
ar
X

iv
:1

20
6.

34
21

v1
 [

st
at

.C
O

]
 1

5
Ju

n
20

12

Linear Latent Variable Models: The lava-package

Klaus Kähler Holsta, Esben Budtz-Jørgensena

aUniversity of Copenhagen, Department of Biostatistics

Abstract

An R package for specifying and estimating linear latent variable models is
presented. The philosophy of the implementation is to separate the model
specification from the actual data, which leads to a dynamic and easy way
of modeling complex hierarchical structures. Several advanced features are
implemented including robust standard errors for clustered correlated data,
multigroup analyses, non-linear parameter constraints, inference with in-
complete data, maximum likelihood estimation with censored and binary
observations, and instrumental variable estimators. In addition an exten-
sive simulation interface covering a broad range of non-linear generalized
structural equation models is described. The model and software are demon-
strated in data of measurements of the serotonin transporter in the human
brain.

Keywords: latent variable model, maximum likelihood, multigroup
analysis, structural equation model, R, serotonin, SERT

1. Introduction

Multivariate data are often modelled using random effects in order to
account for correlation between measurements in the statistical analysis.
The dominating model is the linear mixed effects model (Laird and Ware,
1982), which is available in most standard statistical software packages, e.g.
SAS PROC MIXED and in R in the packages nlme (Pinheiro and Bates, 2000)
and lme4 (Bates and Maechler, 2009) with the latter one also offering some
support for generalized linear mixed models.

Email addresses: k.k.holst@biostat.ku.dk (Klaus Kähler Holst),
e.budtz-joergensen@biostat.ku.dk (Esben Budtz-Jørgensen)

http://arxiv.org/abs/1206.3421v1

Another type of random effect model is the structural equation model

(SEM) (Bollen, 1989), where the terminology latent variable often is used
instead of random effects. While the mixed effect model and structural
equation model have many aspects in common, the aim of a SEM analysis
is typically to analyze the association between the latent variable, represent-
ing some process that is only partially observed, and some other variables
(observed or latent). Thus, in SEMs focus is mainly on the latent variable,
where one normally ascribes less interpretation to the random effects in a
mixed effects model, which primarily serves as a way of capturing covari-
ance between measurements. Because observed variables can be viewed as
representations of underlying true variables SEMs offer a natural framework
for handling measurement errors in study variables, and it often provides
an efficient analysis of high dimensional data (Budtz-Jørgensen et al, 2003).
The framework was pioneered by JÃűreskog (Jöreskog, 1970) and since then
it has been an active area of research with focus on relaxing linearity and
distributional assumptions (Rabe-Hesketh et al, 2004).

SEMs have proven to be useful in many different fields of research. How-
ever, applications have been dominated by covariance structure analyses,
and as residuals on the individual level are not available in this setup, model
assessment has been based on more or less heuristic omnibus tests. The lack
of profound model diagnostics have undoubtedly lead to several poor appli-
cations of SEMs (Steiger, 2001), and thus likely, however unjustified, giving
the framework a somewhat bad reputation among groups of statisticians.

Several properitary software solutions are available for analyzing SEMs
with some of the most popular being LISREL, SAS PROC CALIS, AMOS, EQS,
Stata 12 sem, Stata gllamm (Rabe-Hesketh et al, 2004) and Mplus (Muthén and Muthén,
2007), where the last two programs stand-out because of their general mod-
elling framework. Common for all these solutions is that they are difficult
to extend and therefore possibilities for examination of new methodologi-
cal ideas are limited. In part because details of many features of properi-
tary software often remains hidden from the user. Implementations in an
open-source environment such as R (R Development Core Team, 2010) di-
rectly address this problem. Currently two such solutions are available: the
sem package (Fox, 2006, 2009) and the OpenMx package (Boker et al, 2011).
While the former package is limited to standard covariance structure anal-
ysis, OpenMx offers sophisticated methods such as multiple group analysis,
models for ordinal data and mixture models. The predecessor package Mx

has been a popular for analyzing family data in epidemiological genetics and

2

OpenMx will undoubtedly become an important tool in that field of research.
This paper presents the lava-package for statistical analysis in a very

general modelling framework known as the Linear Latent Variable Model,
which includes structural equation models and mixed models as important
special cases. This model class also allows for non-linear effects of covariates
and non-linear parameter constraints. The lava-package offers a superior
user interface for specifying, altering and visualizing the model design. Mod-
els are specified independently of data using commands that are similar to
standard regression modeling in R. In addition path diagrams can be gener-
ated to help give the user an overview of the assumptions specified. Further,
the package gives access to an extensive simulation procedure which covers,
but is not limited to, linear latent variable models. This tool will be ex-
tremely useful e.g. for understanding the biases caused by different types
of model misspecification. The lava-package also includes sophisticated in-
ferential methods such as multigroup analyses, robust standard errors for
clustered correlated data, maximum likelihood based inference with data
missing at random and inference for indirect and total effects. In addition
advanced model diagnostic techniques for structural equation models (fit-
ted in lava) are available via the gof-package (Holst, 2012), and extensions
to models for censored and binary outcomes are available via the package
lava.tobit (Holst, 2011) covered briefly in this article.

Modular programming has been a key concept during the software de-
velopment thus making the process of extending the program (e.g. im-
plementing new estimators, changing optimization routines etc.) easy, as
exemplified by the above mentioned add-on packages.

Our hope is that the package will serve as a platform for testing, devel-
oping and sharing new ideas in the field of latent variable models.

2. Linear Latent Variable Models

We will define the Linear Latent Variable Model as the model defined
by a Measurement part describing the responses Yi = (Yi1, . . . , Yip)

′:

Yij = νj +

l∑

k=1

λjkηik +

q∑

r=1

κjrXir +

l∑

k=1

δjkVijkηik + ǫij , (1)

and a structural part describing the latent variables ηi = (ηi1, . . . , ηil)
′:

ηis = αs +

l∑

k=1

βskηik +

q∑

r=1

γsrXir +

l∑

k=1

τskWiskηik + ζis, (2)

3

where i = 1, . . . , n is the index of the sampling unit (e.g. individuals),
j = 1, . . . , p is the index of the observed variables (measurements or within
cluster observations) and s = 1, . . . , l is the index of the l distinct latent
variables. In a more compact matrix notation the model can be written as

Yi = ν +Ληi +KXi + (∆⊙ Vi)ηi + ǫi, (3)

ηi = α+Bηi + ΓXi + (T ⊙Wi)ηi + ζi, (4)

where ν ∈ Rp and α ∈ Rl are intercepts, and Λ,∆ ∈ Rp×l, K ∈ Rp×q,
Γ ∈ Rl×q, B,T ∈ Rl×l are regression coefficient matrices (defining both
fixed effects and random slopes), and Xi ∈ Rq,Vi ∈ Rp×l,Wi ∈ Rl×l are
covariates. The ⊙ denotes the Schur product (element-wise multiplication).
The residual terms follow multivariate normal distributions, ǫi ∼ Np(0,Σǫ)
and ζi ∼ N (0,Ψ), which typically are assumed to be independent.

Note that the terms including the covariates Vi and Wi define random
slope components as in the Laird-Ware mixed model formulation and differ-
entiates the LLVM from the usual SEM formulation (Sanchez et al, 2005).
Many cases can however be modeled without such terms, resulting in a
more computational efficient model formulation with constant variance be-
tween individuals. In the following we will therefore initially assume that
the model is parameterized by some θ defining the matrices

(ν,α,Λ,K,B,Γ,Σǫ,Ψ), (5)

with some restrictions on the parameter space to guarantee identification
(obviously zeroes in the diagonal of B), and possibly non-linear constraints
between the different parameters. In Section 2.3 we will return to the general
case, and demonstrate how to write up the model in atoms adapted to the
case without any interaction terms. Note that we will allow non-linear
constraints on the parameters between any of the elements in (5).

In the setup with ∆ = 0 and T = 0 it follows that the mean and
variance of Yi given the covariates are

µi(θ) = E(Yi | Xi) = ν +Λ(1−B)−1α

+
[
Λ(1−B)−1Γ +K

]
Xi,

(6)

Σθ = Var(Yi | Xi) = Λ(1−B)−1Ψ(1−B)−1′Λ′ +Σǫ, (7)

4

where the fundamental property of the normal distribution that the marginals
also are normal is exploited. Inference about θ can then be obtained by
maximizing the corresponding likelihood (Bollen, 1989)

L(θ;Y ,X) ∝
n∏

i=1

exp

{
−1

2
(Yi − µi(θ))

′
Σ−1

θ (Yi − µi(θ))

}
|Σθ|−

1
2 .

2.1. Implementation

From a mathematical and implementation-wise point of view it is con-
venient to supplement the model formulation with the equivalent Reticu-

lar Action Model (RAM) formulation (McArdle and McDonald, 1984; Fox,
2009), which have a direct connection with the underlying path diagram
and also explicitly covers path analysis models. Let U be the stochastic
vector including the latent variables, η,

U = (Z1, . . . , Zp+q, η1, . . . , ηl)
′ = (Z ′,η′)′, (8)

where Z = (Z1, . . . , Zp+q)
′ is the stochastic vector containing all observed

variables Z = (Y1, . . . , Yp, X1, . . . , Xq)
′. The RAM formulation states that

U = vθ +AθU + ǫ, (9)

where vθ describes the intercepts, and ǫ is a residual term assumed to follow
a zero-mean normal distribution with

Var(ǫ) = Pθ. (10)

Hence the model is completely specified by the matrices vθ, Pθ and Aθ

where the matrices generally are sparse, and the latter have zeros in the
diagonal. In graph-terms the matrix Aθ represents the asymmetric paths
whereas Pθ represent the symmetric paths.

Let k be the total number of variables in the model (i.e. Aθ ∈ R
k×k).

We let J be the matrix that picks out the observed variables from U (see
Section Appendix A), and define

Gθ = J(1−Aθ)
−1. (11)

Now it follows that

Var(Z) = Ωθ = GθPθG
′
θ. (12)

5

and similarly the mean of the observed variables is then specified by the
model structure as:

E(Z) = ξθ = Gθvθ. (13)

The parameter θ can then be estimated by maximizing the log-likelihood,
ℓ, for the full data vector Z

θ̂ML = arg maxθ ℓ(θ | Z = z). (14)

At a first glance this formulation seems restrictive in the sense that the
covariates also have to be normally distributed. However, if we split the
parameter vector into θ = (θ1, θ2), where θ1 parameterizes the conditional
distribution of Y given X and θ2 are the mean and variance parameters
of the covariates, then by Bayes formula the probability density for the
joint distribution can be written as the product of the conditional density
multiplied by the marginal density:

fθ1,θ2(y,x) = fθ1(y | x)fθ2(x). (15)

It follows that maximum likelihood inference about the parameters θ1 is
independent of the model for the covariates, and hence finding the MLE of
the conditional likelihood is equivalent to finding the MLE of the joint likeli-
hood. If we fix θ2 to the corresponding MLE, then the expected information
agrees in the two models:

−E

(
∂2 log fθ1(y | x)

∂θ1∂θ′
1

)
= −E

(
∂2 log f

θ1,θ̂2
(y,x)

∂θ1∂θ′
1

)
. (16)

An important advantage of the RAM formulation is that the empirical vari-
ance and mean are sufficient statistics for the parameters, thus giving the
joint formulation a computational advantage over the conditional likelihood
which requires explicit calculation of the likelihood contribution of each in-
dividual observation. In particular given the sufficient statistics, which are
easily computed, the computational complexity in the RAM parameteriza-
tion is independent of n.

2.2. Inference - standard SEM

In the following we will describe inference under a priori non-linear
constraints Ω = Ωθ (twice differentiable w.r.t. θ). Letting µ̂ denote the
empirical mean of the observed variables, we define

Wθ = [µ̂− ξθ] [µ̂− ξθ]
′ (17)

6

and

Tθ = Σ̂+Wθ, (18)

where Σ̂ is the ML covariance matrix estimate (non-central estimate). We
will exploit that

n∑

i=1

(zi − ξθ)(zi − ξθ)
′ =

n∑

i=1

(zi − µ̂+ µ̂− ξθ)(zi − µ̂+ µ̂− ξθ)
′

= n(Σ̂ +Wθ)+

n
[
(µ̂− µ̂)(µ̂− ξθ)

′ + (µ̂− ξθ)(µ̂− µ̂)′
]

= nTθ.

(19)

The complete log-likelihood then is given by

ℓ(θ | z1, . . . , zn) =

n∑

i=1

{
− k

2
log(2π)− 1

2
log |Ωθ| −

1

2
(zi − ξθ)

′Ω−1
θ (zi − ξθ)

}

= −nk
2

log(2π)− n

2
log |Ωθ| −

n

2
tr{TθΩ

−1
θ },

(20)

with score

∂ℓ(θ)

∂θ
=
n

2

(
∂ vecΩθ

∂θ′

)′

vec
[
Ω−1

θ TθΩ
−1
θ

]

− n

2

(
∂ vecΩθ

∂θ′

)′

vec
[
Ω−1

θ

]

− n

2

(
∂ vecTθ

∂θ′

)′

vec
(
Ω−1

θ

)
,

(21)

and the MLE is obtained by solving the corresponding score equation by
Fisher scoring or a similar iterative procedure. See Appendix B for details
w.r.t. expressions for the relevant matrix derivatives and information ma-
trix.

In certain situations we may need to calculate conditional moments,
for instance to calculate conditional residuals (model diagnostics) or the
conditional likelihood given the covariates (likelihood ratio testing, model
selection, etc.). Here we need to apply the selection matrix, JY , that picks

7

out the endogenous variables, Y , of U , and the cancellation matrix, pX ,
that sets all exogenous variables, X, of U to zero (see Section Appendix A).
Notice we do not put any distributional assumptions on the exogenous vari-
ables.

Now

µi(θ) = E(Y | X = x) = JY (1−Aθ)
−1(pXvθ + vx), (22)

where vx is the p-vector which is zero everywhere but on the index of the
exogenous variables where it is set to x, and

Σθ = Var(Y | X) = JY (1−Aθ)
−1(pXPθp

′
X)(1−Aθ)

−1′J ′
Y . (23)

2.3. Interactions with latent variables

Including interactions between covariates and random effects in the model,
i.e. with non-zero ∆ and T in (3) and (4), we clearly loose the property of
constant variance between individuals and the empirical mean and variance
are therefore not sufficient. With ∆ and T consisting of ones in all entries,
the marginal variance of Yi, Var(Yi | Xi,Vi,Wi), will however take the
same form as (7), exchanging B with

Bi = B +Wi, (24)

and

Λi = Λ+Zi, (25)

hence the expression for the likelihood contribution and its derivatives of a
single individual will take the same form as derived in Appendix B.

With free parameters in ∆ or T we can still adapt the model by adding
one or more degenerate random effects. For instance, the term

ξij = δjkVijkηik + ǫij (26)

where ηik and ζijk follow normal distributions, can trivially be parameterized
as the simultaneous equation

ξij = δjkη̃ik + ǫij , (27)

η̃ik = Vijkηik + 0, (28)

hence the model is expanded to include a random effect with residual term
with variance 0 with fixed slope parameter Zijk, and the variance of the

8

observed variables in such a model therefore takes the form as described
above (24), i.e. ∆ = 1.

The possibility of including interactions with the random effects adds
important flexibility to the model class for instance when modeling longi-
tudinal data or to account for certain types of variance heterogeneity.

2.4. Non-linear effects

Allowing non-linear parameter constraints or non-linear effects of some
covariates opens up for several interesting applications for instance in dose-
response modeling. An important extension of the model framework is
therefore to allow parametric non-linear functions φ(j), j = 1, . . . , p and
ψ(s), s = 1, . . . , l of the covariates to enter the model:

Yij = νj +
l∑

k=1

λjkηik +

q∑

r=1

κjrXir +
l∑

k=1

δjkVijkηik

+ φ(j)
γ1
(Xi1, . . . , Xiq) + ǫij ,

(29)

and

ηis = αs +
l∑

k=1

βskηik +

q∑

r=1

γsrXir +
l∑

k=1

τskWiskηik

+ ψ(s)
γ2
(Xi1, . . . , Xiq) + ζis.

(30)

Though we introduce non-linear effects in the model, we will still denote
this model a Linear Latent Variable Model, as there are only linear effects of
latent variables and endogenous variables in the model. Hence the observed
data likelihood and its derivatives still have a closed form solution.

2.5. Multigroup analysis

A useful generalization of the model framework is the multigroup model,
where we have several groups of data and specify a LLVM for each group.
This naturally leads to the log-likelihood

logL(θ | Y ,X,V ,W) =
∑

g∈G

logLg(θg | Yg,Xg,Vg,Wg) (31)

where the intersection of the parameters (θg){g∈G} is not empty. Unbalanced
designs and data with values missing at random (Little and Rubin, 2002)
is naturally handled by this extension by forming groups from the different
missing data patterns. Note that the additive structure of the log-likelihood
makes the calculation of score functions and information matrices for the
multigroup model explicitly available.

9

3. Model specification

The lava package aims to deliver a dynamic model specification experi-
ence in the sense that adding or removing model elements should be as easy
as possible, and the model specification should be familiar to users accus-
tomed to specifying models in for example glm in R. In order to achieve this
we have designed a formal system for interactively specifying the complex
hierarchical structure of a latent variable model. We believe this to be an
important novel contribution, since the difficult specification of models in
other languages often proves to be a significant obstacle.

The implementation relies on R (R Development Core Team, 2010) and
the following packages all available from the Comprehensive R Archive
Network (CRAN) : mvtnorm (Genz et al, 2009), graph (Gentleman et al,
2009), survival (Therneau and original R port by Thomas Lumley, 2009),
numDeriv (Gilbert, 2009) and gof (Holst, 2012). The graphical system
builds on graphviz (Gansner and North, 1999) and the R-package Rgraphviz
(Gentry et al, 2009) (available from Bioconductor Gentleman et al (2004)).

The specification of models in the lava-language is primarily achieved via
the constructor function lvm and the two methods regression and co-

variance (see Table 1).
A new model object is initialized with the constructor lvm

> m1 <- lvm()

which creates an empty lvm-object. Variables (or a multivariate regression
formula as described below) can be fed to the lvm-function as arguments
in order to control the order of entry in the graph layout. However, this
is optional as variables automatically will be added during the process of
defining the linear structure. A list of formulas is also valid as a shortcut
for successive calls to regression (see below).

