we apply the method of Ferrari, which dates back to Tartaglia, Cardan
and Ferrari in the 1540’s and which provides exact solutions; see e.g. Borofsky (1950,
Section 8.7). Note that an alternative determination of the exact roots of the quartic
equation is given by Beji (2008). For the degree eight we can apply the method of Wei-
erstrass, also called method of Durand–Kerner, which was introduced by Weierstrass in
1891, further analyzed by Durand (1960) and which finds iteratively the roots of poly-
nomials of any degree; see e.g. Dahlquist and Björk (2008, Section 6.5.4) or the short
summary in Gatto (2008, Section 3.2). We provide the formulae for the coefficients of
these polynomials. A comparative study with the von Neumann acceptance-rejection
(with constant envelope), with the ratio-of-uniforms and with a Markov chain Monte
Carlo algorithms shows that this new method is generally the most efficient in the
sense that it yields the lowest rejection rate. The ratio-of-uniforms algorithm is due to
Kinderman and Monahan (1977) and the application to the GvM distribution can be
found in Gatto (2008, Section 3). Note finally that a particular acceptance-rejection
algorithm for the vM distribution is given by Best and Fisher (1978).
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258 S. Pfyffer, R. Gatto

The remaining part of this article is organized as follows. The presentation of the
new acceptance-rejection algorithm is given in Sect. 2. A comparative numerical study
with the other algorithms just mentioned is given in Sect. 3. Some concluding remarks
are given in Sect. 4. Some technical developments are given in the “Appendix”.

2 The simulation algorithm

In this section we propose an efficient acceptance-rejection simulation algorithm for
the bimodal GvM(μ1, μ2, κ1, κ2) random variable. Acceptance-rejection algorithms
are amongst the most popular methods for generating random variables, see e.g. Ripley
(1987, Section 3.2) or Rubinstein and Kroese (2008, Section 2.3.4). We first give a
general form of the acceptance-rejection algorithm adapted to the GvM distribution.
For simplicity, let us re-write δ = δ1(=(μ1 − μ2) modπ) and G0 = G(2)

0 , which
admits the Fourier expansion

G0(δ, κ1, κ2) = I0(κ1)I0(κ2) + 2
∞∑

j=1

I2 j (κ1)I j (κ2) cos 2 jδ. (3)

General form of the acceptance-rejection algorithm for the GvM distribution

Step 1. Find a decomposition

f (θ |μ1, μ2, κ1, κ2) = c

G0(δ, κ1, κ2)
· d(θ) · s(θ),

for θ ∈ R, where c ∈ [G0(δ, κ1, κ2),∞) is a constant, d : R → (0,∞) is a
circular density and s : R → (0, 1] is a 2π -periodic function.

Step 2. Generate U from the uniform distribution on [0, 1) and θ̃ from the density
d(θ), for θ ∈ [0, 2π).

Step 3. If U ≤ s(θ̃), then consider θ = θ̃ as a GvM(μ1, μ2, κ1, κ2) pseudo-random
number and stop. Else, reject both U and θ̃ and go to Step 2. Iterate steps 2
and 3.

So far, the above algorithm is only conceptual, as it does not provide details on the
decomposition in Step 1. The product h = c/G0(δ, κ1, κ2) · d is called envelope
and s is a shrinkage function, in the sense that it shrinks the envelope h against
f = f (·|μ1, μ2, κ1, κ2) by multiplication by s. There are many ways of choosing the
decomposition in Step 1 and it is convenient to choose the envelope as close as possible
to f with the density d allowing for simple generation. We note that the decomposition
of f in Step 1 does not require evaluating the constant G0(δ, κ1, κ2) (because this con-
stant disappears after multiplying both sides of the equation by it) and, more important,
the evaluation of G0(δ, κ1, κ2) is neither required in the iterations of Steps 2 and 3
above. The ratio number of acceptances over number of iterations is called efficiency
and it is here given by ε = c−1. Also, the number of trials for a successful generation
is a geometric random variable with expectation c/G0(δ, κ1, κ2) ∈ [1,∞). The von
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Fig. 1 The GvM(15◦, 75◦, 0.5, 0.9) density with the corresponding piecewise linear envelope

