
ar
X

iv
:1

00
5.

50
85

v1
 [

st
at

.C
O

]
 2

7
M

ay
 2

01
0

A simple and efficient algorithm for fused lasso

signal approximator with convex loss function

Heng Lian

Division of Mathematical Sciences

School of Physical and Mathematical Sciences

Nanyang Technological University

Singapore 637371

Singapore

E-mail: henglian@ntu.edu.sg

Abstract

We consider the augmented Lagrangian method (ALM) as a solver for the

fused lasso signal approximator (FLSA) problem. The ALM is a dual method

in which squares of the constraint functions are added as penalties to the

Lagrangian. In order to apply this method to FLSA, two types of auxiliary

variables are introduced to transform the original unconstrained minimization

problem into a linearly constrained minimization problem. Each updating in

this iterative algorithm consists of just a simple one-dimensional convex pro-

gramming problem, with closed form solution in many cases. While the existing

literature mostly focused on the quadratic loss function, our algorithm can be

easily implemented for general convex loss. The most attractive feature of this

1

http://arxiv.org/abs/1005.5085v1

algorithm is its simplicity in implementation compared to other existing fast

solvers. We also provide some convergence analysis of the algorithm. Finally,

the method is illustrated with some simulation datasets.

keywords: Augmented Lagrangian; Convergence analysis; LAD-FLASSO;

1 Introduction

In this paper we examine the one-dimensional fussed lasso signal approximator (Tibshirani et al.,

2005), which is to solve

min
β

f(β) = F (y, β) + λ1

n∑

i=1

|βi|+ λ2

n∑

i=2

|βi − βi−1|, (1)

where y = (y1, . . . , yn) are the noisy observations, λ1, λ2 > 0 are two regularization

parameters and F (y, β) =
∑n

i=1 Fi(βi, yi) is the loss function. The most frequently

appearing case is the quadratic loss Fi(βi, yi) = (yi − βi)
2/2, for which there exists

several solvers. Here we also consider the more general case where Fi is a convex

and coercive function of βi. Note that by definition the coercive function Fi satisfies

lim|βi|→∞ Fi(βi, yi) → ∞, for all yi ∈ R, which is used to ensure the existence of the

minimizer. As demonstrated in Huang et al. (2005); Tibshirani and Wang (2008),

an important application of FLSA is the reconstruction of copy numbers from CGH

arrays.

Several algorithms have been proposed for FLSA, including a specially designed

quadratic programming (Tibshirani et al., 2005; Tibshirani and Wang, 2008), coordi-

nate descent and fusion algorithm (Friedman et al., 2007) and a path algorithm that

solves the problem for all regularization parameters simultaneously (Hoefling, 2010).

Based on the numerical results performed in Hoefling (2010), the latter two algorithms

are clearly very fast and efficient and represent the state of the art. However, these two

2

algorithms require substantial efforts in implementation for non-expert programmers,

since one needs to keep track of the “fused sets” which contains the coefficients βi

that assume the same value. Besides, the algorithm of Friedman et al. (2007) has the

disadvantage that once the coefficients are fused, the linkage cannot be removed later

(a similar problem is noticed in Zou and Li (2008) for the locally quadratic approxi-

mation algorithm proposed in variable selection problem with non-concave penalty),

and no convergence analysis is available. The algorithm of Hoefling (2010) is designed

to solve (1) for all regularization parameters but it does not work for general convex

loss since the solution path is in general not piecewise linear (Rosset and Zhu, 2007).

Here we consider augmented Lagrangian method (ALM) which was independently

developed by Hestenes (1969) and Powell (1969) almost half a century ago, which aims

to solve convex optimization problem with linear constraints. There are surged inter-

ests recently in applying this method in different optimization problems (Tai and Wu,

2009; Tao and Yuan, 2010; Wen et al., 2009; Yang and Zhang, 2009; Yang and Yuan,

2010). We will show that after some simple transformations of (1), the ALM can

be applied to efficiently solve FLSA with general loss functions. The most attractive

feature of the method is its simplicity in implementation. We present our R code

for solving (1) with quadratic loss in Appendix B in the Supplementary Material, in

which the main iterations consist of only about 20 lines of commands. We provide a

clear self-contained convergence analysis of ALM in our context (Appendix A in the

Supplementary Material) following existing ideas. Our algorithm can be initialized

essentially arbitrarily, in particular initialized with zero values, while for algorithms

of Friedman et al. (2007); Hoefling (2010) such initialization will not work and the

coefficients will stay at zero at all times.

3

2 Augmented Lagrangian Formulation

By introducing the auxiliary variables θi, i = 2, . . . , n, the following linearly con-

strained problem is trivially equivalent to (1).

min
β,θ

g(β, θ) =
n∑

i=1

Fi(yi, βi) + λ1

n∑

i=1

|βi|+ λ2

n∑

i=2

|θi|

s.t. θi = βi − βi−1, i = 2, . . . , n.