3.1. Specifying Linear Relationships

Linear associations between variables are specified via the member func-
tion regression taking the character vector arguments to and from. For
convenience a replacement function, regression<-, is also available which
in addition supports specification via the usual formula statements in R. As
a simple example we will specify the following structural equation model

10

Function Task

Primary functions
lvm Constructor of new model
regression Add regression association to model
covariance Add correlation between residuals

terms
intercept Add intercept parameter
constrain Add non-linear covariate effects or

parameter constraints
Secondary functions

latent Define latent variables in model
addvar Add variable to model
parfix Define equality constraints index of

parameters
parameter Add a parameter name (for use with

constrain)
cancel Remove previously defined associa-

tions
kill Remove variables from model

Table 1: Model building blocks

with two measurement models

Yj = µj + λ1jU1 + ǫ1j ,

Zj = νj + λ2jU2 + ǫ2j , j = 1, . . . , 3,

and structural model defined by

U1 = δ1X1 + δ2X2 + ζ1,

U2 = β1X1 + β2X2 + ζ2,

and Cov(ζ1, ζ2) 6= 0. The model is illustrated in the path diagram of Figure
1.

The following commands specifies a multivariate linear regression model
with two covariates x1 and x2 and two outcomes u1 and u2

> m1 <- regression(m1, "u1", c("x1", "x2"))

> regression(m1) <- u2 ~ x1 + x2
11

In the following we will focus on the replacement functions and the
formula specification as defined by the second line, but generally for all the
available methods a standard function is available and arguments can be
given as character vectors as above. A more compact call would simply be

> m1 <- lvm(c(u1, u2) ~ x1 + x2)

Next, we define u1 and the u2 as a latent/unobserved variables using
the latent-function:

> latent(m1) <- ~u1 + u2

Again arguments can generally be given as character vectors instead of a
formulas. To remove the latent status from a variable we simply use the
cancel=TRUE argument (latent(m1,cancel=TRUE) <- ...).

Next we define the measurement part of the model:

> regression(m1) <- c(y1, y2, y3) ~ u1

> regression(m1) <- c(z1, z2, z3) ~ u2

Covariance between residual terms can be specified using the replacement
function covariance<- (or the function covariance) where the argument is
a vector (or formula) of variables that are assumed to be pairwise correlated.
In the current model specification, the residuals of the two latent variables
are assumed to be conditionally independent given the covariates, and in
order to define correlation between the residual terms of u1 and u2 we write

> covariance(m1) <- u1 ~ u2

which specifies Cov(ζ1, ζ2) 6= 0, thus completing the specification of the
model defined by the path diagram in Figure 1. Note that the model is
specified independently of any data. The model is linked to data when pa-
rameters are estimated using the estimate function (see Section 6). Here
it is important that the manifest variable names used in the model specifi-
cation corresponds to the variable names in the data-frame.

Removal of associations or variables can be achieved with the cancel
(and cancel<-) function which takes a character vector (or formula) as
argument, removing any associations between all the variables in the vector.
To remove the previously specified correlation and instead add a regression
association between u1 and u2, we write

> cancel(m1) <- ~u1 + u2

> regression(m1) <- u2 ~ u1

12

u1

u2

x1x2

y1 y2 y3

z1 z2 z3

Figure 1: Path diagram of the model m1 with correlation between residuals of the la-
tent variables. Obtained with the command plot(m1). Following the convention of
path diagrams observed variables are framed with rectangles whereas latent variables
are framed with ellipses. Regression associations are depicted as one-headed arrows
(parent=predictor, child=response) and covariance/correlations are shown as (dashed)
double-headed arrows. For easier interpretation the following color-codes are used: ex-
ogenous:=light blue, endogenous:=orange, latent:=green.

Notice that the last regression call defining the association between u1 and
u2 does not cancel the earlier defined predictors of u2. Hence the current
definition says (see Figure 2) that

E(U2 | U1, X1, X2) = µ+ β0U1 + β1X1 + β2X2 (32)

for some parameters (µ, β0, β1, β2).
To completely remove one or more variables from the model we can use

the kill<- function.

3.2. Constraining Parameters

Defining restrictions on some parameters is usually needed in order to
obtain an identifiable model, and by default lava will automatically set rea-
sonable restrictions when model parameters are estimated (see Section 6).
Also, in situations where we need to test associations or use a priori knowl-
edge in the model building, constraints on some parameters are needed.
The lava package allows specification of completely general non-linear con-
straints on all parameters.

The most common type of constraints are identity constraints where
one or more parameters are fixed to either a specific numerical value or

13

u1

u2

x1x2

y1 y2 y3

z1 z2 z3

Figure 2: Path diagram of the final specification of the model m1 with a direct regression
association between the two latent variables.

to be equal to a common free parameter (equality constraints). For co-
variance and regression parameters (slope-parameters) the regression and
covariance function can be used, and for the intercepts α and ν in (3-4),
the intercept<- and intercept functions are used.

As an continuing example we will specify a new multivariate regression
model with three outcomes, (Y1, Y2, Y3), and two predictors, (X1, X2):

Yi = βiX + γiZ + ǫi, i = 1, . . . , 3

> mregr <- lvm(c(y1, y2, y3) ~ x + z)

3.2.1. Constraining regression parameters

The restrictions of slope parameters can be accomplished with the re-
gression function. For example fixing the slopes of Y1, Y2 and Y3 on X to
be identical, b1, and defining Z as an offset (i.e. slope 1), can be achieved
with the calls

> regression(mregr, c(y1, y2, y3) ~ x) <- "b1"

> regression(mregr, c(y1, y2, y3) ~ z) <- 1

To simultaneously define several different constraints a list can be given as
the right-hand side argument

> regression(mregr, c(y1, y2) ~ x + z) <- list(1, "a", 2, "b")

All parameters for the first response on the covariates are given first, then
for the second response, and so on. Hence in the above example we have

Y1 = X + aZ + · · · and Y2 = 2X + bZ + · · · (33)

14

When defining constraints (intercepts, covariance or regression constraints)
any missing associations will automatically be added to the model object.
Hence the following call will add an extra level to the model, with a top-level
response W with identical effects of Y1, Y2 and Y3 (see Figure 3):

> regression(mregr, w ~ y1 + y2 + y3) <- "beta"

To remove the constraints again (but not removing the associations) we
simply fix to the logical constant NA:

> regression(mregr, w ~ y1 + y2 + y3) <- NA

3.2.2. Constraining covariance parameters

Constraints on the covariance between residual terms are set with the
covariance function, with a similar syntax. For example, to fix the co-
variance of the residuals terms of Y1 and Y2 to 0.5, and the variance of the
residual term of Y1 to a parameter v1:

> covariance(mregr, y1 ~ y1 + y2) <- list("v1", 0.5)

If we only need to constrain the variance parameters (i.e. not covariances)
then the following syntax can be used

> covariance(mregr, ~y1 + y2) <- "v"

here setting the residual variance of Y1 and Y2 to be identical.
To fix the variance of the variables to different values, we simply give a

list of the correct length as argument, e.g.

> covariance(mregr, ~y1 + y2) <- list("v", 0.3)

If we are interested in fixing only the covariance parameters (and not the
diagonal) we can add the pairwise=TRUE argument. For instance to specify
that the covariances between Y1,Y2, and Y3 are the same, we can call

> covariance(mregr, ~y1 + y2 + y3, pairwise = TRUE) <- "r1"

thus specifying a compound-symmetry structure.
Finally a syntax like the one used by the regression-function can be

used, such that

> covariance(mregr, c(y1, y2) ~ y2 + y3) <- list(0.5, "r", "r0",

+ 0.3)

15

defines the following covariance structure between residual terms ε1, ε2, ε3
corresponding to Y1, Y2, Y3 (with the · denoting elements that are not af-
fected by the call):

Var((ε1, ε2, ε3)
′) =

· 0.5 r
0.5 r0 0.3
r 0.3 ·

 (34)

As with intercept and slope parameters, we can remove covariance con-
straints by fixing parameters to the value NA. We end up with a model as
defined by the path-diagram in Figure 3.

y1

y2

y3

x z

w

p4

v

0.5

r

p5

r0

0.3

p6

p9

1

2

b1

a

b

1

p10

Figure 3: plot(mregr, labels=TRUE, diag=TRUE)

3.2.3. Constraining intercepts

To fix the intercepts of the three outcomes to be identical, we can write

> intercept(mregr, ~y1 + y2 + y3) <- "mu"

Instead of a parameter name, mu, we could have chosen a numerical, say 0.
Notice that a character vector could also have been given instead of the

formula. The value on the right can be given as a list, hence to fix the
intercept of Y1 and Y2 to be identical and Y3 to zero, we could call

> intercept(mregr, ~y1 + y2 + y3) <- list("mu", "mu", 0)

3.3. Simultaneously specifying constraints on intercepts, slopes and vari-

ances

Using the formula syntax with the regression method it is possible to
simultaneously specify constraints on intercept, regression and covariance

16

parameters. A special function, f, can be used within the formula to specify
the slope parameters, and further a pair of square brackets can be appended
to each variable in the formula. Inside the square bracket the intercept of
the variable can be defined, or alternatively both the intercept and residual
variance separated by a colon. As an example we can specify

Y1 = a+ bU + ǫ1, ǫ1 ∼ N (0, 1),

Y2 = a+ bU + ǫ2, ǫ2 ∼ N (0, v),

U = b2X + ζ,

using the square-bracket syntax:

> m2 <- lvm()

> regression(m2) <- c(y1[a:1], y2[a:v]) ~ f(u[0], b)

> regression(m2) <- u ~ f(x, b2)

An equivalently even more compact model specification can be obtained
using a list of formulas with the model initializer lvm, hence an equivalent
way of specifying m2 would be

> m2 <- lvm(list(c(y1[a:1], y2[a:v]) ~ f(u[0], b), u ~ f(x, b2)))

If the index of the parameter is known (see the coef method below) the
parfix method can also be used to simultaneous constrain parameters. For
example to fix the parameters of a model m, at positions 1, 4 and 5 to the
values a, a and 1, we can call

> parfix(m, c(1, 4, 5)) <- list("a", "a", 1)

3.4. Random slopes

Random slope effects (i.e. the matrices Vi and Wi) can be defined
by constraining the slope parameter of a latent variable to the name of a
covariate. The covariate does not necessarily need to be added to the model
explicitly, as the slope parameters are matched to the column names of the
data.frame that is used during estimation (see Section 6).

In a standard structural equation model covariates enter the model in
order to describe differences in the mean structure. Another question might
be whether covariates can influence the variation in an outcome. In a sit-
uation where the variance depends on a covariate, the usual assumptions
of variance homogeneity of the latent variables are not met and the model
is not a SEM. In the LLVM this situation can be handled by defining a
regression on the variance component using the random slope specification.

17

Another important example is to use the random slopes to describe varia-
tion in longitudinal studies, and in combination with measurement models
this allows us to formulate random regression models taking measurement
error into account (see Figure 4).

Figure 4: Longitudinal analysis with measurement models. Here illustrated with three
time points where η1, η2, η3 are modeled by a random intercept, ι, and a random slope
defined by the covariate zi, i = 1, 2, 3 and the random effect κi: ηi = ι+κizi+ ζi. As the
η’s are only indirectly observed a measurement model is employed at each time point.

3.5. Non-linear constraints and effects

Non-linear parameter constraints are defined using the constrain<-
function. The syntax is

> constrain(m, formula) <- function(x) ...

where m is the lvm-object, and the left-hand side in the formula specifies
the parameter that is a (non-linear) function of the parameters or covariates
defined by the right-hand side, and the function defines this association.
The result of the function can optionally be given the attributes grad, defin-
ing the analytic gradient, and inv, defining a monotonic transformation
(typically the inverse function) used in conjunction with confidence limit
calculations (see Section 6 on Statistical Inference).

18

As an example we will define the model

Yij = µ+ bjXi + ǫij , j = 1, 2 (35)

with Cov(εi1, εi2) = 0,Var(ǫij) = v:

> mconstr <- lvm()

> regression(mconstr, c(y1, y2) ~ x) <- list("b1", "b2")

> intercept(mconstr, ~y1 + y2) <- "mu"

> covariance(mconstr, ~y1 + y2) <- "v"

To restrict the variance-parameter to live on the positive real axis, we add
the constraint

v = exp(α) (36)

with

> constrain(mconstr, v ~ alpha) <- exp

using a log-link, and the parameter alpha (log-variance) is added to list
of model parameters. In this example we do not set any attributes and
numerical derivatives of the constraint will therefore be used (based on
the package numDeriv) during estimation. Notice that constraints on the
variance parameters can be set automatically by the estimate-function (see
Section 6). For general domain constraints the function range.lvm can be
used as the right-hand side argument, e.g. range.lvm(a=1,b=Inf) will
bound the parameter to the interval (1,∞).

Continuing the example, we could define the intercept, µ, to be the
product of the two slope-parameters,

> constrain(mconstr, mu ~ b1 + b2) <- prod

Constraints can be removed by letting the RHS be NULL (or NA)

> constrain(mconstr, "mu") <- NULL

If we instead wish to add a non-linear effect of x on y1 and y2:

Yij = α+ Φ(βXij) + bjXij + ǫij, i = 1, 2 (37)

with Φ denoting the standard normal cumulative distribution function, we
can make the call

> constrain(mconstr, mu ~ alpha + beta + x) <- function(x) x[1] +

+ pnorm(x[2] * x[3])

19

3.6. Complex models with feedback or co-existance of regression associations

and covariance between residuals

The linear latent variable model framework in principle allows pathways
going in both direction between two variables, i.e. feedback, and also simul-
taneous presence of both a regression association and covariance between
residual terms of the same two variables. Note that both cases are different
from a simple correlation between the residuals.

A simple example of an identified model is a illustrated in Figure 5, where
the aim is to estimate the effect of Y on X while taking the unmeasured
confounder C into account. This can be achieved using an instrumental
variable, I, which by assumption must be (strongly) correlated with X ,
independent with the confounder, and conditionally independent with the
Y given X . We can model the inflation in covariance between Y and X
using a correlation between their residual terms, which can be implemented
as

> m <- lvm()

> regression(m) <- y ~ x

> regression(m) <- x ~ i

> covariance(m) <- x ~ y

Y

X

I C

Figure 5: Path diagram showing the association between the variables Y and X with
unmeasured confounder C and instrumental variable I.

4. Inspecting the model assumptions

The philosophy of the lava package is to separate the model specification
from the actual data, since examination of the model structure before actual

20

Function Task

plot Plot the graph of the model
regression Display parameter restrictions
intercept Display parameter restrictions
covariance Display parameter restrictions
exogenous Extract (or define) exogenous variables (predictors)
endogenous Extract set of endogenous variables (responses)
latent Extract set of latent variables
manifest Extract set of manifest (observed) variables
vars Extract all variables
children Extract children of a node
parents Extract parents of a node
coef Get list of parameters
constrain Display non-linear constraints
path Extract direct and indirect unidirectional

pathways between nodes
subset Extract sub-model
merge,%+% Merge models

Table 2: Model inspection functions.

estimation is often an important aspect of modelling within this class of
statistical models. The lava package includes several functions as an aid to
obtain an overview of the model assumptions (see Table 2). In general, the
below described methods also applies for a lvmfit-object (see Section 6).

The plot-method (see Figure 1 and 3) visualizes the model using a
path-diagram, i.e. a graph structure where linear (causal) associations are
shown with directed edges and covariance between residuals are shown as
bidirectional edges. Manifest variables are shown as rectangles and latent
variables as ellipsoids. The parameter constraints can be added as labels
on the edges with the argument labels=TRUE and variance parameters can
be added with the argument diag=TRUE (see Figure 3). The plot-function
will be explained in more details in Section 10.

Via the summary function, a complete overview of the model and (iden-
tity) parameter constraints can be obtained. Returning to the model mregr
defined in Figure 3:

> summary(mregr)

Latent Variable Model
21

with: 6 variables.

Npar=11+2

Regression parameters:

y1 y2 y3 x z w

y1 *

y2 *

y3 *

x 1 2 b1

z a b 1

w

Covariance parameters:

y1 y2 y3 w

y1 v 0.5 r

y2 0.5 r0 0.3

y3 r 0.3 *

w *

Intercept parameters:

y1 y2 y3 w

mu mu 0 *

Here the adjacency-matrix for the graph of all the unidirectional edges of
the path-diagram can be read off under the title Regression parameters (i.e.
slopes). Similarly the covariance structure of the residual terms and the
intercept structure are shown. An empty element indicates that there is no
direct association. A star indicates a free parameter and all other entries
are either fixed numerical values or parameter names as defined by identity
constraints during model specification. These three matrices can also be
extracted via calls to regression, covariance or intercept.

The exogenous variables (covariates) of a lvm object can be identified
with the exogenous function. Similarly a list of the endogenous (manifest)
variables can be obtained with the function endogenous and the subset
of these variables that do not predict other variables (top-level outcomes)
can be shown by including the argument top=TRUE. In a similar way the
observed and latent variables can be shown with manifest and latent. All
variables of the model are listed with the vars function

> exogenous(mregr)

[1] "x" "z"

> endogenous(mregr, top = TRUE)
22

[1] "w"

The children and parents functions extracts the children respectively the
parents of one or several nodes in the unidirectional graph of the model,
e.g.

> children(mregr, ~x + y1)

[1] "y1" "y2" "y3" "w"

> parents(mregr, ~w)

[1] "y1" "y2" "y3"

The pathways from one variable to another can be viewed with the path
function which returns a list of character vectors indicating the (causal)
path

> path(mregr, w ~ x)

[[1]]

[1] "x" "y1" "w"

[[2]]

[1] "x" "y2" "w"

[[3]]

[1] "x" "y3" "w"

The function subset can be used to extract subsets of a model. To extract
the upper level of the path analysis we call

> subset(mregr, ~y1 + y2 + y3 + w)

which keeps all parameter restrictions of the original model. Conversely,
lvm models can be merged with the merge method (or using the operator
syntax: m%++%m2).

To examine the parameters (and in particular their order) one can call
the coef-function

> coef(mregr)

m1 m2 p1 p2 p3 p4 p5 p6

"y1" "w" "y1<-z" "y2<-z" "y3<-x" "w<-y1" "w<-y2" "w<-y3"

p7 p8 p9 p10 p11

"y1<->y1" "y2<->y2" "y3<->y3" "w<->w" "y1<->y3"
23

where ”<-” represents slope parameters (e.g. z on y1) and ”<->” repre-
sents covariance (See also the describecoef function). With the argument
labels=TRUE we can get the same vector but with all parameter labels
substituted by their constraints

> coef(mregr, labels = TRUE)

m1 m2 p1 p2 p3 p4 p5 p6

"mu" "w" "a" "b" "b1" "w<-y1" "w<-y2" "w<-y3"

p7 p8 p9 p10 p11

"v" "r0" "y3<->y3" "w<->w" "r"

The non-linear parameter constraints or non-linear regression specifications
can be shown with

> constrain(mconstr)

$v

function (x) .Primitive("exp")

attr(,"args")

[1] "alpha"

$mu

function (x)

x[1] + pnorm(x[2] * x[3])

attr(,"args")

[1] "alpha" "beta" "x"

5. Simulation

Simulation is a major component of modern statistics, which allows us
to experimentally study the properties of a statistical method under various
alternatives and to verify (or reject) preliminary ideas. The lava package
includes the simmethod offering a convenient tool for performing simulation
studies from very general models.