Neumann algorithm is the acceptance-rejection algorithm with constant envelope h and
the best constant envelope is clearly h(θ) = supω∈[0,2π) f (ω|μ1, μ2, κ1, κ2),∀θ ∈ R.
(This most efficient von Neumann algorithm for the GvM distribution is given in Gatto
2008, p. 327, with two misprints: g is actually eg in both Steps 1′′ and 3′′). In the numer-
ical comparisons of Sect. 3, we consider this most efficient von Neumann algorithm.

We now propose the following improved envelope h, which is based on tangents to
the density over circular regions of concavity and on secants over circular regions of
convexity. Consider the set of abscissae of all local extrema and inflexion points of the
bimodal GvM density f over [0, 2π). Without loss of generality, let us assume that
the smallest element of this set is the abscissa of an inflexion point and that the second
smallest element is on the immediate left of the abscissa of a local maximum. This
situation can always be obtained after shifting the GvM density f horizontally and an
example is shown in Fig. 1. In this situation, we can define 0 ≤ θ1 < · · · < θ10 < 2π

as follows: θ5 and θ10 are the abscissae of the two local minima of f ; θ1, θ4, θ6 and
θ9 are the abscissae of the four inflexion points of f ; θ2 and θ3 are the abscissae of
the two points of intersection between the tangent line at the local maximum of f
and the tangent lines at the two inflexion points of f , this for the left peak of f ; and
θ7 and θ8 are defined in an analogue manner for the right peak of f . Let us define
f0(θ) = G0(δ, κ1, κ2) · f (θ |μ1, μ2, κ1, κ2),∀θ ∈ R. An envelope for f0 is provided
by the piecewise linear continuous function

h0(θ) =

⎧
⎪⎨

⎪⎩

a1(θmod 2π), if θ mod 2π ∈ [0, θ1),
...

...

a11(θmod 2π), if θ mod 2π ∈ [θ10, 2π),

(4)
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260 S. Pfyffer, R. Gatto

where θ ∈ R, ai denotes the affine function which joins the point (θi−1, f0i−1(θi−1))

to the point (θi , f0i (θi )), i = 1, . . . , 11, θ0
def= θ10 − 2π, θ11

def= θ1 + 2π, f0i =
f0, for i = 0, 1, 4, 5, 6, 9, 10, 11, f02 = f03 have the value of the left local maxi-
mum and f07 = f08 have the value of the right local maximum. Clearly, f0(θ) ≤
h0(θ),∀θ ∈ R. Hence h = h0/G0 is a piecewise linear envelope for f . Though, com-
puting h0 alone is sufficient for the acceptance-rejection algorithm. Figure 1 gives
an illustration of the piecewise linear envelope h(θ) of f (θ |15◦, 75◦, 0.5, 0.9) for
θ ∈ [0, 2π). A systematic way of obtaining the set of abscissae of all local extrema
and inflexion points entails various detailed operations and it is therefore deferred to the
“Appendix”.

Based on these developments, we propose the following algorithm for generating
a bimodal GvM(μ1, μ2, κ1, κ2) random variable on [0, 2π).

Acceptance-rejection algorithm for the GvM distribution with piecewise linear
envelope

Step 0. If necessary, shift the GvM density so that, starting from the left, the first of
all local extrema or inflexion points over [0, 2π) is an inflexion point and
the second is a local maximum.

Step 1. Search for the roots of the polynomials of degrees 4 and 8, given by (10)
and (13) in the “Appendix”. This can be done with the methods of Ferrari
for the degree four and with the method of Weierstrass for the degree eight.
Transform these roots to angles by (11) and (12). Deduce the local extrema
and the inflexion points by evaluating f (·|μ1, μ2, κ1, κ2) at these angles.
Based on these points, construct the piecewise linear envelope h0 to f0 =
G0(δ, κ1, κ2) · f as given in (4).