Following Glowinski and Le Tallec (1989), we define the augmented Lagrangian, for

c > 0, by

Lc(β, θ, ν) = g(β, θ) +

n∑

i=2

νi(θi − βi + βi−1) +
c

2

n∑

i=2

(θi − βi + βi−1)
2,

where ν = (ν2, . . . , νn) is the Lagrange multiplier.

We consider the following saddle-point problem,

Find β∗, θ∗, ν∗,

s.t. Lc(β
∗, θ∗, ν) ≤ Lc(β

∗, θ∗, ν∗) ≤ Lc(β, θ, ν
∗), ∀ β, θ, ν. (2)

The proof for the following is well known from classical duality theory (Rockafellar,

1970; Ekeland and Turnbull, 1983) and is thus omitted.

Proposition 1 β∗ is a solution of (1) if and only if (β∗, θ∗, ν∗) is a solution of (2)

for some θ∗ and ν∗.

The basic algorithm for finding the saddle point is the following Algorithm 1

(Glowinski and Le Tallec, 1989).

4

Algorithm 1

initialize ν0, arbitrarily.

For k = 1, 2, . . .

(βk, θk) = argmin(β,θ)Lc(β, θ, ν
k−1)

νk
i = νk−1

i + c(θki − βk
i + βk

i−1), i = 2, . . . , n

In general, it is difficult to minimize Lc(β, θ, ν
k) over β and θ simultaneously, but

it might be easier to minimize over β when fixing θ and vice versa. In this case, we

can alternate these two steps until convergence. It turns out that we can update β

and θ just once when the other is fixed, resulting in the following algorithm.

Algorithm 2

initialize ν0 and θ0, arbitrarily.

For k = 1, 2, . . .

βk = argminβ Lc(β, θ
k−1, νk−1)

θk = argminθ Lc(β
k, θ, νk−1)

νk
i = νk−1

i + c(θki − βk
i + βk

i−1), i = 2, . . . , n

Example. We apply Algorithm 2 to (1) with quadratic loss. In this case, the

augmented Lagrangian is

Lc(β, θ, ν) =
1

2

∑

i

(yi−βi)
2+λ1

n∑

i=1

|βi|+λ2

n∑

i=2

|θi|+

n∑

i=2

νi(θi−βi+βi−1)+
c

2

n∑

i=2

(θi−βi+βi−1)
2.

If λ1 = 0, given θk−1 and νk−1, the minimization over β is a simple quadratic problem

and all components of β can be found simultaneously by solving a linear system

Bβ = b, where we do not write down explicitly the expression of matrix B and vector

b, but note that due to the special structure of the problem, B is a tridiagonal matrix

and there exists an efficient algorithm with complexity linear in n for solving the

linear system (see for example Conte and De Boor (1980)).

5

For λ1 > 0, it is more difficult to update β directly. Fortunately, for quadratic

loss, solution for FLSA with λ1 > 0 can be obtained by thresholding the solution for

FLSA with λ1 = 0 as shown in Friedman et al. (2007), and thus (for this example)

we only consider λ1 = 0.

With β = βk and ν = νk−1 fixed, the minimization over θ is a simple lasso

regression with orthogonal design and thus we have the simple component-wise soft

thresholding updating rule

θki = sign(θ̂i)(|θ̂i| − λ2/c)+ , (3)

where θ̂i = βk
i − βk

i−1 − νk−1
i /c and (a)+ denotes the positive part of a. �

For quadratic loss, the example shows that both update for β and for θ can be

computed efficiently for λ1 = 0. However, for more general loss and/or for λ1 > 0,

it is difficult to update β directly and thus in our implementation we do not use

Algorithms 1 and 2. We propose next a further augmentation step that decouples the

quadratic term (θi − βi + βi−1)
2 with the loss function.

We introduce another set of auxiliary variables γi, i = 1, . . . , n and consider the

following problem which is still obviously equivalent to (1).

min
γ,β,θ

g(γ, β, θ) =

n∑

i=1

Fi(yi, γi) + λ1

n∑

i=1

|γi|+ λ2

n∑

i=2

|θi|

s.t. γi = βi, i = 1, . . . , n, θj = βj − βj−1, j = 2, . . . , n.

The corresponding (doubly) augmented Lagrangian is

Lc(γ, β, θ, µ, ν) = g(γ, β, θ) +
n∑

i=1

µi(γi − βi) +
c

2

n∑

i=1

(γi − βi)
2 (4)

+

n∑

i=2

νi(θi − βi + βi−1) +
c

2

n∑

i=2

(θi − βi + βi−1)
2.