As an initial example we will create a data.frame with 100 observations
from the structural equation model m1 defined in Section 3.1:

> mydata <- sim(m1, 100)

The default parameter values are that all intercepts are 0, slope and residual
variance parameters are 1, and covariance parameters are 0.5. To change
the simulation parameters one can either fix the relevant parameters of the

24

Function Task

sim Simulation method for lvm-objects
functional,constrain Introduce non-linearities in simulation
distribution Change distribution and link of variables
heavytail Define heavy tailed distribution of a variable
normal.lvm Normal distribution
poisson.lvm Poisson distribution
binomial.lvm Binomial distribution
uniform.lvm Uniform distribution
weibull.lvm Weibull accelerated failure times

Table 3: Simulation methods.

model to the desired numerical values as described in the previous section,
or give the parameters as the argument p directly to the sim method. For
instance the following two calls will both simulate 1000 observations from
the model mregr with the default parameter values, except that the residual
variance of w is set to 2, the intercepts of Y1 and Y2 (µ) are set to 1, and
β = 1.5 (the slope of Y1 on W)

> d.mregr <- sim(mregr, 1000, p = c(mu = 2, beta = 1.5, `w<->w` = 2))

> d.mregr2 <- sim(mregr, 1000, p = c(y1 = 2, `w<-y1` = 1.5, `w<->w` = 2))

To simulate data with heavier tails than the normal distribution the heavy-
tail method can be used. The following defines y1 and y2 to be realizations
from an unstructured bivariate normal distribution N (µ,Σ):

> mhtail <- lvm()

> covariance(mhtail) <- y1 ~ y2

We let Y be a stochastic variable with this distribution, then the following
call

> heavytail(mhtail, df = 3) <- ~y1 + y2

will allow us to draw simulations of y1 and y2 from the distribution of
Yj(3/Q)

0.5 where Q ∼ χ2
3, i.e., leading to a multivariate t-distribution with

covariance matrix Σ, mean µ, and ν = 3 degrees of freedom, described by
the density

f(x | µ,Σ, ν) = Γ((k + ν)/2)

νk/2Γ(ν/2)Γ(1/2)k
|Σ|−1/2

(
1 + 1

ν
(x− µ)′Σ−1(x− µ)

)(ν+k)/2

(38)

25

where k = 2 is the dimension. The same realization of Q will be used on
both y1 and y2 in the above code. To make simulations where a different
realization of the χ2-distribution is used for each outcome (leading to a star-
shaped distribution), one simply has to make separate heavytail calls as
in

> heavytail(mhtail, df = 3) <- ~y1

> heavytail(mhtail, df = 3) <- ~y2

The method can be used with different degrees of freedom for different
variables in the model, and thus gives access to an easy way of simulating
models with various degrees of outlier contamination.

To allow simulations from quite general models, two additional replace-
ment functions are available, functional and distribution. The func-

tional replacement function is used for defining (nonlinear) functional re-
lationships between variables and has the syntax

functional(x,to,from) <- value

where x is a lvm-object, from and to are predictor and outcome, respec-
tively, and value is a real function describing the functional form. In the
model mregr (Figure 3) we have

E(Y3|X,Z) = b1X + Z (39)

With the call

> functional(mregr, y3 ~ x) <- function(x) x^2

we can simulate from the model

E(Y3|X,Z) = b1X
2 + Z (40)

with the coefficient b1 defined by the earlier identity constraint. To define a
more complex polynomial effect of X we can make a copy of the predictor
with the copy function and apply functional on the copy

> copy(mregr) <- x ~ x2

> regression(mregr, y3 ~ x2) <- "b2"

> functional(mregr, y3 ~ x2) <- function(x) x^3

leading to the mean-structure

E(Y3|X,Z) = b1X
2 + b2X

3 + Z (41)

An alternative approach is to use the constrain function, e.g.
26

> functional(mregr, y3 ~ x) <- NA

> kill(mregr) <- ~x2

> intercept(mregr, ~y3) <- "y3"

> constrain(mregr, y3 ~ b0 + b2 + b3 + x) <- function(x) x[1] +

+ x[2] * x[4]^2 + x[3] * x[4]^3

would define the model

E(Y3|X,Z) = b0 + b1X + b2X
2 + b3X

3 + Z (42)

The major difference between the two methods is that functional only has
an impact on the sim method and not on the inferential methods, whereas
constrain alters the model fitted by estimate (see Section 6).

The distribution replacement function is used for defining the link/dist-
ribution of variables, with syntax

distribution(x,variable) <- value

where x is a lvm-object, variable is the variable to define the distribution
of, and value is a function defining the random generator for variable

taking the form

function(n, mu, var)

where n defines the number of samples, mu is the mean, and var is the vari-
ance as defined by the latent variable model. Some of the most common dis-
tributions have been predefined in the functions uniform.lvm, normal.lvm,
binomial.lvm, poisson.lvm, weibull.lvm.

As an example we will define a simple hierarchical model structure (path
analysis)

> msim <- lvm(t ~ y + u + z)

> regression(msim) <- y ~ u + x + z

> regression(msim) <- c(z, u) ~ x

To change the distribution of Y to a Bernoulli distribution we simply
call

> distribution(msim, ~y) <- binomial.lvm()

The default link is logit

P(Y = 1 | U,X, Z) = exp(β0 + β1X + β2U + β3Z)

1 + exp(β0 + β1X + β2U + β3Z)
, (43)

but a complementary log-log (cloglog) or probit link can be chosen via the
link argument, e.g.

27

t

y

u z

x

Figure 6: plot(msim)

> distribution(msim, ~y) <- binomial.lvm("probit")

Similarly we can define the conditional distribution of Z as Poisson

Z ∼ pois(E(Z | X)), (44)

log(E(Z | X)) = γ0 + γ1X, (45)

and the conditional distribution of U as uniform

U = λ0 + λ1X +
√
σ2
UU0, (46)

U0 ∼ unif(−1, 1)
√
3, (47)

and let T follow a proportional hazards model with Weibull baseline with
scale parameter 1.25 and shape parameter 2 (and no censoring)

λ(t) = λWeibull
0 (1.25; 2) exp(−α0 + α1U + α2Y + α3Z). (48)

> distribution(msim, ~z + u + t) <- list(poisson.lvm(), uniform.lvm(),

+ weibull.lvm(1.25, 2, cens = Inf))

The default simulation parameter values leads to intercepts β0 = λ0 =
γ0 = α0 = 0 and all the remaining parameters are 1 (including the residual
variance σ2

U).
The default distribution of exogenous variables is the standard normal

distribution, X ∼ N (0, 1) (and independence between the exogenous vari-
ables). It is also possible to let a variable be deterministic by simply assign-
ing a list encapsulating the data:

distribution(msim,~x) <- list(seq(0,1,length.out=100))
28

Obviously an error will occur if this variable definition differs in length from
the number of samples to be drawn in the simulation.

Parameters can be altered in the same manner as endogenous variables
(e.g. sim(msim, p=c(x=3,‘x<->x‘=2))), but they can also be fixed di-
rectly via the function distribution, e.g.

> distribution(msim, ~x) <- binomial.lvm(p = 0.4)

defines X to be simulated from a Bernoulli-process (P(X = 1) = 0.4), with
similar options for the other methods (e.g. poisson.lvm(lambda=2)).

For a lvmfit-object (see Section 6) the sim method by default simulates
observations with the parameter vector p set equal to the estimated param-
eter vector and with the same number of observations as in the original data
set. In this case the defaults causes the simulations to be drawn from the
conditional distribution given the exogenous variables, hence the exogenous
variables will be fixed at their original values (can be changed with the ar-
gument xfix=FALSE, in which case the covariates are simulated with mean
and variance parameters set to the empirical mean and covariance).

6. Inference

Function Task

estimate Estimates parameters of lvm-objects
effects Calculates direct and indirect effects
compare Likelihood ratio, Wald and Score tests
gof Goodness-of-fit measures
logLik Extracts individual Likelihood values
information Extracts information matrix
score Extracts individual contribution to score
bootstrap Non-parametric bootstrap
confint Calculates confidence limits (Wald and profile)
constraints Extracts non-linear parameter constraints
modelsearch Model searching via score tests
equivalence Finds empirically equivalent models

Table 4: Inferential tools.

Parameter estimation is achieved with the estimate-function which returns
an object of class lvmfit. The syntax of the estimation procedure is:

29

estimate(x, data, estimator, control=list(),

missing, weight, cluster, fix, ...)

with the following arguments

x: A lvm-object.

data: data.frame with variables with the same names as the observed vari-
ables of the lvm object: manifest(x). The order of the variables is
not relevant. Alternatively, for models where the empirical mean and
variance are sufficient statistics (e.g. structural equation models), a
list with the observed covariance matrix (S), the observed mean mu

and the number of observations n can be passed as arguments, e.g.
data=list(S=cov(mydata),mu=colMeans(mydata),n=nrow(mydata)).

estimator: Choice of estimator. Default is gaussian which is the MLE of
the model defined by (3) and (4). See also Section 9.

control: A list of parameters controlling the estimation and optimization
procedures. See below for more details.

missing: Logical variable. If FALSE (default) a complete case analysis is
performed and else a full information likelihood analysis is conducted
under a MAR assumption. Note that observations with missing co-
variates are excluded.

weight: Optional weight matrix to be used by the estimation procedure
defined by estimator (for multigroup analyses this should be a list of
weights).

cluster: Optional cluster variable identifying correlated groups of obser-
vations in the data set (for multigroup analyses this should be a list
of cluster variables) to be used in the calculation of robust sandwich
variance estimates.

fix: Logical variable (defaults to TRUE). Care has to be taken when specify-
ing a SEM in order to obtain an identifiable model. As a rule of thumb
one regression coefficient in each measurement model should be fixed,
e.g. to 1, and the intercept of one the indicator set to 0. By default the
model is altered to fulfill these requirements unless fix=FALSE. Other
parameterizations can be selected by setting the option param via
the lava.options function. The above mentioned parameterization

30

is obtained with lava.options(param="relative") and loading pa-
rameters and intercepts are then interpreted as differences compared
to the reference indicator. Setting param="absolute" will result in a
parameterization where the variance of the latent variables are fixed
to 1 and the intercept to 0 if not already fixed at some other values.
lava.options(param="hybrid") alters the model such that the in-
tercept of latent variables are set to 0, and one factor loading in each
measurement model is set to 1.

Calling lava.option(param="none") has the same effect as fix=FALSE
(in which case the user has to manually define parameter constraints
that guarantee model identification).

The optional control argument must be a list of parameters for the opti-
mization procedure. The element method should be a string pointing to a
generic optimizer conforming to the syntax of stats::nlminb (the default
optimizer), i.e. accepting the objective function (e.g. the log likelihood), the
gradient, the Hessian and control parameters. Setting method="nlminb0"

will only use the objective function during optimization, where method=

"nlminb1" also uses the gradient, and method="nlminb2" the Hessian as
well. Defining method="NR" will use an alternative Newton-Raphson algo-
rithm. Variance parameters are as default modeled using a log-link. This
can be disabled by setting constrain=FALSE. Additional options like the
number of iterations (iter.max), turning trace information on (trace=1),
starter function (starterfun (a string pointing to a function generating
starting values for the optimization), convergence tolerance (tol), reduc-
tion of step-size of the ”NR” optimizer (gamma), etc. can also be defined (see
the R help page of nlminb and estimate).

The control parameters can be set globally via the function lava.options.
For instance to turn on the trace information of the optimizer as default in
the current session, we would submit lava.options(trace=1).

We demonstrate the procedure in the ongoing example (see Figure 2)
with the data obtained from the simulation in Section 5, using the hybrid
parameterization:

> lava.options(param = "hybrid")

> e <- estimate(m1, mydata)

> summary(e)

31

Latent variables: u1 u2

Number of rows in data=100

--

Estimate Std. Error Z value Pr(>|z|) std.xy

Measurements:

y1<-u1 1.00000 0.85423

y2<-u1 0.85609 0.07774 11.01174 <1e-12 0.85902

y3<-u1 0.88990 0.08488 10.48415 <1e-12 0.83429

z1<-u2 1.00000 0.93812

z2<-u2 1.09038 0.05153 21.16099 <1e-12 0.96411

z3<-u2 1.02444 0.04998 20.49764 <1e-12 0.95745

Regressions:

u1<-x1 1.11118 0.13232 8.39775 <1e-12 0.61181

u1<-x2 0.96907 0.13392 7.23601 <1e-12 0.51159

u2<-u1 0.94651 0.17037 5.55569 2.765e-08 0.56706

u2<-x1 0.72832 0.21753 3.34815 0.0008135 0.24025

u2<-x2 1.05500 0.20428 5.16434 2.413e-07 0.33367

Intercepts:

u1 0.00000 0.00000

u2 0.00000 0.00000

y1 0.06805 0.15264 0.44582 0.6557 0.03110

y2 0.07461 0.12917 0.57759 0.5635 0.04005

y3 -0.08326 0.14244 -0.58453 0.5589 -0.04176

z1 0.07929 0.17709 0.44776 0.6543 0.02384

z2 0.07514 0.17400 0.43186 0.6658 0.02130

z3 0.07933 0.16811 0.47185 0.637 0.02376

Residual Variances:

u1 1.02921 0.23949 4.29753 0.29462

u2 0.87832 0.23741 3.69960 0.09024

y1 1.29397 0.23560 5.49234 0.27029

y2 0.90931 0.16777 5.41987 0.26209

y3 1.20812 0.21027 5.74543 0.30396

z1 1.32627 0.23349 5.68022 0.11993

z2 0.87762 0.19360 4.53323 0.07050

z3 0.92797 0.18768 4.94448 0.08328

--

Estimator: gaussian

--

Number of observations = 100

Log-Likelihood = -1010.407

BIC = 2167.944

32

AIC = 2066.814

log-Likelihood of model = -1010.407

log-Likelihood of saturated model = -1003.438

Chi-squared statistic: q = 13.93726 , df = 16 , P(Q>q) = 0.6033881

--

The parameter estimates in the output are divided into slope parameters be-
longing to the measurements part of the model (Measurements) (i.e. factor
loadings), the structural part (Regressions) and the intercepts and residual
(co)variances of the model. The summary method outputs all parameters of
the model including the parameters that were fixed in contrast to the print
method that only outputs the canonical parameters of the model. Notice
that a regression parameter in each of the measurement models has been
fixed to one in order to identify the model, and the slope parameter of u2
on u1 is therefore interpreted on the scale of Y11 and Y21. The standardized
coefficients in the last column are interpreted as the change in standard
deviation of the outcome when increasing the predictor one standard devia-
tion. These parameters can be used to compare effects of predictor variables
measured on different scales. If non-linear constraints were defined then the
relevant estimates and approximate standard errors will be shown in the
last part of the summary output. These effects can also be extracted with
the constraints function.

The p-values for the variance parameters are deliberately omitted from
the output as the asymptotic distribution under the null is non-standard
(derived in special-cases such as the random intercept model as an equal
mixture of a χ2

1-distribution and the Dirac measure in 0. Hence the naive
p-values based on a χ2

1-distribution will tend to be conservative). Different
versions of the information matrix can be used, via the argument type∈
{"E","hessian","outer","robust"} (expected information (default), mi-
nus the second derivative of the log-likelihood, outer product of the score,
and the robust/sandwich variant (White, 1982)), to calculate the asymptotic
standard errors of the parameters (see also the information function).

The last part of the output includes some fit criteria (Akaike and Bayesian)
and the omnibus goodness-of-fit χ2-test which is a likelihood ratio test of
the current model against the saturated model structure. In the conditional
model formulation, the least restrictive model allows covariance between
residuals of all endogenous variables and the mean-vector µ to be a gen-
eral linear combination of all the covariates. In the unconditional model
formulation (15), this corresponds to a completely free mean structure and

33

a covariance Σ that can be any symmetric positive definite matrix. Clearly
the maximum likelihood is attained at the sample mean and non-central
empirical covariance matrix, S. Hence the log-likelihood of the saturated
linear model is

−n
2

(
k log(2π) + log(|S|) + n− 1

n
(p+ q)

)
. (49)

This part of the output can also be obtained with the call

> gof(e, chisq = TRUE)

Number of observations = 100

Log-Likelihood = -1010.407

BIC = 2167.944

AIC = 2066.814

log-Likelihood of model = -1010.407

log-Likelihood of saturated model = -1003.438

Chi-squared statistic: q = 13.93726 , df = 16 , P(Q>q) = 0.6033881

RMSEA (90% CI): 0 (0;0.08127)

rank(Information) = 23 (p=23)

condition(Information) = 0.007602741

||score||^2 = 1.306582e-08

Here the omnibus test gives a p-value of 0.60, thus indicating a reasonable
agreement between the model implied and empirical covariance structure.

Byproducts of the maximum likelihood estimation such as the score,
information and log-likelihood can be obtained with the functions score,
information (see also vcov), and logLik. The individual contribution to
score and log-likelihood are calculated with the argument indiv=TRUE. The
methods also allow altering the parameter, data, weights and type of esti-
mator (arguments p, data, weight and estimator). Predictions can be ob-
tained via the predict method (and conditional residuals via residuals),
where the latent variables are predicted by the conditional expectation given
all manifest variables (the prediction can be based on conditioning on a sub-
set of the manifest variables defined by the second argument of predict).
For instance to estimate E(U1 | Y1, Y2, Y3, X1, X2) we can call

> u1hat <- predict(e, ~y1 + y2 + y3)[, "u1"]

Prediction of the residual terms can be obtained by setting the argument
residual=TRUE.

> zeta1hat <- predict(e, ~y1 + y2 + y3, residual = TRUE)[, "u1"]
34

Assessment of linearity and distributional assumptions can be based on
examination of different residuals and their association with for example
covariates in the model. We refer to the gof package (Holst, 2012) for
residual based goodness-of-fit methods for structural equation models fitted
with lava.

6.1. Direct and indirect effects

One of the strengths of the structural equation model framework is the
possibility of decomposing the effects of a predictor into direct and indirect
effects. In the model m1 (Figure 2) we have the following relations

Z3 = λ23U2 + ǫ23, (50)

U2 = β1X1 + β2X2 + γU1 + ξ2, (51)

U1 = δ1X1 + δ2X2 + ξ1, (52)

and we wish to quantify the effect of X1 on Z3. The direct effect is zero as
X1 is not present in (50). By substituting (51) and (52) into (50), it follows
that

Z3 = β1λ23X1 + β2λ23X2 + β2λ23X2 + δ1γλ23X1 (53)

+ δ2γλ23X2 + γλ23ξ1 + λ23ξ2 + ǫ23. (54)

Hence the total effect of X1 is the sum of the two indirect effects β1λ23 and
δ1γλ23. The estimation uncertainty of this effect can be approximated by
the delta method. In general the distribution of a product of estimators can
be approximated in the following way. Let

f(β̂) = f(β̂1, . . . , β̂k) =
k∏

i=1

β̂i, (55)

where the estimated parameters β̂ are asymptotically normally distributed
with covariance matrix Σβ. Now

∇f(β) =

∏
i 6=1 βi
...∏

i 6=k βi

 (56)

and
√
n
(
f(β̂)− f(β0)

)
D−→ N

(
0, ∇f(β̂)′Σ

β̂
∇f(β̂)

)
(57)

35

The approximate distribution of linear combinations of products is obtained
by straightforward calculations (i.e. ∇f1 +∇f2).

