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Abstract Local polynomial fitting for univariate data has been widely stud-
ied and discussed, but up until now the multivariate equivalent has often been
deemed impractical, due to the so-called curse of dimensionality. Here, rather
than discounting it completely, we use density as a threshold to determine
where over a data range reliable multivariate smoothing is possible, whilst
accepting that in large areas it is not. The merits of a density threshold de-
rived from the asymptotic influence function are shown using both real and
simulated data sets. Further, the challenging issue of multivariate bandwidth
selection, which is known to be affected detrimentally by sparse data which in-
evitably arise in higher dimensions, is considered. In an effort to alleviate this
problem, two adaptations to generalized cross-validation are implemented, and
a simulation study is presented to support the proposed method. It is also dis-
cussed how the density threshold and the adapted generalized cross-validation
technique introduced herein work neatly together.
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1 Introduction

Univariate nonparametric regression is widely used to fit a curve to a dataset
for which a parametric method is not suitable. Multivariate nonparametric re-
gression methods are not so prevalent, although several methods do exist such
as the additive models of Hastie and Tibshirani (1990) and thin plate splines,
introduced by Duchon (1977). Here we study the multivariate case of local lin-
ear regression, the origins of the univariate equivalent of which can be traced
back to the late nineteenth century. The multivariate technique has often been
deemed impractical due to the problems encountered in regions of sparse data,
which become practically an unavoidable part of data in higher dimensions.
This issue is often referred to as the curse of dimensionality. However, mul-
tivariate local regression has been implemented successfully in Cleveland and
Devlin (1988) for 2 and 3–dimensional data and in Fowlkes (1986) for data of
even higher dimensions. In this paper we introduce techniques which make the
curse of dimensionality avoidable and so regression feasible for any reasonable
dimension.

Given d-dimensional covariates Xi = (Xi1, ..., Xid)
T with density f(·) and

scalar response values Yi where i = 1, ..., n, the task is to estimate the mean
function m(.) = E(Y |X = .) at a vector x. Assumed is that

Yi = m(Xi) + ǫi (1)

where ǫi are random variables with zero mean and variance σ2. We concentrate
on local linear regression which uses a kernel–weighted version of least squares,
in order to fit hyperplanes of the form β0 + βT

1 x locally, i.e., at each target
point x ∈ R

d. Both the scalar β0 and the vector β1 depend on x, but we
suppress this dependence for notational ease. To find the regression estimate,
m̂(x), one minimizes with respect to β = (β0,β

T
1 )

T = (β0, β11, ..., β1d)
T ;

n
∑

i=1







Yi − β0 −

d
∑

j=1

β1j(Xij − xj)
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KH(Xi − x). (2)

The estimator of the mean function m̂(x) is β̂0. Here K is a multivariate kernel

function with
∫

K(u)du = 1 and KH(x) = |H|
−1/2

K(H−1/2x). The d × d
bandwidth matrix H is crucial in determining the amount and direction of
smoothing since it is this that defines the size and shape of the neighbourhood
around x, enclosing data points which are considered in the estimation at
this point. For each x, the contours of the weights KH(· − x) form ellipsoids
centered at x, with more weight usually given to those points closer to x.

We choose to use a diagonal matrix, H = diag(h21, ..., h
2
d), since compu-

tationally this is significantly easier than a full matrix. For K, we primarily
use a product of Gaussian kernels since in practice we found this the least
temperamental kernel function in regions where data is sparse.

Minimization (2) is a weighted least squares problem. The solution to this
is

β̂0 = m̂(x) = e1
T (XT

xWxXx)
−1XT

xWxY (3)
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where

Xx =











1 X11 − x1 ... X1d − xd
1 X21 − x1 ... X2d − xd
...

...
. . .

...
1 Xn1 − x1 ... Xnd − xd











(4)

Y =







Y1
...
Yn






(5)

Wx = diag {KH(X1 − x), ...,KH(Xn − x)} (6)

and e1 is a vector with 1 as its first entry and 0 in the other d entries.
Local polynomial regression in general, and local linear regression in par-

ticular, has many advantages which makes it of interest to find a solution to
the problem of the curse of dimensionality. Firstly, the idea has great intuitive
appeal, as it is easily visualized and understood which data points are con-
tributing to the estimation at a point. Work by Cleveland and Devlin (1988)
and Hastie and Loader (1993a) suggests that multivariate local polynomial
regression compares favourably with other smoothers in terms of computa-
tional speed. Furthermore, kernels are attractive from a theoretical point of
view, since they allow straightforward asymptotic analysis. It has been found
that the technique exhibits excellent theoretical properties. Local polynomials
were shown to achieve optimal rates of convergence in Stone (1980). In the
univariate case, Fan (1993) showed that local linear regression achieves 100%
minimax efficiency. The asymptotic bias and variance are known to have the
same order of magnitude at the boundary as in the interior of the data, which
is a particularly encouraging property for higher–dimensional data sets (Rup-
pert and Wand, 1994). For finite samples in high dimensions, in our experience,
the quality of the regression is in fact likely to be poorer at the boundary than
in the interior, with the variance in the boundary region being higher for local
linear than for local constant estimation. This behaviour is also noted in Rup-
pert and Wand (1994). However, the quality of estimation of the local linear
estimator, in terms of mean squared error, is usually still superior to local
constant in these regions, due to the significantly reduced bias. Other advan-
tages, as detailed in Hastie and Loader (1993b), include that it adapts easily
to different data design and also has the interesting side-effect of implicitly
providing the gradient of m̂ at x through the same least squares calculation.
Indeed, this is given by β̂1.