6

In the above, the coefficients for both quadratic penalties are the same (equal to c/2).

In principle, we can use different coefficients but computationally it is difficult to tune

both parameters and thus we settle with this simpler choice.

With the newly defined Lagrangian in (4), we can similarly modify the saddle-

point problem (2) in an obvious way and it can be shown that the saddle-point

problem is the same as the original FLSA problem (1). Accordingly, we have the

following algorithms for finding the saddle point which directly extends Algorithm 1

and Algorithm 2 respectively.

Algorithm 3

initialize ν0, arbitrarily.

For k = 1, 2, . . .

(γk, βk, θk) = argmin(γ,β,θ)Lc(γ, β, θ, µ
k−1, νk−1)

νk
i = νk−1

i + c(θki − βk
i + βk

i−1), i = 2, . . . , n

µk
i = µk−1

i + c(γk
i − βk

i), i = 1, . . . , n

Algorithm 4

initialize ν0, β0 and θ0, arbitrarily.

For k = 1, 2, . . .

γk = argminγ Lc(γ, β
k−1, θk−1, µk−1, νk−1)

βk = argminβ Lc(γ
k, β, θk−1, µk−1, νk−1)

θk = argminθ Lc(γ
k, βk, θ, µk−1, νk−1)

νk
i = νk−1

i + c(θki − βk
i + βk

i−1), i = 2, . . . , n

µk
i = µk−1

i + c(γk
i − βk

i), i = 1, . . . , n

In Algorithm 3, argmin(γ,β,θ)Lc(γ, β, θ, µ
k−1, νk−1) is typically difficult to find di-

rectly and iterative updating of each one of them with others fixed is applied (i.e.,

7

repeat the first three steps in the loop of Algorithm 4 until convergence). We will use

simulation later to compare the relative efficiency of Algorithm 3 and Algorithm 4.

We now consider each update in detail. Note the doubly augmented Lagrangian

is

Lc(γ, β, θ, µ, ν) =

n∑

i=1

Fi(yi, γi) + λ1

n∑

i=1

|γi|+ λ2

n∑

i=2

|θi|+

n∑

i=1

µi(γi − βi) +
c

2

n∑

i=1

(γi − βi)
2

+
n∑

i=2

νi(θi − βi + βi−1) +
c

2

n∑

i=2

(θi − βi + βi−1)
2.

The update for β can be performed in closed form by solving a linear system, which

still involves a tridiagonal matrix and can be solved efficiently. Note that the effect of

introducing γi is to decouple some terms in the Lagrangian so that the loss function

and the lasso penalty do not come into play when updating β. The update for θ is

the same as before and can be performed with component-wise thresholding using

the same formula (3). The update for γ is generally not available in closed form.

However, due to the special separable structure of the functional, it can be updated

component by component, resulting in multiple one-dimensional convex optimization

problems for which many efficient solvers exist. For different convex loss, only the

updates for γi need to be modified. We also note that for the quadratic loss, the

updates for γi is also a simple soft thresholding.

Example. In this example we take Fi(yi, γi) = |yi − γi|, the absolute deviation

or L1 loss. The L1 loss function is an interesting alternative to the quadratic loss

in that it is more robust to outliers. We refer to the resulting FLSA problem (1)

with L1 loss as LAD-FLASSO. In this case, the update of γi consists in minimizing

|yi− γi|+λ1|γi|+µi(γi−βi)+ c/2(γi−βi)
2. Although the solution is not available in

closed form, the function is strictly convex and differentiable except at two points, 0

and yi. Thus the minimizer can be found by comparing its values at 0, yi, and other

8

potential stationary points, a total of only six cases (by considering the sign of γi and

yi − γi). Thus the update in γ can also be found efficiently and implemented easily.

�

In the following theorem, we give the convergence of Algorithms 1-4. It shows

that βk is a minimizing sequence of the FLSA (1). If the minimizer is unique, then

βk converges to the minimizer. The proof of the theorem is given in Appendix A in

the Supplementary Material.

Theorem 1 For any of the algorithms 1-4, we have f(βk) → minβ f(β) where f is

the FLSA functional defined in (1).

3 Simulation Results

We follow the similar simulation setups used in Hoefling (2010). Each simulated se-

quence consists of data points with values of 0, 1, 2 and roughly 20% of the data

points have value 1 and another 20% have value 2, with Gaussian noises added (ex-

cept in Experiment 4 below where noise with heavy-tailed distribution is used). In

experiments 1-3 below, we restrict ourselves to quadratic loss functions. The exper-

iments are performed on HP workstation xw4400 with Intel Core 2 Duo Processor

2.66GHz and 2GB of RAM, implemented in R. We also make use of the limSolve pack-

age in R which implemented the tridiagonal matrix algorithm. We apply our doubly

augmented Lagrangian method to the simulated dataset. The different between algo-

rithm 3 and algorithm 4 is that algorithm 3 has an additional inner loop that applies

the first three updatings in the loop of Algorithm 4 repeatedly till convergence.