The effects function can be used to estimate the (direct and indirect)
effect of one variable on another together with approximate standard errors,
e.g.

> (f <- effects(e, z3 ~ x1))

Total effect of 'x1' on 'z3':

1.823569 (Approx. Std.Err = 0.1524713)

Direct effect of 'x1' on 'z3':

0 (Approx. Std.Err = NA)

Indirect effects:

Effect of 'x1' via x1->u1->u2->z3:

1.077448 (Approx. Std.Err = 0.2170743)

Effect of 'x1' via x1->u2->z3:

0.7461208 (Approx. Std.Err = 0.222262)

> coef(f)

Estimate Std.Err z value Pr(>|z|)

Total 1.8235689 0.1524713 11.960083 0.000000e+00

Direct 0.0000000 NA NA NA

z3<-u2<-u1<-x1 1.0774481 0.2170743 4.963498 6.923458e-07

z3<-u2<-x1 0.7461208 0.2222620 3.356943 7.880941e-04

6.2. Hypothesis testing

Next we estimate the parameters of two nested models where we have
restricted all factor loadings to 1 and in addition removed the effect from
U1 to U2

> m1a <- m1

> regression(m1a, c(z1, z2, z3) ~ u2) <- 1

> regression(m1a, c(y1, y2, y3) ~ u1) <- 1

> m1b <- m1a

> cancel(m1b) <- u2 ~ u1

> ea <- estimate(m1a, mydata)

> eb <- estimate(m1b, mydata)

36

6.2.1. Likelihood Ratio Test

For nested models, M1 ⊆ M2, the natural test is the likelihood ratio

test (LRT)

−2
[
logL1(θ̂1)− logL2(θ̂2)

]
approx.∼ χ2

∆df . (58)

For non-nested models, one choice is the Akaike’s Information Criterion
(AIC) favoring models with low values of

AIC = −2 log(L) + 2npar, (59)

where npar is the number of parameters in the model (implemented in the
AIC function), or the Bayesian Information Criterion

BIC = −2 log(L) + npar log(N), (60)

where N denotes the total number of observations (Raftery, 1993), i.e. the
number of endogenous variables times the number of individuals.

Successive LRT between nested models can be calculated with

> (LRT1 <- compare(e, ea, eb))

[[1]]

Likelihood ratio test

data:

chisq = 6.6542, df = 4, p-value = 0.1553

sample estimates:

log likelihood (model 1) log likelihood (model 2)

-1010.407 -1013.734

[[2]]

Likelihood ratio test

data:

chisq = 33.9868, df = 1, p-value = 5.549e-09

sample estimates:

log likelihood (model 1) log likelihood (model 2)

-1013.734 -1030.728
37

Hence we accept the hypothesis that all factor loadings are equal (the model
m1a) but reject the hypothesis that the two latent variables U1 and U2 are
conditional independent given the covariates.

6.2.2. Wald Test

The compare method can also deal with hypothesis testing via Wald or
Score tests. The hypothesis

H0 : β = β0 (61)

for a subset, β, of all the parameters, can be tested with a Wald test using
the par and null arguments (the latter defaults to 0), for instance to test
if all loading parameters are 1 (equivalent to the LRT of m1 against m1a),
we can write

> (W1 <- compare(e, par = c("y2<-u1", "y3<-u1", "z2<-u2", "z3<-u2"),

+ null = rep(1, 4)))

Wald test

data:

chisq = 7.2687, df = 4, p-value = 0.1223

For a general estimable contrast C, we can also test the hypothesis

H0 : Cβ = β̃0, (62)

where C is matrix (or vector) with the same number of columns as the
number of parameters, or alternatively a sub-matrix with column names
given by parameter names (implicitly assuming that omitted columns are
zero), leading to the test statistic

(Cβ̂ − β̃0)
′(CΣ

β̂
C ′)−1(Cβ̂ − β̃0) ∼ χ2

rank(C) (63)

The covariance matrix Σ
β̂
will by default be the variance matrix as defined

by the chosen estimator (for the linear gaussian models, estimator="gaussian",
this is the inverse of the expected information), but it can optionally be
given as the argument Sigma, e.g. to use a robust variance estimate (see
information method).

To test whether all the intercepts of the outcomes sum to zero, we can
write

38

> C <- rep(1, 6)

> names(C) <- endogenous(m1)

> (W2 <- compare(e, contrast = C))

Wald test

data:

chisq = 0.1769, df = 1, p-value = 0.6741

hence we accept the hypothesis of equal intercepts.

6.2.3. Score Test

With the scoretest argument we can conduct Score tests. Letting θ̃

be the parameter belonging to the less restrictive model M2, which is equal
to θ̂1, the MLE of the restrictive model M1, for all the parameters shared
by M2 and zero elsewhere. The test statistic is then given by

S = S2(θ̃)
′I−1

2 (θ̃)S2(θ̃) (64)

with approximate χ2
∆df -distribution under the null, where S2 and I2 are the

score and information matrix of model M2.
We will test whether adding correlation between the residuals terms of

Z3 and Z2 significantly improves the model fit:

> (S1 <- compare(e, scoretest = z3 ~ z2))

Score test

data: z3 ~ z2

chisq = 0.1186, df = 1, p-value = 0.7306

which does not indicate evidence against the conditional independence as-
sumption.

Similarly we can test the statistical significance of simultaneously adding
two extra correlation parameters:

> (S2 <- compare(e, scoretest = c(z3 ~ z2, z1 ~ z2)))

Score test

data: z3 ~ z2 z1 ~ z2

chisq = 2.03, df = 2, p-value = 0.3624

39

6.2.4. Model searching with the Score test

An advantage of the Score test over the LRT is that the MLE is only
needed in the more restrictive model making it an ideal instrument for model
searching, in order to check that important aspects of the covariance struc-
ture has not been neglected in the model specification. The modelsearch
function can be used to examine all one-parameter extensions of the model.
The following call give the 5 most significant one-parameter extensions

> print(ms <- modelsearch(e), tail = 5)

Score: S P(S>s) Index holm BH

2.024 0.1549 u2<->y1 1 0.9031

2.124 0.145 y1<->z1 1 0.9031

2.283 0.1308 y1<->y2 1 0.9031

2.892 0.08904 y2<->z2 1 0.9031

4.207 0.04025 y2<->z1 1 0.9031

As expected we do not see any significant improvements of the model among
the 5 most significant Score tests (with the first and second column being
the test statistic and corresponding p-value, and the last two columns be-
ing the p-values adjusted by the Bonferroni-Holm procedure to control the
overall Type I error (Holm, 1979), and q-values of the Benjamini-Hochberg
procedure controlling the FDR). Similarly, the most important k-parameter
extensions to the model, can be examined with the argument k, but the
number of models to search through will increase dramatically with k.

6.3. Model equivalence

A challenge in multivariate modeling is the problem of equivalent mod-
els, where two different parameterizations leads to identical model fit (likeli-
hood) for all data sets. Hence without strong a priori knowledge of the model
structure, e.g. based on other scientific evidence, the interpretation of model
parameters must be made cautiously. Formal proofs of model equivalence
can be difficult (Bollen, 1989). To identify candidates of equivalent models
we suggest using the Score test. The idea is to study all one-parameter
extensions of a given model using the score test. Two models are said to be
empirically equivalent if the score tests agree. This can be achieved with the
equivalence function. Two variables of the model are chosen, which not
necessarily are defined as being directly related in the model structure. The
score function for the model including covariance between the residuals of
the two selected variables is then compared with score functions of models
omitting this association, but with the same number of parameters.

40

As a simple example we will investigate the structural equation model
in the path diagram of the left panel of Figure 7

> mEq <- lvm(list(c(y1, y2, y3) ~ u, u ~ x))

> latent(mEq) <- ~u

> covariance(mEq) <- y1 ~ y2

> dEq <- sim(mEq, 100)

> est.mEq <- estimate(mEq, dEq)

Below we are examining whether the inclusion of a residual correlation
between Y1 and Y2 has any equivalent formulations

> (Eq <- equivalence(est.mEq, y1 ~ y2))

In fact, an equivalent model is defined by instead adding a direct effect of
X on Y3 (see Figure 7).

0) y1<->y2 (10.31)

Empirical equivalent models:

1) y3<->x (10.31)

Candidates for model improvement:

none

y1

y2

y3

u

x

y1 y2y3

u

x

Figure 7: Example of two equivalent models (mEq).

6.4. Confidence limits

Wald confidence limits can be created using the method confint. How-
ever, for some parameters better coverage can be achieved with alternative
methods. One method is the non-parametric bootstrap which can be cal-
culated with the function bootstrap. The bootstrap is a computational
intensive method, and parallel computation can be done by registering a
foreach (REvolution Computing, 2009) parallel adaptor. In this exam-
ple we will compute the bootstrap in parallel using the parallel and
doParallel packages distributing the bootstrap computations across the
available CPU cores

41

> library(doParallel)

> registerDoParallel()

> (B <- bootstrap(e, 500))

Non-parametric bootstrap statistics (R=500):

Estimate Bias Std.Err 2.5 % 97.5 %

y1 0.08467677 1.662669e-02 0.15922250 -0.2417240 0.3787349

y2 0.07691911 2.312410e-03 0.12146566 -0.1457868 0.3101638

y3 -0.07196788 1.129167e-02 0.13941055 -0.3536971 0.2112750

z1 0.08407469 4.780799e-03 0.18185690 -0.2799668 0.4421753

z2 0.08527725 1.013330e-02 0.17283489 -0.2966441 0.3995207

z3 0.09493044 1.560519e-02 0.17017286 -0.2081544 0.4407723

u1<-x1 1.11860351 7.421090e-03 0.15172036 0.8141602 1.4084714

u1<-x2 0.96908130 1.303164e-05 0.15096572 0.6741721 1.2717508

u2<-u1 0.96947448 2.296893e-02 0.16712619 0.6754198 1.3478912

u2<-x1 0.69630433 -3.201448e-02 0.23181926 0.1494670 1.0941781

u2<-x2 1.02390307 -3.109418e-02 0.20826885 0.5773626 1.4170756

y2<-u1 0.85971870 3.632407e-03 0.10370758 0.6779335 1.0642511

y3<-u1 0.89440961 4.508961e-03 0.08414864 0.7388379 1.0566335

z2<-u2 1.09661468 6.232894e-03 0.05341720 0.9971030 1.2131320

z3<-u2 1.02856111 4.118107e-03 0.04733460 0.9419200 1.1232677

u1<->u1 0.99249288 -3.671648e-02 0.27738180 0.5390826 1.5590308

u2<->u2 0.81896688 -5.935355e-02 0.26481969 0.3523745 1.3589482

y1<->y1 1.28947917 -4.494201e-03 0.26570998 0.8302451 1.8369823

y2<->y2 0.89753510 -1.177998e-02 0.17311848 0.5861767 1.2511752

y3<->y3 1.18530385 -2.281194e-02 0.18883960 0.8092845 1.5525326

z1<->z1 1.30673170 -1.953404e-02 0.21030950 0.9245536 1.7315556

z2<->z2 0.84766364 -2.995799e-02 0.17431201 0.4971759 1.1894273

z3<->z3 0.92206325 -5.906032e-03 0.18632891 0.5572348 1.3095068

To bootstrap other statistics a user-defined function can be supplied as
the argument fun. A parametric bootstrap can be computed setting the
argument parametric=TRUE and setting the argument p to parameter values
of the null model from which to simulate from. The parallel computation
functionality can be disabled via the call lava.options(parallel=FALSE).

As an alternative to the resample-based approach, we can also calculate
the confidence limits based on the profile likelihood:

> (ci <- confint(e, profile = TRUE, parm = "u2<-u1", level = 0.95))

2.5 % 97.5 %

u2<-u1 0.6392854 1.332559
42

where the parameter of interest can be given as the index or label name.
A third option is to use a variance stabilizing transform of the param-

eter. As an example we will calculate the confidence limits of the partial

correlation (or conditional correlation) between two outcomes Y1 and Y2
given covariates X. Hence we assume that

Yi = β′
iX + εi, i = 1, 2 (65)

and aim to estimate the correlation, ρ, between ε1 and ε2.
We define this model with a single covariate and simulate some obser-

vations and find the corresponding MLE:

> m <- lvm(c(y1, y2) ~ x)

> covariance(m, y1 ~ y2) <- "C"

> covariance(m, ~y1 + y2) <- list("v1", "v2")

> d <- sim(m, 100)

> e.pcor <- estimate(m, d)

Note with the default parameter values the correlation between ǫ1 and ǫ2 is
0.5. Next we define the correlation parameter using a non-linear parameter
constraint and obtain the estimate with confidence limits based on the delta
method

> constrain(e.pcor, rho ~ C + v1 + v2) <- function(x) x[1]/(x[2] *

+ x[3])^0.5

> constraints(e.pcor)

Estimate Std. Error Z value Pr(>|z|) 2.5% 97.5%

rho 0.4449733 0.08019988 5.548303 2.884553e-08 0.2877844 0.6021621

Near the boundary of the parameter space these limits will tend to perform
poorly and a better approach is to apply the variance stabilizing arctanh
transform (Fishers z-transform):

Z : ρ7→1

2
log

(
1 + ρ

1− ρ

)
(66)

Here we also supply the analytical gradient (optional) calculated with the
chain-rule and in addition we set the attribute inv defining the inverse
transformation, thus giving us the confidence limits on original correlation
scale:

43

> constrain(e.pcor, z ~ C + v1 + v2) <- function(x) {

+ f <- function(p) p[1]/sqrt(p[2] * p[3])

+ res <- atanh(f(x))

+ df <- function(p) c(1/sqrt(p[2] * p[3]), -f(p)/(2 * p[2]),

+ -f(p)/(2 * p[3]))

+ datanh <- function(r) 1/(1 - r^2)

+ attributes(res)$grad <- function(p) datanh(f(p)) * df(p)

+ attributes(res)$inv <- tanh

+ return(res)

+ }

> constraints(e.pcor)

Estimate Std. Error Z value Pr(>|z|) 2.5% 97.5%

rho 0.4449733 0.08019988 5.548303 2.884553e-08 0.2877844 0.6021621

z 0.4784149 0.10000000 4.784149 1.717133e-06 0.2824185 0.6744113

inv(z) 0.4449733 NA NA NA 0.2751420 0.5878741

In fact
√
nZ(ρ̂n)

D→ N (0, 1) as n → ∞ (Lehmann and Romano, 2005).
Note that the correlation method calculates the correlation coefficients
of a lvmfit object in a more elegant way and with a slightly more precise
variance estimate (Hotelling, 1953) (see also the partialcor function).

7. Multigroup models

Multigroup analysis (31) can be used to combine different models linked
via some shared parameters. Among other things this extension can be
useful in testing general hypotheses of linear interactions, and the lava
package supports this generalization via the estimate-function taking a list
of lvm-objects and a list of data.frame’s as arguments and returning an
object of class multigroupfit:

> estimate(list(m1, m2, m3, ...), list(d1, d2, d3, ...), ...)

The list of lvm objects can optionally be named, as in the example be-
low, to enhance the output. Parameters that are shared across the models
m1,m2,m3,. . . will be also be shared in the multigroup analysis, whereas all
other parameters will be estimated independently between the groups. In
many applications the first argument will therefore be repetitions of the
same lvm-object. Note, that when the different datasets are defined from
a single data.frame using a grouping variable, the function split can be
applied to define the second argument. A typical multigroup analysis call
will therefore resemble

44

> estimate(rep(m, n), split(d, d$x))

where the data-frame d here is split into a list defined from the variable d$x
(with, in this case, n distinct values).

As an example we will create two nearly identical lvm-objects describing
simple factor models (see Figure 8):

> mg1 <- lvm()

> regression(mg1, Y1 ~ H) <- 1

> intercept(mg1, ~Y1) <- 0

> regression(mg1) <- c(Y2, Y3) ~ H

> regression(mg1) <- H ~ E

> latent(mg1) <- ~H

> mg1 <- baptize(mg1)

> covariance(mg1, endogenous(mg1)) <- NA

> mg2 <- mg1

> intercept(mg2, ~Y2 + Y3) <- 0

The baptize function labels all free parameters of the model, giving the
parameter the names as defined by the coef function ("Y1<-H", "H<->H"
etc.). An optional argument labels can be given to define custom labels.

In the above example the restrictions of the variances of the residuals
of the endogenous variables are removed, and hence the two models mg1

and mg2 share all parameters except for these variance parameters, and the
intercepts which are identical in mg2.

Next we simulate two datasets from model 1 (thus in fact only a single
group):

> data1 <- sim(mg1, 200)[, manifest(mg1)]

> data2 <- sim(mg1, 200)[, manifest(mg1)]

To estimate parameters using MLE we simply type

> (e.mg <- estimate(list(`Arm 1` = mg1, `Arm 2` = mg2), list(data1,

+ data2)))

--

Group 1: Arm 1 (n=200)

Estimate Std. Error Z value Pr(>|z|)

Measurements:

Y2<-H 0.99827 0.06189 16.13044 <1e-12

Y3<-H 1.04265 0.06527 15.97469 <1e-12

Regressions:
45

H<-E 0.87361 0.06612 13.21214 <1e-12

Intercepts:

H -0.09120 0.06334 -1.43978 0.1499

Y2 -0.06491 0.09168 -0.70803 0.4789

Y3 -0.06794 0.10117 -0.67155 0.5019

Residual Variances:

Y1 0.93968 0.13726 6.84580

H 1.03203 0.12038 8.57301

Y2 1.00505 0.14252 7.05186

Y3 1.30951 0.17326 7.55823

--

Group 2: Arm 2 (n=200)

Estimate Std. Error Z value Pr(>|z|)

Measurements:

Y2<-H 0.99827 0.06189 16.13044 <1e-12

Y3<-H 1.04265 0.06527 15.97469 <1e-12

Regressions:

H<-E 0.87361 0.06612 13.21214 <1e-12

Intercepts:

H -0.09120 0.06334 -1.43978 0.1499

Residual Variances:

Y1 0.82723 0.12448 6.64570

H 1.03203 0.12038 8.57301

Y2 1.03718 0.14115 7.34796

Y3 1.08498 0.15032 7.21790

Comparisons of multigroup structures can be conducted using a LRT. As
an example we fit the single group LLVM and perform a LRT to test whether
the residual variances are the same in both groups and the intercepts are
zero

> e0 <- estimate(mg2, rbind(data1, data2))

> compare(e0, e.mg)

Likelihood ratio test

data:

chisq = 2.3744, df = 5, p-value = 0.7953

sample estimates:

log likelihood (model 1) log likelihood (model 2)

-2001.323 -2000.136

46

8. Data with missing values

Missing data are common in studies with multivariate outcomes and
complete case analyses can in these settings become quite inefficient and
are further only consistent when data are missing completely at random
(MCAR).