Scott (1992) describes the curse of dimensionality as ‘the apparent paradox

of neighbourhoods in higher dimensions — if the neighbourhoods are ‘local’,

then they are almost surely ‘empty’, whereas if a neighbourhood is not ‘empty’,

then it is not ‘local’.’ If there is not sufficient data in a neighbourhood, then
the variance of the fit is too high, or with some kernel functions, such as the
Epanechnikov kernel, the calculations may break down completely.

In order to simplify the problem, one may consider using dimension re-
duction or variable selection techniques in a pre–processing step. Examples
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of such techniques include principal component analysis, with the selection of
‘principal variables’ (Cumming and Wooff, 2007) as an interesting variant, the
LASSO, originally of Tibshirani (1996) and since implemented in a variety of
forms, and the Dantzig method (Candes and Tao, 2007), which is specifically
designed for situations with very large d > n.

Although such procedures may alleviate the curse of dimensionality greatly,
there are certain limits to what they can achieve. Firstly, even after successful
application of such a technique, one will remain with a subset of ‘relevant’ vari-
ables. The remaining local linear regression problem may still suffer from the
curse of dimensionality, which begins to have an impact in dimensions as little
as d = 3 or 4. Furthermore, most such variable selection or dimension reduction
techniques will make some implicit linear modelling assumption, which may
not be adequate from a nonparametric perspective. In order to deal with this
problem properly, one would need to interweave the bandwidth selection and
the variable selection processes, as suggested by Cleveland and Devlin (1988).
Recently, an interesting approach in this direction was provided by Lafferty
and Wasserman (2008), who introduced the rodeo (regularization of derivative
expectation operator). This technique initially assigns a large bandwidth in
every covariate direction. The bandwidths are then gradually decreased, and
variables are deemed irrelevant if this does not lead to a substantial change in
the estimated regression function. This concept of ‘relevance’ is not without
controversy; for instance, Vidaurre, Bielza and Larrañaga (2011) argue that
this definition is somewhat strange, since all variables which have a linear
impact onto the response would be deemed irrelevant by construction. In an
alternative approach, Vidaurre, Bielza and Larrañaga (2011) implemented a
lasso locally to reduce the number of variables in local regression.

These hybrid bandwidth/variable selection methods were demonstrated to
work reliably in certain situations, but they clearly carry some non–canonical
features. In this work, we return to a more basic setup in which all estimation is
carried out by ‘standard’ multivariate local linear regression in d−dimensional
space. In the developments that follow, it is irrelevant whether the d−variate
data set corresponds to the original data, or is the result of a dimension–
reducing pre–processing step. In terms of the magnitude of d, we have quite
large (say, up to two dozen), but not huge, numbers of variables in mind. We
comment on the case of very large dimensions d in the Discussion.

Hastie, Tibshirani and Friedman (2001) and Cleveland and Devlin (1988)
agree that the way to overcome the curse of dimensionality would be to in-
crease the sample size n in order to capture complexities in the regression
surface that might otherwise be lost through the necessary introduction of
larger bandwidths. Of course, increasing n is often not a realistic option for
a given data set, but, putting their statement in other words, there must be
sufficient data around x for a reliable estimate to be made at that point. This
is the attitude adopted in this paper, and in Section 2 we describe a solution
which essentially identifies such “reliable” regions by dismissing all neighbour-
hoods which do not contain enough data. The actual smoothing step is then
only performed over such regions in which estimation is considered reliable,
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where the bias and variance of m̂ can be kept reasonably low. This is achieved
through a threshold imposed on a suitable estimate of the density f . In Section
3 a bandwidth matrix selection procedure is suggested which specifically tai-
lors generalized cross-validation, first developed by Craven and Wahba (1979),
for use with multivariate data. A simulation study is included to demonstrate
the value of this technique, before finishing the paper with a Discussion in
Section 4.

2 A density threshold

The basic idea is to identify regions which are suitable for local regression
estimation by looking at the density, f . Since this is unknown, it needs to be
estimated. At a multivariate point x ∈ R

d, the kernel density estimate, f̂(x),
is

f̂(x) = n−1
n
∑

i=1

KH(Xi − x) (7)

where KH is a multivariate kernel function, as defined earlier, and again a
bandwidth matrix H is needed. For reasons that will become clear later, we
use the same H in calculating f̂ as in the regression step. A threshold T is
sought such that, if at point x we have f̂(x) ≥ T , then an estimate using
local linear regression can be considered somewhat reliable, and otherwise,
care should be taken and an alternative method sought. Intuitively, T should
depend on n and H, as decreasing either of them will reduce the number of
data points which are locally available at x, requiring in turn a larger threshold
to allow reliable estimation.

There seems to exist a tempting shortcut solution to the problem. One
could argue that, for sufficient local estimation of a hyperplane with p = d+1
parameters, one needs effectively p pieces of information in the neighbourhood
of x. In other words, the observations in the vicinity of x need to contribute
p times the information which would be provided by a data point situated
exactly at x. Using (7), this means that an initial candidate threshold, say T0,
would take the form

T0 =
(d+ 1)K(0)

n|H|1/2
, (8)

which contains the quantities n and |H| in the denominator, as expected. Later
in this section we will arrive, through a more rigorous justification than the
above, at a threshold of the same shape as (8), but with the constant d + 1
replaced by a more adequate one, which is of the same magnitude as d + 1
only for small values of d.

