Skip to main content
Log in

Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Compared to the conditional mean or median, conditional quantiles provide a more comprehensive picture of a variable in various scenarios. A semi-parametric quantile estimation method for a double threshold auto-regression with exogenous regressors and heteroskedasticity is considered, allowing representation of both asymmetry and volatility clustering. As such, GARCH dynamics with nonlinearity are added to a nonlinear time series regression model. An adaptive Bayesian Markov chain Monte Carlo scheme, exploiting the link between the quantile loss function and the asymmetric-Laplace distribution, is employed for estimation and inference, simultaneously estimating and accounting for nonlinear heteroskedasticity plus unknown threshold limits and delay lags. A simulation study illustrates sampling properties of the method. Two data sets are considered in the empirical applications: modelling daily maximum temperatures in Melbourne, Australia; and exploring dynamic linkages between financial markets in the US and Hong Kong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bassett G, Koenker R (1982) An empirical quantile function for linear models with iid errors. J Am Stat Assoc 77:407–415

    MathSciNet  MATH  Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroscedasticity. J Econom 31:307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Brooks C (2001) A double-threshold GARCH model for the French Franc/Deutschmark exchange rate. J Forecast 20:135–143

    Article  Google Scholar 

  • Cai Y (2010) Forecasting for quantile self-exciting threshold autoregressive time series models. Biometrika 97:199–208

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Y, Stander J (2008) Quantile-self exciting threshold time series models. J Time Ser Anal 29:187–202

    MathSciNet  Google Scholar 

  • Chen CWS, Gerlach RH, Lin AMH (2010) Falling and explosive, dormant, and rising markets via multiple-regime financial time series models. Appl Stoch Model Bus Ind 26:28–49

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, Gerlach R, So MKP (2006) Comparison of non-nested asymmetric heteroscedastic models. Comput Stat Data Anal 51:2164–2178

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, Gerlach R, Wei DCM (2009) Bayesian causal effects in quantiles: accounting for heteroscedasticity. Comput Stat Data Anal Spec Issue Comput Econom 53:1993–2007

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, Lin S, Yu PLH (2012) Smooth transition quantile capital asset pricing models with heteroscedasticity. Comput Econ 40:19–48

    Article  MATH  Google Scholar 

  • Chen CWS, So MKP (2006) On a threshold heteroscedastic model. Int J Forecast 22:73–89

    Article  MATH  Google Scholar 

  • Chen C, Sato S (2008) Inhomogeneous jump-GARCH models with applications in financial time series analysis. In: COMPSTAT, Proceedings in computational statistics, pp 217–228

  • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Engle RF, Manganelli S (2004) CAViaR: conditional autoregressive value at risk by regression quantiles. J Bus Econ Stat 22:367–381

    Article  MathSciNet  Google Scholar 

  • Eun CS, Shim S (1989) International transmission of stock market movements. J Financ Quant Anal 24:241–256

    Article  Google Scholar 

  • Galvao AF Jr, Montes-Rojas G, Olmo J (2010) Threshold quantile autoregressive models. J Time Ser Anal 32:253–267

    Article  MathSciNet  Google Scholar 

  • Gerlach R, Chen CWS, Chan NCY (2011) Bayesian time-varying quantile forecasting for value-at-risk in financial markets. J Bus Econ Stat 29:481–492

    Article  MathSciNet  Google Scholar 

  • Giordani P, Kohn R, van Dijk D (2007) A unified approach to nonlinearity, structural change, and outliers. J Econom 137(1):112–133

    Article  MathSciNet  Google Scholar 

  • Gourieroux C, Jasiak J (2008) Dynamic quantile models. J Econom 147:198–205

    Article  MathSciNet  Google Scholar 

  • Hansen BE (1994) Autoregressive conditional density estimation. Int Econ Rev 35:705–730

