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Abstract In this work we propose a novel EM method for the estimation of
nonlinear nonparametric mixed-effects models, aimed at unsupervised classification.
We perform simulation studies in order to evaluate the algorithm performance and we
apply this new procedure to a real dataset.
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1 Introduction

Nonlinear mixed-effects models (NLME models) are mixed-effects models in which
at least one of the fixed or random effects appears nonlinearly in the model function.
NLME models are increasingly used in several biomedical applications, especially in
population pharmacokinetics, pharmacodynamic, immune cells reconstruction and
epidemiological studies (see Sheiner and Beal 1980; Davidian and Gallant 1993;
De Lalla et al. 2011; Ieva et al. 2012).

In these fields, statistical modeling based on NLME models takes advantage of tools
that allow to distinguish overall population effects from drugs effects or unit specific
influence.
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1550 L. Azzimonti et al.

Mixed-effects models include parameters associated with the entire population
(fixed effects) and subject/group specific parameters (random effects). For this reason,
mixed-effects models are able to describe the dynamics of the phenomenon under
investigation, even in presence of high between subjects variability. When the random
effects represent a deviation from the common dynamics of the population, mixed-
effects models provide both estimates for the entire population’s model and for each
subject’s one. In this work random effects have a different meaning, in fact they
describe the common dynamics of different groups of subjects. In this framework,
mixed-effects models provide only estimates for each group-specific model. Thanks
to this property, it will be possible to consider mixed-effects models as an unsupervised
clustering tool for longitudinal data and repeated measures. For this reason we focus
our attention on the estimation of the distribution of the random effects P*.

A wide literature exists for parametric modeling of random effects distribution in
linear and NLME models. In this framework, Maximum likelihood (ML) estimators
are generally preferred because of their consistency and efficiency. However, due to
the nonlinearity of the likelihood, we are not always able to provide explicitly the
parameter estimators. A general and complete overview of linear multilevel models
is given in Hox (1995). An analogous overview for nonlinear case is given in Gallant
(1987). Fox (2002) shows how R and S-plus tools estimate linear and generalized
linear mixed-effects models with parametric, in particular Gaussian, random effects.
Concerning nonlinear models, in Goldstein (1991) a ML estimation of Gaussian
random effects is provided for peculiar nonlinear forms. A stochastic approxima-
tion of traditional EM algorithm (SAEM) for estimating Gaussian random effects is
suggested in Kuhn and Lavielle (2005), whereas an exact EM algorithm is described
in Walker (1996). Finally, Wolfinger (1993) introduces a Laplace approximation for
nonlinear random effects marginal distributions. However, parametric assumptions
may sometimes result too restrictive to describe very heterogeneous or grouped pop-
ulations. Moreover, when the number of measurements for unit is small, predictions
for random effects are strongly influenced by the parametric assumptions. For these
reasons nonparametric (NP) framework, which allow P* to live in an infinite dimen-
sional space, is attractive. It also provides in a very natural way a classification tool,
as we will highlight later.

Methods for the estimation of linear NP random effects distribution in linear and
generalized linear mixed-effects models have been proposed in Aitkin (1996; 1999),
whereas Lai and Shih (2003), Davidian and Gallant (1993), Vermunt (2004), Antic et
al. (2009), among others, deal with NP nonlinear models.

In this work we propose a novel estimation method for nonlinear NP mixed-effects
models, aimed at unsupervised classification. Classification is performed through the
estimation of the random effects distribution. The discreteness of the distribution, in
fact, naturally clusters data in groups. The present algorithm is implemented in R
program (version 2.14.0, R Development Core Team 2009) and the R source code
is downloadable at the webpage http://mox.polimi.it/~azzimonti. To the best of our
knowledge, this is the first example of free software for the estimation of nonlinear
NP mixed-effects models.

In Sect. 2 the general framework of the work is sketched out and the algorithm for
the estimation of nonlinear nonparametric random effects (NLNPEM) is described.
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In Sect. 3 some simulation studies are presented, both for the linear and nonlinear case.
We first compare the performance of our procedure with the already existing method
in the linear framework, computing the Wasserstein distance between the true and
the estimated distribution of random effects and the goodness of fit index —2log L,
then we test NLNPEM in the nonlinear case. Section 4 contains an application to real
data. Concluding remarks and further developments of the present work are finally
discussed in Sect. 5.

2 Methods
2.1 Model and framework

We consider the following NLME model for longitudinal data:

yi=f(B.b,)+e¢ i=1,...,N "
€ ~N©,0%I,) iid.

where y; € R” is the response variable evaluated at times t € R” and f is a general,
real-valued and differentiable function with p 4 g parameters. Each parameter of f is
treated either as fixed or as random. Fixed effects are parameters associated with the
entire population whereas random effects are subject-specific parameters that allow
to identify clusters of subjects. B € R” is a vector that contain all fixed effects and
b; € R? is the vector for the ith subject random effects.

The function f is nonlinear at least in one component of the fixed or random effects.
The errors ¢;; are associated with the jth measurement of the ith longitudinal data.
They are normally distributed, independent between different subjects and independent
within the same subject. In general, the proposed method could also take account of a
different number of observations, located at different times, for different subjects. In
(1) we chose not to consider this case in order to ease the notation, but the generalization
is straightforward.