We present a data set to illustrate the motives. This data set contains
9 variables on 14000 chamois, a species of goat-antelope, shot between the
months of October and December between the years 1973-2009, in the Trentino
area of the Italian Alps. The response is body mass and the 8 covariates are
climate variables, age and elevation. A subset of size 12000 is used as training



6 James Taylor, Jochen Einbeck

data while a further 2000 observations act as test data. For each point in the
test set the body mass is estimated using (3) and compared with the observed
response values. Since d is relatively large, automatic bandwidth selection is
computationally too intensive and so here the hj , j = 1, . . . , 8 are chosen as
one fifteenth of the data range in each direction. The difficulties of bandwidth
selection will be discussed at length in Section 3. In the first graph in Fig. 1
the difference between Yi and m̂(Xi) is plotted against f̂(Xi), calculated using
(7), for each of the 2000 test points. The effects of the curse of dimensionality
are clearly visible in the way that large errors in estimating the regression
surface exist on the left hand side of the graph which examines the lower
f̂(Xi) and so sparser regions of the data set. This is the area which would
ideally be cut off. For this data set, with p = 9 parameters, one would obtain
T0 = 9K(0)/n|H|1/2 = 1.13× 10−7. If this was employed as threshold T , then

599 of the test points would be considered to have a large enough f̂(Xi) for
regression to be reliable. The second plot in Fig. 1 again plots m̂(Xi) − Yi
against f̂(Xi), but only for these denser 599 points. However, this threshold is
considered inadequate since errors of magnitude as large as 200 are observed
at points where regression would be considered feasible, when the response
range is approximately 40. For this reason we develop T differently, using the
concept of influence.
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Fig. 1 The graph on the left shows m̂(Xi) − Yi v. f̂(Xi) for all 2000 test points of the

chamois data, and the graph on the right shows this for the 599 test points at which f̂(Xi)
is greatest

The influence, infl(Xi), describes the contribution of observation Xi to the
estimation at x = Xi. It is given by the diagonal element of the ith row of the
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smoother matrix S, where (m̂(X1), . . . , m̂(Xn))
T = SY, i.e.

infl(Xi) = eT1 (X
TWX)−1XTWẽi = eT1 (X

TWX)−1











KH(0)
0
...
0











= |H|−1/2eT1 (X
TWX)−1e1K(0), (9)

where X = X{x=Xi}, W = W{x=Xi}, ẽi is a vector of length n with 1 in the

ith position, and (KH(0), 0, ..., 0)
T
is a vector of length d+ 1.

It seems a sensible approach to dismiss local regression at observations for
which infl(Xi) is very large. In the search for a criterion which identifies what
a “very large influence” means in this context, we use Theorem 2.3 in Loader
(1999), which states that the inequality

infl(Xi) ≤ 1 (10)

holds at all observation points Xi.
In order to relate the influence function to the density, we develop an

asymptotic version of (9). At x ∈ R
d, let f be continuously differentiable and

f(x) > 0. Assuming n−1|H|−1/2 −→ 0 as n −→ ∞, one can show that

infl(x) ≈
ρK(0)

nf(x)|H|1/2
+ op(n

−1|H|−1/2), (11)

where

ρ =

[

∫

K(u)du−

∫

uTK(u)du

(∫

uuTK(u)du

)−1 ∫

uK(u)du

]−1

.

(12)
See Appendix A for the derivation of this result. Although the original defini-
tion of influence, (9), only applies at the observed values Xi, the asymptotic
influence function given by (11) can be computed at every x. It can be seen as
the influence which would be expected under idealized (asymptotic) conditions
for a (hypothetical) data point situated at x. Similarly, the inequality (10) ap-
plies only to the observed valued Xi. However, due to the implicit averaging
process happening in the computation of the asymptotic influence function,
any x which is situated in between or close to data points Xi is still likely
to possess the property infl(x) ≤ 1. In other words, in populated regions of
the predictor space, the asymptotic influence will be less than 1, while it will
exceed 1 in very sparse or remote regions. Using this rationale, it makes sense
to define T by bounding the asymptotic influence by 1;

ρK(0)

nf(x)|H|1/2
≤ 1

so

f(x) ≥
ρK(0)

n|H|1/2
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and, hence,

T =
ρK(0)

n|H|1/2
, (13)

which is of the same form as (8) but with d+ 1 replaced by ρ.
Let us firstly note that the bandwidth matrix, H, featuring in this density

threshold stems from an expression involving the influence of the regression,
which explains our earlier statement that the bandwidth matrix used for the
density estimation should be the same as that used in the actual regression
step.

Of great importance are the limits used in the integrals in ρ. If one esti-
mates at an interior point, then these integral limits would range from −∞
to ∞. For a boundary point, the lower integral limit would need to be altered
according to the distance to the boundary (for instance, assuming a diagonal
bandwidth matrix and f(x) > 0, then if x is half a bandwidth hj away from
the boundary of the support of f in each coordinate direction, then the lower
limit of each integral would be −0.5; for a rigorous definition of boundary
points see Ruppert and Wand (1994)). This is of crucial importance for us
since the boundary region, where data become sparse, is just the region in
which we are interested. Hence, in order to represent the true influence as
accurately as possible in the area of interest, we replace the lower integral
limit by a small negative value, say a, which reflects the distance between the
boundary of f and the area for which the criterion is optimized (notice that
the integrals in (12) are d−variate, but we always use the same a for each
coordinate direction). A choice of a = 0 would optimize the threshold for use
at the edge of the data range, while a value of a = −∞ would be best for
use in the interior. For us, a value in between is optimal, to assess reliably
the region where there is doubt over the validity of local linear regression as a
suitable regression technique.

In fact, ρ varies quite strongly with a, as is shown in the top left plot in
Fig. 2 in the case d = 3. This plot suggests that a value of a between -0.5 and
-1 is approximately the point where ρ stabilises as a moves away from 0, which
makes this a logical range to choose a from.