Experiment 1. First we study the effect of the number of iterations, T , performed

in this inner loop. Thus Algorithm 3 corresponds to the case T → ∞ while Algorithm

4 corresponds to T = 1. In this experiment, we set the sequence length n = 200 and

9

Table 1: Simulation results for Experiment 1 for varying the number of iterations of
the inner loop.

n=200 n=2000
T=1 T=2 T=5 T=10 T=1 T=2 T=5 T=10

number of iterations 226.95 131.61 72.70 69.09 212.02 147.84 78.56 71.21
computation time 0.117 0.118 0.144 0.258 0.354 0.654 0.838 1.753

n = 2000, with Gaussian noise of variance 0.1, c = 5 and λ1 = 0.5, λ2 = 4. 100

datasets are simulated in this experiment. The convergence criterion used is ||νk −

νk−1||+ ||µk − µk−1|| < 10−10. In Table 1, we show the average number of iterations

required till convergence as well as the time (in seconds) elapsed. We see that although

using T > 1 reduced the number of iterations (for the outer loop) required, the overall

computation time is either similar to the case with T = 1 or significantly increased

even for small value of T . Thus we see no advantage of using T > 1 and Algorithm 4

is adopted in the following. We have also conducted simulations using other sequence

lengths and parameters and the conclusion is the same.

Experiment 2. Next we consider the effect of the parameter c on the convergence of

the algorithm. Although theoretically the ALM converges in the limit for any c > 0,

we will see that this parameter can affect the speed of convergence. Our simulation

involves a sequence of length n = 1000 with N(0, 0.1) noises, and we solve the FLSA

problem with λ1 = 0 and λ2 = 0.1. We choose many different values for c and the

evolution of the mean squared error
∑n

i=1(β
k
i − βi)

2/n for five values of c is plotted

in Figure 1 (a). Here βi represents the true signal and βk
i is the estimate for the k-th

iteration. We see that for small value of c, the convergence of the estimate is slow

and oscillate in the initial stage, while for big values of c, the convergence is also slow.

For this sequence, a value between 0.5 and 5 generally produces reasonable speed of

convergence visually.

Now we vary different parameters involved in the optimization to investigate how

10

these changes affect the choice of c. First we generate a sequence of length n = 100

and another with n = 10000. The convergence diagnostic plots are shown in Figure

1 (b) and (c). Remarkably, the plots show that the choice of c is almost unaffected

by the length of the sequence and the number of iterations required for convergence

does not depend on n . This empirical observation has at least two implications. (i)

In order to choose a reasonable value of c for an extremely long sequence, we can run

the algorithm on a subsequence with several different values of c and choose the best

one based on the convergence speed on the subsequence. Of course for this to work

we need to assume the sequence is stationary in some sense. (ii) The complexity of

the algorithm is linear in the length of the sequence since it is linear for each iteration

and the number of iterations does not vary much with the length (note this is only

based on empirical observation).

Then we use the same sequence with n = 1000 but with a bigger noise variance

0.4. The plot shown in Figure 1 (d) looks different, but the range of values for c that

results in fast convergence is similar as before. In Figure 1 (e), we show the results

when solving FLSA with λ1 = 0.5 and λ2 = 4, and in Figure 1 (f),(g), we multiply and

divide the noisy sequence by a factor of 10 respectively. When these parameters are

changed, we see the trace plot is more variable. Since all these types of changes can be

regarded as the change in relative sizes of the different terms in (4), we conclude that

the choice of c depends on this relative scale but is quite stable otherwise. Even so, we

still observe that the optimal choice of c is somewhere between 0.2 and 10. We have

generated different sequences and worked with different regularization parameters to

make sure the observations made above apply to a wide variety of settings. Since our

algorithm is relatively fast, we can suggest running the algorithm for several different

values of c and visually check its convergence, except when the sequence is extremely

long (> 106) and then we can run the algorithm on one or more subsequences to

choose c before running it on the entire sequence. In all the following experiments we

11

set c = 5.