Usually random effects are assumed to be Normal distributed, b; ~ N, (0, X), with
unknown parameters that, together with 8 and 2, can be estimated through methods
based on the likelihood function (see Pinheiro and Bates 2000). In this parametric
framework the ML estimators are generally preferred for their statistical properties,
i.e., consistency and efficiency. Nevertheless the parametric assumptions could be too
restrictive to describe highly heterogeneous or grouped data, so it might be necessary
to move to a NP approach. In our case, we assume b;, fori = 1,..., N, to be
independent and identically distributed according to a probability measure P* that
belongs to the class of all probability measures on R?. P* can then be interpreted as
the mixing distribution that generates the density of the stochastic model in (1). We can
face the problem of estimating P* following the general theory of mixture likelihoods
analysed form a geometrical point of view in Lindsay (1983a; 1983b). Looking for the
ML estimator P* of P* in the space of all probability measures on R?, the discreteness
theorem proved in Lindsay (1983a), states that P* is a discrete measure with at most N
support points. Moreover under suitable hypotheses on the distribution of the response
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1552 L. Azzimonti et al.

variable, satisfied for example by densities in the exponential family, the ML estimator
is also unique as proved in Lindsay (1983b). Therefore the ML estimator of the random
effects distribution can be expressed as a set of points (¢, ..., ¢y), where M < N
and ¢; € R?, and a set of weights (wy, ..., wy), where w; > 0 and ZZAL w = 1.

As mentioned above, in this paper we propose an algorithm for the joint estimation
of B, o2, (¢1,...,¢y) and (i, ..., wy) in the nonlinear framework of model (1).
The estimation of the fixed effects B, of the random effects b; and of the variance
o2 is performed through the maximization of the likelihood, mixture by the discrete
distribution of the random effects

@l e 202 i= 1ZJ L Oij—f(Bert)’ )

M
L(B,o?|y) = p(yl B, 0% = o
; Q2ro?) 2

with respect to the fixed effects B, the error variance o2 and the random effects distri-

bution (¢;, wy), I = 1, ..., M. Each iteration of the algorithm described in Sect. 2.2
increases the likelihood in (2).
Concerning the distribution of random effects, foreach/ = 1, ..., M, ¢; and wy

represent the group specific parameters and the corresponding weights in the mixture
(2), respectively. Notice that the number of support points M is computed by the
algorithm as well and we do not have to fix it a priori. Since we don’t have to specify
a priori the number of support points and in consequence the number of groups, the
NP mixed-effects model could be interpreted as an unsupervised clustering tool for
longitudinal data. This tool could be very useful in order to identify the groups of
subjects to be used in the analysis.

2.2 NLNPEM algorithm

The algorithm proposed for the estimation of the parameters of model (1) is an
EM algorithm that arises from the framework described in Schumitzky (1991). The
nonlinear nonparametric EM algorithm is an iterative algorithm that alternates an
expectation step and a maximization step. During the expectation step we compute
the conditional expectation of the likelihood function with respect to the random
effects, given the observations and the parameters computed in the previous iteration,
whereas during the maximization step we maximize the conditional expectation of the
likelihood function. In this framework the random effects can be regarded as latent
variables introduced in the model in order to take into account the overdispersion
derived from the grouped structure of data. These variables are summed up in the
likelihood during the E step as a mixing distribution.

At each iteration of the EM algorithm we obtain an update of the parameters that
increases the likelihood (2), as proved in “Appendix A”. The update is the following:

o = Z Wi forl =1, (3)
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M N

(B, ¢, e, o)) = arg Juax, 373 Waln p(xil B.0% e (4
LT =1 =1

where
wrp(yil B.o?, ¢))
Wi = 57— . Q)
D1 kP (yil B.o%, )
and
(vi| B 2 ¢) = 1 —%%Zﬁzl(yij—f(ﬁ,c,rn)z
p yl 70- ’ - (27_[0.2)"/26 .

The coefficients W;; represent the probability of b; being equal to ¢; conditionally to
the observation y; and given the fixed effects B and the variance o2, that is

Wi = p(b; = ¢/lyi, B,07)
in fact,

_ pi =c)p(yil B.o?.¢)  plyi.bi =c¢|B.0?)

Wi = = — b; = i B, 2.
: P(yilB.0?) S Bor = P =alyi.B.o)

Due to the high dimensionality of the parameter space in the maximization step, we
compute the arg—max in (4) iteratively until convergence. In the first step of this
iterative procedure we compute the arg—max in (4) with respect to the support points
of the random effects distribution, setting 8 and o' equal to the last computed values.
Keeping B and o2 fixed enables us to maximize the expected loglikelihood with respect
to all the support points ¢; separately, that means

N
o' = arng‘XZWillnp(yi|ﬂ7U2vc) I=1...M ©®

i=1

In the second step we fix the support points of the random effects distribution computed
in the previous step and we compute the ar g—max in Eq. (4) with respect to 8 and 2.

In order to compute the point estimate b; of b; for each subjecti = 1,..., N, we
maximize the conditional probability of b; given the observations y;, the fixed effects
B and the error variance o2, For this reason the estimation of the random effects, ﬁi,
is obtained maximizing W;; over [, that is

l;i =¢ if [ = argmlax Wir.

The algorithm, given a starting discrete distribution with N support points for the
random effects and a starting estimate for the fixed effects, updates the parameters
through Egs. (3) and (4) until convergence. The convergence of EM algorithms is
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usually local but in this case we can obtain global convergence since the likelihood
(2) has a unique maximum. Technical details together with the sketch of the algorithm
are reported in “Appendix B”.

During the iterations of the EM algorithm we can also reduce the support of the
discrete distribution, in order to cluster the support of the random effects distribution.
This support reduction consists in both making points very close to each other collapse
and removing points with very low weight and not associated with any subject. In
particular if two points are too close, that means |¢; — ¢x|| < D, where D is a tuning
tolerance parameter, than we replace ¢; and ¢, with a new point €ming k) = (€7 +¢x)/2
with weight wming k) = @ + wi. Otherwise, if w; < @, where @ is another tuning
tolerance parameter, and the subset {i : bi = ¢} is empty, we remove the point ¢;. The
thresholds D and @ are two complexity parameters that affect the estimation of the
NP distribution; the higher D is set, the lower is the number of groups. For this reason
the two complexity parameters define a trade off between bias and high number of
groups. In this work we prefer setting D small (i.e., much smaller than the standard
deviation between groups) in order to obtain an higher number of groups and, in case,
cluster them later. In general, the definition of the correct number of groups is an hard
task, and it is strongly connected with thresholding. In the following, some rules of
thumb will be provided for performing a suitable setting of parameters D and ®.