Step 2. Generate U from the uniform distribution on [0, 1) and θ̃ from the density
d(θ) = h0(θ)/

∫ 2π

0 h0(ω)dω, for θ ∈ [0, 2π). The generation from d can be
done by the composition method as follows: generate U ′ from the uniform
distribution on [0, 2π) and generate θ̃ from the normalized affine function
ai over [θi−1, θi ), if U ′ ∈ [θi−1, θi ), i = 2, . . . , 10, or from the normalized
function affine a1 over [θ0, θ1), if U ′ < θ1 or U ′ > θ10, with reduction
modulo 2π in this latter case.

Step 3. Let s = f0/h0. If U ≤ s(θ̃), then consider θ = θ̃ as a GvM(μ1, μ2, κ1, κ2)

pseudo-random number and stop. Else, reject both U and θ̃ and go to Step 2.
Iterate Steps 2 and 3.

Intuitively, the proposed envelope h is optimal in the sense of yielding a good
reproduction of the bimodal shape of the GvM density, while remaining piecewise
linear with a small number of edges. The generation from the linear functions is ele-
mentary and the number of comparisons is small. As mentioned is Remark 1, more
refined envelopes could be obtained, although they would imply a larger number of
comparisons.

Remark 1 Obviously, the piecewise linear envelope can be arbitrarily refined over the
circular intervals having two circularly consecutive inflexion points as boundaries and
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Simulation algorithm for the GvM distribution of order two 261

which contain a local minimum. In the previous configuration, these are the interval
(θ4, θ6), which contains the local minimum θ5, and the circular interval (θ9, θ1) (with
θ1 < θ9 ∈ [0, 2π)), which contains θ10 as minimum. Since the GvM density is convex
over (θ4, θ6), any straight line crossing two points

(
θ ′, f (θ ′)

)
and

(
θ ′′, f (θ ′′)

)
, with

θ4 < θ ′ < θ ′′ < θ6, will not intersect graph of the density over (θ ′, θ ′′). From this
fact, we can easily construct envelopes which are arbitrarily close the GvM density
by extending the number of secants over (θ4, θ6). The same holds for (θ9, θ1). The
analogue refinement can be considered over the intervals of concavity (θ1, θ4) and
(θ6, θ9), by extending the number of tangents. This refinement of the envelope could
be carried out adaptively. That is, if θ̃ generated from Step 2 above is rejected and if
either θ̃ ∈ (θ4, θ6) or θ̃ ∈ (θ9, θ1), circularly, then the point (θ̃ , f (θ̃)) is considered as
a new vertex of the updated envelope.

Remark 2 We can also construct a simple piecewise constant envelope which improves
the best von Neumann algorithm. We first determine the two local maxima and minima
in [0, 2π) by searching the roots of the fourth degree polynomial (10). Then, over each
one of the two circular intervals in [0, 2π) having two circularly consecutive minima
as boundaries, we determine the constant function which crosses the maximum over
the interval. We finally sum these two constant functions and obtain the piecewise
constant envelope. A more refined piecewise constant envelope could be constructed
by using the inflexion points as well. But this envelope could not be better than the
proposed piecewise linear envelope while its computational burden for simulation
would be close to the one of the piecewise linear envelope.

Remark 3 For globally log-concave or log-convex densities, an envelope can be
constructed from a set of tangents to the log-density, as suggested by Gilks and Wild
(1992), or from a set of secants to the log-density, as suggested by Gilks (1992).
This type of densities appear often in Bayesian models as full conditionals within
Gibbs sampling. Even without the required log-concavity or log-convexity, these
methods provide approximations to the density and they are used within the Metrop-
olis algorithm, yielding high acceptance rates whenever the density is approximately
log-concave or log-convex, see Gilks et al. (1995). Our algorithm can be seen as a
particular simultaneous application of these methods, as it decomposes the domain
[0, 2π) into circular regions of convexity and concavity and joins an envelope based on
tangents, over circular regions of concavity, with another envelope based on secants,
over circular regions of convexity.