Under the more general assumption that data are missing at random
(MAR), i.e. that the missing data mechanism depends only on the ob-
served variables (Little and Rubin, 2002), then inference can be based on
the marginal likelihood, where the missing values has been integrated out

f(yobs; θ) =

∫
f(yobs, ymis; θ) dymis. (67)

Here f(yobs, ymis; θ) is the full likelihood of both the observed data (yobs)
and the missing part (ymis), parameterized by θ.

In lava, MLE under the MAR assumption can be obtained by adding
the missing=TRUE argument to estimate (both for lvm and multigroup

objects) using the multigroup framework on the different missing patterns
of the data.

To demonstrate this, we will imitate a MCAR missing data mechanism
on the first of the datasets simulated from mg1 (see Section 7), with a massive
30% probability of missingness on each outcome

> d0 <- makemissing(data1, p = 0.3, cols = endogenous(mg1))

and the full-information maximum likelihood estimates can then be
achieved with the call:

> e.mis <- estimate(mg1, d0, missing = TRUE)

> summary(e.mis, std = NULL, labels = FALSE)

Latent variables: H

Number of rows in data=199 (73 complete cases, 7 groups)

--

Estimate Std. Error Z value Pr(>|z|)

Measurements:

Y1<-H 1.00000

Y2<-H 0.90265 0.10861 8.31067 <1e-12

Y3<-H 0.95524 0.11812 8.08673 <1e-12

Regressions:

H<-E 0.83840 0.11018 7.60938 <1e-12
47

Intercepts:

Y1 0.00000

H -0.14287 0.11042 -1.29388 0.1957

Y2 0.05932 0.11132 0.53288 0.5941

Y3 -0.01611 0.12958 -0.12433 0.9011

Residual Variances:

Y1 0.68217 0.17881 3.81499

H 1.20761 0.21942 5.50375

Y2 1.02999 0.19284 5.34120

Y3 1.37374 0.23948 5.73625

--

Estimator: gaussian

--

Log-Likelihood = -730.9461

BIC = 1525.811

AIC = 1481.892

--

with standard errors based on the observed information (Kenward and Molenberghs,
1998).

9. Beyond the standard linear Gaussian case

While linear Gaussian models cover many useful situations there are
clearly cases where these models are no longer adequate. In this section we
will briefly describe extensions of lava that covers some of these cases.

9.1. Clustered correlated data

Models with very complex hierarchical structures can be estimated in
lava. However, the full specification of such a model can be challenging
and perhaps more importantly, as the lowest level in a such a model is
often not of primary interest, it can be more natural to relax the model
assumptions for this part of the model.

As a hypothetical example we can imagine that the aim of a study is to
estimate the association between noise levels and health. In practice this is
done by measuring the average noise level, E, in different neighborhoods.
We assume that the health status is measured indirectly for each subject
by three proxy measures, Y1i, Y2i, Y3i (e.g. blood pressure and cholesterol
levels), and that the with-in subject correlation between these measurements
can be described by a single latent variable, Hi (see Figure 8). The effect of

48

noise on health is quantified as the linear association between Hi and E. The
study is complicated by the fact that measurements within neighborhoods
are correlated beyond what Hi is capturing (air pollution, crime levels,
traffic and other factors that could affect stress levels) and disregarding
this with-in cluster correlation will generally lead to too optimistic standard
errors of the noise effect.

Inference can instead be based on the i.i.d. decomposition of the score
leading to a sandwich estimator (GEE-type) of the variance (Williams, 2000)

(
∂S(θ)
∂θ

)−1
(

K

K − 1

K∑

c=1

S(c)(θ)
⊗2

)(
∂S(θ)
∂θ

)−1

, (68)

where S is the total score and S(c) is the sum of the scores within clus-
ter c, and K denotes the total number of clusters. Simulation studies
(Yan and Fine, 2004; Paik, 1988) indicate that the sandwich estimator works
well with K > 50.

With 5 individuals sampled from each cluster/neighborhood, the above
model could specified with

> K <- 5

> mclust1 <- lvm()

> for (i in 1:K) {

+ xyz <- c("Y1", "Y2", "Y3") %+% i

+ h <- "H" %+% i

+ regression(mclust1, to = c(xyz), from = h) <- list(1, "l1",

+ "l2")

+ regression(mclust1, to = h, from = c("U", "E")) <- list(1,

+ "b")

+ intercept(mclust1, c(xyz)) <- list("mx", "my", "mz")

+ covariance(mclust1, c(xyz, h)) <- list("vx", "vy", "vz",

+ "v")

+ }

> latent(mclust1) <- c("H" %+% 1:K, "U")

> intercept(mclust1, latent(mclust1)) <- 0

We simulate data from 250 clusters and obtain the MLE

> dclust <- sim(mclust1, 250, p = c(b = 0.3))[, manifest(mclust1)]

> eclust <- estimate(mclust1, dclust)

and we wish to compare this with the marginal model (see Figure 8):

49

> dclustWide <- reshape(dclust, direction = "long", varying = lapply(list("Y1",

+ "Y2", "Y3"), function(x) x %+% 1:K), v.names = c("Y1", "Y2",

+ "Y3"))

> dclustWide <- dclustWide[order(dclustWide$id),]

> mclust <- lvm(list(c(Y1, Y2, Y3) ~ H, H ~ E))

> latent(mclust) <- ~H

> eclust0 <- estimate(mclust, dclustWide)

Y1 Y2 Y3

H

E

Figure 8: plot(mclust): Marginal model for the noise-health example.

The marginal estimates with robust standard errors are obtained easily
by giving the name of the column in the data.frame that specifies the
clusters (or an actual vector) as argument to the estimate function

> eclust1 <- estimate(mclust, data = dclustWide, cluster = "id")

In this example we see a substantial under-estimation of the standard
errors of the pollution effect estimate in the näıve approach (with covariates
varying within clusters the bias could go in the opposite direction as well).
In contrast, the results of the marginal approach is close to those the full
model.

> res <- rbind(coef(eclust, 2)["b",], coef(eclust1, 2)["H<-E",

+], coef(eclust0, 2)["H<-E",])

> rownames(res) <- c("full MLE", "Marg.robust", "Marg.naive")

> res

Estimate Std. Error Z value Pr(>|z|)

full MLE 0.3683574 0.07816049 4.712835 2.442944e-06

Marg.robust 0.3702012 0.07658741 4.833708 1.340131e-06

Marg.naive 0.3702012 0.04843684 7.642967 2.131628e-14
50

Typically the loss of power in this marginal approach is modest, and is
countered by circumventing the need for explicit (mis)specification of the
distribution of the cluster random effect.

9.2. Mixture models

The normal distribution is a central assumption in (3) and (4), and one
way to relax this assumption while still avoiding the need for computational
intense numerical approximations of the likelihood function of the observed
data, is to allow mixtures of normal distributions in the model. Applica-
tions include pattern recognition and cluster analysis (machine learning),
outlier analysis and modeling of heterogeneity, e.g. adjusting for unknown
subpopulations in a sample.

In general we will allow models to be described by the convex combina-
tion

fθ(y | z) =
K∑

j=1

πjf
(j)
θj

(y | z),
K∑

j=1

πj = 1, πj ∈]0, 1[(69)

where fj,θj is a probability density of a LLVM with responses y and covari-
ates z = (x′, v′,w′)′, and θ is the parameter-vector (∪jθj , π1, . . . , πK−1),
noting that the θj ’s need not to be disjoint. We denote the number classes
K.

The likelihood for the mixture model is therefore

L(θ|y, z) =
n∏

i=1

K∑

j=1

πjf
(j)
θj

(yi | zi) (70)

To solve the corresponding score equation, the EM algorithm is typically
applied (Dempster et al , 1977). We introduce latent indicator variables ξij,
i = 1, . . . , n, describing the class membership of the observation (yi, zi).

ξij = 1{yij belongs to class j} (71)

and hence Eξij = P(yij belongs to class j) = πj . We can then treat the
mixture analysis as a missing data problem, v = (y, z, ξ), and complete-
data log-likelihood:

logLC(θ|v) =
n∑

i=1

K∑

j=1

ξij log
(
f
(j)
θj

(yi | zi)
)

(72)

51

While the EM-algorithm is generally slower than Newton-Raphson (sub-
linear vs. quadratic convergence), this disadvantage is compensated by the
fact that the EM-algorithm tends to be less sensitive to choice of starting
values as the algorithm guarantees a non-decreasing likelihood in each iter-
ation. In contrast, NR can behave erratically for poor choices of starting
values. To address possible problems with convergence to a local maximum,
it is still advisable to start the algorithm at several different starting points
in the parameter space. The EM algorithm also implicitly constraints the
probability vector to the correct parameter space, as the E-step at iteration
l leads to a simple expression of the posterior class probabilities

π̂
(l)
ji =

π̂
(l)
j fj,θ̂(l)(yi | zi)

∑K
j=1 π̂

(l)
j fj,θ̂(l)(yi | zi)

(73)

In the M-step we obtain the new class probabilities

π̂
(l+1)
j =

1

n

n∑

i=1

π̂
(l)
ji (74)

and θ̂(l+1) is derived by solving

arg maxθQ(θ; θ̂
(l)) =

n∑

i=1

K∑

j=1

π̂
(l)
ji log (fj,θ(yi | zi)) (75)

which for a general LLVM mixture is optimized iteratively (NR pr. default).
In principle a model relating class probabilities to covariates could also be
included in this setup leading to a M-step where we instead of the simple
expression (73) would have to maximize a weighted multinomial logit model.

To analyze a mixture model in lava the plugin package lava.mixture
needs to be loaded. The function mixture fits the mixture model to a list
of lvm objects implicitly defining the number of mixture components of the
model. Via the control argument the parameters of the EM algorithm can
be adjusted, such as the starting values (start), number of random starting
points (nstart), convergence tolerance (tol, change in log-likelihood), etc.

> library(lava.mixture)

> mixture(list(m1,m2,...),data=mydata,control,...)

Instead of a list, a single lvm object can be given as argument with the
argument k specifying the number of mixture components.

52

As an example we will simulate data from a simple model (see Figure
9), where we have a single dichotomous unmeasured confounder z (P (z =
1) = 0.5), which have a direct linear effect on the outcome of interest Y

Y = µY + βX + γYZ + ǫY (76)

and on the predictor X , which we assume is conditionally normally dis-
tributed given Z

X = µX + γXZ + ǫX (77)

In our simulation we will let all intercepts be zero, residual variances 1, and
slopes as defined by Figure 9:

> mix0 <- lvm(list(Y ~ X + Z, X ~ Z))

> distribution(mix0, ~Z) <- binomial.lvm()

> d0 <- sim(mix0, p = c(`Y<-Z` = 2), n = 500)

Y

X

Z

β = 1

γY = 2

γX = 1

Figure 9: Model mix0 with unmeasured confounder z.

Next, we will define the mixture regression that takes into account that we
have unobserved heterogeneity caused by Z. The base model is the simple
linear regression model of Y given X , however, with a covariance call we
define X to be endogenous and let all parameters except for the intercepts
of Y and X be fixed between the classes

> mix1 <- lvm(Y ~ X)

> covariance(mix1, ~X) <- "v"

> mix1 <- baptize(mix1)

> intercept(mix1, ~Y + X) <- NA
53

defining the model

Y = µy,c + βX + ǫ, (78)
(
ǫ
X

)
∼ N

((
0
µx,c

)
,

(
σ2
y 0
0 σ2

x

))
(79)

with the index c denoting the class. The model with two classes is fitted
with the call

> M <- mixture(mix1, d0, k = 2)

> (s <- summary(M))

Cluster 1 (n=231, Prior=0.4687):

--

Estimate Std. Error Z value Pr(>|z|)

Regressions:

Y<-X 0.95114 0.07881 12.06853 <1e-12

Intercepts:

Y 2.11558 0.15240 13.88137 <1e-12

X 1.11484 0.11280 9.88306 <1e-12

Residual Variances:

Y 1.14553 0.12566 9.11583

X 1.05875 0.11837 8.94435

Cluster 2 (n=269, Prior=0.5313):

--

Estimate Std. Error Z value Pr(>|z|)

Regressions:

Y<-X 0.95114 0.07881 12.06853 <1e-12

Intercepts:

Y 0.15417 0.11353 1.35802 0.1745

X -0.10255 0.10257 -0.99982 0.3174

Residual Variances:

Y 1.14553 0.12566 9.11583

X 1.05875 0.11837 8.94435

--

AIC= 3325.163

||score||^2= 0.0001193449

We see that the mixture model gives a regression coefficient of 0.951 which
is close to the true value. This should be compared to the biased OLS
estimate of β:

54

> coef(summary(lm(Y ~ X, d0)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8785888 0.06556336 13.40061 3.472204e-35

X 1.3675927 0.05108919 26.76873 1.804800e-98

In fact for the given set of parameters the bias is

bias(β̂OLS) = β − (βγ2X + γY γX)Var(Z) + βVar(ǫX)

γ2XVar(Z) + Var(ǫX)
= 2

5
(80)

and replicating the above simulation 1000 times we obtain the following
statistics for the β parameter

Estimator Bias Std.Err MSE
OLS 0.403 0.0510 0.165

Mixture 0.002 0.0822 0.068

which clearly shows the advantage of the mixture regression model.
The example generalizes to several binary confounders (2k classes with

k confounders, and the continuous case could likewise be approximated by
a finite number of mixtures) and if we were suspecting an interaction effect
between X and Z we could also have allowed the slope parameter (β) to
vary freely in the two classes. The difficult task of choosing an optimal
number of components in the mixture could be based on cross-validation,
but currently this is not implemented in lava.mixture (nor is the problem
of adjusting the standard errors for this model selection which could be
based on a bootstrap resampling). Still we believe that a mixture analysis
as in the previous example could serve as an important sensitivity analysis
in many applications.

Two variants of the EM-algorithm are also implemented in the mixture
function (via the argument type): CEM (Classification EM) where each
observation in the E-step is assigned to the class with the highest max-
imum posterior probability (73), and StEM (Stochastic EM) where each
observation is assigned randomly to a class based on a draw from a multi-
nomial distribution with the posterior probabilities as parameter. In both
cases, the M-step reduces to the maximization of a simple multigroup LLVM
(see Section 7). The latter approach leads to a time-homogeneous Markov
chain of the parameters, which under certain regularity conditions is ergodic
with a normal stationary distribution with a mean that is a consistent es-
timate of the mixture parameters (Celeux and Diebolt , 1986). In some

55

situations, the StEM has been observed to have faster convergence and be-
ing more likely to converge to the global maximum of the log-likelihood as
the stochastic variation introduced can push the ”EM”-algorithm away from
a saddle-point or local maximum (Diebolt and Ip , 1996). However, assess-
ment of convergence of the Markov chain remains a challenging problem.
In any case, the CEM or StEM algorithm might be useful for finding good
starting values for the EM algorithm (Biernacki et al, 2005).

In models with an unstructured mean and covariance in each class, the
function mvnmix can be used because it exploits the fact, that the M-step
has a closed-form solution (in fact the likelihood is unbounded, however, this
is of more technical than practical interest as we typically can disregard the
obviously wrong solutions to the score equations). As an example we will
fit a two-component Gaussian mixture model to the waiting times between
eruptions and the durations of the eruptions for the Old Faithful geyser in
Yellowstone National Park:

> data(faithful)

> mixff <- mvnmix(faithful, k = 2)

> (s <- summary(mixff))

Cluster 1 (n=97, Prior=0.3559):

--

Estimate Std. Error Z value Pr(>|z|)

Intercepts:

eruptions 2.03639 0.03495 58.27283 <1e-12

waiting 54.47852 0.62846 86.68510 <1e-12

Residual Variances:

eruptions 0.06917 0.01074 6.43961

eruptions,waiting 0.43517 0.17984 2.41979 0.01553

waiting 33.69728 5.77754 5.83246

Cluster 2 (n=175, Prior=0.6441):

--

Estimate Std. Error Z value Pr(>|z|)

Intercepts:

eruptions 4.28966 0.03349 128.06900 <1e-12

waiting 79.96812 0.47131 169.67075 <1e-12

Residual Variances:

eruptions 0.16997 0.02112 8.04628

eruptions,waiting 0.94061 0.18679 5.03562 4.763e-07

waiting 36.04621 4.09090 8.81132

--
56

AIC= 2282.528

||score||^2= 8.611289e-16

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

Figure 10: plot(mixff,col="darkblue","orange"): 2-component Gaussian Mixture
Model fit of Old Faithful data (95% prediction regions for each mixture distribution
and each observation where assigned the color of the mixture with the highest posterior
probability)

9.3. Binary data

In epidemiology binary data are among the most common types of end-
points and often correlated binary data are collected. Several methods
have been proposed to deal with this sort of data, e.g. marginal mod-
els (Liang and Zeger, 1986), conditional maximum likelihood estimation
(Andersen, 1971) or numerical integration to obtain the marginal likeli-
hood of the observed data (Pinheiro and Chao, 2006). Via the package
lava.tobit (Holst, 2011) we can estimate LLVMs where a subset of the
endogenous variables are binary using a probit-link (only subtle differences
with a logit-link resulting in a scaling of roughly 1.7 of the parameters).

As an example we will look at a simple factor analysis model with a
covariate

P(Yij = 1|ηi, Xi) = Φ (µj + λjηi) , (81)

ηi = γXi + ζi, (82)

where ζi ∼ N (0, σ2), and Φ is the standard normal cumulative distribution
function.

There are several ways to specify this model in lava, but here we will
use the binary function:

57

> mprobit <- lvm(list(c(y1, y2, y3) ~ eta, eta ~ x))

> latent(mprobit) <- ~eta

> binary(mprobit) <- endogenous(mprobit)

> set.seed(1)

> dprobit <- sim(mprobit, 500)

With the binary call the endogenous variables, Yij, are changed from being
continuous to being dichotomous, where we assume that there exists a latent
conditionally normally distributed variable, Y ∗

ij, such that

Yij =

{
1, Y ∗

ij > 0

0, Y ∗
ij ≤ 0.