3 Simulation studies

In order to validate the proposed estimation algorithm and to compare it with
different procedures, we perform two simulation studies. Since we are mainly inter-
ested in classifying curves in an unsupervised framework, we focus our attention on
the estimation of random effects distribution.

In the first simulation study (Sect. 3.2), we test our algorithm in a linear frame-
work, in order to compare results of our procedure with those obtained with the algo-
rithm introduced in Aitkin (1996) and implemented in the npmlreg R-package (see
Einbeck et al. 2009). In the second one (Sect. 3.3), we consider two classic nonlinear
functions f in (1): the exponential and the logistic growth curves. For each case we
consider a test set of simulated curves (details are provided in “Appendix C”) and we
evaluate the algorithm performance in the estimation of the random effects computing
the Wasserstein distance (defined in Sect. 3.1) between the true and the estimated
distribution of the random effects.

3.1 Wasserstein distance

Evaluating the goodness of the estimation of a discrete distribution is not a straight-
forward task. Indeed, ways of comparing the true and the estimated probability dis-
tribution of the random effects have to take in account both support locations and
weights, for this reason we adopt a multidimensional version of Wasserstein distance
(see Gibbs and Su 2002). The Wasserstein distance between two probability measures
W, von asubset £2 of the metric space R is defined as
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dw(u,v) = / |[F(x) — G(x)|dx, @)

where F and G are the cumulative distribution functions of p and v respectively.
The generalization to the g-dimensional case is straightforward. When the probability
measures p and v are discrete, the computation of the integral in (7) is very easy, even
in the g-dimensional case. It is known that the Wasserstein metric assumes values in
[0, |$2]], where |£2] is the Euclidean measure of the support space §2. For this reason,
the Wasserstein distance divided by |£2] is a good performance index for the evaluation
of the estimates in the simulations study.

3.2 Linear cases

In this subsection, a simulation study for linear models is considered, therefore f in
model (1) is linear. The general model, fori = 1, ..., N, include three different cases,
that are:

o +dit+ € (random-slope case)
yi = 3 ai +t+¢€ (random-intercept case)
a; +dit +¢€; (fully random case)

where ¢; are i.i.d. from N(0, o21,) and t is the vector of sampling times. Intercept
and slope are treated as fixed or random effects according to the different cases.
In the fully random case, both slope and intercept parameters are considered ran-
dom, i.e., b; = (d;, a;), whereas in the random-slope and random-intercept case,
b; = d; and b; = a; respectively. The interest is focused on random effects esti-
mation, because our main goal is to test the performance of our algorithm in iden-
tifying the correct number of groups in simulated data and in estimating properly
location and weights of different groups. Testing the linear case enables us to com-
pare results of our algorithm with those carried out by the R algorithm npmlreg,
which implements Aitkin (1996) procedure of NP random effects estimation. To be
noticed is that our method is not efficient in the linear case, since it doesn’t take
advantage of the linearity of the problem. However it doesn’t need any a priori
specification of the number of distinct support points of the random effects distri-
bution. Even if we don’t specify the exact number of groups beforehand, the proposed
method is able to estimate well the random effects distribution, as we will show in the
following.

We simulated 8 datasets of linear growth curves grouped in a different number
of balanced or unbalanced clusters (from 2 to 10 clusters). Parameters specification
and details of each set of curves are reported in “Appendix C”. All these datasets
represent typical situations in which fitting a parametric mixed-effects model could
be wrong because random effects are not normally distributed. On these datasets, we
fitted models with both the NLNPEM method and the nonparametric ML approach
introduced in Aitkin (1996).
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1556 L. Azzimonti et al.

The method introduced in Aitkin (1996) is a method for fitting overdispersed
generalized linear models: the idea is to approximate the unknown and unspecified
distribution of the random effects by a discrete mixture of densities from exponential
family. This approximation leads to a simple expression of the marginal likelihood
that can be maximized using a standard EM algorithm. Once specified the model and
the number of random effects groups &, the R package npmlreg fits a linear mixed-
effects model using nonparametric ML. Since we are testing the proposed method in
a simulation setting, when npmlreg method is used we provide the correct number
of groups, whereas, when NLNPEM is used, we don’t have to. The N starting points
for random effects distribution are randomly chosen in a proper range and the starting
fixed effects are estimated through linear least squares. Finally, the tolerance D is
set equal to 0.05 and @ equal to 0.05 in all cases. These two parameters are problem
driven; o for example is linked to the size of the smallest group that we want to detect,
while D represents the minimum allowed distance between different points of the dis-
crete random effects distribution. In particular, in the real case it is useful to perform
a sensitivity analysis to set these two parameters, since the proposed method is an
explorative tool for the detection of the real number of groups. A rule of thumb for
setting these threshold parameters is the following: D may be much smaller than the
standard deviation; on the other hand, ® may be set of the same order of the inverse
of the total number of the observation in the dataset.

According to the dimension of the random effects (¢ = 1 for random-slope or
random-intercept case, ¢ = 2 when both effects are random), we properly define the
model in npmlreg and NLNPEM algorithms. Notice that npm1 reg does not allow
to select one dimensional random effect in the case of random-slope only, but provides
a random effects estimation for both intercept and slope parameters. In this case, in
order to correctly compare the two methods, we have set also in the NLNPEM method
both slope and intercept to be random in the random-slope case. Of course, in the
NLNPEM method, random effects only for the slope may be selected by the user, if
necessary.