    Article  MATH  Google Scholar 

  • Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  MATH  Google Scholar 

  • Hyndman RJ, Bashtannyk DM, Grunwald GK (1996) Estimating and visualizing conditional densities. J Comput Graph Stat 5:315–336

    MathSciNet  Google Scholar 

  • Huang D, Yu B, Lu Z, Fabozzi F, Forcardi S, Fukushima M (2010) Index-Exciting CAViaR: a new empirical time-varying risk model. Stud Nonlinear Dyn Econom 14:1–24

    MATH  Google Scholar 

  • Karolyi GA (1995) A multivariate GARCH model of international transmissions of stock returns and volatility: the case of the United States and Canada. J Bus Econ Stat 13:11–25

    Google Scholar 

  • Koenker R (2000) Galton, Edgeworth, Frisch and prospects for quantile regression in econometrics. J Econom 95:347–374

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Machado J (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94:1296–1310

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Xiao Z (2004) Unit root quantile autoregression inference. J Am Stat Assoc 99:775–87

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Xiao Z (2006) Quantile autoregression. J Am Stat Assoc 101:980–990

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Zhao Q (1996) Conditional quantile estimation and inference for ARCH models. Econom Theory 12:793–813

    Article  MathSciNet  Google Scholar 

  • Li WK, Lam K (1995) Modelling asymmetry in stock returns by a threshold ARCH model. Statistician 44:333–341

    Article  Google Scholar 

  • Li CW, Li WK (1996) On a double-threshold autoregressive heteroscedastic time series model. J Appl Econom 11:253–274

    Article  Google Scholar 

  • McLeod AI, Li WK (1983) Diagnostic checking ARMA time series models using squared-residual autocorrelations. J Time Ser Anal 4:269–273

    Article  MathSciNet  MATH  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

    Article  Google Scholar 

  • Petruccelli JD, Woolford SW (1984) A threshold AR(1) model. J Appl Probab 21:270–286

    Article  MathSciNet  MATH  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64:583–639

    Article  MathSciNet  MATH  Google Scholar 

  • Tong H (1978) On a threshold model. In: Chen CH (ed) Pattern recognition and signal. Sijtho& Noordho, Amsterdam

    Google Scholar 

  • Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical data (with discussion). J R Stat Soc Ser B 42:245–292

    MATH  Google Scholar 

  • Tsay RS (1989) Testing and modeling threshold autoregressive processes. J Am Stat Assoc 84:231–240

    Article  MathSciNet  MATH  Google Scholar 

  • Tsay RS (1998) Testing and modeling multivariate threshold models. J Am Stat Assoc 93:1188–1202

    Article  MathSciNet  MATH  Google Scholar 

  • Weiss A (1987) Estimating nonlinear dynamic models using least absolute error estimation. Econom Theory 7:46–68

    Article  Google Scholar 

  • Xiao Z, Koenker R (2009) Conditional quantile estimation for GARCH Models. J Am Stat Assoc 104:1696–1712

    Article  MathSciNet  MATH  Google Scholar 

  • Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research area. Statistician 52:331–350

    MathSciNet  Google Scholar 

  • Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54:437–447

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the editor, associate editor, and two anonymous referees for their insightful and helpful comments, which improved this paper. Cathy Chen is supported by the grants: NSC 99-2118-M-035 -001 -MY2 from the National Science Council (NSC) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy W. S. Chen.