(83)

The MLE is obtained as usual

> lava.options(param = "hybrid", trace = 1, method = "NR")

> (eprobit <- estimate(mprobit, dprobit))

Estimate Std. Error Z value Pr(>|z|)

Measurements:

y2<-eta 0.78017 0.15378 5.07336 3.909e-07

y3<-eta 0.92687 0.18950 4.89114 1.003e-06

Regressions:

eta<-x 1.09228 0.15999 6.82737 8.649e-12

Intercepts:

y1 0.12358 0.09374 1.31829 0.1874

y2 -0.06024 0.08104 -0.74330 0.4573

y3 0.04414 0.08930 0.49432 0.6211

Residual Variances:

eta 1.32052 0.40634 3.24979

Another interesting example is the logit-probit-normal model (Caffo and Griswold,
2006) which is a conditional model with marginal fixed effects on a logit
scale. E.g. a random intercept model with a single covariate Xij can be
formulated as

P(Yij = 1 | ηi, Xij) = Φ

(
Φ−1

{
1

1 + exp(−µ− βXij)

}√
1 + σ2 + ηi

)
,

(84)

where σ2 is the variance of the random effect ηi. The nonlinear parameter-
ization ensures the condition

logitP(Yij = 1 | Xij) = µ+ βXij. (85)

58

Specification is straightforward using the constrain method, and stan-
dard likelihood theory can be applied on this model in contrast to the gen-
eralized estimating equation framework, e.g. likelihood ratio testing, profile
likelihood confidence limits, and analysis with data missing at random as
described in Section 7.

As an example we simulate observations from a simple random intercept
probit model

> margm <- lvm(c(y1, y2) ~ x)

> regression(margm, c(y1, y2) ~ u) <- "gamma"

> intercept(margm, endogenous(margm)) <- "mu"

> binary(margm) <- endogenous(margm)

> covariance(margm, ~u) <- 1

> latent(margm) <- ~u

> dmarg <- sim(margm, 100)

The logit-probit-normal model is then specified as

> regression(margm, c(y1, y2) ~ x) <- 0

> constrain(margm, mu ~ x + alpha + beta + gamma) <- function(z) qnorm(1/(1 +

+ exp(-z[2] - z[3] * z[1]))) * sqrt(1 + z[4]^2)

and estimates are obtained in the usual way

> (emargm <- estimate(margm, dmarg))

Estimate Std. Error Z value Pr(>|z|)

Measurements:

y1<-u 2.08070 0.57583 3.61339 0.0003022

Intercepts:

alpha 0.04207 0.20986 0.20049 0.8411

beta 1.35056 0.25772 5.24039 1.602e-07

9.4. Censored data

Censoring is a complication that is often encountered in cohort studies
but can also be seen in experimental studies where thresholding of measure-
ments may occur due to limiting precision of laboratory equipment.

We will assume that the data-generating mechanism is defined by (3) and
(4) and that a subset of the endogenous variables Y ∗

ij , j ∈ J are censored
such that for given censoring times Cj, j ∈ J we only observe

Yij =

{
Y ∗
ij, Y ∗

ij < Cij

Cij, Y ∗
ij ≥ Cij

(86)

59

As an example we will simulate data from a regression model (see Figure
9), where we have a single dichotomous mediator Z (P (Z = 1) = 0.5), which
have a direct linear effect on the outcome of interest Y

Y = µY + βX + γYZ + ǫY (87)

and on the predictor X , which we assume is conditionally normally dis-
tributed given Z

X = µX + γXZ + ǫX (88)

In our simulation we will let all intercepts be zero, residual variances 1, and
slopes as defined by Figure 9:

> med0 <- lvm(list(Y ~ X + Z, X ~ Z))

> distribution(med0, ~Z) <- binomial.lvm()

> d0 <- sim(med0, p = c(`Y<-Z` = 2), n = 500)

We further assume we only observe the thresholded versions of Y and
X :

> dtobit <- transform(d0, X = as.factor((X > 0) * 1), Y = Surv(pmin(Y,

+ 2), Y < 2))

As X is coded as a factor and Y is coded as a right-censored Surv-object
(combinations of left and right censoring are allowed) the estimate method
automatically applies a Probit and Tobit model respectively

> (etobit <- estimate(med0, dtobit))

Estimate Std. Error Z value Pr(>|z|)

Regressions:

Y<-X 0.94429 0.07790 12.12215 <1e-12

Y<-Z 2.04975 0.13527 15.15247 <1e-12

X<-Z 1.00076 0.12154 8.23419 <1e-12

Intercepts:

Y -0.02887 0.07733 -0.37334 0.7089

X -0.07362 0.07994 -0.92096 0.3571

Residual Variances:

Y 0.97204 0.10225 9.50687

The Probit/Tobit model framework also has important applications in
the causal modeling framework where it allows us to elegantly define direct
and indirect effects for binary and censored data in complex path analyses

60

(Ditlevsen et al, 2005). The interpretation in this setup is linked to the as-
sumption that the observations are generated by an unobserved continuous
variable following a conditional normal distribution, and the indirect effects
can therefore be quantified via the effects method:

> effects(etobit, Y ~ Z)

Total effect of 'Z' on 'Y':

2.994759 (Approx. Std.Err = 0.1509939)

Direct effect of 'Z' on 'Y':

2.04975 (Approx. Std.Err = 0.135275)

Indirect effects:

Effect of 'Z' via Z->X->Y:

0.9450087 (Approx. Std.Err = 0.1358391)

9.4.1. Inverse probability weights

For models with complex sampling (survey data) and as an alternative
method to deal with censored or missing data it is convenient to introduce
Inverse Probability Weights in the estimation procedure (Horvitz and Thompson,
1952; Rotnitzky and Robins, 1995). The estimating equations in this situ-
ation becomes

UW

i (θ;Yi,Zi) = −1

2

{(∂ vecΩθ

∂θ′

)′(
vec
[
(Ω−1

θ

−Ω−1
θ (Yi − ξθ,i)(Yi − ξθ,i)

′Ω−1
θ

]
W i

)

+ 2

(
∂ vec ξθ,i
∂θ′

)′

Ω−1
θ W i(Yi − ξθ,i)

}
= 0

(89)

where W i is the weight-matrix for the ith observation, and ξθ,i and Ωθ

are the model-specific mean and covariance matrix of Yi given covariates
Zi = (X ′

i,V
′
i ,W

′
i)

′.
In lava, equation (89) can be solved with a diagonal weight matrix

using the estimator weighted and using the argument weight with the
estimate method. The weight argument should be either a matrix with
the weights of the endogenous variables of the model (or a named matrix
with a subset of the variables) or alternatively a character vector with the
names in the data.frame that corresponds to weights1 (the weights are then

1For the lava.tobit package the weight argument is already reserved and the
weight2 argument should be used instead and further the estimator should not be
changed from the default.

61

assigned to the variables in the models in the order they appear, see e.g
the vars function). For multigroup models a list of matrices or character-
vectors is expected.

9.5. Instrumental variables

In econometrics Instrumental Variable (IV) estimators are popular tools
for dealing with the problem of covariates that are correlated with the resid-
ual term of the response variable. In this situation ordinary linear regression
analysis will yield biased estimates. The idea is to identify an IV, which is
a variable fulfilling the conditions

1. Correlated with the problematic covariate, X , given all other covari-
ates

2. Uncorrelated with the residual error, ǫ, of the response, Y .

The estimator can be then be formulated as Two-Stage Least-Squares (2SLS)
approach. In the first step, regress X on the IV(s) and obtain the predicted

covariate, X̂. In the second stage, regress Y on X̂ (and other covariates).
Consistency follows under very weak assumptions (Greene, 2002; Angrist,
2001).

The method can also be applied to estimate parameters in SEMs (Bollen,
1996). In the following we will assume that the model of interest is a SEM
(no random slopes, single group) without linear or non-linear parameter
constraints

Y = ν +Λη +KX + ǫ, (90)

η = α+Bη + ΓX + ζ, (91)

with a zero diagonal of B. We further assume that we have at least one
indicator for each latent variable. This means that there exists a subset
of endogenous variables Ỹ of Y , with no other predictors than the latent
variable. From these we can identify the latent variables

η = Ỹ − ǫ̃. (92)

Substituting (92) into (90) and (91) we obtain the following equation for

one of the endogenous variables, Yj (not part of Ỹ):

Yj = νj +ΛjỸ +KjX + ǫj −Λj ǫ̃︸ ︷︷ ︸
uj

, (93)

62

and similarly for the surrogate

Ỹr = αr +BrỸ + ΓrX + ζr + ǫ̃r −Br ǫ̃︸ ︷︷ ︸
ur

. (94)

Equations (93) and (94) only includes observed predictors but parameters
cannot be estimated using OLS because of obvious correlations between
predictors and residuals. Instruments have to be identified that are uncor-
related with the residual terms (ur or uj) in (93)-(94), while at the same

time being correlated with the part of Ỹ that are entering the equation
as predictors. In lava these conditions are checked automatically via the
model-implied covariance structure, selecting the largest possible set of in-
strument variables for each equation. To implicitly select the instruments
for the different regression equations, covariance between specific residual
terms should be added to the model structure via the covariance method
(thereby indirectly disqualifying a variable as an instrument candidate). As
all equations are solved simultaneously (Bollen, 2001) the covariance matrix
of the estimates are available (i.e. vcov) and Wald tests via the compare

method are possible. Consistent estimates of the variance parameters, are
obtained via MLE in the model with all other parameters fixed at the IV
estimates (can be disable with the control parameter variance=FALSE).

To illustrate the method we simulate data from a complex latent model
with three measurement models (see Figure 11):

> mIV <- lvm()

> regression(mIV) <- c(y1, y2, y3) ~ eta1

> regression(mIV) <- c(v1, v2, v3) ~ eta2

> regression(mIV) <- c(z1, z2, z3) ~ eta3

> latent(mIV) <- ~eta1 + eta2 + eta3

> regression(mIV) <- eta1 ~ eta2 + eta3 + x2

> regression(mIV) <- eta2 ~ eta3 + x1

> regression(mIV) <- eta3 ~ x1

> covariance(mIV) <- y1 ~ v1

> regression(mIV) <- y2 ~ x2

> regression(mIV, c(y1[0], v1[0], z1[0]) ~ eta1 + eta2 + eta3) <- c(1,

+ 1, 1)

> dIV <- sim(mIV, 1000)[, manifest(mIV)]

In this model we explicitly defined y1, v1 and z1 as the indicators in (92)
setting the factor loadings to one and intercepts to zero. To apply the
instrumental variable estimator using the model-implied instruments, we

63

y1y2 y3

eta1

v1

v2 v3

eta2 z1 z2 z3

eta3

x2

x1

Figure 11: plot(mIV)

simply add the argument estimator="IV" to the estimate function, and
as we have already chosen the indicator-set we set fix=FALSE:

> summary(eIV <- estimate(mIV, dIV, estimator = "IV", fix = FALSE))

Latent variables: eta1 eta2 eta3

Number of rows in data=1000

--

Estimate Std. Error Z value Pr(>|z|) std.xy

Measurements:

y1<-eta1 1.00000 0.96794

y2<-eta1 0.99358 0.01199 82.89643 <1e-12 0.89359

y3<-eta1 0.98599 0.01175 83.90153 <1e-12 0.96603

v1<-eta2 1.00000 0.91585

v2<-eta2 0.99870 0.01972 50.64819 <1e-12 0.92661

v3<-eta2 1.02062 0.02023 50.45033 <1e-12 0.92472

z1<-eta3 1.00000 0.81644

z2<-eta3 0.94467 0.03249 29.07141 <1e-12 0.80369

z3<-eta3 0.98653 0.03382 29.17123 <1e-12 0.81647

Regressions:

y2<-x2 0.98771 0.04606 21.44170 <1e-12 0.22739

eta1<-eta2 1.05111 0.06144 17.10780 <1e-12 0.64088

eta1<-eta3 0.89998 0.10608 8.48410 <1e-12 0.32826

eta1<-x2 0.97850 0.05490 17.82364 <1e-12 0.25048

eta2<-eta3 0.90539 0.06139 14.74821 <1e-12 0.54161

eta2<-x1 1.05768 0.07972 13.26707 <1e-12 0.44770

eta3<-x1 0.97241 0.04543 21.40496 <1e-12 0.68806

64

Intercepts:

y1 0.00000 0.00000

y2 -0.03743 0.04464 -0.83837 0.4018 -0.00861

y3 -0.07527 0.04534 -1.66018 0.09688 -0.01886

eta1 0.01279 0.05512 0.23202 0.8165 0.00327

v1 0.00000 0.00000

v2 -0.03401 0.04561 -0.74560 0.4559 -0.01323

v3 -0.02803 0.04679 -0.59910 0.5491 -0.01065

eta2 0.09849 0.05343 1.84351 0.06526 0.04131

z1 0.00000 0.00000

z2 -0.00774 0.04259 -0.18173 0.8558 -0.00462

z3 0.02848 0.04488 0.63450 0.5258 0.01652

eta3 0.05345 0.04585 1.16578 0.2437 0.03747

Residual Variances:

y1 1.02973 0.06310

y1,v1 0.53963 0.05131

y2 0.98617 0.05217

y3 1.06375 0.06678

eta1 1.01587 0.06644

v1 1.09261 0.16123

v2 0.93365 0.14140

v3 1.00333 0.14490

eta2 0.98078 0.17254

z1 1.01747 0.33342

z2 0.99507 0.35408

z3 0.99004 0.33338

eta3 1.07110 0.52657

--

Estimator: IV

--

Latent variables eta1,eta2,eta3

Surrogate variables: y1,v1,z1

Response Instruments

y2 y3,v2,v3,z1,z2,z3,x2,x1

y3 y2,v2,v3,z1,z2,z3,x2,x1

eta1 v2,v3,z2,z3,x2,x1

v2 y2,y3,v3,z1,z2,z3,x2,x1

v3 y2,y3,v2,z1,z2,z3,x2,x1

eta2 z2,z3,x2,x1

65

z2 y1,y2,y3,v1,v2,v3,z3,x2,x1

z3 y1,y2,y3,v1,v2,v3,z2,x2,x1

eta3 x1,x2

--

The IV estimator has the advantage of being a non-iterative procedure
and requires weaker assumptions than MLE. There are also indications that
IV estimators are performing well in low sample-sizes and are generally more
robust to structural model mis-specification than MLE (Bollen et al, 2007).
Where applicable an IV analysis is therefore a good choice of method for
analyzing the model fit of a structural equation model fitted with MLE (e.g.
based on a Hausman type test statistics).

10. Graphics

Function Task

plot Plots path diagram of model
labels Defines labels for variables
edgelabels Defines labels and style for edges of the graph
nodecolor Defines color and style of nodes/variables
Graph Extracts graph (graphNEL object)

Table 5: Graphics functions.

A plot method is available for both the lvm, multigroup and lvmfit

classes. Plotting a lvmfit object shows the user whether lava has linked the
model to the data as intended. A common mistake is that a variable name
in the model specification does not appear in the data. In this case lava

consider the corresponding variable to be latent which is easily identified
from the plot.

Layout and rendering of the graphs are achieved via Rgraphviz (Gentry et al,
2009), which in combination with the tikzDevice (Sharpsteen and Bracken,
2010) makes it possible to produce publication quality path diagrams.

In the following we will use model m1 defined in Section 3.1 as the ex-
ample. To enhance the graph we will add some labels to the nodes using
the function labels 2

2for more information on mathematical annotation in R we refer to the plotmath

help-page.

66

> labels(m1) <- c(u1 = expression(eta[1]), u2 = expression(eta[2]))

Similarly, subscripted versions of the observed variables could be defined
but we will keep them as they are for now. The labels of an object can be
examined with labels(m).

Labels of edges can be defined with the edgelabels-function, e.g. to
define new labels, colors and line width for the edges from x1 to u1 and from
u1 to y11 we call

> m1 <- m0

> edgelabels(m1, u1~x1, lwd=3, col="blue") <- expression(beta[1])

> edgelabels(m1, y11~u1, lwd=3, col="red",

+ labcol="red") <- expression(beta[2])

In addition the argument labels=TRUE can be parsed to the plot method
to add parameter names (named p1,p2,... if no names were previously given
using, e.g., regression) to the edges of the plot. This will override (but
not delete) previously defined edge label attributes.

The color of the nodes is automatically added to the graph. To disable
this functionality the argument addcolor=FALSE should be parsed to the
plot-method. New coloring and style can be added via nodecolor:

nodecolor(m1) <- "indianred"

nodecolor(m1, ~y11+y12+y13,

+ labcol="white", lwd=c(3,1,1)) <- "lightblue"

nodecolor(m1, ~x1+x2, labcol="red",

+ border=c("black","white")) <- "white"

10.1. Graph Attributes

Specific attributes of the graph such as font size, line width etc. can
also be controlled via the nodeRenderInfo and edgeRenderInfo functions
called on the graph object in a lvm-object accessible via the Graph function
(also available for lvmfit-objects). E.g. to set the font size to 2 of all
edge-labels (see Figure 12) we would write

> edgeRenderInfo(Graph(m1))$cex <- 1.5

Methods for visualizing lvmfit are also available. As an example we will
extract the pathways from x1 to z3 with the path method and highlight
and label the corresponding arrows in the path-diagram (see Figure 13):

67

η1

η2

x1x2

y1 y2 y3

z1 z2 z3

β1

Figure 12: plot(m1)

Graph(e) <- Graph(e, add=TRUE)

labels(Graph(e)) <- c(u1=expression(eta[1]), u2=expression(eta[2]))

mypath <- path(e, z3~x1)

edgeRenderInfo(Graph(e))$lwd[unlist(mypath$edges)] <- 2

edgeRenderInfo(Graph(e))$label <- NA

edgelabels(e, edges=unique(unlist(mypath$edges)), cex=1.1) <-

+ c("beta[1]", "gamma[1]", "gamma[2]", "beta[2]")

10.2. Graph Layout

Several automatic graph layout algorithms are available through the
layoutType argument (see Figure 14). Additionally, the graph (obtain-
able via the Graph method) can be saved with the doDot function and be
processed in an external program supporting the dot-format (graphviz).

68

η1

η2

x1x2

y1 y2 y3

z1 z2 z3

γ1 = 0.9465

γ2 = 1.024

β1 = 1.111

β2 = 0.7283

Figure 13: Selected estimates from model m1 (plot(e,diag=FALSE)))

η1

η2

x1x2

y1 y2 y3

z1 z2 z3

η1

η2
x1

x2

y1
y2

y3 z1

z2
z3

η1

η2

x1x2

y1

y2

y3

z1

z2

z3

η1

η2

x1

x2

y1

y2

y3

z1

z2

z3

η1 η2

x1

x2

y1

y2

y3 z1

z2

z3

Figure 14: Different graph layout algorithms from top left to bottom right: dot, neato,
twopi, fdp, circo.