Our primary method of determining a suitable value of a has been to work
backwards and look directly at the data by examining the error of estimated
points. To illustrate this strategy, we generate two training data sets by sub-
jecting the functions

m3(x1, x2, x3) = −12 cos(x1) + 5 sin(5x2) + 10 log(x3) + 17

and
m5(x1, x2, x3, x4, x5) = m3(x1, x2, x3) + cos(3x4) + 7 tan(x5)

to independent Gaussian noise, whereby x1, . . . , x5 were generated from ap-
propriately centered t−distributions with 2 df. These training data sets, each
of size n = 300, were used to fit the respective local linear models. Test data
sets, also of size n = 300, were generated in the same manner from m3 and
m5. Fig. 2 (right) examines the MSEs for these test data (top: d = 3; bottom:
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Fig. 2 Top left: ρ v. a; Bottom left: |m(Xi)−m̂(Xi)| v. f̂(Xi) for the trivariate simulation;
Right: MSE for points accepted by T , and number of points excluded, as a function of ρ,
for the trivariate simulation (top) and the five-dimensional simulation (bottom)

d = 5), but only including those points accepted by threshold (13). The two
plots show initially quite a steep decline in the MSE, but then flatten at a
certain value of ρ. One also observes from these figures that the number of
excluded points increases quite linearly with ρ. Once all badly fitting points
are excluded, the exclusion of further points does not continue to improve the
fit. As one wishes to exclude as few data as possible, it is important to find
a value of ρ situated shortly after the steep descent in the MSE(ρ) function.
Hence, an adequate integral limit a should correspond approximately to these
values of ρ (which depend on d). In both plots, at these values of ρ, approxi-
mately one third of the test points are considered adequate, which seems like
a reasonable proportion.
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The bottom left plot shows the absolute error, |m(Xi) − m̂(Xi)|, against

f̂(Xi) for the trivariate simulation. The vertical line in this plot is T with
a = −0.85, and this is approximately where the threshold should cut in order
to exclude the large errors associated with low density. Similar analyses were
carried out for a variety of real and simulated data sets of varying dimension,
and the value of a = −0.85 performed consistently well in these analyses,
regardless of d. A value of a = −0.85 gives ρ = 3.12 for trivariate, and ρ = 6.1
for five-dimensional, data. Indeed, in the plots on the right hand side the curves
seem to flatten at approximately these values of ρ, suggesting that any further
increase in T would be pointless.

There is no theoretical argument that would tell us exactly where the
threshold should cut. The most important aim is that extreme estimates, or
points at which estimation breaks down computationally, are ruled out by the
threshold. These analyses suggest that by making a = −0.85, (13) is capable
of achieving this. This value corresponds to a point situated 0.85hj inside the
boundary, which is quite intuitive since this is approximately the region where
one would assume data sparsity to become a problem. An attractive feature of
threshold (13) is its interpretability, since (13) is neat in the sense that it takes
the form of a multiple of the density of one point. The threshold is effectively
imposing a required equivalent number of data points at x. Applying this
threshold to the chamois data gives T = 1.93 × 10−7, which means only 273
of the test points are considered to have large enough f̂(Xi) for regression,
via (3), to be reliable. As Fig. 3 illustrates, this is a considerable improvement
compared to the residual pattern obtained in Fig. 1, with all unreasonably
large errors now being eliminated.

Table 1 Comparing the number of parameters in the regression, p, with the corresponding
value of ρ for different dimensions

Dimension p ρ Dimension p ρ
1 2 1.50 9 10 20.41
2 3 2.19 10 11 27.82
3 4 3.12 11 12 36.94
4 5 4.46 12 13 51.13
5 6 6.10 13 14 68.72
6 7 8.35 14 15 88.72
7 8 11.22 15 16 110.49
8 9 15.34 16 17 147.30

Table 1 gives values of ρ for d ≤ 16 as well as the number of parameters
required, p, for each dimension. These values are data–independent; so the
table can be used for general reference. The values for p and ρ are similar in
lower dimensions, but it is for d > 7 that they differ more significantly, and,
as shown with the chamois data, p is too small. This data demonstrates the
merits of (13), a threshold which increases substantially in higher dimensions.

It should be noted that these values are all calculated using the lower
integral limit a = −0.85. Our rationale for the selection of this value of a,
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Fig. 3 m̂(Xi) − Yi v. f̂(Xi) for the 273 test points accepted by (13), with a = −0.85, in
the chamois data

as outlined before, is summarized in diagrammatic form in Fig. 4. However,
we discourage the user from attempting to adjust a for each given data set.
Firstly, the process is cumbersome, and the MSE will only be available for a
simulated data set. Secondly, and more importantly, the suggested value of a is
based on a careful mixture of theoretical arguments, heuristic considerations,
and experimental results from many trials, which would be difficult to tune
even further. Hence, our recommendation is clearly to bypass this step, and
work directly with the values of ρ provided in Table 1.