Remark 4 The above algorithm can be refined by using squeezing or pretesting, see
e.g. Ripley (1987, pp. 67–71). It is quite easy to obtain a lower squeezing function
which would allow to skip many evaluations of the non-normalized GvM density. In
order to construct the piecewise linear envelope h0, we need to compute the local max-
ima and minima as well as the inflexion points of the GvM density f over [0, 2π).
With the same set of points, we can obtain a lower piecewise linear envelope or
squeezing function l0 such that l0(θ) ≤ f0(θ),∀θ ∈ R. Let us redefine the horizontal
coordinates of the inflexion points θ1, θ4, θ6, θ9 as η2, η4, η7, η9, respectively, let us
define by η3 < η8 the horizontal coordinates of the maxima and let us define by
η1 < η5 < η6 < η10 the horizontal coordinates the points of intersection between the
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262 S. Pfyffer, R. Gatto

straight lines through the local minima and the tangent lines through the neighboring
inflexion points. Based on these points we define l0(θ) as

l0(θ) =

⎧
⎪⎨

⎪⎩

b1(θ mod 2π), if θ ∈ [0, η1) ,
...

...

b11(θ mod 2π), if θ ∈ [η10, 2π) ,

(5)

where θ ∈ R, bi denotes the affine function which joins the point (ηi−1, f0i−1(ηi−1))

to the point (ηi , f0i (ηi )), i = 1, . . . , 11, η0
def= η10 − 2π, η11

def= η1 + 2π, f0i = f0,
for i = 2, 3, 4, 7, 8, 9, 10, 11, f00 = f01 have the value of the left local minimum
and f05 = f06 have the value of the right local minimum. Hence l = h0/G0 is a
piecewise linear lower squeezing function for the GvM density f . Given both upper
and lower envelopes h0 and l0, the squeezed version of the above algorithm is obtained
by inserting Step 2′ given below between Steps 2 and 3 in the above algorithm.

Step 2′. If U ≤ l0(θ̃)/h0(θ̃), accept θ = θ̃ as a GvM(μ1, μ2, κ1, κ2) pseudo-random
number and stop.

Note however that both the piecewise linear envelope h0 and the non-normalized
GvM density f0 are fast to evaluate. Consequently, this squeezing algorithm is not
expected to enhance the performance significantly.

3 Numerical comparisons with other methods

In this section we show some numerical comparisons between the acceptance-
rejection method with the new piecewise linear envelope and three competing meth-
ods, which are: the most efficient von Neumann method, explained at the beginning
of Sect. 2, the ratio-of-uniforms, given in Gatto (2008, Section 3) and a Markov chain
Monte Carlo method.

Markov chain Monte Carlo is a method of iterative simulation and the central idea
is to generate iteratively from the transition (or jumping) distributions of a Markov
chain having the desired (or target) distribution as stationary distribution. From the
fact that the transition distributions converge towards the stationary distribution, all
generations obtained after discarding the first generations (or after a burn-in period)
can be considered as generations from the stationary distribution. In the Metropolis
algorithm, the jumping distribution can take a simple form, irrespectively of the com-
plexity of the target distribution, which can have a complicated form. The method
originated from statistical physics see Metropolis et al. (1953), see also Asmussen
and Glynn (2007, Chapter 13) or Rubinstein and Kroese (2008, Chapter 6), for
example. In our case we have the GvM target distribution and we select the uniform
jumping distribution. Given that the GvM distribution is considered over a bounded
domain and that it is generally not unimodal, the uniform jumping distribution is a
sensible choice and it allows for the fastest generation. This leads to the following
algorithm.
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Table 1 Numerical comparisons between the von Neumann (vN), ratio-of-uniforms (RU), Markov chain
(MC) and piecewise linear envelope (PL) simulation methods for μ1 = 0 and various combinations of δ, κ1
and κ2