69

11. Application: Brain serotonin transporter imaging data

We consider 54 observations from (Kalbitzer et al, 2010) with measure-
ments of the serotonin transporter (SERT) in the human brain as measured
by Positron Emission Tomography (PET) techniques. The outcome of inter-
est, SERT, was quantified as binding potential of the specific tracer binding
(BPND) in four regions of interest, which a priori were identified as high-
binding and reliable measurements of SERT. The serotonergic system has
been suggested to have a strong impact on mood and as a potential pre-
dictor of the development of seasonal affective disorder (SAD). The aim of
the original study was to explore the association between levels of SERT
and the interaction between seasonality and a repeat polymorphism in the
promoter region of the serotonin transporter gene (5-HTTLPR). This was
achieved by linear regression on each regional outcome. However, these data
are characterized by high inter-regional correlation, and in the following we
will supplement the original analysis with a multivariate analysis taking this
aspect into account. It has been demonstrated that SERT levels respond
to chronic changes in brain serotonin (5-HT) levels as suggested by studies
of the effect of SSRI treatment and in animal studies. It has therefore been
suggested that the common regulator of SERT is this underlying 5-HT level
(Erritzoe et al, 2010) which, however, cannot be measured directly in vivo.
This biological model can be captured by a structural equation model, with
a simple measurement model describing the four regions of interest, and
a structural model in which exogenous variables affects the SERT mea-
surements indirectly through the intermediate latent variable as shown on
Figure 15.

We chose to model the seasonal effect using a harmonic function with
a period of one year, described by the amplitude, A, and the translation
parameter, δ (time of peak):

A cos

(
2π(t− δ)

365

)
= A cos

(
2πδ

365

)

︸ ︷︷ ︸
β1

cos

(
2πt

365

)
+ A sin

(
2πδ

365

)

︸ ︷︷ ︸
β2

sin

(
2πt

365

)
,

(95)

where t is the date of the scan. This parameterization approximately embeds
a simpler model, where the seasonal effect is described as a linear function
of the amount of daylight minutes on the date of the PET scan. However,
the harmonic curve adds the flexibility of letting the time of peak be a free
parameter which allows a possible delayed seasonal effects on the serotonin

70

Figure 15: Brain regions of interests and initial SERT model.

transporter to be taken into account. In lava the seasonal effect could
be modeled directly (via constrain) as the left-hand-side of (95), thus
directly quantifying A and δ. Here we use the linear parameterization on
the right-hand-side using the cosine and sine transformed time variables as
predictors. As in the original study, we also adjust for possible main effects
of age, gender and the 5-HTTLPR polymorphism (dichotomized as carriers
of the (short) s-variation vs. non-carriers (long-long alleles))

> httmod <- lvm(c(cau,th,put,mid) ~ eta)

> regression(httmod) <- eta ~ f(cos,b1)+f(sin,b2)+age+sex+gene

As described in Section 6, we assessed the model fit via residual plots,
score tests and the global χ2-test, and concluded that the local independence
between the midbrain and thalamus region was not plausible. Significantly
different age and gender effects on caudate nucleus were also identified in
this process and therefore added to the model.

> regression(httmod) <- cau~sex+age

> covariance(httmod) <- th~mid

No additional evidence against the model was identified, thus leading to a
final model as illustrated in Figure 16:

> tikz(file="sertsem1.tex",8,8,standAlone=TRUE)

> m <- lvm(~cau+th+put+mid)

> regression(m) <- c(cau,mid,th,put)~eta

> latent(m) <- ~eta; labels(m) <- c(eta="$\\eta$")

> regression(m) <- eta~sex+age+date
71

> nodecolor(m,vars(m)) <- 0

> nodecolor(m,endogenous(m),labcol="white") <-

+ c("red","blue","green","orange")

> plot(m)

> dev.off()

Figure 16: Final SERT-seasonality model.

Parameter estimates are obtained by maximum likelihood using a Newton-
Raphson algorithm:

> lava.options(method="NR",trace=1,tol=1e-12,param="relative")

> httmod.fit <- estimate(httmod,data=dasb)

One of the aims of the analysis is to quantify the seasonal effect, therefore
we will also estimate the translation and amplitude (unsigned)

δ̂ = arctan(β̂2/β̂1)365/(2π) (96)

|Â| =
√
β̂2
1 + β̂2

2 (97)

> constrain(httmod.fit,delta~b1+b2) <- function(x) atan(x[2]/x[1])*365/(2*pi)

> constrain(httmod.fit,A~b1+b2) <- function(x) sqrt(x[1]^2+x[2]^2)

> summary(httmod.fit, std=NULL)
72

||score||^2= 1.171417e-11

Latent variables: eta

Number of rows in data= 54

--

Estimate Std. Error Z value Pr(>|z|)

Measurements:

cau<-eta 1.0000e+00

th<-eta 9.6834e-01 3.0972e-01 3.1264e+00 1.7693e-03

put<-eta 1.2119e+00 3.5519e-01 3.4120e+00 6.4499e-04

mid<-eta 1.1317e+00 7.5972e-01 1.4896e+00 1.3633e-01

Regressions:

cau<-age 6.7822e-03 1.9574e-03 3.4648e+00 5.3054e-04

cau<-sex -3.2907e-01 7.4087e-02 -4.4416e+00 8.9284e-06

b1:eta<-cos 1.0722e-01 3.9546e-02 2.7112e+00 6.7043e-03

b2:eta<-sin -3.7658e-02 4.1421e-02 -9.0915e-01 3.6327e-01

eta<-age -2.9471e-03 1.4856e-03 -1.9838e+00 4.7282e-02

eta<-sex -7.8173e-03 4.9608e-02 -1.5758e-01 8.7479e-01

eta<-GnonLL -4.5062e-02 4.7688e-02 -9.4494e-01 3.4469e-01

Intercepts:

cau 0.0000e+00

th 2.8698e-01 5.9078e-01 4.8577e-01 6.2713e-01

put -4.1726e-01 6.8945e-01 -6.0521e-01 5.4504e-01

mid 2.0487e+00 1.4175e+00 1.4453e+00 1.4838e-01

eta 1.9647e+00 8.7535e-02 2.2445e+01 <1e-16

Residual Variances:

cau 5.4901e-02 1.2519e-02 4.3855e+00

th 6.9573e-02 1.4911e-02 4.6658e+00

th,mid 9.6725e-02 3.4453e-02 2.8074e+00 4.9940e-03

put 1.0455e-02 9.2801e-03 1.1266e+00

mid 6.9218e-01 1.3472e-01 5.1377e+00

eta 2.0335e-02 9.8548e-03 2.0635e+00

Non-linear constraints:

Estimate Std. Error Z value Pr(>|z|) 2.5% 97.5%

delta -19.6215810 19.5444140 -1.0039483 0.3154035 -57.9279285 18.6848

A 0.1136378 0.0426363 2.6652834 0.0076923 0.0300722 0.1972

--

Estimator: gaussian

--

Number of observations = 54

Log-Likelihood = -57.88782

73

BIC = 223.2812

AIC = 155.7756

log-Likelihood of model = -57.88782

log-Likelihood of saturated model = -46.94523

Chi-squared statistic: Q = 21.88517 , df = 14 , P(Q>q) = 0.08100473

--

As an alternative to the Wald test we can conduct a LRT to test the
significance of the seasonal parameters:

> httmod0 <- httmod; kill(httmod0) <- ~cos+sin

> httmod0.fit <- estimate(httmod0,dd,control=list(start=coef(httmod.fit)))

> compare(httmod0.fit,httmod.fit)

Likelihood ratio test

data:

chisq = 12.3978, df = 2, p-value = 0.002032

sample estimates:

log likelihood (model 1) log likelihood (model 2)

-64.53133 -58.33241

Thus, we find a highly significant seasonal effect (p = 0.002). The
estimated time of peak and 95% Wald confidence limits can be quantified
as

> format(as.Date("2010-1-1")+constraints(httmod.fit)["delta",c(1,5:6)],

+ "%d%b")

Estimate 2.5% 97.5%

"12Dec" "04Nov" "19Jan"

and with an estimate around middle of December this is in reasonable agree-
ment with a suggested peak around winter solstice (about December 21).
The parameter estimates of the initial model (Figure 15) yielded very similar
seasonal parameter estimates and confidence limits.

Next, we will examine the interaction between season and the 5-HTTLPR
polymorphism. This is done via a multigroup analysis and hence we divide
the data into two groups defined by the genetic variable

> d1 <- subset(dd, G=="LL")

> d2 <- subset(dd, G=="nonLL")

74

A standard multigroup analysis could be conducted where the parameters
β1 and β2 would be allowed to vary freely in the two groups. However, a
more biological plausible model is to fix the translation parameter δ in the
two groups to be the same and let the amplitude A be free. This can be
implemented via the left-hand-side of (95) and the constrain-method

> m <- baptize(kill(httmod,~G+cos+sin))

> intercept(m,~cau+eta) <- list(0,"mu1")

> regression(m,cau~eta) <- 1

> regression(m,eta~Day) <- 0

> m2 <- m

> intercept(m2,~eta) <- "mu2"

> mycos <- function(x) x[2]+x[3]*cos(2*pi*(x[1]-x[4])/365)

> constrain(m,mu~Day+nu1+A1+delta) <- mycos

> constrain(m2,mu2~Day+nu2+A2+delta) <- mycos

Here we explicitly chose caudate nucleus as our reference region by fixing
the factor loading to 1 and intercept to 0. The intercept parameters nu1
and nu2 describes the main effect of the genotype. The significance of the
interaction can then be examined with a LRT against the first model

> httmod.2 <- estimate(list(m,m2),list(d1,d2))

> compare(httmod.2,httmod.fit)

Likelihood ratio test

data:

chisq = 4.7267, df = 1, p-value = 0.0297

sample estimates:

log likelihood (model 1) log likelihood (model 2)

-55.52446 -57.88782

The estimated amplitude parameters with 95% confidence limits are

> confint(httmod.2)[c("A1","A2"),c(1,3,4)]

Estimate Pr(>|z|) 2.5%

A1 0.01672275 0.691577803 -0.06589577

A2 0.14670814 0.002547141 0.05142227

and the difference in amplitude can be quantified as

> constrain(httmod.2, dA~A1+A2) <- diff

> constraints(httmod.2)["dA",]

75

Estimate Std. Error Z value Pr(>|z|) 2.5% 97.5%

0.129985393 0.061819428 2.102662508 0.035495282 0.008821541 0.251149245

with peak time around January 1:

coef(httmod.2)[[1]]["delta",]

Estimate Std. Error Z value Pr(>|z|)

0.24805873 17.55228131 0.01413256 0.98872422

Hence we see a statistical significant difference in amplitude between the
two genotypes (p = 0.03, 95% confidence limits [0.01; 0.25]), with carriers
of the short 5-HTTLPR allele having on average a higher seasonal variation
in SERT binding.

To visualize the harmonic curves of the two genotypes we need to predict
the parameters mu1 and mu2. This can also be achieved with constraints
where we supply the argument idx indicating which non-linear parameter
to extract. For a multigroup model we also need to specify which group
to extract this parameter from via the argument k. For instance predicting
the two means on each day of the year with 95% confidence limits we can
write

> mu1 <- constraints(e,k=1,idx="mu",data=data.frame(Day=1:365),level=0.95)

> mu2 <- constraints(e,k=2,idx="mu2",data=data.frame(Day=1:365),level=0.95)

See Figure 17 for a plot of these two curves.
This study shows that S-allele carriers (nonLL) on average have a much

more varying SERT binding level which could suggest a decreased serotonin
concentration in the winter in this group. This could be caused by the
decreasing amount of daylight in this period in the study country (Denmark)
and supplements previous studies showing that S-allele carriers have higher
risk of developing SAD. A detailed discussion can be found in the original
paper (Kalbitzer et al, 2010).

12. Conclusion

A package lava has been developed which covers the classical covariance
structure analysis and which hopefully can serve as a platform for method-
ological development in the field of structural equation models and related
models.

The key features of the package is

76

Figure 17: Estimated harmonic curve of nonLL and LL group with 95% point-wise
confidence limits.

1. Easy interactive specification and visualization of complex models

2. Simulation routines (for a broad class of models beyond the LLVM)

3. Extensions to binary and censored data via lava.tobit

4. Multigroup analyses

5. MLE with data missing at random

6. Non-linear parameter constraints and covariate effects

7. Asymptotically correct standard errors for clustered correlated data

Further, the program is built up around a series of modules (optimizers,
estimators, plot hooks, simulations hooks, pre and post estimation hooks)
which should ensure that future extensions can be written quite easily. This
has been one of the main aims during the development of the lava package.

Additional extensions of the package is currently under preparation in-
cluding non-linear random effects and MLE for a broader class of the expo-
nential family with estimation based on adaptive quadrature rules. In this
process, we are preparing to export loop-intensive parts of the program to
C++, which also should give a considerable computational and memory (via
call-by-reference) improvement for some of the closed-form likelihood mod-
els (e.g. random slope models) and models with large number of variables.

If you use lava please cite this paper and the R software in publications.
77

13. Acknowledgments

This work was supported by The Danish Agency for Science, Technology
and Innovation.

78

Appendix A. Some zero-one matrices

In this section we will define a few matrix-operators in order to define
various conditional moments. Let B ∈ Rn×m be a matrix, and define the
indices x = {x1, . . . , xk} ∈ {1, . . . , n}, and y = {y1, . . . , yl} ∈ {1, . . . , m}.
We define Jn,x = Jx ∈ R(n−k)×n as the n × n identify matrix with rows x

removed. E.g.

J6,(3,4) =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

To remove rows x from B we simply multiply from the left with Jn,x. If
we in addition want to remove columns y we multiply with the transpose
of Jn,y from the right:

Jn,xBJ ′
n,y. (A.1)

We will use the notation J to denote the matrix that removes all latent
variables (η) from the vector of all variable, U as defined in (8). We denote
JY the matrix that only keeps endogenous variables (Y).

We also need an operator that cancels out rows or columns of a ma-
trix/vector. Define the square matrix pn,x ∈ Rn×n as the identity-matrix
with diagonal elements at position x canceled out:

pn,x(i, j) =

{
1, i = j, i 6∈ x,

0, else.
(A.2)

E.g.

p6,(3,4) =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

To cancel out rows x and columns y of the matrix B ∈ Rn×m we calculate

pn,xBp′
m,y.

We will use pX and p∁X as the matrix that cancels out the rows correspond-
ing to the index of the exogenous variables (X) respectively the matrix that
cancels out all rows but the ones corresponding to X.

79

Appendix B. The Score Function and Information

In this section we will calculate the analytical derivatives of the log-
likelihood. In order to obtain these results we will first introduce the no-
tation of some common matrix operations. Let A ∈ R

m×n, then we define
the column-stacking operation:

vec(A) =

a1
...
an

 ,

where ai denotes the ith column of A. The unique commutation matrix,
Rmn×mn is defined by

K(m,n) vec(A) = vec(A′). (B.1)

Letting H(i,j) be the m × n-matrix with one at position (i, j) and zero
elsewhere, then

K(m,n) =

m∑

i=1

n∑

j=1

(H(i,j) ⊗H(i,j)′),

e.g.

K(2,3) =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

.

It should be noted that product with a commutation matrix can be imple-
mented very efficiently instead of relying on a direct implementation of the
above mathematical definition.

LetA ∈ Rm×n andB ∈ Rp×q then the Kronecker product is themp×nq-
matrix:

A⊗B =

a11B · · · a1nB
...

...
am1B · · · amnB

80

We will calculate the derivatives of (20) by means of matrix differential
calculus. The Jacobian matrix of a matrix-function F : Rn → Rm×p is the
mp× n matrix defined by

DF (θ) =
∂ vecF (θ)

∂θ′
.

Letting d denote the differential operator (see Magnus and Neudecker (1988)),
the first identification rule states that d vecF (θ) = A(θ) d θ ⇒ DF (θ) =
A(θ).

Appendix B.0.1. Score function

Using the identities d log |X| = tr(X−1 dX) and dX−1 = −X−1(dX)X−1,
and applying the product rule we get

d ℓ(θ) = −n
2
tr(Ω−1

θ dΩθ)−
n

2
tr(d{Σ̂Ω−1

θ }) (B.2)

= −n
2
tr(Ω−1

θ dΩθ) +
n

2
tr(Σ̂Ω−1

θ [dΩθ]Ω
−1
θ), (B.3)

where

dΩθ = {dGθ}PθG
′
θ +Gθ {dPθG

′
θ} (B.4)

= {dGθ}PθG
′
θ +Gθ {dPθ}G′

θ +GθPθ {dGθ}′ (B.5)

= {dGθ}PθG
′
θ + [{dGθ}PθG

′
θ]

′ +Gθ {dPθ}G′
θ, (B.6)

and

dGθ = J(1m −Aθ)
−1 {dAθ} (1m −Aθ)

−1. (B.7)

Taking vec’s it follows that

d vecGθ =
[
((1m −Aθ)

−1)′ ⊗Gθ

]
d vecAθ dθ, (B.8)

hence by the first identification rule

∂ vecGθ

∂θ′
=
[
((1m −Aθ)

−1)′ ⊗Gθ

] ∂ vecAθ

∂θ′
, (B.9)

and similarly

∂ vecΩθ

∂θ′
= (1k2 +K(k,k)) [GθPθ ⊗ 1k]

∂ vecGθ

∂θ′
+ [Gθ ⊗Gθ]

∂ vecPθ

∂θ′
,

(B.10)

81

and finally (exploiting the symmetry ofΩθ and commutative property under
the trace operator) we obtain the gradient

∂ℓ(θ)

∂θ
=
n

2

(
∂ vecΩθ

∂θ′

)′

vec
[
Ω−1

θ Σ̂Ω−1
θ

]
− n

2

(
∂ vecΩθ

∂θ′

)′

vec
[
Ω−1

θ

]
.

(B.11)

Next we examine the model including a mean structure (20). W.r.t. to the
first differential we observe that

d tr
{
TθΩ

−1
θ

}
= − tr

{
TθΩ

−1
θ (dΩθ)Ω

−1
θ

}
+ tr

{
(dTθ)Ω

−1
θ

}
. (B.12)

Hence

∂ℓ(θ)

∂θ
=
n

2

(
∂ vecΩθ

∂θ′

)′

vec
[
Ω−1

θ TθΩ
−1
θ

]
− n

2

(
∂ vecΩθ

∂θ′

)′

vec
[
Ω−1

θ

]

− n

2

(
∂ vecTθ

∂θ′

)′

vec
(
Ω−1

θ

)
.