Figure 1 shows the classification obtained applying the NLNPEM method to the
1in2I, 1in3S, 1in9SI (first row), lin10I and lin10S (second row) datasets respectively. In
each simulation a suitable version of the NLNPEM method is used in order to compare
the results with the npmlreg method, i.e., random-intercept (¢ = 1) for lin2I and
lin10I, random-slope and -intercept (¢ = 2) for lin3S, 1in9STI and lin10S.

In Tables 4, 5 and 6 of “Appendix D”, results of npmlreg and NLNPEM
algorithms for three representative cases are compared, i.e., the estimations of random
effects in terms of points and weights are reported and compared with the correspond-
ing true distributions. Observing the estimated values reported in these tables , it can
be argued that both methods estimate well both the discrete random components of the
model and the fixed effects when a small number of groups is considered. Increasing
the number of groups, the two algorithms show a different behavior. In particular we
notice that, for large number of groups, npmlreg doesn’t detect some points of the
NP distribution, whereas NLNPEM performs better, even ignoring the true number of
groups.

In terms of misclassification rate, the NLNPEM method performs better than the
competitor. The mean misclassification rate (MMR) over all the simulations settings is
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Fig. 1 NLNPEM classification of curves belonging to lin2l, 1lin3S, 1in9SI (first row), lin10I and lin10S
(second row) datasets, respectively

equal to 4.57 % using NLNPEM and to 5.84 % using npm1reg. Moreover, comparing
the results obtained with the two methods in each simulation set, we notice that the
bigger is the number of groups, the more significant is the difference between mis-
classification rates (for example, in lin10I model, NLNPEM misclassifies 14 % of the
150 curves vs. 20 % of npmlreg). It has also to be noticed that misclassification in
NLNPEM method is caused by the detection of too many groups; in this case curves
belonging to the same original group are assigned to different groups characterized by
location points very close one to each other. This behavior can then be corrected prop-
erly tuning the tolerance parameters. The number of groups computed by the NLNPEM
algorithm, in fact strongly depends on the tuning tolerances D and @, introduced in
Sect. 2.2. Since the NLNPEM method is an explorative tool, different parameters D
and @ can be used to investigate the presence of groups. Even if the number of points
is greater than the real number, the points tend to cluster near the true ones. Moreover,
summing the weights of the points in each cluster, we obtain results similar to the
exact weights. Anyway, within the context of explorative analyses carried out in an
unsupervised framework, the NLNPEM method provides information on the number
of the groups that effective is. The clues concerning the number of groups provided by
NLNPEM algorithm are effective and useful when clustering is the main goal of the
analysis. The proposed method is also capable of detecting outlier groups, whereas
the npmlreg method is able to detect them only in presence of small number of
groups. In general, we notice that sometimes npmlreg method performs poorly in
estimation or even doesn’t reach the convergence, whereas NLNPEM does. This is
clear, for example, observing what happens when there are 10 groups for intercept, in
“lin10I” dataset (see Table 6).

In order to resume the goodness of fit of NLNPEM and the npm1reg methods, we
finally compare the normalized Wasserstein distances between the true discrete random

@ Springer



1558 L. Azzimonti et al.

Table 1 Normalized Wasserstein distances and —2 log L index for npmlreg and NLNPEM algorithm
respectively in the simulated linear cases

Model Wasserstein distance —2log L
npmlreg NLNPEM npmlreg NLNPEM

lin2S 0.01357 0.01357 2861.2 954.0
lin21 0.00454 0.01001 2097.7 190.5
1in4SI 0.00812 0.00812 5974.4 2021.4
lin3S 0.00304 0.00451 2839.8 900.2
lin31 0.00345 0.00345 2938.3 1017.2
1in9SI 0.01776 0.00403 16127.0 5358.6
1lin10S 0.03363 0.00065 76716.1 18093.0
1lin101I 0.02305 0.00155 12795.8 2949.8

effects distribution and the estimated one through the two methods, for each simulated
set of linear curves. Results are reported in Table 1, together with the goodness of fit
index —21log L.

To be noticed is that, in the case of Wasserstein distance, results are similar for all
datasets where both algorithms perform well. On the other hand, significant differences
exist in cases with a large number of groups, where NLNPEM performance is much
better both in terms of Wasserstein distance and —2 log L.

3.3 Nonlinear cases

In this subsection we describe two nonlinear case studies: the exponential and the
logistic growth model. These two models are among the most used in nonlinear mixed-
effects framework because they find application in several areas like pharmacokinetics
and epidemiological studies.

Since other nonlinear NP methods are not available for free software, we are not
able to compare the NLNPEM results with those obtained with other methods; for this
reason we will only test NLNPEM performance, providing the normalized Wasserstein
distance between the true distribution and the estimated one.

3.3.1 Exponential growth model

We first describe the exponential case, in which we consider the following nonlinear
function in model (1):

f@O) =a(l—e™)

which is nonlinear in A. The two parameters « and A represent respectively the asymp-
tote and the growth rate.
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Fig. 2 NLNPEM classification in exp2A, exp3A and expl0A datasets, respectively

Table 2 Normalized

L Model Wasserstein distance
Wasserstein distances for
I\.ILNIPEIZI algonthn.l ;n the exp2A 0.00752
simulated exponential cases exp3A 0.00264
explOA 0.00348

In this case study we consider only random effects for the asymptote, that means that
the mixed-effects model becomes

yi=a; (1— é’_M) + €

where €; ~ N (0, Uzﬂn) are i.i.d. errors, a; are the random effects for the asymptote
(bi = a;) and A is the fixed effect for the growth rate (8 = A).