Experiment 3. Here we want to say something about the computation speed of

our algorithm based on comparisons with previous approaches. We download from

CRAN the flsa package (version 1.03) which is based on the path algorithm presented

in Hoefling (2010). For each case of n = 100, 1000, 10000, 100000, we generate 100

sequences and the average computation times for each sequence are shown in Table

2 for λ1 = 0.5, λ2 = 4. From the results reported in the table, we see that the path

algorithm is about 20 times faster than our ALM algorithm for n ≥ 1000. For the

case n = 100, the difference is about 100 fold. We observe from Table 2 that both

algorithms have computation time approximately linear in n, except for ALM when

n = 100. Thus the large difference for n = 100 may be due to the reason that in

this case most of the computation time in ALM is spent on ancillary chores such

as calling the R function, setting up parameter values and returning results. The

reported computation time for the path algorithm is slower than those reported in

Hoefling (2010) and the reason might be due to the difference in simulation setup and

difference in computer system used.

We also need to note that the path algorithm is specifically designed for computing

the entire solution path for all regularization parameters, and in this sense it should

have even better performance when the solution for many regularization parameter

values are sought. However, this algorithm does not work with general loss function

as the ALM does.

There is no publicly available package implementing the descent algorithm in

Friedman et al. (2007). However, Table 1 in Hoefling (2010) reported that the path

algorithm is about 10-100 times faster than the descent algorithm when n ≤ 104, while

the two algorithms have comparable speed with larger n. Based on this comparison,

we think our algorithm is probably comparable to the descent algorithm when n ≤

104 but much slower for bigger sequence length. Finally, we note it is difficult to

12

0 50 100 150 200 250

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

iteration

er
ro

r

c=0.2
c=1
c=5
c=10
c=30

(a)

0 50 100 150 200 250
0.

01
0.

02
0.

03
0.

04
0.

05

iteration

er
ro

r

c=0.2
c=1
c=5
c=10
c=30

(b)

0 50 100 150 200 250

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

iteration

er
ro

r

c=0.2
c=1
c=5
c=10
c=30

(c)

0 50 100 150 200 250

0.
10

0.
15

0.
20

iteration

er
ro

r

c=0.2
c=1
c=5
c=10
c=30

(d)

0 50 100 150 200 250

0.
05

0.
10

0.
15

0.
20

iteration

er
ro

r
c=0.2
c=1
c=5
c=10
c=30

(e)

0 50 100 150 200 250

1.
0

1.
5

2.
0

2.
5

3.
0

iteration

er
ro

r

c=0.2
c=1
c=5
c=10
c=30

(f)

0 50 100 150 200 250

0.
00

01
0

0.
00

02
0

0.
00

03
0

iteration

er
ro

r

c=0.2
c=1
c=5
c=10
c=30

(g)

Figure 1: Evolution of mean squared error of reconstructed signals with iterations.

13

Table 2: Comparison of computation speed for our ALM algorithm and the flsa
package based on the path algorithm.

n = 100 n = 1000 n = 104 n = 105 n = 106

ALM 0.09811 0.1797 1.861 21.702 223.9
flsa 0.00092 0.0073 0.072 0.958 10.51

exactly compare the computation speed for different algorithms since all algorithms

involve some parameter choice. In particular, the convergence criterion used in our

implementation is ||νk−νk−1||+ ||µk−µk−1|| ≤ 10−10, and if we increase the threshold

to 10−5, it becomes 3 to 5 times faster. Besides, the flsa package uses C code in

its underlying implementation which makes it faster, and our implementation uses

tridiagonal matrix algorithm from the limSolve package which uses Fortran code in its

implementation and thus the net effect is difficult to compare. We emphasize again

that the biggest advantage of our algorithm is the ease in implementation as well as

that it works with general convex loss functions.

Experiment 4. Finally, in this experiment, we consider the LAD-FLASSO prob-

lem, where the loss function in (1) is defined by Fi(yi, βi) = |yi − βi|. We only

illustrate here with a sequence of length n = 100 and the noise has t distribution

with 2 degrees of freedom and the scale parameter equal to 0.3. With heavy-tailed

noises, the LAD-FLASSO is expected to perform better than the usual FLSA with

quadratic loss. Indeed, Figure 2 shows the noisy sequence, the true signal, as well as

the two reconstructions. The regularization parameters λ1 and λ2 in the two cases are

those minimizing sum of squared errors and sum of absolute deviations respectively

(of course this depends on the knowledge of the true signal in the simulation), by

searching over a fine grid. An obvious difference between the two reconstructions is

seen at positions 70-80, where an extremely high value of observation occurs due to

the heavy-tailed noise distribution.

14

0 20 40 60 80 100

−
2

−
1

0
1

2
3

4

true signal
quadratic loss
LAD−FLASSO

Figure 2: Reconstruction of a signal sequence based on FLSA with quadratic loss and
absolute deviation (L1) loss.