Parameters vN RU MC PL

κ1, κ2, δ ε, n ε, n ε, n ε, n

1.0, 1.0, 0◦ 0.2382, 251853 0.3149, 190567 0.4479, 133963 0.7580, 79160

0.1, 1.0, 60◦ 0.3732, 160766 0.6593, 91000 0.6148, 97588 0.8404, 71396

1.0, 1.0, 90◦ 0.4718, 127166 0.7782, 77104 0.6157, 97445 0.8468, 70852

1.5, 1.1, 117◦ 0.2734, 219470 0.3959, 151567 0.4839, 123985 0.7847, 76465

1.0, 2.0, 140◦ 0.1817, 330263 0.2011, 298436 0.3392, 176868 0.6538, 91773

ε: ratio of acceptances over number of iterations or efficiency. n: number of iterations in order to reach
60,000 acceptances. Markov chain burn-in iterations, not included in n: 2000. Starting point for Markov
chain: 0.0852

Markov chain Monte Carlo algorithm for the GvM distribution with uniform jumping
distribution

Step 1. Select any starting point θ0 ∈ [0, 2π).
Step 2. Generate θ∗ from the uniform jumping density on [0, 2π). Set

r = f (θ∗|μ1, μ2, κ1, κ2)

f (θ0|μ1, μ2, κ1, κ2)
and p = min{r, 1}.

Step 3. Generate U from the uniform distribution on [0, 1) and set

θ =
{

θ∗, if p ≥ U,

θ0, if p < U.

Iterate Steps 2 and 3 with θ0 = θ .

Table 1 shows numerical comparisons of the acceptance-rejection method based on
the piecewise linear envelope with its direct competitors, which are the von Neumann,
the ratio-of-uniforms and a Markov chain algorithms. For μ1 = 0 and the values of
δ, κ1 and κ2 given in the first column of Table 1, we see that the new method with
the piecewise linear envelope is always the most efficient, in the sense of yielding the
smallest number of rejections for the total number of iterations. The ratio-of-uniforms
and Markov chain methods show comparable efficiencies here, which are however sub-
stantially lower than the efficiency of the proposed piecewise linear envelope. The von
Neumann method systematically shows the lowest efficiencies and this could have been
expected. However, the efficiencies of the von Neumann method are given in Table 1
mainly to illustrate the relative improvement of the three other methods with respect
to a basic method. Note that there exist more refined choices of jumping distribution
for Markov chain Monte Carlo, as e.g. the adaptive piecewise linear approximation
of Gilks et al. (1995). These choices should lead to ratios of acceptances higher than
under the uniform jumping distribution used here, however they would also increase
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264 S. Pfyffer, R. Gatto

the overall complexity and hence the computing time of the Metropolis algorithm.
A good jumping distribution should allow for simple sampling, for reasonably large
jumps in the support of the target distribution (in order to obtain good mixing in the
Markov chain) and should not reject the jumps too frequently. The uniform jumping
distribution fulfills these three important criteria. Finally, we give the efficiencies of
our piecewise linear envelope by direct evaluation of the area under the envelope and
by numerical integration of the normalizing constant of the GvM density. For μ1 = 0
and the values of δ, κ1 and κ2 given in the first column of Table 1, going from first to
last row, we obtain ε = 0.7587, 0.8477, 0.8440, 0.7838, 0.6525, respectively. These
values are very close to the corresponding values given in the column PL of Table 1.
The numerical results presented are based on the pseudo-random number generator of
Fortran 90. The programs used for these computations are written in Fortran 90 and the
programs for the generation with the proposed piecewise linear envelope are available
under http://www.stat.unibe.ch, after selecting Research/Publications/Software.