We simulated 3 datasets of exponential growth curves, described in Appendix C in
which only asymptote varies. The starting random effects distribution has N support
points, randomly chosen in a proper range, and the starting fixed effects are estimated
through nonlinear least squares. The tuning tolerance parameter D is set equal to 0.01
and @ equal to 0.05. Figure 2 shows original datasets, where each curve is colored
according to the group estimated by NLNPEM method.

The number of groups is larger than the real one in all the three cases; however
the estimated random effects create the right number of clusters located close to the
correct points. In the exp3A case the NLNPEM method is also able to identify the
outlier group estimating well the locations and the weights of the random effects. Only
few curves are misclassified, in fact the MMR is equal to 0.67 %. Table 2 shows the
normalized Wasserstein distance for each case.

3.3.2 Logistic growth model

The second nonlinear model tested is the logistic growth model. In this case, the
nonlinear function is:

f(l)=L,_5

14+e 7
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1560 L. Azzimonti et al.

where o represent the asymptote, § is the inflection point, which corresponds to the
time at which the growth curve reaches the half of the asymptote, and y is the time
elapsed between § and the time at which the growth curve reaches 3/4 of the asymptote
level. The parameter y will always be treated as a fixed effect while the asymptote
and the inflection point will be treated either as fixed or as random effect according to
different cases. The general model, which is nonlinear in § and y, includes then three
different cases:

a
ﬁ + €; (random-asymptote case)

14+e 7
o . .
yi=1 g T€ (random-inflection case) (8)
14 e 7
l —- + € (random-asymptote and inflection case)
Il+e v

where €, ~ N (0, 0211,,) are i.i.d. errors, a; and d; represent the random effects for
the asymptote and the inflection point, while «, § and y represent the fixed effects.
In particular in the random-asymptote case b; = a; and § = (6, y), in the random-
inflection case b; = d; and 8 = (¢, y) and in the random-asymptote and -inflection
caseb; = (a;,dj) and B = y.

We simulated 8 datasets of logistic growth curves that include all the cases resumed
in (8). Each dataset is composed by a different number of balanced or unbalanced
groups (from 2 to 10 clusters) similar to those presented in the linear framework.
Details are provided in “Appendix C”.

Since the NLNPEM method is able to fit all three models resumed in (8), we fit the
right model for each dataset. The starting random effects distribution has N support
points, randomly chosen in a proper range, and the starting fixed effects are estimated
through nonlinear least squares. We set the tolerance D equal to 0.05 and @ equal
to 0.05.

Figure 3 shows some of the simulated datasets, where each curve is colored accord-
ing to the group estimated by NLNPEM method. Even if we don’t specify a priori the
correct number of groups, we are able to cluster correctly the curves, in cases char-
acterized by both few and many groups, as proved by the MMR for the 8 simulated
logistic datasets, which is equal to 2.16 %. The method is also able to capture correctly
outliers; in all the unbalanced cases the proposed method recognizes the outliers and
estimates well both the locations and the weights of random effects.

In order to test the NLNPEM method we can compare these results with those obtained
considering always a model with both asymptote and inflection point as random effects.
For the two random-asymptote and -inflection cases we have obviously fitted only the
model with two random effects. The normalized Wasserstein distances are shown in
Table 3; the first column represents the normalized Wasserstein distance for a random-
inflection model (¢ = 1), the second one for a random-asymptote model (g = 1), and
the third one represents the same distance for models with two random effects (¢ = 2).

We first notice that the normalized Wasserstein distances are always very low, that
means that the NLNPEM method is able to estimate well both random and fixed effects
even in presence of a high number of groups. We also notice that in the NLNPEM
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Fig. 3 NLNPEM classification of curves belonging to logis2A, logis3l, logis9AI (first row), logis10A
and logis10I (second row) datasets, respectively

Table 3 Normalized Wasserstein distances for NLNPEM algorithm in the simulated logistic cases

Model Wasserstein distance

Random Inflection (g = 1) Random Asymptote (g = 1) Fully Random (¢ = 2)

logis2A - 0.00045 0.00730
logis2I 0.01065 - 0.00114
logis4Al - - 0.00422
logis3A - 0.00063 0.00094
logis31 0.00967 - 0.00171
logis9AI - - 0.00324
logis10A - 0.00151 0.00027
logis10I 0.00521 - 0.00017

method we are allowed to consider more parameters as random effects than needed,
without damaging the parameter estimation. In particular this approach could be useful
when we don’t know which are the parameters to be considered random. For this
purpose we could perform a first analysis considering all parameters as random effects
and then fit a second model fixing the parameters that show a very low variability. This
approach could be performed with the NLNPEM method because it can handle both
random and fixed effects whereas other previous methods cannot.

4 Application to NON STEMI data

In this section we study a dataset concerning Hospital Discharges of patients affected
by acute myocardial infarction (AMI) without ST-segment elevation (NON-STEMI).
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Fig. 4 Standardized number of o
AMI without ST-segment al
elevation diagnoses in the period ©
2000-2007 in the 30 largest
clinical institutions of Regione
Lombardia. The year has been
centered and normalization has
been carried out standardizing
the yearly number of diagnoses
for each hospital by total number
of diagnoses in the time window
2000-2007. Real data are
depicted according to the
NLNPEM clusters and
NLNPEM fitted models are
superimposed

Number of cases

0.05
1

-3 2 - 0 1 2 3
Centered Year

These data have already been studied in Ieva et al. (2012). Figure 4 represents the
normalized number of NON-STEMI diagnoses along the time period 2000-2007
grouped by hospital and relative to the 30 largest clinical institutions of Regione
Lombardia. For each hospital the yearly number of diagnoses has been stan-
dardized by the hospital total number of diagnoses in the time period 2000-
2007.