(B.13)

Further by the chain-rule

∂ vecTθ

∂θ′
=
∂(µ̂− vθ)

∂θ′

∂ vecTθ

∂(µ̂ − ξθ)′
= − [1k ⊗ (µ̂− ξθ) + (µ̂− ξθ)⊗ 1k]

∂ξθ
∂θ′

,

(B.14)

and

d ξθ = (dGθ)vθ +Gθ(dvθ). (B.15)

Taking vec (Gθvθ = 1Gθvθ):

∂ξθ
∂θ′

= (v′
θ ⊗ 1k)

∂ vecGθ

∂θ′
+Gθ

∂vθ

∂θ′
. (B.16)

We have calculated the full score but in some situations it will be useful to
evaluate the score in a single point. The contribution of a single observation
to the log-likelihood is

ℓ(θ | zi) ∝
1

2
log |Ωθ|+

1

2
(zi − ξθ)

′Ω−1
θ (zi − ξθ), (B.17)

82

or as in (20) where we simply exchange Tθ with Tzi,θ = (zi − ξθ)(zi − ξθ)
′,

hence the score is as in (B.13) where (B.14) is calculated with zi instead of
µ̂. Alternatively, letting zi − ξθ = uθ = uθ(i):

d(u′
θΩ

−1
θ uθ) = u′

θ

[
(2Ω−1

θ) duθ + (dΩ−1
θ)uθ

]

= −u′
θ

[
(2Ω−1

θ) d ξθ +Ω−1
θ (dΩθ)Ω

−1
θ uθ

]
,

(B.18)

where we used that for constant symmetric A the differential of a quadratic
form is

d(u′Au) = 2u′(A) du. (B.19)

Hence the contribution to the score function of the ith observation is

Si(θ) = −1

2

{
vec(Ω−1

θ)
∂ vecΩθ

∂θ′
− 2u′

θΩ
−1
θ

∂ vec ξθ
∂θ′

− (u′
θΩ

−1
θ ⊗ u′

θΩ
−1
θ)

∂ vecΩθ

∂θ′

}

= −1

2

{(
vec(Ω−1

θ)− vec(Ω−1
θ uθu

′
θΩ

−1
θ)
) ∂ vecΩθ

∂θ′
− 2u′

θΩ
−1
θ

∂ vec ξθ
∂θ′

}
,

(B.20)

where the score-function evaluated in θ is S(θ) =∑n
i=1 Si(θ).

Appendix B.0.2. The Information matrix

The second order partial derivative is given by

∂ℓ(θ)

∂θiθj
= −1

2

∂

∂θi

[{
vec(Ω−1

θ)− vec(Ω−1
θ uθu

′
θΩ

−1
θ)
} ∂ vecΩθ

∂θj
− 2u′

θΩ
−1
θ

∂ξθ
∂θj

]
.

(B.21)

Taking negative expectation with respect to the true parameter θ0 we obtain
the expected information (Magnus and Neudecker, 1988), which get rid of
all second order derivatives

I(θ0) =
1

2

(
∂ vecΩθ

∂θ′

∣∣∣∣
θ=θ0

)′

(Ω−1
θ0

⊗Ω−1
θ0
)

(
∂ vecΩθ

∂θ′

∣∣∣∣
θ=θ0

)
(B.22)

+

(
∂ξθ
∂θ′

∣∣∣∣
θ=θ0

)′

Ω−1
θ0

(
∂ξθ
∂θ′

∣∣∣∣
θ=θ0

)
. (B.23)

83

We will further derive the observed information in the case where the second
derivatives vanishes in the case of the matrix functions Aθ,Pθ and vθ. Now

d 2Gθ = d
[
J(1−Aθ)

−1(dAθ)(1−Aθ)
−1
]
. (B.24)

Hence

∂2Gθ

∂θi∂θj
= Gθ

[
∂Aθ

∂θi
(1−Aθ)

−1∂Aθ

∂θj
+
∂Aθ

∂θj
(1−Aθ)

−1∂Aθ

∂θi

]
(1−Aθ)

−1.

(B.25)

Next we will find the derivative of (B.10). We let m denote the number
of variables, p the number of parameters, and k the number of observed
variable (e.g. Gθ ∈ R

k×m and the number of columns in the derivatives are
p). We have GθPθ ∈ Rk×m and using rules for evaluating the differential of
Kronecker-product (see Magnus and Neudecker (1988) pp. 184) we obtain

∂ vec

∂θ′
(GθPθ ⊗ 1k) =

(
1m ⊗K(k,k) ⊗ 1k

)
(1km ⊗ vec 1k)

∂ vecGθPθ

∂θ′

=
(
1m ⊗K(k,k) ⊗ 1k

)
(1km ⊗ vec 1k)×[

(Pθ ⊗ 1k)
∂ vecGθ

∂θ′
+ (1m ⊗Gθ)

∂ vecPθ

∂θ′

]
.

(B.26)

And

∂ vec

∂θ

[
(Gθ ⊗Gθ)

∂ vecPθ

∂θ′

]
=

[
∂ vecPθ

∂θ′

′

⊗ 1k2

]
∂ vecGθ ⊗Gθ

∂θ′

=

[
∂ vecPθ

∂θ′

′

⊗ 1k2

] (
1m ⊗K(m,k) ⊗ 1k

)
×

(1km ⊗ vecGθ + vecGθ ⊗ 1km)
∂ vecGθ

∂θ′
.

(B.27)

Hence from (B.26) and (B.27) and using rules for applying the vec operator

84

on products of matrices we obtain

∂2 vecΩθ

∂θ∂θ′
=

[(
∂ vecGθ

∂θ′

)′

⊗
(
1k2 +K(k,k)

)] (
1m ⊗Kk+k ⊗ 1k

)
(1km ⊗ vec 1k)×

[
(Pθ ⊗ 1k)

∂ vecGθ

∂θ′
+ (1m ⊗Gθ)

∂ vecPθ

∂θ′

]
+

(
1p ⊗ (GθPθ ⊗ 1k)

)∂2 vecGθ

∂θ∂θ′
+

((
∂ vecPθ

∂θ′

)′

⊗ 1k2

)(
1m ⊗K(m,k) ⊗ 1k

)
×

(
1km ⊗ vecGθ + vecGθ ⊗ 1km

)∂ vecGθ

∂θ′
,

(B.28)

with the expressions for the derivatives and second derivatives of Gθ given
in (B.9) and (B.25). Further

∂2ξθ
∂θ∂θ′

=
∂ vec

∂θ′
(v′

θ ⊗ 1k)
∂ vecGθ

∂θ′
+
∂ vec

∂θ′
Gθ

∂vθ

∂θ′

=

((
∂ vecGθ

∂θ′

)′

⊗ 1k

)(
1m ⊗ vec 1k

)∂ vec vθ

∂θ′

+ (1p ⊗ (v′
θ ⊗ 1k))

∂2 vecGθ

∂θ∂θ′

+

(
∂ vecGθ

∂θ′

)′
∂vθ

∂θ′
,

(B.29)

and

∂ vec

∂θ′
Ω−1

θ = −(Ω−1
θ ⊗Ω−1

θ)
∂ vecΩθ

∂θ′
, (B.30)

and

d
(
Ω−1

θ uθu
′
θΩ

−1
θ

)
= −Ω−1

θ (dΩθ)Ω
−1
θ uθu

′
θΩθ +Ω−1

θ (duθ)µ
′
θΩ

−1
θ (B.31)

+Ω−1
θ uθ(du

′
θ)Ω

−1
θ −Ω−1

θ uθu
′
θΩθ(dΩθ)Ω

−1
θ . (B.32)

85

By using the identity vec(ABC) = (C ′ ⊗A) vec(B) several times we obtain

∂ vec

∂θ′
Ω−1

θ uθu
′
θΩ

−1
θ = −

(
[Ω−1

θ uθu
′
θΩ

−1
θ]′ ⊗Ω−1

θ

) ∂ vecΩθ

∂θ′
(B.33)

−
(
[u′

θΩ
−1
θ]′ ⊗Ω−1

θ

) ∂ vec ξθ
∂θ′

(B.34)

−
(
Ω−1

θ ⊗ [Ω−1
θ uθ]

) ∂ vec ξθ
∂θ′

(B.35)

−
(
Ω−1

θ ⊗ [Ω−1
θ uθu

′
θΩ

−1
θ]
) ∂ vecΩθ

∂θ′
, (B.36)

and the second order derivative of the log-likelihood (B.21) now follows from
applying the product rule with (B.28), (B.29), (B.30) and (B.33).

86

Andersen EB (1971) The asymptotic distribution of conditional likelihood ratio tests.
Journal of the American Statistical Association 66(335):pp. 630–633

Angrist J (2001) Estimation of limited dependent variable models with dummy endoge-
nous regressors: simple strategies for empirical practice. Journal of Business and Eco-
nomic Statistics 19:2–16

Bates D, Maechler M (2009) lme4: Linear mixed-effects models using S4 classes. URL
http://CRAN.R-project.org/package=lme4, R package version 0.999375-31

Biernacki C, Celeux G, Govaert G (2003) Choosing starting values for the EM algorithm
for getting the highest likelihood in multivariate Gaussian mixture models. Biometrika
73(1):561-575

Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook
R, Kenny S, Bates T, Mehta P, Fox J (2011) Openmx: An open source ex-
tended structural equation modeling framework. Psychometrika 76:306–317, URL
http://dx.doi.org/10.1007/s11336-010-9200-6, 10.1007/s11336-010-9200-6

Bollen K (1996) An alternative two stage least squares (2sls) estimator for latent variable
equations. Psychometrika 61(1):109–121

Bollen KA (1989) Structural equations with latent variables. Wiley Series in Probability
and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons
Inc., New York, a Wiley-Interscience Publication

Bollen KA (2001) Two-stage least squares and latent variable models: simultaneous
estimation and robustness to misspecification. In: Robert Cudeck DS S H C Du Toit
(ed) Structural equation modeling, present and future: a festschrift in honor of Karl
Jöreskog, Scientific Software International

Bollen KA, Kirby JB, Curran PJ, Paxton PM, Chen F (2007) Latent variable models
under misspecification two-stage least squares (2SLS) and Maximum Likelihood (ML)
estimators. Sociol Methods Res 36(1):48–86, DOI 10.1177/0049124107301947

Budtz-Jørgensen E, Keiding N, Grandjean P, Weihe P, White RF (2003) Statistical meth-
ods for the evaluation of health effects of prenatal mercury exposure. Environmetrics
14:105–120

Caffo B, Griswold M (2006) A User-Friendly Introduction to Link-Probit-Normal Models.
The American Statistician 60(2):139–145

Celeux G, Diebolt J (1993) Asymptotic properties of a stochastic EM algorithm for
estimating mixing proportions. Comm. Statist. Stochastic Models 9:599-613

REvolution Computing (2009) foreach: Foreach looping construct for R. URL
http://CRAN.R-project.org/package=foreach, R package version 1.3.0

Diebolt J, Ip E (1996) Stochastic EM: method and application. W.R. Gilks and S.
Richardson and D.J. Speigelhalter (eds), Markov Chain Monte Carlo in Practice:259-
273

Dempster A, Laird N, Rubin D (1993) Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of Royal Statistical Society 39:1–38

Ditlevsen S, Christensen U, Lynch J, Damsgaard MT, Keiding N (2005) The mediation
proportion: A structural equation approach for estimating the proportion of exposure
effect on outcome explained by an intermediate variable. Epidemiology 16(1):114–120,
DOI 10.1097/01.ede.0000147107.76079.07

Erritzoe D, Holst KK, Frokjaer VG, Licht CL, Kalbitzer J, Nielsen FA, Svarer C,
Madsen J, Knudsen GM (2010) A nonlinear relationship between cerebral serotonin

87

http://CRAN.R-project.org/package=lme4
http://dx.doi.org/10.1007/s11336-010-9200-6
http://CRAN.R-project.org/package=foreach

transporter and 5-HT2A receptor binding: An in vivo molecular imaging study
in humans. J Neurosci 30(9):3391–3397, DOI 10.1523/JNEUROSCI.2852-09.2010,
http://www.jneurosci.org/cgi/reprint/30/9/3391.pdf

Fox J (2006) Teacher’s corner: Structural equation modeling with the sem package in
r. Structural Equation Modeling: A Multidisciplinary Journal 13(3):465–585, DOI
10.1207/s15328007sem1303\ 7

Fox J (2009) sem: Structural Equation Models. URL
http://CRAN.R-project.org/package=sem, R package version 0.9-16

Gansner ER, North SC (1999) An open graph visualization system and its applications
to software engineering. Software - Practice and Experience 30:1203–1233

Gentleman R, Whalen E, Huber W, Falcon S (2009) graph: graph: A package to handle
graph data structures. R package version 1.20.0

Gentleman RC, Carey VJ, Bates DM, et al (2004) Bioconductor: Open software devel-
opment for computational biology and bioinformatics. Genome Biology 5:R80, URL
http://genomebiology.com/2004/5/10/R80

Gentry J, Long L, Gentleman R, Falcon S, Hahne F, Sarkar D (2009) Rgraphviz: Provides
plotting capabilities for R graph objects. R package version 1.20.3

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T
(2009) mvtnorm: Multivariate Normal and t Distributions. URL
http://CRAN.R-project.org/package=mvtnorm, R package version 0.9-4

Gilbert P (2009) numDeriv: Accurate Numerical Derivatives. URL
http://www.bank-banque-canada.ca/pgilbert, R package version 2006.4-1

Greene WH (2002) Econometric Analysis, 5th edn. Prentice Hall
Holm S (1979) A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian

Journal of Statistics 6(2):65–70, DOI 10.2307/4615733
Holst KK (2011) lava.tobit: Latent variable models with censored and binary outcomes.

URL http://lava.r-forge.r-project.org/, R package version 0.4-3
Holst KK (2012) gof: Model-diagnostics based on cumulative residuals. URL

http://CRAN.R-project.org/package=gof, R package version 0.8-1
Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement

from a finite universe. Journal of the American Statistical Association 47(260):663–
685

Hotelling H (1953) New light on the correlation coefficient and its transforms. J Roy
Statist Soc Ser B 15:193–225; discussion, 225–232

Jöreskog K (1970) A general method for analysis of covariance structures. Biometrika
57:239–251

Kalbitzer J, Erritzoe D, Holst KK, Nielsen F, Marner L, Lehel S, Arentzen T, Jernigan
TL, Knudsen GM (2010) Seasonal changes in brain serotonin transporter binding in
short serotonin transporter linked polymorphic region-allele carriers but not in long-
allele homozygotes. Biological Psychiatry 67:1033–1039, DOI 10.1016/j.biopsych.2009.
11.027

Kenward MG, Molenberghs G (1998) Likelihood based frequentist inference when data
are missing at random. Statist Sci 13(3):236–247, DOI 10.1214/ss/1028905886

Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics
38:963–974

Lehmann EL, Romano JP (2005) Testing statistical hypotheses, 3rd edn. Springer Texts

88

http://www.jneurosci.org/cgi/reprint/30/9/3391.pdf
http://CRAN.R-project.org/package=sem
http://genomebiology.com/2004/5/10/R80
http://CRAN.R-project.org/package=mvtnorm
http://www.bank-banque-canada.ca/pgilbert
http://lava.r-forge.r-project.org/
http://CRAN.R-project.org/package=gof

in Statistics, Springer, New York
Liang KY, Zeger S (1986) Longitudinal data analysis using generalized linear models.

Biometrika 73(1):13–22
Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley Series

in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ
Magnus JR, Neudecker H (1988) Matrix differential calculus with applications in statistics

and econometrics. Wiley Series in Probability and Mathematical Statistics: Applied
Probability and Statistics, John Wiley & Sons Ltd., Chichester

McArdle JJ, McDonald RP (1984) Some algebraic properties of the reticular action model
for moment structures. The British journal of mathematical and statistical psychology
37 (2):234–251

Muthén LK, Muthén BO (2007) Mplus User’s Guide (Version 5), 5th edn. Los Angeles,
CA: Muthén & Muthén

Paik M (1988) Repeated measurement analysis for nonnormal data in small samples.
Communications in Statistics - Simulation and Computation 17:1155–1171

Pinheiro JC, Bates DM (2000) Mixed-Effects Models in S and S-PLUS. Springer
Pinheiro JC, Chao EC (2006) Efficient laplacian and adaptive gaussian quadrature algo-

rithms for multilevel generalized linear mixed models. Journal of Computational and
Graphical Statistics 15(1):58–81

R Development Core Team (2010) R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria, URL
http://www.R-project.org/, ISBN 3-900051-07-0

Rabe-Hesketh S, Skrondal A, Pickles A (2004) Generalized multilevel structural equation
modeling. Psychometrika 69:167–190, DOI 10.1007/BF02295939

Raftery A (1993) Bayesian model selection in structural equation models. In: Bollen
K, Long J (eds) Testing Structural Equation Models, Sage, Newbury Park CA, pp
163–180

Rotnitzky A, Robins JM (1995) Semiparametric regression estimation in the presence of
dependent censoring. Biometrika 82(4):805–820

Sanchez BN, Budtz-Jørgensen E, Ryan LM, Hu H (2005) Structural equation models: A
review with applications to environmental epidemiology. J Am Stat Assoc 100:1443–
1455

Sharpsteen C, Bracken C (2010) tikzDevice: A Device for R Graphics Output in
PGF/TikZ Format. URL http://R-Forge.R-project.org/projects/tikzdevice/,
R package version 0.5.2/r34

Steiger JH (2001) Driving fast in reverse. Journal of the American Statistical Association
96(453):331–338, DOI 10.1198/016214501750332893

Therneau T, original R port by Thomas Lumley (2009) survival: Survival analysis, in-
cluding penalised likelihood. URL http://CRAN.R-project.org/package=survival,
R package version 2.35-8

White H (1982) Maximum likelihood estimation of misspecified models. Econometrica
50(1):1–26

Williams RL (2000) A note on robust variance estimation for cluster-correlated data.
Biometrics 56(2):645–646, DOI 10.1111/j.0006-341X.2000.00645.x

Yan J, Fine J (2004) Estimating equations for association structures. Stat Med 23:859–
874, DOI 10.1002/sim.1650

89

http://www.R-project.org/
http://R-Forge.R-project.org/projects/tikzdevice/
http://CRAN.R-project.org/package=survival

	1 Introduction
	2 Linear Latent Variable Models
	2.1 Implementation
	2.2 Inference - standard SEM
	2.3 Interactions with latent variables
	2.4 Non-linear effects
	2.5 Multigroup analysis

	3 Model specification
	3.1 Specifying Linear Relationships
	3.2 Constraining Parameters
	3.2.1 Constraining regression parameters
	3.2.2 Constraining covariance parameters
	3.2.3 Constraining intercepts

	3.3 Simultaneously specifying constraints on intercepts, slopes and variances
	3.4 Random slopes
	3.5 Non-linear constraints and effects
	3.6 Complex models with feedback or co-existance of regression associations and covariance between residuals

	4 Inspecting the model assumptions
	5 Simulation
	6 Inference
	6.1 Direct and indirect effects
	6.2 Hypothesis testing
	6.2.1 Likelihood Ratio Test
	6.2.2 Wald Test
	6.2.3 Score Test
	6.2.4 Model searching with the Score test

	6.3 Model equivalence
	6.4 Confidence limits

	7 Multigroup models
	8 Data with missing values
	9 Beyond the standard linear Gaussian case
	9.1 Clustered correlated data
	9.2 Mixture models
	9.3 Binary data
	9.4 Censored data
	9.4.1 Inverse probability weights

	9.5 Instrumental variables

	10 Graphics
	10.1 Graph Attributes
	10.2 Graph Layout

	11 Application: Brain serotonin transporter imaging data
	12 Conclusion
	13 Acknowledgments
	Appendix A Some zero-one matrices
	Appendix B The Score Function and Information
	Appendix B.0.1 Score function
	Appendix B.0.2 The Information matrix