Fig. 4 Schematic diagram illustrating our rationale for the choice of the lower integral
limit a

Compute
MSE(ρ)

Identify point at
which MSE(ρ)

flattens,
yielding, say, ρ0

Via (12), find a
such that
ρ(a) = ρ0

✲ ✲
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3 AGCV

3.1 Adaptations to GCV

Bandwidth selection is also influenced detrimentally by the curse of dimension-
ality, so that appropriate measures need to be taken also at this stage. The
first question arising is which family of bandwidth selection techniques should
be used at all. While asymptotic bandwidth selection criteria have been found
to work well in the univariate case, the assumption of bandwidths tending to 0
seems inappropriate in the multivariate context, where the bandwidths needed
are relatively large. This was less of an issue in the previous section, where
asymptotics were solely used to find an approximation of the influence func-
tion, but it is obviously an issue here as the goal is now bandwidth selection
itself. Therefore, we focus on generalized cross-validation (GCV), developed
by Craven and Wahba (1979), due to its relative computational ease and the
fact that, unlike some competing methods, it does not rely on asymptotics.
The criterion takes the form

GCV (H) =
1

n

n
∑

i=1

{

Yi − m̂H(Xi)

1− trace(S)
n

}2

. (14)

GCV struggles greatly to cope with high dimensional data, even when a
diagonal bandwidth matrix is used, which we will assume throughout this
section. GCV suggests the bandwidth matrix H = diag(h21, . . . , h

2
d) which

minimizes (14), and it is the actual minimization process which causes com-
putational problems.

When using R to carry out the minimization (R Development Core Team,
2010), computation of this minimum frequently breaks down entirely and an
error message is returned. When this is not the case, often this process is very
sensitive to the starting point of the minimization algorithm, and different
optimal parameters are suggested depending on the starting point. Even if
these problems are overcome and a reasonable looking selection is made, often
the chosen bandwidth matrix performs poorly, and extreme values will be
suggested frequently for the hj , much larger than even the data range.

To alleviate these problems we propose two steps which remove the influ-
ence of data points in less dense areas, which otherwise may have a dispro-
portionate impact on the procedure. Both steps are important in ensuring the
technique is as robust as possible to the issues surrounding high–dimensional
data. Firstly, we propose using the median, ψ, of the diagonal elements of S, in
the place of trace(S)/n. In practice, this prevents extremely large values of hj
being chosen. The effect of this adaptation alone is shown graphically in Fig.
5. Both plots show the GCV surface for a bivariate data set, simulated from a
t-distribution with 1.3 degrees of freedom in order to create some very sparse
areas of data. The first plot shows the unaltered GCV decreasing as the hj
increase, explaining why in this case the GCV minimization process chooses
extremely high hj . The second plot shows how using ψ gives the opposite re-
sult, with a clear minimum. As is visible, the minimum here occurs in a region
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Fig. 5 The effect of replacing trace(S)/n by ψ on the GCV surface of a simulated bivariate
data set. The first plot shows the GCV calculated using trace(S)/n and the second plot
using ψ

of computational instability, but importantly, this minimum, captured by the
proposed median–based version of GCV, is located in a sensible region of the
parameter space.

The second adaptation we propose is removing isolated points completely
from the process. An isolated point, in this context, is one at which no point
other than itself contributes to its local regression estimate. Often an isolated
point will impose a computational constraint on the minimization process. In
the numerator of GCV, and within the diagonal elements of S, is m̂H(Xi),
which is very sensitive to the bandwidths hj . It is computationally impossible
to compute m̂H(Xi) at an isolated Xi if the hj are not sufficiently large to
make the point not isolated. This means that the solution space of the mini-
mization problem is restricted to those bandwidths which are large enough to
avoid computational error. In effect, the isolated points are enforcing minimum
bandwidths (spanning the distance to their nearest neighbours), which are in
fact far higher than the optimal hj for the majority of the data. Therefore,

we eliminate those r points at which f̂(Xi) is smallest, by allocating them
a weight w(Xi) = 0, and w(Xi) = 1 otherwise. The value r should be large
enough to eliminate at least all isolated points, which will be explained in more
detail below.

Applying these two adaptations to GCV, we formulate adapted generalized

cross-validation (AGCV) which is defined as follows;

AGCV (H) = n−1
n
∑

i=1

{

Yi − m̂H(Xi)

1− ψw

}2

w(Xi) (15)

where ψw is the median of the diagonal elements of the smoother matrix, S,
after excluding the elements contributed by the Xi for which w(Xi) = 0.
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To demonstrate the effect of these measures, we present a simple exam-
ple. Consider a simulated five-dimensional dataset, of size n = 300, simulated
through a t-distribution with 1 degree of freedom. The response values are gen-
erated according to the model m(Xi) = m5(Xi1, Xi2, Xi3, Xi4, Xi5) and noise
ǫi ∼ N(0, 1). An altered GCV containing the median, but without the isolated
points removed, is minimized with hj values of (21.1, 3.45, 11.1, 0.8, 50.9), and
here the selection of h1, h3 and h5 in particular, is adversely affected by the
restrictions caused by the points in less dense areas. If the 100 data points
at which the density is smallest are removed from the procedure, equivalent
to taking r = 100 in AGCV, then the AGCV criterion can be minimized at
(h1, . . . h5) = (2.5, 4.5, 2.4, 0.4, 1.6), which are parameters of a more reasonable
magnitude, given the range of the majority of the data.

Removing points is both a matter of removing any computational con-
straint imposed by points in sparser regions, and also fine-tuning by focusing
on the denser region in which we are interested. Any points excluded from
AGCV should be outside the region of acceptability defined by (13). In this
way AGCV is tailored towards finding optimal hj for the areas accepted by
T . Choosing r is effectively choosing a pilot region in which local polynomial
regression is considered feasible. As a rule of thumb, we recommend setting
r as the number of points at which the density is equal to the density esti-
mate for just one data point, n−1|H|−1/2K(0). This density estimate should
be calculated using the Epanechnikov kernel K(u) = 3

4 (1 − u2) · 1{−1≤u≤1}

in (7), since this kernel, due to its truncated nature, identifies isolated points
more clearly, compared with a Gaussian kernel. The bandwidth parameters to
be used in (7) can be obtained through standard routines such as Scott’s rule
(Scott, 1992). We used the npudensbw function in the np package by Hayfield
and Racine (2008) in R, which employs least-squares cross validation using
the method of Li and Racine (2003).