As pointed out in Ieva et al. (2012), the random-inflection case in model (8) seems
to capture the common “S-shaped” growing pattern. The NLNPEM algorithm clusters
the hospitalsin M = 2 different groups, according to the estimated discrete distribution
of the random effect for the inflection point (see Fig. 4). The estimated fixed effects
are @ = 0.16 and 7 = 1.45, the estimated discrete measure P* is concentrated on
(€1, ¢2) = (—3.61, —2.47) with weights (@1, @) = (0.16,0.84) and the estimated
variance is 62 = 8.1 x 10™%. This analysis, performed with D = 0.1 and ® = 0.05,
backs up the presence of two groups of hospitals according to different inflection
points and automatically detects an unsupervised cluster structure. Even if clinical best
practice maintains that there is no evidence for a greater incidence of NON-STEMI
in this period it is known that since the early 2000s a new diagnostic procedure—
the froponin exam—has been introduced and this could have produced an increased
number of positive diagnoses, by easing NON-STEMI detection. Hence, the presence
of 2 clusters could be a consequence of the different hospital timings in the introduction
and adoption of this practice. This hypothesis cannot be validated directly since the
timings of adoption of the troponin exam by the 30 different hospitals included in the
analysis are not available.

The good agreement with previous results detailed in Ieva et al. (2012) together with
the great advantage of a NP approach advocates the real profit in using this new
estimation algorithm.
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5 Conclusions

In this work, we present a new estimation method for nonlinear NP mixed-effects
models, aimed at unsupervised classification; this method, named NLNPEM, is based
on an EM algorithm and can be considered a flexible tool for investigating the presence
of groups in data.

We first tested this procedure in a linear framework against the already existing tool
for NP random effects estimation (the npmlreg R package), in order to compare
the performance of the new method in terms of random effects distribution estima-
tion. Results show that it performs well both in terms of Wasserstein distance and
—2log L index, even ignoring the real number of groups, and that it always reaches
convergence, even in those cases where several groups are present. Then we tested
NLNPEM algorithm also in simulated test set within nonlinear frameworks of expo-
nential and logistic growth. In both these cases, the number of groups and distribution
of random effects are correctly and effectively identified. An application to real data
of NON-STEMI is also presented in the end, where the potential of our method in
unsupervised clustering analysis is highlighted.

NLNPEM may be successfully adopted for investigating the grouped nature of data
also when the random effects distribution is not discrete. For example, we carried out
some simulations in the case of random effects distribution arising from different mix-
tures of Gaussian distributions, centered in the same location points of the exponential
and logistic cases treated in the paper. Also in this setting, NLNPEM proved to be
able to detect true locations of the mixture and to reconstruct the true distribution of
the random effects.

Acknowledgments The case study in Sect. 4 is within the Strategic Program “Exploitation, integration
and study of current and future health databases in Lombardia for Acute Myocardial Infarction” supported
by “Ministero del Lavoro, della Salute e delle Politiche Sociali” and by “Direzione Generale Sanita -
Regione Lombardia”.

Appendix A: Proof of increasing likelihood property of the EM algorithm

In Sect. 2.2 we propose an EM algorithm for the estimation of the parameters of
model (1). The update of the parameter described by Egs. (3) and (4) provides an
increasing of the likelihood function (2), that is

L (ﬂwm, 02(u17)‘y) > L (’3’ 02‘ y)

where @) and o2P) are the updated fixed effects and error variance. The likelihood
L(BWP), o2@P)|y) is computed summing up the random effects with respect to the
updated discrete distribution (c,(”p ) a)[(”p Nfori=1,..., M.

Thanks to the definition of likelihood function (2) we have that

L (Bup) 52wp) N | gUup) 2aup)
log|: (8 )] 2 50 g [ 2018002

L(B.a2%|y) = p(yil B, o?)
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All these terms can be bounded above by the quantity

p(yil BUP), a>P))
log 3
p(yil B,o*)

} > ;0“7 ,6) — 0;(6,0) ©)

where

M 2

wp(yil B, o~ ¢1)

Qi<9<“f’>,9>=§( s on )l (e il B 5 ")
=1 ’

Q; (0, 0) is analogously defined, and 8 = (B, ¢y, ..., ey, @1, ..., W, 02).
This bound can be found thanks to the convexity of the logarithm since

(up)p(y |ﬂ(up) C,.Z(Mp) (MP))
p(yil B, o?)

p(yil B“P), o 24P)) u
log 3 =lo
p(yil B, o)

£~
=1
zlog%(wzp(yz'lﬂ,oz,cl)) W p(yi| B, 2 )
p(yil B, 02) a)]p(yl|ﬂ’o- )
log(

=1
o "? p(yi| BUP, g2wr), c,(””)))

> Z(wzp(yz B.o? cl))
—~\ pWilB.o? wrp(yil B, o2, &)

= Q;(0“P,0) — 0;(6,0)

Defining

N N
QO“P,0) =" 0i0“",0) and  Q(6,6) = 0i(6,6)

i=1

we obtain, thanks to Eq. (9), an upper bound for the quantity of interest

L ('B(up), 02(up)|y) @p)
10g[ L(B.o7y) = Q™. 0) - 0(0,0)

We have now to show that VO
00", 0) > 06, 0)
In order to prove this result we can show that, VO fixed, 9P is defined as

0(6"“P),9) = argmax Q(d, )
0
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Defining W;; as in Eq. (5) we obtain

. 2 B
06.6)= zz(””,’,ii’,.'ff;,iif”)log (arp(vil B.5% @)

i=1I=1

I
M= T
Ma

Wislog (@1p(yil . 5% &)

I
—
~
I
-

N M
Wit log @ + ZZ Wit log p(yil B. &

N
I
—

wM>+Jz(/§ &l 8y, 60

I
= er
Mz

The functionals J; and J, can be maximized separately. The update (3) for the weights
of the random effects distribution wy, ..., wy is obtained in closed form maximizing
the functional J;.