4 Conclusion

In this article we present an acceptance-rejection simulation algorithm for the GvM
distribution, based on a tight piecewise linear envelope, and a numerical comparison
with three alternative simulation methods. The numerical results lead to the follow-
ing conclusions. For GvM densities with two modes of similar height, which can be
obtained by setting κ1 � κ2 and δ � π/2, the ratio-of-uniforms method appears quite
close to the proposed method, based on the piecewise linear envelope. In general,
for bimodal GvM densities, the best von Neumann simulation method produces high
rejection rates, but it is the simplest method to implement. There are no clear advan-
tages in using Markov chain Monte Carlo simulation: it requires discarding the first
generations to ensure that the Markov chain has reached its stationary distribution,
i.e. a burn-in period, and it does not lead to the same type of efficiencies as with the
proposed piecewise linear envelope. Some ideas presented here could be extended for
computing tight envelopes to other GvMk densities with k > 2.
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Appendix: The local extrema and the inflexion points of the generalized von Mises
density

In this “Appendix” we show how to obtain the local extrema and inflexion points of
f (θ |μ1, μ2, κ1, κ2), for θ ∈ [0, 2π). Some parts of this paragraph are from Gatto
(2008, Section 3.2). Let us consider for the moment the density at points ω = θ − μ1
over [0, 2π), where θ denotes the original abscissa. As δ = (μ1 − μ2) mod π , the
exponent of the GvM density expressed in terms of ω becomes

g(ω) = κ1 cos ω + κ2 cos 2 (ω + δ) .
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The extrema are necessarily given by the roots of d f (ω|0, δ, κ1, κ2)/dω and the
inflexion points are necessarily given by the roots of d2 f (ω|0, δ, κ1, κ2)/dω2. We
have

d

dω
f (ω|0, δ, κ1, κ2) = d

dω
g(ω) f (ω|0, δ, κ1, κ2)

and

d2

dω2 f (ω|0, δ, κ1, κ2) =
(

d2

dω2 g(ω) +
(

d

dω
g(ω)

)2
)

f (ω|0, δ, κ1, κ2).

Since f (·|0, δ, κ1, κ2) is positive, the search for these roots corresponds to solving

d

dω
g(ω) = 0

and

d2

dω2 g(ω) +
(

d

dω
g(ω)

)2

= 0, (6)

respectively, which simplify to

− κ1 sin ω − 2κ2 sin 2 (ω + δ) = 0 (7)

and to

− κ1 cos ω − 4κ2 cos 2 (ω + δ) + {κ1 sin ω + 2κ2 sin 2 (ω + δ)}2 = 0, (8)

respectively.
Concerning the local extrema, by expanding the sine and cosine functions, (7) can

be rewritten as

(1 − 2 sin2 δ) sin ω cos ω − 2 sin δ cos δ sin2 ω + ρ sin ω + sin δ cos δ = 0, (9)

where ρ = κ1/(4κ2). The bimodality of f (ω|0, δ, κ1, κ2) is determined by the number
of roots in ω ∈ [0, 2π) of (9). The substitution x = sin ω in (9) yields

±
(

1 − 2 sin2 δ
)

x
√

1 − x2 = 2 sin δ cos δx2 − ρx − sin δ cos δ.

Taking the square on both sides of the above equation leads to searching for the
roots in x ∈ [−1, 1] of the polynomial

b0 + b1x + b2x2 + b3x3 + x4, (10)
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Fig. 2 Decomposition of the space of (ρ, δ) into the region giving bimodality, shaded, and the region
giving unimodality, empty, of the GvM density

where the coefficients are given by

b0 = sin2 δ cos2 δ, b1 = 2ρ sin δ cos δ, b2 = ρ2 − 1 and b3 = −4ρ sin δ cos δ.