It is possible to choose r higher than this rule–of–thumb suggests, which
would lead to hj values optimal for a denser part of the data range. A choice
of r which includes exactly the points accepted by T would be ideal since this
would then provide the best regression estimates at those points. However,
since T is dependent on the hj an optimal r cannot be chosen, and the simple
rule of thumb, specified above, acts as an effective method of selecting r.

3.2 AGCV as a measure of error

GCV, as introduced by Craven and Wahba (1979), is the average squared error
corrected by a factor.

GCV (H) =
1

n

n
∑

i=1

{

Yi − m̂H(Xi)

1− trace(S)
n

}2

= ASR(H)

(

1−
trace(S)

n

)−2

, (16)

where

ASR(H) =
1

n

n
∑

i=1

{Yi − m̂H(Xi)}
2
. (17)
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This is shown in Craven and Wahba (1979) as being effective in finding an
estimate of the smoothing parameter that minimizes the mean squared error.
Now

AGCV (H) =
1

n

n
∑

i=1

{

Yi − m̂H(Xi)

1− ψw

}2

w(Xi) = AWSR(H)(1− ψw)
−2 (18)

with the average of weighted squared residuals,

AWSR(H) =
1

n

n
∑

i=1

{Yi − m̂H(Xi)}
2
w(Xi). (19)

So AGCV is the average of weighted squared residuals, corrected by a factor.
The factors used in (16) and (18) both calculate an average over the diagonal
of S and subtract it from 1. The factor used in the AGCV is simply more
robust. The other difference between the GCV and the AGCV is that the
AGCV approximates the average weighted squared residual rather than the
unweighted. Again, this is used to make the procedure more robust. In this
way, AGCV can be justified as a legitimate proxy for the mean squared error,
since it works in the same way as GCV, but in a more robust manner.

We finally note that, in principle, weight functions other than the strict
zero/one–valued weights could be used, in which case ψw would be the weighted
median of the diagonal elements of S; although for our purposes there seems
to be little benefit in doing so.

3.3 Simulation study

A rigorous simulation was carried out to measure the performance of AGCV
against other bandwidth selection tools for multivariate data. Two trivariate
data sets were generated.

– P— 3-dimensional covariates simulated through a t-distribution with 5
degrees of freedom. The response values were generated according to the
model m(Xi) = m3(Xi1, Xi2, Xi3) and ǫi ∼ N(0, 1), i = 1, ..., 250.

– Q— 3-dimensional covariates simulated through a t-distribution with 1.5
degrees of freedom. The response values were generated according to the
model m(Xi) = m3(Xi1, Xi2, Xi3) and ǫi ∼ N(0, 3), i = 1, ..., 250.

The difference between the two data sets is that Q contains much sparser areas
of data.

Each of these data sets was simulated 100 times and then the optimal
smoothing parameters were calculated using four different methods; AGCV,
GCV, least squares cross-validation (the default method in the np package)
and GCV for thin plate splines. For the methods dependent on a starting
point, this was chosen carefully to give each method the best chance of finding
the optimal hj . The MSE was then calculated using each set of smoothing
parameters. The MSE was calculated both including all 250 points and for
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Fig. 6 The top plot is simulation P, and the bottom is Q. Each box plot represents the
100 MSEs for the simulation for different bandwidth selection techniques. all represents the
MSE of all n points, and half represents the MSE for the densest 50 percent

just the densest 50 percent of each data set, since AGCV is tailored towards
use in the denser areas of the data. One cannot use the threshold (13) here to
compare the procedures since different hj are selected for each method. Since
the threshold T depends on the hj , the density would exceed T at different
points for each method, and so no fair comparison could be made. The density
was measured using kernel density estimation tools in the np package. As
shown in Fig. 6, AGCV consistently outperforms the other techniques with
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a smaller median MSE. With the less sparse data, P, shown in the top plot,
the AGCV and GCV perform best, with the AGCV performing better for
the densest 50 percent. The np and thin plate spline methods have larger
MSEs as well as larger interquartile ranges. With the sparser data, Q, shown
in the bottom plot, the AGCV and thin plate splines are the only techniques
whose MSEs could be considered of a reasonable size given the magnitude of
the response values. Out of these, AGCV is marginally better with a smaller
median, which again improves when only including the densest 50 percent of
the data. The GCV and the np least squares cross-validation both perform
extremely poorly on this sparser data.

3.4 Notes on computational issues

– Throughout this study we have used the optim function on R, which uses
the Nelder-Mead algorithm, detailed in Nelder and Mead (1965), to carry
out the minimization of the (A)GCV functions.

– AGCV is still sensitive to the starting point specified for optim, and a
more successful minimization is more likely if this point is chosen with
care. From experience it is observed that a starting point smaller than the
actual minimum is often more successful, and it is sometimes helpful to
perform the minimization more than once, using the result of the previous
minimization as the new starting point. However, due to the nature of
optim the selection of the overall minimum cannot be guaranteed. This
is not a problem with AGCV itself, rather a problem of the minimizing
technique selecting one of many minima, but not necessarily the smallest,
as desired.

– Although AGCV is fast in comparison to GCV (using R), it is still time-
consuming for d > 6, and a potential solution to this is to search for a
constant h = h1 = ... = hd, after standardizing the covariates.