The functional J; can be written as

M-1

N N M—1
Ji(@1, ..., 0on) = ZWU logd)I+ZWiM log(l— &)1)

=1 i=1 i=1 =1

Imposing the gradient of the functional J; equal to zero we obtain

ah X Wa X0 Wim

p — = =0 Vi=1,....M -1
owy w] wpm

that is equivalent to

N N
Zi=1 Wil 22i=~1 Wik Vl’kzl,,M

o] Dk
Since Zl | Wir=1, we obtalnw Zl , Wir/N.
On the other hand the update (4) for the fixed effects 8, the error variance o2 and the
support points of the random effects distribution ¢y, . .., ¢j is obtained maximizing

the functional J; in an iterative way, described in Sect. 2.2 and in “Appendix B”.

Appendix B: Details on NLNPEM Algorithm

The NLNPEM is the following:

1. Define a starting discrete distribution for random effects with support on M = N
points (c(o) 0)) forl =1,..., M, a starting estimate for the fixed effects 8©
and for 02(0) and the tolerance parameters D and o;

@ Springer



1566 L. Azzimonti et al.

2. given (cl(kfl), wl(kfl)) forl=1,..., M, ﬂ(k_l) and o2k=1) update the weights
(k) (k)

| ,...,w,, of the random effect distribution, according to Eq. (3);
3. (a) initialize cl(k’o) = cl(k_l) forl = 1, ...,M,ﬂ(k’o) = ,B(k_l) and ¢2*0) —
02(k_1)'
. (k,j=1)  (k=1) _ (k,j—1) 2(k,j—1)
(b) given (¢ , @) Yforl=1,...,M,8 and o update the
M support points cgk’]), ceey cyf,’]) according to Eq. (6);
(c) given (cl(k’]), a)l(k_l)) foril=1,..., M, ﬂ(k'/_l) and o2*-J=D maximize Eq.
(4) with respect to B and o2 obtaining B*7) and o2*-7); '
(d) iterate steps 3(b) and 3(c) until convergence and set cl(k) = cl(k’] ) for | =

1,...,M, B0 = %)) and c2®) = 52k.J);
4. iterate steps 2 and 3 until convergence;
5. reduce the support of the discrete distribution, according with the tuning parameters
D and o;
6. iterate steps 2, 3 and 5 until convergence.

The algorithm reaches convergence when parameters and discrete distribution stop
changing or when there is no variation in the log-likelihood function.

Appendix C: Details on simulation study
Appendix C.1: The linear case

We simulated 8 datasets of linear curves grouped in a number of clusters that vary form
2 to 10. Different values of the error variance o2 have been chosen for each test set, in
order to obtain noisy observations for each curve. Some examples of simulated data
are shown in left panels of Fig. 1. Datasets addressed with the name “S” contain groups
in which only slopes is random, “I”” datasets contain groups where only intercept is
random and “SI” datasets contain curves where both slope and intercept are random.
The simulated datasets are then:

e 1in2S: 2 balanced groups, each one composed by 25 curves, with the same intercept
(equal to 4), 2 different slopes (¢ = (c1,¢2) = (1,2))and 0 = 1;

e lin2l: 2 balanced groups, each one composed by 25 curves with the same slope
(equal to 1), 2 different intercept (¢ = (c1, c2) = (3, 10)) and o0 = 0.65;

e 1in4SI: 4 balanced groups, each one composed by 25 curves, where location points
¢ = (c1, ¢, €3, ¢q) are obtained from all possible combinations of 2 different
slopes (equal to 1 and 3) and 2 different intercepts (equal to 40 and 60), i.e.,
c¢; = (1,40), co = (1, 60), c3 = (3,40) and ¢4 = (3, 60) with o = 1;

e 1in3S: 3 unbalanced groups, composed by 24, 24 and 2 curves respectively, with
the same intercept (equal to 4), 3 different slopes (¢ = (c1, c2, c3) = (1, 2, 3.5))
ando = 1;

e lin3I: 3 unbalanced groups, composed by 24, 24 and 2 curves respectively, with
the same slope (equal to 1), 3 different intercepts (¢ = (c1, ¢2,¢3) = (2,7, 14))
and o = 1;
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1in9ST: 9 unbalanced groups, 6 of whom containing 24 curves and 3 containing
2 curves, where location points ¢ = (¢, ¢2, ¢3, ¢4, ¢5, C, C7, €8, C9) are obtained
from all possible combinations of 3 different slopes (equal to 1, 4 and 7) and 3
different intercept (equal to 20, 35 and 60) with o = 1.5;

1lin10S: 10 balanced groups, each one composed by 50 curves with the same inter-
cept (equal to 1), 10 different slopes (¢ = (c1, ¢2, ¢3, ¢4, ¢5, C6, C7, C8, C9, C10) =
0.5,2,4,5.5,7.5, 10, 12,13.5,16,20)) and 0 = 1.5;

lin101I: 10 balanced groups, each one composed by 15 curves with the same slope
(equal to 1), 10 different intercepts (¢ = (c1, ¢2, 3, ¢4, C5, C6, €7, €8, €9, C10) =
(1,5, 10, 15, 20, 25, 30, 35,40,45)) and o = 1.

Appendix C.2: The exponential case

We simulated 3 datasets of exponential growth curves where only asymptote varies and
is considered as random. All datasets are then addressed with the name “A”. They are:

exp2A: 2 balanced groups, each one composed by 25 curves, with the same growth
rate (A = 0.5), 2 different asymptotes (¢ = (c1, ¢2) = (1, 1.5)) and o = 0.04;
exp3A: 3 unbalanced groups of 24, 24 and 2 curves respectively, with the same
growth rate (A = 0.5), 3 different asymptotes (¢ = (c1, c2, c3) = (1, 1.5,2.3))
and o = 0.04;

expl0A: 10 balanced groups, each one composed by 5 curves, with the same growth
rate (A = 0.5), 10 different asymptotes (¢ = (c1, ¢2, ¢3, ca, ¢5, C6, €7, €8, €9, C10)
=(1,1.25,1.5,1.75,2,2.25,2.5,2.75, 3,3.25)) and 0 = 0.04.