15

4 Conclusion

In this paper we propose a simple algorithm for the FLSA problem. Although not as

fast as the path algorithm implemented in the flsa package, the most attractive feature

of this algorithm is the simplicity of its implementation and it works for general con-

vex loss functions. However, the computational speed of the current implementation

in R can possibly be improved if a more general programming language such as C is

used for its underlying implementation. Another advantage of the algorithm is that it

is provably convergent for any initialization values, and its convergence properties are

investigated based on simulation studies presented here. The flexibility in implemen-

tation is demonstrated by our implementation of the LAD-FLASSO problem which

is lacking from other existing implementations based on either descent algorithm or

path algorithm. We expect that ALM as a general technique will be very useful for

computing other optimization problems in statistical learning.

References

Conte, S. D. and De Boor, C. Elementary numerical analysis : an algorithmic ap-

proach. New York: McGraw-Hill, 3d edition (1980).

Ekeland, I. and Turnbull, T. Infinite-dimensional optimization and convexity . Chicago

lectures in mathematics. Chicago: University of Chicago Press (1983).

Friedman, J., Hastie, T., Hofling, H., and Tibshirani, R. “Pathwise coordinate opti-

mization.” Annals of Applied Statistics , 1(2):302–332 (2007).

Glowinski, R. and Le Tallec, P. Augmented Lagrangian and operator-splitting methods

in nonlinear mechanics . Philadelphia: Society for Industrial and Applied Mathe-

matics (1989).

16

Hestenes, M. R. “Multiplier and gradient methods.” Journal of Optimization theory

and applications , 4:303–320 (1969).

Hoefling, H. “A path algorithm for the fused lasso signal approximator.” Manuscript

available at http://www.holgerhoefling.com/ (2010).

Huang, T., Wu, B. L., Lizardi, P., and Zhao, H. Y. “Detection of DNA copy number

alterations using penalized least squares regression.” Bioinformatics , 21(20):3811–

3817 (2005).

Powell, M. J. D. “A method for nonlinear constraints in minimization problems.” In:

Fletcher, R. (ed.) Optimization, 283–298 (1969).

Rockafellar, R. T. Convex analysis . Princeton, N.J.,: Princeton University Press

(1970).

Rosset, S. and Zhu, J. “Piecewise linear regularized solution paths.” Annals of

Statistics , 35(3):1012–1030 (2007).

Tai, X.-C. and Wu, C. “Augmented Lagrangian method, dual methods and split

Bregman iteration for ROF model.” In 2nd International Conference on Scale

Space and Variational Methods in Computer Vision, 502–513 (2009).

Tao, M. and Yuan, X. M. “Recovering low-rank and sparse components of

matrices from incomplete and noisy observations.” Preprint, available at

http://www.optimization-online.org (2010).

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. “Sparsity and

smoothness via the fused lasso.” Journal of the Royal Statistical Society Series

B-Statistical Methodology , 67:91–108 (2005).

17

Tibshirani, R. and Wang, P. “Spatial smoothing and hot spot detection for CGH

data using the fused lasso.” Biostatistics , 9(1):18–29 (2008).

Wen, Z. W., Goldfarb, D., and Yin, W. “Alternating direction augmented lagrangian

methods for semidefinite programming.” TR09-42, CAAM Report, Rice University

(2009).

Yang, J. F. and Yuan, X. M. “An inexact alternating direction method for trace norm

regularized least squares problem.” Preprint, available at http://www.optimization-

online.org (2010).

Yang, J. F. and Zhang, Y. “Alternating direction method for L1 problems in com-

pressive sensing.” TR09-37, CAAM Report, Rice University (2009).

Zou, H. and Li, R. Z. “One-step sparse estimates in nonconcave penalized likelihood

models.” Annals of Statistics , 36(4):1509–1533 (2008).

Supplementary Material

Appendix A Proof of Theorem 1.

In the proof we use matrix and vector notations. In particular, the expressions θi −

βi + βi−1, i = 2, . . . , n can be written as θ − Aβ with A an (n − 1) × n matrix. We

also make frequent use of some standard and classical results from convex analysis,

such as those contained in Rockafellar (1970); Ekeland and Turnbull (1983), most

notably the properties of subdifferential for convex functions. Also, we only show the

convergence of Algorithms 1 and 2 while the analysis for Algorithms 3 and 4 is very

much the same but more tedious to write down and thus omitted.

18

We start with Algorithm 1, for which the augmented Lagrangian can be written

as

L(β, θ, ν) = U(β) + V (θ) +
c

2
||θ − Aβ||2 + νT (θ − Aβ),

where U(β) =
∑n

i=1 Fi(yi, βi)+λ1

∑n

i=1 |βi|, V (θ) = λ2

∑n

i=2 |θi|, and νT is the trans-

pose of the column vector ν. In the proof we only need to use the convexity of U and

V .