Appendix

Appendix

Derivation of the standardized SL density and corresponding likelihood expression in (5) is given below. Consider that a random variable \(z\) follows a SL distribution with density

$$\begin{aligned} f_\tau (z)=\frac{\tau (1-\tau )}{\delta }\exp \left\{ -\frac{z-\mu }{\delta }(\tau -I(\frac{z-\mu }{\delta }<0)) \right\} , \end{aligned}$$

where \(\mu \) is the mode and \(\delta \) is a scale parameter. The mean and variance of a \(SL(0,\delta ,\tau )\) are

$$\begin{aligned} E(z)=\frac{1-2\tau }{\tau (1-\tau )}\delta ,\quad Var(z)=\frac{1-2\tau +2\tau ^2}{\tau ^2(1-\tau )^2}\delta ^2. \end{aligned}$$

Suppose that the model error \(\varepsilon _t\) is equal to the standardized \(z\), i.e.

$$\begin{aligned} \varepsilon _t=\frac{z}{\sqrt{Var(z)}}, \end{aligned}$$

The density function for \(\varepsilon _t\) is then:

$$\begin{aligned} g_\tau (\varepsilon _t)&= |J|f_\tau (\varepsilon _t\sqrt{ Var(z)}) = \left(\frac{\sqrt{1-2\tau +2\tau ^2}}{\tau (1-\tau )}\delta \right) \\&\times \frac{\tau (1-\tau )}{\delta }\exp \left\{ -\frac{\varepsilon _t\sqrt{ Var(z)}}{\delta }\left(\tau \!-\!I\left(\frac{\varepsilon _t\sqrt{ Var(z)}}{\delta }\!<\!0\right)\right) \right\} \\&= \sqrt{1-2\tau +2\tau ^2}\exp \left\{ -\frac{\varepsilon _t\frac{\sqrt{1-2\tau +2\tau ^2}}{\tau (1-\tau )}\delta }{\delta }\left(\tau -I\left(\frac{\varepsilon _t\frac{\sqrt{1-2\tau +2\tau ^2}}{\tau (1-\tau )}\delta }{\delta }<0\right)\right) \right\} \\&= \sqrt{1-2\tau +2\tau ^2}\exp \left\{ -\varepsilon _t\frac{\sqrt{1-2\tau +2\tau ^2}}{\tau (1-\tau )}(\tau -I(\varepsilon _t<0)) \right\} \\&= \sqrt{1-2\tau +2\tau ^2}\exp \left\{ \varepsilon _t\frac{\sqrt{1-2\tau +2\tau ^2}}{\tau -I(\varepsilon _t\ge 0))} \right\} , \end{aligned}$$

where \(|J|=|\frac{\partial z}{\partial \varepsilon _t}|=\frac{\sqrt{1-2\tau +2\tau ^2}}{\tau (1-\tau )}\delta \)

Moreover, since \(\varepsilon _t=(y_t-\acute{Y_{t-1}}\phi (\tau )-\acute{X_{t-1}}\psi (\tau ))/(\sqrt{h_t})\) and \(\frac{\partial \varepsilon _t}{\partial y_t}=(\sqrt{h_t})^{-1}\), the likelihood function for this model becomes as given in (5).

$$\begin{aligned}&{\mathcal L}({\varvec{Y}}\mid {\varvec{\Phi }}) \propto \prod _{t=s+1}^T \frac{1}{\sqrt{h_{t}}} \\&\quad \left\{ \exp \left( \sum _{t=s+1}^{T}\sum ^{2}_{j=1} \frac{\sqrt{1-2\tau +2\tau ^{2}}(y_{t}-\mathbf Y _{t-1}^{\prime }{\varvec{\phi }} ^{(j)}(\tau )-\mathbf X _{t-1}^{\prime }{\varvec{\psi }}^{(j)}(\tau ))}{\sqrt{h_{t}}(\tau -I(y_{t}\ge \mathbf Y _{t-1}^{\prime }{\varvec{\phi }}^{(j)}(\tau )+\mathbf X _{t-1}^{\prime }{\varvec{\psi }}^{(j)}(\tau )))}\right.\right.\nonumber \\&\quad \qquad \times \left.\left.I( z_{t-d(\tau )}\in S_j) \right) \right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.W.S., Gerlach, R. Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity. Comput Stat 28, 1103–1131 (2013). https://doi.org/10.1007/s00180-012-0346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-012-0346-9

Keywords

Navigation