Appendix C.3: The logistic case

We simulated 8 datasets of logistic growth curves. Datasets addressed with the name
“A” represent random asymptote cases, “I”” datasets contain groups where only inflec-
tion point is random and “AI”” ones contain curves where both asymptote and inflection
point are random. We then have:

logis2A: 2 balanced groups, each one composed by 25 curves, withd = 6,y =1,
2 different asymptotes (¢ = (cy, ¢2) = (1, 2)) and o = 0.04;

logis2I: 2 balanced groups, each one composed by 25 curves, witha = 1, y = 1,
2 different inflection points (¢ = (cy, ¢2) = (6, 8)) and o = 0.04;

logis4Al: 4 balanced groups, each one composed by 25 curves, where location
points ¢ = (¢1, €2, €3, €4) are obtained from all possible combinations of 2 differ-
ent asymptotes (equal to 1 and 2) and 2 different inflection points (equal to 6 and
10), i.e.,¢; = (1,6),¢; = (1, 10), ¢; = (2,6) and ¢4 = (2, 10) with y = 1 and
o =0.04;

logis3A: 3 unbalanced groups of 24, 24 and 2 curves respectively, with § = 6,
y = 1, 3 different asymptotes (¢ = (c1, 2, c3) = (1, 2,3.5)) and 0 = 0.04;
logis3I: 3 unbalanced groups of 24, 24 and 2 curves respectively, with o« = 1,
y = 1, 3 different inflection points (¢ = (¢, ¢2, ¢3) = (6,8, 11.5))and 0 = 0.04;
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e logis9AI: 9 unbalanced groups of curves (6 of whom containing 24 curves and 3
containing 2 curves), where location points ¢ = (c1, ¢2, ¢3, c4, ¢5, C6, €7, C8, C9)
are obtained from all possible combinations of 3 different asymptotes (equal to 1,
2 and 4) and 3 different inflection points (equal to 6, 8 and 11.5) with y = 1 and

o =0.04;

e logis10A: 10 balanced groups, each one composed by 5 curves, with § = 6,
(c1, 2, €3, ¢4, €5, C6, €7, C8, €9, C10) =
(1,1.25,1.5,1.75,2,2.25,2.5,2.75, 3, 3.25)) and 0 = 0.04;
e logis10L: 10 balanced groups, each one composed by 5 curves, with @ = 1,
y = 1, 10 different inflection points (¢ = (cy, c2, ¢3, c4, 5, C6, €7, C8, C9, C10) =
(4.5,5.5,7,8,9.5,10.5, 12, 13, 14.5, 16)) and o0 = 0.04.

y = 1, 10 different asymptotes (¢

Appendix D: Comparison of results

Comparison of estimates carried out by npml reg and NLNPEM method are reported
here, for some cases of interest mentioned in the paper (Tables 4, 5, 6).

e Linear case—Random-intercept case (lin2I)

e Linear case—Random-slope case (lin3S)

e Linear case—Random-intercept case (lin10I)

Table 4 Estimates carried out by npmlreg and NLNPEM method on 1lin2I dataset, where intercept is
considered as random, with 2 balanced groups

Effects True npmlreg NLNPEM

Fixed Slope 1 1.0021 1.0021
Intercept 1 3 2.9382 2.9382

Random (weight 1) (0.5) (0.5) 0.5
Intercept 2 10 10.0150 10.0149
(weight 2) 0.5) 0.5) 0.5

Table 5 Estimates carried out by unpmlreg and NLNPEM method on 1in3S dataset, where slope is
considered as random, with 3 unbalanced groups

Effects True | npmlreg NLNPEM

Slope 1 1 1.0107 1.0029

(weight 1) | (0.48) (0.48) (0.48)
Random Slope 2 2 1.9982 2.0105 1.9530
(weight 2) | (0.48) (0.48) (0.45) (0.03)

Slope 3 3.5 3.5250 3.5251

(weight 3) | (0.04) (0.04) (0.04)

Intercept 4 3.9326 4.0259
Random | Intercept 4 4.0751 3.8974  4.8376

Intercept 4 3.3717 3.7174
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Table 6 Estimates carried out by npmlreg and NLNPEM method on lin10I dataset, where intercept is
considered as random, with 10 balanced groups

Effects True npmlreg NLNPEM
Fixed Slope 1 1.0019 1.0019

Intercept 1 1 0.9114 0.9114 0.9114
(weight 1) (0.1) | (0.00050) (0.09949) (0.1)
Intercept 2 5 5.0257 5.0258
(weight 2) (0.1) (0.1) (0.1)
Intercept 3 10 - 10.0409
(weight 3) (0.1) - (0.1)
Intercept 4 15 12.5442 14.7748 15.0869
(weight 4) (0.1) (0.2) (0.013) (0.087)
Intercept 5 20 19.9818 19.9818

Random | (weight 5) (0.1) (0.1) (0.1)
Intercept 6 25 27.4750 24.9252 25.1609
(weight 6) | (0.1) (0.2) (0.038)  (0.062)
Intercept 7 30 - 29.8789
(weight 7) (0.1) - (0.1)
Intercept 8 35 35.0050 34.9155 35.1641
(weight 8) (0.1) (0.1) (0.064) (0.036)
Intercept 9 40 39.9516 39.7483  39.9701  40.4362
(weight 9) (0.1) (0.1) (0.030) (0.060) (0.010)
Intercept 10 45 45.0017 45.0017 45.0018
(weight 10) | (0.1) | (0.09949)  (0.000507) (0.1)
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