4 Discussion

We have proposed two relatively simple measures which enable local linear
smoothing with high–dimensional data. The problem of “local neighbourhoods
being not local”, as usually reported in this setting, is circumvented by focus-
ing on dense regions of the predictor space where reliable estimation, with
relatively small bandwidths, is achievable. It was demonstrated how such a
feasible region is identified through a simple criterion based on the asymptotic
influence function. A multivariate version of GCV, which uses a pilot region
to select a suitable diagonal bandwidth matrix, was also introduced.

The adjustments made to GCV here are made specifically in response to
problems encountered on R. In spite of this, it fits perfectly with the general
solution to the curse of dimensionality expressed in this work, of excluding
the areas of low density from consideration. The points that are ignored in
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AGCV are sufficiently isolated that they would never be accepted by T . In
this way, the hj selected by AGCV are more suited to the points accepted by
the threshold, by not having to take into account other points excluded by
it. This conclusion is supported by the strong performance of AGCV in the
densest 50 percent of the data in the simulation study. Our overall attitude of
ignoring data in sparse regions seems successful in creating a reliable smoothing
strategy elsewhere.

A variable bandwidth matrix H(x), similar to that described for kernel
density estimation by Sain (2002), could be beneficial for multivariate kernel
regression too, but this would be computationally costly. AGCV can be seen
as the first step towards a variable bandwidth matrix, in the sense that it
selects bandwidths hj suitable for a proportion of the data, determined by r.

It is important to reflect on the relevance of the techniques presented here
to data sets of very high dimension. We have tested our methods successfully
with data of dimension up to d = 16, and we did not identify an immediate
obstacle which would prevent us from going further than that. However, as
can be seen from Table 1, the parameter ρ increases very strongly for higher
dimensions. While this increase has been demonstrated to be appropriate,
often n will not be large enough to satisfy this threshold. In other words,
for very large d, we are likely to encounter situations where practically the
whole data set will be eliminated by the threshold, unless n is large enough
to counterbalance the effect of ρ. Data sets which have such properties still
do exist, and are most likely to be generated by numerical simulation from
complex computer models.

One timely question would be whether the proposed techniques could deal
with situations where d > n, as encountered for genomic data in computational
biology, or even with functional data (Ramsay and Silverman, 1997), which
can be considered to be of quasi-infinitely dimensional character. Though one
may feel encouraged by results such as in Ferraty and Vieu (2006), who demon-
strate how to adapt multivariate local constant regression to functional data,
we hit an obstacle when taking the step to local linear regression: by construc-
tion, at least n = d + 1 data points are locally (and, hence, globally) needed
to fit a hyperplane involving d + 1 parameters. Hence, for data sets of such
large dimension d, some form of variable selection or dimension reduction, as
mentioned in the introduction, is necessary, before the methods proposed in
this paper can be applied. In the case of functional data, an attractive pre–
processing tool which identifies the design points with the “greatest predictive
influence”, was suggested by Ferraty, Hall and Vieu (2010).

An issue that we did not discuss in this paper is the shape of the space
ST = {x|f̂(x) ≥ T}. Generally, this space does not need to be either convex or
connected, but we found it usually to be of a reasonably well–behaved shape
(i.e., not consisting of lots of scattered pieces, etc.) in practice, provided that
a sensible bandwidth is chosen for the initial density estimator. The space ST

will be compact by construction. This is an important property as it enables
access to boundary measures for ST (for instance, for d = 3, the surface area).
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The reader is referred to a recent paper by Armendáriz, Cuevas, and Fraiman
(2009) for recent advances in this respect.
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A Derivation of (11)

Take expression (9)

infl(Xi) = |H|−1/2eT1 (XTWX)−1e1K(0)

where X = X{x=Xi}
and W = W{x=Xi}

. Now

XTWX =




∑n
i=1

KH(Xi − x)
∑n

i=1
KH(Xi − x)(Xi − x)T

∑n
i=1

KH(Xi − x)(Xi − x)
∑n

i=1
KH(Xi − x)(Xi − x)(Xi − x)T





Approximating each of these entries;

n
∑

i=1

KH(Xi − x) = E

(

n
∑

i=1

KH(Xi − x)

)

+Op





√

√

√

√Var

(

n
∑

i=1

KH(Xi − x)

)



 . (20)

Since the Xi are i.i.d.

E

(

n
∑

i=1

KH(Xi − x)

)

= n

∫

KH(t− x)f(t)dt = n

∫

|H|−1/2K(H−1/2(t− x))f(t)dt

Then using the substitution u = (u1, ..., ud)
T = H−1/2(t − x) and Taylor’s theorem, one

gets

n

∫

|H|−1/2K(u)f(x+H1/2u)|H|1/2du = n

∫

K(u)f(x+H1/2u)du

= n

(

f(x)

∫

K(u)du+ o(1)

)

.

For the variance term,

Var

(

n
∑

i=1

KH(Xi − x)

)

= n
[

E
(

(KH(X1 − x))2
)

− (E (KH(X1 − x)))2
]

= n

[

∫

|H|−1K2(H−1/2(t− x))f(t)dt−

(∫

|H|−1/2K(H−1/2(t− x))f(t)dt

)

2
]
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Then using the same substitution as above

Var

(

n
∑

i=1

KH(Xi − x)

)

=n|H|−1/2f(x)

(∫

K2(u)du+ o(1)

)

− n

(

f(x)

∫

K(u)du+ o(1)

)

2

=n|H|−1/2

[

f(x)

∫

K2(u)du+ o(1)

]

=o(n2)

Using (20)

n
∑

i=1

KH(Xi − x) = n

(

f(x)

∫

K(u)du+ o(1)

)

+Op

(

√

o(n2)

)

= n

(

f(x)

∫

K(u)du+ op(1)

)

. (21)

Similarly

E

(

n
∑

i=1

KH(Xi − x)(Xi − x)