Using the usual notation, suppose (β∗, θ∗, ν∗) is the saddle point of L satisfying

L(β∗, θ∗, ν) ≤ L(β∗, θ∗, ν∗) ≤ L(β, θ, ν∗) ∀β, θ, ν (5)

From the first equality of (5), we have θ∗ = Aβ∗. The update for ν in Algorithm

1 is νk = νk−1 + c(θk − Aβk), which implies

ν̄k = ν̄k−1 + c(θ̄k −Aβ̄k), (6)

where we set β̄k = βk − β∗, θ̄k = θk − θ∗ and ν̄k = νk − ν∗. From (6), we immediately

get

||ν̄k−1||2 − ||ν̄k||2 = −2c(ν̄k−1)T (θ̄k − Aβ̄k)− c2||θ̄k − Aβ̄k||2.

Next we show the right hand side of the above is nonnegative.

From the second inequality of (5), we have

0 ∈ ∂βL(β
∗, θ∗, ν∗) ⇔ 0 ∈ ∂U(β∗)− cAT (θ∗ − Aβ∗)− ν∗TA, (7)

0 ∈ ∂θL(β
∗, θ∗, ν∗) ⇔ 0 ∈ ∂V (θ∗) + c(θ∗ −Aβ∗) + ν∗, (8)

where ∂ is the notation for the subdifferential of a convex function.

19

Correspondingly, based on the update of βk and θk in Algorithm 1, we have

0 ∈ ∂βL(β
k, θk, νk−1) ⇔ 0 ∈ ∂U(βk)− cAT (θk −Aβk)− (νk−1)TA, (9)

0 ∈ ∂θL(β
k, θk, νk−1) ⇔ 0 ∈ ∂V (θk) + c(θk − Aβk) + νk−1. (10)

Subtracting (7) from (9) and subtracting (8) from (10), we get

0 ∈ ∂U(βk)− ∂U(β∗)− cAT (θ̄k −Aβ̄k)− (ν̄k−1)TA, (11)

0 ∈ ∂V (θk)− ∂V (θ∗) + c(θ̄k −Aβ̄k) + ν̄k−1. (12)

Multiplying (β̄k)T to (11) from the left, multiplying (θ̄k)T to (12) from the left,

and adding the two expressions gives us

0 ∈ 〈∂U(βk)−∂U(β∗), β̄k〉+〈∂V (θk)−∂V (θ∗), θ̄k〉+c||θ̄k−Aβ̄k||2+(ν̄k−1)T (θ̄k−Aβ̄k),

(13)

where we used 〈·, ·〉 to denote the dot product of two vectors in some places above to

be consistent with the usual notation in convex analysis as in Ekeland and Turnbull

(1983).

From standard results in convex analysis, all elements in 〈∂U(βk) − ∂U(β∗), β̄k〉

and 〈∂V (θk)−∂V (θ∗), θ̄k〉 are nonnegative and thus we get c||θ̄k−Aβ̄k||2+(ν̄k−1)T (θ̄k−

Aβ̄k) ≤ 0 which immediately implies that

||ν̄k−1||2 − ||ν̄k||2 = −2c(ν̄k−1)T (θ̄k − Aβ̄k)− c2||θ̄k −Aβ̄k||2 ≥ c2||θ̄k − Aβ̄k||2.

Now that ||ν̄k||2 is nonnegative and decreasing, we obtain θ̄k − Aβ̄k → 0. Using

this in (13), we get

0 ≤ 〈∂U(βk)− ∂U(β∗), β̄k〉 → 0, 0 ≤ 〈∂V (θk)− ∂V (θ∗), θ̄k〉 → 0, (14)

20

where the above expression is taken to mean that “there exists some sequence uk ∈

〈∂U(βk) − ∂U(β∗), β̄k〉 with 0 ≤ uk → 0”, for example. Similar interpretations are

used in the following.

By the definition of subdifferential, we have

U(βk) ≥ U(β∗) + 〈∂U(β∗), β̄k〉,

U(β∗) ≥ U(βk)− 〈∂U(βk), β̄k〉,

resulting in

U(βk)− 〈∂U(β∗), β̄k〉 ≥ U(β∗) ≥ U(βk)− 〈∂U(βk), β̄k〉.

Using (14), the difference between and left hand side and the right hand side is

converging to zero and thus we have U(βk) → U(β∗). Similarly we can show V (θk) →

V (θ∗). These combined with θ̄k − Aβ̄k → 0 prove the convergence of Algorithm 1.

For Algorithm 2, the proof strategy is similar and we only point out the differences.