As mentioned in Sect. 1, the roots of polynomial (10) can be determined exactly by
the method of Ferrari. Next, we transform the roots of (10) back to the angular scale
by

ω = (arcsin x)mod 2π, (π − arcsin x)mod 2π, (11)

(with arcsin : [−1, 1] → [−π/2, π/2]) and finally to the original abscissa

θ = (ω + μ1) mod 2π. (12)

The nature of the resulting extrema is then determined by the evaluation of
f (·|μ1, μ2, κ1, κ2) at these points. In some cases, the fourth degree polynomial (10)
can have two real roots only instead of four, which means that f (·|μ1, μ2, κ1, κ2) is
unimodal instead of bimodal. For example, if δ = π/2, then b0 = b1 = b3 = 0 and the
fourth degree polynomial has exactly two real roots, provided that ρ > 1. Although
the number of roots of the quartic (10) is a function of δ and ρ only, this function seems
difficult to determine analytically. Figure 2, which is obtained numerically, shows the
partition of the domain of δ and ρ into regions leading to exactly two and four roots.
These two regions are respectively regions of unimodality and bimodality of the GvM
density. The region with four roots is shaded and the region with two roots only is
empty, or white.
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The procedure for obtaining the inflexion points is similar to the one for obtaining
the extrema. We mainly apply similar substitutions and expansions to (8), instead of
(7), and finally obtain a polynomial of degree eight, instead of four. The four inflexion
points are among the roots in x ∈ [−1, 1] of this polynomial, which is

c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + c6x6 + c7x7 + c8x8, (13)

with coefficients given by

c0 =−(256κ3
2 + 512κ4

2 ) sin6 δ−(64κ2
2 + 128κ3

2 ) sin2 δ−κ2
1 + 16κ2

2 + 256κ4
2 sin8 δ

+(64κ2
2 + 256κ4

2 + 384κ3
2 ) sin4 δ,

c1 = 256κ1κ
3
2 sin3 δ cos δ + 32κ1κ2 sin δ cos δ − 256κ1κ

3
2 sin5 δ cos δ,

c2 =8κ2
1 κ2 + κ2

1 −64κ2
2 −128κ3

2 + 512κ3
2 sin6 δ + (512κ4

2 − 96κ2
1 κ2

2 − 768κ3
2 ) sin4 δ

+(−512κ4
2 + 512κ3

2 + 96κ2
1 κ2

2 − 16κ2
1 κ2) sin2 δ,

c3 = (16κ3
1κ2 − 32κ1κ2 − 192κ1κ

2
2 − 256κ1κ

3
2 ) sin δ cos δ + 512κ1κ

3
2 sin5 δ cos δ

+(384κ1κ
2
2 − 512κ1κ

3
2 ) sin3 δ cos δ,

c4 =−32κ2
1 κ2

2 + 64κ2
2 + 384κ3

2 + 256κ4
2 + κ4

1 + (512κ4
2 −768κ3

2 −256κ2
1 κ2

2 ) sin2 δ,

+(256κ2
1 κ2

2 − 512κ4
2 ) sin4 δ,

c5 = (128κ1κ
2
2 − 32κ3

1κ2 + 768κ1κ
3
2 ) sin δ cos δ − 256κ1κ

2
2 sin3 δ cos δ,

c6 = 32κ2
1 κ2

2 − 256κ3
2 − 512κ4

2 − 256κ2
1 κ2

2 sin4 δ + (512κ3
2 + 256κ2

1 κ2
2 ) sin2 δ,

c7 = −512κ1κ
3
2 sin δ cos δ and

c8 = 256κ4
2 .

These expressions arise from simple but lengthy algebraic manipulations. As
mentioned in Sect. 1, the roots of polynomial (13) can be obtained iteratively by
the method of Weierstrass. We transform the roots of (13) back to the angular scale by
(11) and (12). We evaluate f (·|μ1, μ2, κ1, κ2) at these points and retain the inflexion
points.
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