)

= nH1/2

∫

uK(u)f(x+H1/2u)du

= nH1/2

[

f(x)

∫

uK(u)du+

∫

uuTK(u)H1/2(∇f(x) + o(1))du

]

= nH1/2f(x)

∫

uK(u)du+ nH1/2

(∫

uuTK(u)du

)

H1/2∇f(x) (1 + o(1))

and

n
∑

i=1

KH(Xi − x)(Xi − x)

= nH1/2f(x)

∫

uK(u)du+ nH1/2

(∫

uuTK(u)du

)

H1/2∇f(x) (1 + op(1)) . (22)

Similarly

n
∑

i=1

KH(Xi − x)(Xi − x)T

= nf(x)

∫

uTK(u)duH1/2 + n∇f(x)TH1/2

(∫

uuTK(u)du

)

H1/2 (1 + op(1)) . (23)

Finally,

E

(

n
∑

i=1

KH(Xi − x)(Xi − x)(Xi − x)T

)

= n

∫

|H|−1/2K(H−1/2(t− x))(t− x)(t− x)T f(t)dt

= n

∫

|H|−1/2K(u)H1/2u(H1/2u)T f(x+H1/2u)|H|1/2du

= nH1/2

[(∫

uuTK(u)du

)

f(x) + o(1)

]

H1/2
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and

n
∑

i=1

KH(Xi − x)(Xi − x)(Xi − x)T

= nH1/2

[(∫

uuTK(u)du

)

f(x) + op(1)

]

H1/2. (24)

So XTWX can be written as




(21) (23)

(22) (24)



 (25)

For (9) one needs the top left entry of the inverse of (25). For a general block matrix B, such
as this one, The Matrix Cookbook (Petersen & Pedersen, 2008) states that this is equivalent
to, (B11 −B12B

−1

22
B21)−1. For (25),

(B11 −B12B
−1

22
B21)

= n

(

f(x)

∫

K(u)du+ op(1))

)

−

(

nf(x)

∫

uTK(u)duH1/2 + n

(

∇f(x)TH1/2

∫

uuTK(u)duH1/2

)

(1 + op(1))

)

×

(

nH1/2

((∫

uuTK(u)du

)

f(x) + op(1)

)

H1/2

)−1

×

(

nH1/2f(x)

∫

uK(u)du+ nH1/2

(∫

uuTK(u)du

)

H1/2∇f(x) (1 + op(1))

)

= n

(

f(x)

∫

K(u)du+ op(1)

)

− n

(

f(x)

∫

uTK(u)duH1/2 + op(1
TH1/2)

)

×

(

n

(

H1/2

(∫

uuTK(u)du

)

f(x)H1/2 + op(H)

))−1

×

n

(

H1/2f(x)

∫

uK(u)du+ op(H
1/21)

)

(26)

Within (26), defining an as a sequence an = op(H), bn as a sequence bn = op(1) and cn
as a sequence cn = O(H−1) one uses the Kailath Variant from the Matrix Cookbook to
re-express the inverse. The Kailath Variant states that (A + BC)−1 = A−1 − A−1B(I +

CA−1B)−1CA−1. Here, say A = H1/2
(∫

uuTK(u)du
)

f(x)H1/2, B = an and C = I.
Hence

(

H1/2

(∫

uuTK(u)du

)

f(x)H1/2 + op(H)

)−1

=

(

H1/2

(∫

uuTK(u)du

)

f(x)H1/2

)−1

− cnan(I+ cnan)
−1cn

=

(

H1/2

(∫

uuTK(u)du

)

f(x)H1/2

)−1

− bncn

=

(

H1/2

(∫

uuTK(u)du

)

f(x)H1/2

)−1

+ op(H
−1)

= H−1/2

(∫

uuTK(u)du

)−1

(f(x))−1H−1/2 + op(H
−1)
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Replacing this in (26) one gets

(B11 −B12B
−1

22
B21)

= n

(

f(x)

∫

K(u)du+ op(1)

)

− n

(

f(x)

∫

uTK(u)duH1/2 + op(1
TH1/2)

)

×

1

n

(

H−1/2

(∫

uuTK(u)du

)−1

(f(x))−1H−1/2 + op(H
−1)

)

×

n

(

H1/2f(x)

∫

uK(u)du+ op(H
1/21)

)

= n

(

f(x)

∫

K(u)du+ op(1)

)

−

(

∫

uTK(u)du

(∫

uuTK(u)du

)−1

H−1/2 + op(1
TH−1/2)

)

×

n

(

H1/2f(x)

∫

uK(u)du+ op(H
1/21)

)

= n

[

f(x)

[

∫

K(u)du−

∫

uTK(u)du

(∫

uuTK(u)du

)−1 ∫

uK(u)du

]

+ op(1)

]

Applying the inverse, one obtains an approximation for the top left entry of the inverse of
(25)

(B11 −B12B
−1

22
B21)

−1

= (nf(x))−1

[

∫

K(u)du−

∫

uTK(u)du

(∫

uuTK(u)du

)−1 ∫

uK(u)du

]−1

+ op(n
−1)

Substituting this in (9) gives the result

infl(x) =
K(0)

nf(x)|H|1/2

[

∫

K(u)du−

∫

uTK(u)du

(∫

uuTK(u)du

)−1 ∫

uK(u)du

]−1

+ op(n
−1|H|−1/2)

The above calculations for the asymptotic approximation to (XTWX)−1 are more
general compared to those in other sources, such as Ruppert and Wand (1994), since here
the kernel moments are not assumed to vanish. This allows for non-symmetric kernels, as
well as handling of boundary points.
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