The proof is the same as before up to equation (8). Because the order of update of β

and θ in Algorithm 2, equation (9) is replaced by

0 ∈ ∂βL(β
k, θk−1, νk−1) ⇔ 0 ∈ ∂U(βk)− cAT (θk−1 − Aβk)− (νk−1)TA,

and thus equation (11) becomes instead

0 ∈ ∂U(βk)− ∂U(β∗)− cAT (θ̄k−1 − Aβ̄k)− (ν̄k−1)TA,

21

while equation (12) remains the same. Then we have, in place of (13),

0 ∈ 〈∂U(βk)− ∂U(β∗), β̄k〉+ 〈∂V (θk)− ∂V (θ∗), θ̄k〉

+c||θ̄k − Aβ̄k||2 + (ν̄k−1)T (θ̄k − Aβ̄k)− c(β̄k)TAT (θ̄k−1 − θ̄k),

which then implies

||ν̄k−1||2 − ||ν̄k||2 ≥ c2||θ̄k −Aβ̄k||2 − 2c2(β̄k)TAT (θ̄k−1 − θ̄k). (15)

So the difference from the corresponding analysis for Algorithm 1 is the extra term

−2c2(β̄k)TAT (θ̄k−1 − θ̄k) on the right hand side above.

Now we analyze the term 2c2(β̄k)TAT (θ̄k − θ̄k−1). From (12) (which is still true

for Algorithm 2) and the update rule for ν in Algorithm 2, we have

0 ∈ ∂V (θk)− ∂V (θ∗) + c(θ̄k − Aβ̄k) + ν̄k−1 (16)

0 ∈ ∂V (θk−1)− ∂V (θ∗) + c(θ̄k−1 − Aβ̄k−1) + ν̄k−2 (17)

ν̄k−1 − ν̄k−2 = c(θ̄k−1 − Aβ̄k−1). (18)

Subtracting (17) from (16) and taking into account (18), we get

0 ∈ ∂V (θk)− ∂V (θk−1) + c(θ̄k − Aβ̄k).

Taking inner product with θk − θk−1 in the above equation and using the property of

convex function that 〈∂V (θk)− ∂V (θk−1), θk − θk−1〉 ≥ 0, we get

(θ̄k −Aβ̄k)T (θk − θk−1) ≤ 0,

22

and we can rewrite the above expression as

(β̄k)TAT (θ̄k − θ̄k−1) ≥ (θ̄k)T (θ̄k − θ̄k−1).

Using the identity (θ̄k)T (θ̄k − θ̄k−1) = 1/2(||θ̄k||2− ||θ̄k−1||2+ ||θ̄k − θ̄k−1||2) we obtain

from (15)

||ν̄k−1||2 − ||ν̄k||2 ≥ c2||θ̄k − Aβ̄k||2 + c2(||θ̄k||2 − ||θ̄k−1||2 + ||θ̄k − θ̄k−1||2).

After rearranging, we get

(||ν̄k−1||2 + c2||θ̄k−1||2)− (||ν̄k||2 + c2||θ̄k||2) ≥ c2||θ̄k − Aβ̄k||2 + c2||θ̄k − θ̄k−1||2,

and then ||θ̄k −Aβ̄k|| → 0 and ||θ̄k − θ̄k−1|| → 0. Now the rest of the analysis follows

that for Algorithm 1 with no changes.

Appendix B R code for FLSA with quadratic loss

flasso.alm<-function(y,lambda1,lambda2,C=5,tol=1e-10){

n<-length(y)

#initialization

beta<-y

theta<-rep(0,n-1)

gamma<-rep(0,n)

mu<-rep(0,n)

nu<-rep(0,n-1)

23

conv<-100

iter<-0

while (conv>tol){

temp<-(y+C*beta-mu/2)/(1+C)

gamma<-abs(temp)-lambda1/(1+C)

gamma<-pmax(0,gamma)*sign(temp)

##compute rhs of the linear system for solving beta

temp1<--C*gamma; temp2<--mu; temp3<-c(theta[1],diff(theta),-theta[n-1])*C;

temp4<-c(nu[1],diff(nu),-nu[n-1]); rhs<-temp1+temp2+temp3+temp4

##compute the three diagonals in the linear system

diag1<-rep(-C/2,n-1);

diag2<-c(C/2,rep(C,n-2),C/2)+rep(C/2,n)

##call the tridiagonal matrix algorithm

beta<-Solve.tridiag(diag1,diag2,diag1, -rhs/2)

temp<-diff(beta)-nu/b

theta<-abs(temp)-lambda2/b

theta<-pmax(0,theta)*sign(temp)

premu<-mu

mu<-mu+C*(gamma-beta)

prenu<-nu

nu<-nu+C*(theta-diff(beta))

24

conv<-mean(c((nu-prenu)^2,(mu-premu)^2)) #used to test convergence

iter<-iter+1

}#while loop end

#return the estimated signal and number of iterations performed

list(beta=beta,iter=iter)

}

25

	1 Introduction
	2 Augmented Lagrangian Formulation
	3 Simulation Results
	4 Conclusion

